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ITERATIVE ALGEBRAS: HOW ITERATIVE ARE THEY?

J. ADÁMEK, R. BÖRGER, S. MILIUS, AND J. VELEBIL∗

Abstract. Iterative algebras, defined by the property that every guarded system of
recursive equations has a unique solution, are proved to have a much stronger property:
every system of recursive equations has a unique strict solution. Those systems that
have a unique solution in every iterative algebra are characterized.

1. Introduction

Iterative algebras are those algebras in which every “guarded” system of recursive equa-
tions has a unique solution. This concept, introduced by Evelyn Nelson [N] and Jerzy
Tiurin [T], is important for the study of Elgot’s iterative theories. The condition of
guardedness serves to exclude bad guys such as x = x. In the present paper we prove that
iterative algebras are “very” iterative: every system of recursive equations has a solution,
in fact, a canonical one. For the latter we need a choice of a global element ⊥ in the given
iterative algebra—then we can introduce the concept of a strict solution. For example,
the unique strict solution of x = x is x 7→ ⊥. We prove that every recursive equation
system has a unique strict solution. We also fully characterize those systems of equations
which have unique solutions in all iterative algebras; we call them preguarded.

We prove our results for all finitary endofunctors of well-behaved categories. These
are the locally finitely presentable categories of Gabriel an Ulmer in which every object
is a coproduct of connected objects. It turns out that each such category is extensive,
but not conversely: there are locally finitely presentable, extensive categories in which an
equation can have infinitely many strict solutions. We demonstrate this by an example in
the category of Jónsson-Tarski algebras. Section 2 is devoted to a discussion of the base
categories we need throughout the paper.

In our later research we plan to use the above “stronger iterativity” of iterative algebras
for characterizing monadic algebras of the monad of free iteration theories on the category
of endofunctors. And we will also use it for the first step in a “reconciliation” of iterative
algebras and iteration algebras of Stephen Bloom and Zoltán Ésik [BÉ]. The latter are
algebras where all systems of recursive equations have solutions, and a choice of solutions
subject to axioms is performed; the motivation stems from continuous algebras on CPO’s,
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where recursive equations always have the least solution. The “reconciliation” mentioned
above has two steps: one, the subject of the present paper, is to show that every iterative
algebra has canonical solutions of all systems of recursive equations. The other step,
which we attend to in the paper [ABM], is to show that these canonical solutions satisfy
the axioms of iteration algebras.

Related Work. This paper is a (substantially expanded) version of the extended
abstract published previously [AMV2]. The results of Section 2 are new, the concept of
strict solution has been simplified, and Example 6.10 and Theorem 5.17 is also new. For
endofunctors of Set the unique existence of strict solutions was proved by Larry Moss [Mo]
and Stephen Bloom et al. [BEW1], [BEW2]. Our purely categorical proof is independent.

Acknowledgement. We are grateful to Walter Tholen, Peter Johnstone, Francis
Borceux and the referee for their interesting comments.

2. Hyper-Extensive Categories

In this section we introduce the categories for which the main results will be proved: they
are the locally finitely presentable categories (see [GU]) which are hyper-extensive. The
latter is stronger than extensivity, and for locally finitely presentable categories it states
precisely that every object is a coproduct of connected objects. We recall all the concepts
needed and illustrate them by examples. Since local presentability is not needed for all
our results, we formulate hyper-extensivity more generally first: this turns out to be a
slightly stronger condition than extensivity, see [CLW].

2.1. Remark. (i) Recall from [GU] that an object A is called finitely presentable if
hom(A,−) preserves filtered colimits.

(ii) We call A connected if hom(A,−) preserves coproducts. For example, in Set the
finitely presentable objects are the finite sets and the connected ones are the terminal
(one-element) sets only. In the category Gra of graphs finitely presentable objects are
the finite graphs, and the connected ones are the graphs with precisely one (connected)
component.

(iii) It is easy to verify that a directed colimit of connected objects is always connected.
(iv) Recall that a category A is called locally finitely presentable, see [GU] or [AR],

if it has colimits and a set Afp of finitely presentable objects such that every object is
a filtered colimit of objects in Afp. Examples: Set, SetI , Gra and Pos (posets and
order-preserving maps) are finitely presentable categories.

2.2. Definition. [CLW]. A category is called extensive if it has finite coproducts which
are

(a) disjoint, i.e., coproduct injections are monomorphisms and the intersection of two
distinct coproduct injections is always 0 (the initial object), and
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(b) universal, i.e., for every morphism f : C // A1 + A2 the pullbacks of the coproduct
injections along f exist and turn C into the corresponding coproduct:

A1 A1 + A2inl
//

A′
1

A1

��

A′
1 C = A′

1 + A′
2

// C = A′
1 + A′

2

A1 + A2

f
��

A1 + A2 A2
oo

inr

C = A′
1 + A′

2

A1 + A2

��

C = A′
1 + A′

2 A′
2

oo A′
2

A2

��

2.3. Notation. We denote, for every coproduct injection i : A //C, by ī : A //C the
complementary coproduct injection, i.e., C = A + A with injections i and ī. A subobject
A � � // B is called trivial if A is an initial object.

2.4. Remark. Let A be an extensive category.
(i) A coproduct A + B is finitely presentable iff A and B are finitely presentable. In

fact, sufficiency is trivial, for necessity assume that ci : Ci
// C (i ∈ I) is a filtered

colimit and f : A // C a morphism. If A + B is finitely presentable, we are to verify
that f factors through some ci, and the factorization is essentially unique (i.e., given
u, v : A // Ci with c = ci·u = ci·v then u, v are merged by some connecting morphism of
the filtered diagram). We know that f +idB : A+B // colimi∈I(Ci +B) factors through
some ci + idB; due to extensivity the factorizing morphism has the form u + idB for some
u : A // Ci. It then follows that f = ci·u, and the essential uniqueness w.r.t. A follows
from that w.r.t. A + B.

(ii) An object of A is connected iff it is non-initial and indecomposable, that is, it is
not a coproduct of two objects unless one of them is initial.

(iii) In an extensive category given disjoint subobjects ai : Ai
// B, i = 1, 2, each of

which is a coproduct injection, then [a1, a2] : A1 +A2
// B is also a coproduct injection.

This property does not generalize to countable coproducts, see Example 2.9(3), therefore,
we formulate it separately:

2.5. Definition. A category is called hyper-extensive if it has countable coproducts
which are (a) disjoint, (b) universal, and (c) given pairwise disjoint subobjects ai : Ai

//B,
i ∈ N, each of which is a coproduct injection, then [ai] :

∐
i∈N Ai

//B is also a coproduct
injection.

2.6. Examples. (1) Set is hyper-extensive. The category of finite sets is an example
of an extensive category that is not hyper-extensive because it does not have countable
coproducts.

(2) Posets, graphs, and unary algebras form hyper-extensive categories.
(3) Free completions Fam B of categories B under coproducts (which can be described

as the category of families of objects of B) are hyper-extensive. Also free completions
under countable coproducts are always hyper-extensive.

(4) If K is hyper-extensive then so is each functor category [A , K ], A small.
(5) The category of compact Hausdorff spaces is extensive but not hyper-extensive:

its countable coproducts are not universal.
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2.7. Theorem. A locally finitely presentable category is hyper-extensive iff every object
is a coproduct of connected objects.

Proof. (1) Let A be a locally finitely presentable, hyper-extensive category.
(1a) We prove that in A all, not necessarily finite, coproducts are universal, i.e., given

a morphism f : C //
∐

i∈I Ai, then pullbacks ci : Ci
// C of coproducts injections ai

along f form a coproduct C =
∐

i∈I Ci. If C is finitely presentable, then this follows from
extensivity because f factors through a finite subcoproduct. If C is arbitrary, express it as
a filtered colimit of finitely presentable objects Dt with a colimit cocone dt : Dt

//C (t ∈
T ). For each t form pullbacks dt,i : Dt,i

// Dt of the coproduct injections ai along f ·dt,
then we know that Dt =

∐
i∈I Dt,i. Since pullbacks commute with filtered colimits, see

[AR], 1.59, we have Ci = colimt∈T Dt,i for every i ∈ I. Therefore, we get canonical
isomorphisms ∐

i∈I

Ci
∼=

∐
i∈I

colim
t∈T

Dt,i

∼= colim
t∈T

∐
i∈I

Dt,i

∼= colim
t∈T

Dt

∼= C.

(1b) Every finitely presentable object A is a coproduct of connected objects. In fact,
for A initial use empty coproduct. If A � 0, we use Remark 2.4(ii):

Assuming that the object A is not a finite coproduct of indecomposable objects, we
derive a contradiction. There clearly exists a decomposition A = A0+A1 where A0, A1 are
non-initial objects and A1 is not indecomposable. Then A1 has a decomposition A1 =
A10 + A11 where A10, A11 are non-initial and A11 is not indecomposable, etc. We get
decompositions

A = A0 + A1 = A0 + A10 + A11 = A0 + A10 + A110 + A111 = · · ·

and the coproduct injections

a1n0 : A1n0
// A = A0 + A10 + A110 + · · ·+ A1n0 + A1n+1

are pairwise disjoint. By assumption, the morphism

a = [a0, a10, a110, . . . ] :
∐
n∈N

A1n0
// A

is a coproduct injection. The “complementary” coproduct injection (see 2.3)

b : B // A with A =
∐
n∈N

A1n0 + B
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is disjoint with each a1n0. However, A is a filtered colimit of the finite coproducts A0 +
A10 + · · · + A1n0 + B, and since A is finitely presentable, idA factors through one of the
colimit morphisms c = [a0, a10, . . . , a1n0, b]. Thus, c is an isomorphism (being a split
epimorphism and a coproduct injection). This is the desired contradiction: a1n+10 factors
through c, in spite to being disjoint with each component.

(1c) Every object A is a coproduct of connected objects. In fact, express A as a
directed colimit

ai : Ai
// A (i ∈ I)

of finitely presentable objects, and let

Ai =
∐
j∈Ji

Bi,j with injections bij

be a coproduct of connected objects Bi,j. Then since coproducts and directed colimits
commute, we obtain Ai as a coproduct of directed colimits of the objects Bi,j; the latter
directed colimits are connected by Remark 2.1(ii).

More detailed: for every element of∐
i∈I

Ji =
{
(i, j); i ∈ I, j ∈ Ji

}
define a diagram

Dij indexed by all i′ ∈ I with i′ ≥ i

whose object of index i′ is the unique object Bi′,j′ (j′ ∈ Ji′) for which ai,i′·bi,j factors
through bi′,j′ :

Ai Ai′ai,i′
//

Bi,j

Ai

bi,j

��

Bi,j Bi′,j′
bi′
i,j // Bi′,j′

Ai′

bi′,j′

��

Let
Cij = colim

i′≥j
Bi′,j′

be the directed colimit of Dij. By 2.1(iii), for all i, j

Cij are connected objects.

We denote the colimit cocone by

ci′

ij : Bi′,j′
// Ci,j (i′ ≥ i).

Let ∼ be the equivalence relation on
∐

Ji generated by

(i, j) ∼ (̄i, j̄) iff Di,j and Di′,j′ have the same object Bi′,j′

for some upper bound i′ of i, ī.
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Observe that this implies that also all objects indexed by any i′′ ≥ i′ are common. The
desired coproduct is

A =
∐

(i,j)∈S

Ci,j

for any set S ⊆
∐

Ji of representatives of ∼. In fact, given (i, j) ∈ S the diagram Di,j

has a cone formed by all ai′·bi′,j′ : Bi′,j′
// A, thus, we have a unique morphism

fi,j : Ci,j
// A

such that all the squares

Ci,j A
fi,j

//

Bi′,j′

Ci,j

ci′
i,j

��

Bi′,j′ Ai′
bi′,j′ // Ai′

A

ai′

��

(i′ ≥ i)

commute. It is easy to check that the morphism

f = [fi,j] :
∐
i,j∈S

Ci,j
// A

is an isomorphism.
(2) Let all objects of a locally finitely presentable category A be coproducts of con-

nected objects.
(2a) Coproduct injections ai : Ai

//A1+A2 are monomorphisms, and they are disjoint
(for i = 1, 2). In fact, to prove the former, consider morphisms p, q : B // Ai merged
by ai for i = 1 or 2. If B is connected, then clearly p = q. If B is arbitrary, express it as
a coproduct of connected objects and use the individual coproduct injections.

Let c : C // A1 + A2 be the intersection of a1 and a2. To prove that C is the initial
object, it is sufficient to observe that it is an empty coproduct (of connected objects). In
fact, given a morphism b : B // C then B cannot be conncted: since hom(B, Ai) 6= ∅
for i = 1, 2 the coproduct A1 + A2 is not preserved by hom(B,−).

(2b) Coproducts are universal. In fact, let A =
∐

i∈I Ai be a coproduct with injec-
tions ai, and let f : B // A be a morphism. We first assume that B is connected. Then
for the pullbacks of ai’s along f there exists a unique i such that f factorizes though ai,
in other word, there exists a morphism d : B // Bi with bi·d = id.

B A
f

//

Bi

B

bi

��

Bi Ai
fi // Ai

A

ai

��
B

Bi

d

OO�
�
�
�
�
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Since ai is a monomorphism, so is bi, consequently, bi is an isomorphism. Thus, B is (by
default) a coproduct of Bj’s; as B is connected: we clearly have Bj initial for all j 6= i
in I.

If B is not connected, apply the above argument to all connected component of B.
(2c) Suppose that ai : Ai

// B (i ∈ I) are pairwise disjoint coproduct injections.
Thus for every i we have a coproduct

Ai
ai // B = Ai + Ai

oo āi Ai.

Then we are to prove that the morphism [ai]i∈I :
∐

i∈I Ai
// B is also a coproduct

injection. In fact, express B as a coproduct

B =
∐
t∈T

Bt with injections bt

of connected objects Bt. For every i ∈ I, since hom(Bt,−) preserves the coproduct Ai+Ai,
we see that bt factorizes through either ai or āi. Then Ai is the coproduct of all Bt for
which bt factorizes through ai. Thus, for the set

T0 = {t ∈ T ; bt factorizes through ai for some i ∈ I

we obviously have ∐
i∈I

Ai =
∐
t∈T0

Bt and
[
ai

]
i∈I

=
[
bt

]
t∈T0

.

The morphism b = [bt]t∈T0 is a coproduct injection with the complementary injection
b̄ = [bt]t∈T−T0 .

2.8. Remark. It follows rather easily from the above theorem that locally finitely pre-
sentable, hyper-extensive categories have the form Fam B of Example 2.6(3). In fact,
they are precisely the categories of the form Fam B where B is finitely accessible and has
connected colimits.

The proof of this fact is relatively straightforward but rather long and we omit it.

2.9. Examples. (1) All examples of 2.6(1)–(4) are locally finitely presentable.
(2) The category Vec of real vector spaces is locally finitely presentable (since it is a

variety of algebras) and every vector space is a coproduct of copies of R. But although
R is indecomposable, it is not connected. And, in fact, Vec is not extensive.

(3) The category
JT

of Jónsson-Tarski algebras has as objects binary algebras (A, ∗) such that ∗ : A×A //A is
a bijection. This is a variety which is not only extensive, it is a topos, see [J], A1.2.1.11(i).
However, JT is not hyper-extensive. In fact, let

Φ(1)
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denote the Jónsson-Tarski algebra on one generator g. There is a unique decomposition
g = g′ ∗ g′′. It is easy to see that Φ(1) is also the the free Jónsson-Tarski algebra on the
two generators g′ and g′′. Consequently,

Φ(1) = Φ(1) + Φ(1)

where the coproduct injections l, r : Φ(1) // Φ(1) send g to g′ and g′′, respectively. This
implies that Φ(1) is not a coproduct of connected objects: since Φ(1) is finitely presentable,
such a coproduct would have to be finite, which is clearly impossible.

3. Equation Morphisms and Solutions

In this section we recall the concepts of algebra, equation morphism and solution for a
given endofunctor

H : A // A .

We do not require any property of A besides having finite coproducts.

3.1. Remark. (i) Algebras an endofunctor for H are objects A of A together with
morphisms a : HA // A; the corresponding morphisms are called homomorphisms, they
are defined via obvious commutative squares. Coalgebras for H are objects A of A
together with morphisms a : A // HA, coalgebra homomorphisms are also given by
obvious commutative squares.

(ii) The functor H is called finitary if it preserves filtered colimits. Every finitary
functor has free algebras, and as proved by Michael Barr in [B], this yields a monad F of
free H-algebras which is a free monad on H. We have

FZ = HFZ + Z, (1)

where the coproduct injections are the H-algebra structure and the universal arrow.

3.2. Definition. Given an endofunctor H, a flat equation morphism in an object A
is a morphism of the form

e : X // HX + A. (2)

A solution of e in an algebra a : HA // A is a morphism e† : X // A such that the
square

HX + A HA + A
He†+A

//

X

HX + A

e

��

X Ae† // A

HA + A

OO

[a,A]

commutes. The algebra A is called completely iterative (or, shortly cia), see [M], if
every flat equation morphism has a unique solution.
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3.3. Examples. (i) Let H = Id be the identity endofunctor of Set. Then algebras are
the usual algebras on one unary operation α. An algebra is a cia iff α has a fixed point a,
and for every infinite path

· · · α // x2
α // x1

α // x0

we have xi = a for all i. See [M].
(ii) Let A be an extensive category and consider the constant functor C1 with the

value 1, a terminal object. An algebra is an object A together with a global element
a : 1 //A. Every algebra is a cia. In fact, given a flat equation morphism e : X //1+A
we have a decomposition

e = el + er : Xl + Xr
// 1 + A.

It easy to verify that the unique solution e† is

e† =
[
a·el, er

]
: Xl + Xr

// A.

(iii) If H has a terminal coalgebra τ : T // HT then τ is invertible and the algebra
τ−1 : HT // T is a cia.

More generally: let TZ be the terminal coalgebra for H(−) + Z. Then the coalgebra
structure

αZ : TZ // HTZ + Z (3)

is invertible, whence TZ is a coproduct of HTZ and Z

TZ = HTZ + Z (4)

with injections

τZ : HTZ // TZ (“TZ is an H-algebra”)

ηZ : Z // TZ (“embedding of variables”).

That is, [τZ , ηZ ] = α−1
Z . In fact, TZ is a free cia on Z with ηZ as the universal arrow. We

denote by T the monad of free cias for H. Its unit is η and the multiplication µ is given
by the unique homomorphism µZ : TTZ // TZ extending identity on TZ. This monad
is characterized in [AAMV, M] as a free completely iterative monad on H.

3.4. Definition. [AAMV]. An endofunctor H is called iteratable if TZ, a terminal
coalgebra for H(−) + Z, exists for every Z.

3.5. Example. (i) Let Σ be a signature, i.e., a sequence of sets (Σn)n∈N. Then Σ-algebras
in Set are H-algebras for the polynomial functor HΣ : Set // Set:

HΣZ = Σ0 + Σ1 ×X + Σ2 ×X2 + · · ·

HΣ is iteratable, and TΣZ can be described as the algebra of all Σ-trees on Z, i.e., rooted
and ordered trees with leaves labelled in Z +Σ0 and nodes with n > 0 successors labelled
in Σn.
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A flat equation morphism e : X // HΣX + A with the set X = {x1, x2, . . . } of
variables represents a system of recursive equations, one for every variable xi, of the form

xi ≈ s(xi1 , . . . , xin) for s ∈ Σn

or
xi ≈ a for a ∈ A.

A solution in an algebra A is a substitution of elements x†i of A for variables xi such that
the formal equations become identities in A. It turns out that in every cia much more
general recursive systems have unique solutions: the right-hand sides can be terms (or
finite Σ-trees) on X + A, or even infinite Σ-trees, i.e., elements of TΣ(X + A):

(ii) Every finitary endofunctor (more generally, every accessible endofunctor) of a
locally finitely presentable category is iteratable, see [AAMV].

3.6. Definition. Let H be an iteratable endofunctor. An equation morphism in a
cia A is a morphism of the form

e : X // T (X + A).

It is called guarded if it factors through the coproduct injection of T (X + A) ∼= HT (X +
A) + X + A ∼= X + [A + HT (X + A)]:

X T (X + A)e //X

HT (X + A) + A
''OOOOOOO T (X + A)

HT (X + A) + A

OO
[τX+A,ηX+A· inl]

3.7. Example. For HΣ an equation morphism e represents equations

xi ≈ t(x1, x2, . . . , a1, a2, . . . )

whose right-hand sides are Σ-trees on X + A. And e is guarded if the right-hand sides
are not single variables. This excludes trivial cases such as xi ≈ xi where solutions are
almost never unique.

3.8. Notation. If A is a cia, we denote by ã : TA //A the unique homomorphism with

ã·ηA = id .

The following theorem (whose proof is a straightforward adaptation of Theorem 3.9
in [M]) states that flat and guarded make no difference:

3.9. Theorem. [M]. In a cia A every guarded equation morphism e : X // T (X + A)
has a unique solution, i.e., there exists a unique e† : X // A such that the square

T (X + A) TA
T [e†,A]

//

X

T (X + A)

e

��

X A
e† // A

TA

OO

ea (5)

commutes.
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3.10. Definition. Let H be a finitary endofunctor. A finitary equation morphism
in A is a morphism of the form

e : X // F (X + A),

where X is finitely presentable. It is called guarded if it factors through the right-hand
coproduct injection of F (X + A) = X + [A + HF (X + A)].

3.11. Definition. An H-algebra is called iterative if every finitary flat equation mor-
phism, i.e., (2) with X finitely presentable, has a unique solution.

3.12. Example. [AMV1]. For H = IdSet a unary algebra is iterative iff its operation
α : A // A has a unique fixed point x and no other cycle. It is a cia if, moreover, the
graph of α−1 has no infinite path other than x, x, x, . . . .

3.13. Example. [N]. For H = HΣ the subalgebra RΣZ ⊆ TΣZ of the Σ-tree algebra
formed by all rational trees, i.e., trees which have up to isomorphism only finitely many
subtrees, is iterative. This is a free iterative Σ-algebra on Z.

3.14. Remark. (i) For every finitary functor H free iterative algebras exist and the
monad R they form, called the rational monad of H, is characterized in [AMV1] as a free
iterative monad on H. Analogously to (4) we have

R = HR + Id . (6)

(ii) In analogy to Definition 3.6 a rational equation morphism is a morphism

e : X // R(X + A) with X finitely presentable.

It is called guarded if it factors through the coproduct injection of HR(X + A) + A.
(iii) For every iterative algebra (A, a) we denote by

â : RA // A

the unique homomorphism extending the identity on A.

3.15. Theorem. [AMV1]. In an iterative algebra A every guarded rational equation
morphism e : X //R(X+A) has a unique solution, i.e., there exists a unique e† : X //A
such that the square

R(X + A) RA
R[e†,A]

//

X

R(X + A)

e

��

X A
e† // A

RA

OO

ba

commutes.
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4. Preguarded Equation Morphisms

4.1. Assumption. Throughout this section H denotes an iteratable endofunctor of a
hyper-extensive category, see Definitions 3.4 and 2.5. Coproduct injections of binary co-
products are called inl and inr.

4.2. Notation. Let
e : X // T (X + A)

be an equation morphism and

i0 ≡ X
inl // X + A

ηX+A // T (X + A)

be the “standard” embedding of variables. Recall that this is a coproduct injection of
T (X +A) = HT (X +A)+X +A, see (4). Let us form inverse images of the two coproduct
injections, i0 and ī0 (see 2.3), along e:

X T (X + A)
i0

//

X1

X

e1

��

X1 X
i1 // X

T (X + A)

e

��
T (X + A) HT (X + A) + Aoo

ī0

X

T (X + A)
��

X X1
oo ī1 X1

HT (X + A) + A

ē1

��

Then the extensivity of our base category implies

X = X1 + X1 with injections i1 and ī1.

Recall that e is called guarded iff X1 = 0, or, equivalently,

X ∼= X1 (̄i1 an isomorphism).

4.3. Definition. Let e : X //T (X+A) be an equation morphism. A subobject m : M // //X
is called ungrounded provided that e has a restriction to an endomorphism

e′ : M // M,

in other words, the square

M

M

e′

��

M Xm // X

T (X + A)

e

��
M Xm

// X T (X + A)
i0

//

(1)

commutes. (Example: the trivial subobject 0 // // X is ungrounded.) We call an equation
morphism e preguarded if it has no nontrivial ungrounded subobjects.
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4.4. Example. Let Σ consist of a binary operation A. The system

x = y ∗ z

y = t

z = x

t = y

has the ungrounded subobject {y, t} // //{x, y, z, t}. Here e′ is just the domain-codomain
restriction of e.

4.5. Definition. Given an equation morphism e : X // T (X + A) the derived sub-
objects Xn

// // X, n = 1, 2, 3, . . . are defined by the following pullbacks

X2 X1i2
//

X3

X2

e3

��

X3 X2
i3 // X2

X1

e2

��
X1 X

i1
//

X2

X1

��

X2 X1
i2 // X1

X

e1

��
X T (X + A)

i0
//

X1

X
��

X1 X
i1 // X

T (X + A)

e

��

X3

X2

. . .
��

(2)

4.6. Remark. (i) Since i0 is a coproduct injection, so is i1, and e1 is a domain-codomain
restriction of e. Analogously, since i1 is a coproduct injection, so is i2, and e2 is a domain-
codomain restriction of e1, etc. We denote by i∗n : Xn

//X the corresponding composites

i∗0 = idX and i∗n+1 = i∗n·in+1 : Xn+1
// X. (3)

(ii) For every n ≥ 1 we denote by

īn : Xn
// Xn−1 (n = 1, 2, 3, . . . )

(where X0 = X) the complementary coproduct injection of in, thus, Xn−1 = Xn + Xn for
n = 1, 2, 3, . . . We consider Xn as a subobject of X via

ī∗n ≡ Xn
īn // Xn−1

i∗n−1 // X (n ≥ 1). (4)

(iii) In the base category Set the variables of X1 = e−1(X0) are precisely those xi

where ti is a single variable in X. That is, those xi where the corresponding equation
has the form xi ≈ xi′ . We conclude that X1 are precisely the unguarded variables. To
put it positively, X1 consists of all the guarded variables. Here we have e1 : X1

// X,
xi

� // xi′ , and thus xi lies in X2 = e−1
1 (X1) if and only if xi′ is unguarded. Consequently,

for every xi ∈ X2 we have equations xi ≈ xi′ and xi′ ≈ xi′′ . In other words, X2 consists
of all variables reaching a guarded variable in one step (of applying e). Analogously,
xi ∈ X3 if and only if we have equations xi ≈ xi′ , xi′ ≈ xi′′ and xi′′ ≈ xi′′′ or, equivalently,
X3 consists of all variables reaching a guarded variable in two steps, etc. To say

X = X1 + X2 + X3 + · · ·

means that every variable reaches a guarded variable in finitely many steps. More gener-
ally:
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4.7. Proposition. Every equation morphism has the greatest ungrounded subobject which
is (a) the intersection of all derived subobjects and (b) the complementary subobject of∐

n≥1 Xn.

Proof. Since ī∗k : Xk
//X (k ≥ 1) are pairwise disjoint coproduct injections, they form

a coproduct injection [̄i∗k] :
∐

k≥1 Xk
// X, see 2.5. We denote by

m : M // X

the complementary coproduct injection and prove that this is the largest ungrounded
subobject of e—this proves the proposition since X = Xk + Xk for every k ≥ 1, implies
that the subobject m : M // X is just the intersection of all derived subobjects.

(a) m : M // X is ungrounded. In fact, denote by

mk : M // Xk with i∗k·mk = m

the corresponding embeddings. Then the morphisms e′k = ek+1·mk+1 : M // Xk form a
compatible cone, i.e., ik·e′k = e′k−1 for k = 1, 2, 3, . . . . Thus, there exists a unique

e′ : M // M

(
=

⋂
k≥1

Xk

)
with e′k = mk·e′ (k ≥ 1).

The diagram (1) commutes since for m = i1·m1 we get

e·m = e·i1·m1 = i0·e1·m1 = i0·e′0

as well as
i0·m·e′ = i0·i1·m1·e′ = i0·i1·e′1 = i0·e′0.

(b) Let m̂ : M̂ // X be an ungrounded subobject with

e·m̂ = i0·m·ê for ê : M̂ // M̂ .

To prove M̂ ⊆ M we need to show M̂ ⊆ Xk for all k ≥ 1: this is an obvious induction
on k using the pullbacks of (2).

4.8. Corollary. An equation morphism e : X // T (X + A) is preguarded iff X =∐
n≥1 Xn.

4.9. Remark. (i) Even if our base category is not hyper-extensive, every ungrounded
subobject m : M // X factorizes through the intersection of all derived subobjects: use
the morphisms e′k in the proof of Proposition 4.7.

(ii) From Example 3.5 we see that the intuition behind the subobjects X1, X2, X3, . . .
is such that X1 consists of all guarded variables. If e is a guarded equation morphism,
then X = X1. If e is preguarded, we always have a passage Xn

// X1, for all n ≥ 1,
which to every variable assigns the guarded variable eventually reached by applying e
finitely many times. To formulate this categorically, we need the following
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4.10. Notation. We form a pullback of en : Xn
//Xn−1 along the complement īn of in,

see Remark 4.6:

Xn Xn−1
īn

//

Xn+1

Xn

ēn+1

��

Xn+1 Xn
īn+1 // Xn

Xn−1

en

��
Xn−1 Xn

oo
in

Xn

Xn−1

��

Xn Xn+1
oo in+1

Xn+1

Xn

en+1 (n ≥ 1)
��

The canonical passage from Xn to X1 is the composite ē2· · · · ·ēn. This defines a morphism

u = [id, ē2, ē2·ē3, . . . ] : X1 + X2 + X3 + · · · // X1. (5)

4.11. Definition. For every preguarded equation morphism e : X //T (X+A) we define
an equation morphism as follows

f ≡ X1
ī1 // X

e // T (X + A)
T (u+A) // T (X1 + A). (6)

We call f the guarded modification of e.

4.12. Theorem. The guarded modification f of an equation morphism e is guarded, and
has the same solutions as e. More precisely: for every cia with the underlying object A:

(a) If e† is a solution of e, then e† ·̄i1 : X1
// A is a solution of f .

(b) If f † is a solution of f , then f †·u : X // A is a solution of e.

X

A

e†
��?

??
??

??
??

? X1

A

f†
����

��
��

��
�

u //

ī1

oo

Proof. (1) We verify that f is guarded. Put

j0 = inl : X1
// T (X1 + A) = X1 + A + HT (X1 + A)

and compute a pullback of f along j0:

X1 T (X1 + A)
j0=inl

//

X

X1

u

��

X T (X + A)
i0=inl // T (X + A)

T (X1 + A)

T (u+A)=u+[A+HT (u+A)]
��

X T (X + A)//

X1

X

e1

��

X1 X
i1 // X

T (X + A)

e

��

X1 X//

0

X1

��

0 X1
// X1

X

ī1
��
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(2) Proof of (b). Given a solution f † : X1
// A of f , we prove that f †·u : X // A

is a solution of e, i.e., f †·u = ã·T [f †·u, A]·e : X // A. This equation will be proved
by considering the individual components of X =

∐
Xn, see (4). For n = 1 we use the

definition (6) of f and obtain the commutative diagram

T (X + A) T (X1 + A)
T (u+A)

//

X

T (X + A)

e

��

X X1
u // X1

T (X1 + A)

f

��

T (X1 + A) TA
T [f†,A]

//

X1

T (X1 + A)
��

X1 A
f† // A

TA

OO

eaX1

X
ī1

eeLLLLLLLLLL
X1

X1rrrrrrrrr

rrrrrrrrr

For n = 2, the coproduct injection is i1 ·̄i2 : X2
// X; thus we consider the diagram

T (X + A) T (X1 + A)
T (u+A)

//

X

T (X + A)

e

��

X X1
u // X1

T (X1 + A)

f

��

X2

X1

ē2

??���������

X2X1
ī2ooX1

X

i1

__??????????

X1

X

e1

��

X2

X1

ē2

��

X1

X1
�����������������

�����������������

X1

X1

X1

X

ī1

����
��

��
��

�

X

T (X + A)

inl
����

��
��

��
��

X1

T (X1 + A)

inl
��?

??
??

??
??

X X1u
//

T (X1 + A) TA
T [f†,A]

//

X1

T (X1 + A)
��

X1 A
f† // A

TA

OO

ea
(∗)

All the inner parts except the one denoted by (∗) clearly commute. The part (∗) commutes
when composed with the passage to A, ã·T [f †, A] : T (X1 + A) // A, i.e., this morphism
merges the parallel pair f , inl : X1

// T (X1 + A). In fact, by the commutativity of the
right-hand square in the above diagram it suffices to observe that f † = ã·T [f †, A]· inl:

T (X1 + A) TA
T [f†,A]

//

X1

T (X1 + A)

inl

��

X1 A
f† // A

TA

ηA

��
TA Aea //

A

A
??

??
??

??
??

??
?

??
??

??
??

??
??

?

The cases n = 3, 4, . . . are analogous to the case n = 2.
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(3) Proof of (a). Let e† : X //A be a solution of e. We are to prove that the outward
square of the following diagram

X1

T (X1 + A)

f

��

X1 X
ī1 // X

T (X + A)

e

��
T (X + A)

T (X + A)

T (X + A)

T (X1 + A)

T (u+A)

||yyyyyyyyyyyyyyyyyyyyyyyy

T (X1 + A)

T (X + A)

T (̄i1+A)

55lllllllllllllll

T (X1 + A) TA
T [e† ·̄i1,A]

//

X A
e† //

TA

A

ea

OO

T (X + A)

TA

T [e†,A]

""EEEEEEEEEEEEEEEEEEEEEEEEE

T (X + A)

TA
T [e†,A]

))RRRRRRRRRRRRRRRRRR(∗)

commutes. All the inner parts except that denoted by (∗) commute. For (∗) it is sufficient
to prove that T [e†, A] merges id and T (̄i1+A)·T (u+A). Therefore, the proof of (a) will be
finished by proving the equation e† = e† ·̄i·u. We consider the individual components Xn

of X = X1 + X2 + X3 + · · · , see (4):
For n = 1 use u·̄i1 = id to obtain e† ·̄i1 = (e† ·̄i1·u)·̄i1.
For n = 2 we are to prove the equation e†·i1 ·̄i2 = (e† ·̄i1·u)·i1 ·̄i2. Consider the diagram

X2

X1

ī2

��
X1

X

i1

��
X X1u

// X1 X
ī1

// X A
e†

//

X2 X1
ī2 //X2

X1

ē2

��3
33

33
33

33
33

33
33

33
3 X1

X

e1

��3
33

33
33

33
33

33
33

33
33

from which the right-hand side of the desired equation is expressed as e†·e1 ·̄i2. It remains
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to verify e†·i1 = e†·e1 which follows from the next diagram

X1 X
i1 //X1

X

e1

��

T (X + A) TA
T [e†,A]

//

X

T (X + A)

e

��

X Ae† // A

TA

OO

ea

X

T (X + A)

i0

CC��������������������
X

X + A

inl

::ttttttttttttt
X A

e†
//

X + A

T (X + A)

η

OO

X + A

A

[e†,A]

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVV

A

TA

η

[[77777777777777777777

A

A

//
//

//
//

//
//

//
//

//
//

//
//

//
//

/

//
//

//
//

//
//

//
//

//
//

//
//

//
//

/

Cases n = 3, 4, . . . are analogous.

4.13. Remark. Within the proof of Theorem 4.12 we proved that if e† is a solution of
the preguarded equation morphism e : X // T (X + A), then

e† = e† ·̄i·u. (7)

4.14. Corollary. In every cia all preguarded equation morphisms have unique solutions.

In fact, the morphism u is an epimorphism, due to u·̄i1 = id, thus the unique existence
of e† follows from the unique existence of f † via (a) and (b) above.

4.15. Remark. How about the converse: if e : X // T (X + A) has unique solutions
in all cia’s, is e preguarded? The answer is affirmative whenever T satisfies mild side
conditions: see Proposition 5.12 below.

5. Strict Solutions

5.1. Assumption. Throughout this section A denotes a hyper-extensive category with
a terminal object, 1. Moreover, H denotes an iteratable endofunctor of A , see Defini-
tion 3.4, for which a morphism

⊥ : 1 // H0

has been chosen.

5.2. Notation. For every equation morphism the intersection of the derived subobjects
i∗n : Xn

// // X (see (3)) is denoted by

i∞ : X∞ // X.

5.3. Remark. By Proposition 4.7 the intersection exists and we have X = X∞+
∐

n≥1 Xn

(with i∞ and (4) as injections) and X∞ is greatest ungrounded subobject.
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5.4. Notation. ⊥ is a global constant of H, i.e., every H-algebra HA
a // A obtains the

corresponding global element

⊥A ≡ 1 ⊥ // H0 H! // HA a // A.

All homomorphisms h : A // B preserve this global constant: h·⊥A = ⊥B. In fact,
consider the commutative diagram below:

1 H0⊥ // H0 HA
H! //H0

HB

H!

��?
??

??
??

??
??

??
HA

HB
��

HB B
β

//

HA

HB

Hh

��

HA A
a // A

B

h

��

In particular for every object Y we have a global element of TY see Example 3.3(iii)
which we denote by ⊥ for short:

⊥ ≡ 1 // H0 H! // HTY
τY // TY

5.5. Definition. Let A be a cia and e : X // T (X + A) an equation morphism with a
solution e† : X // A (see (5)). We call e† strict if its restriction to every ungrounded
subobject m : M // // X (see 4.3) is ⊥A. Equivalently, the square below commutes :

X A
e†

//

X∞

X

i∞

��

X∞ 1// 1

A

⊥A

��

(1)

5.6. Definition. Let A be a cia. For every equation morphism

e : X // T (X + A)

we define an equation morphism

f : X // T (X + A)

by changing the left-hand component of e : X∞ +
∐

Xn
// T (X + A) to ⊥:

f ·i∞ ≡ X∞
! // 1 ⊥ // T (X + A)

f ·̄i∞ = e·̄i∞ :
∐
n≥1

Xn
// T (X + A).

We call f the preguarded modification of e.
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5.7. Theorem. The preguarded modification f of an equation morphism e is preguarded
and has the same strict solutions. That is :

(a) every strict solution of e is a solution of f , and
(b) every solution of f is a strict solution of e.

Proof. (1) f is preguarded. Let Z0 =
∐

Xn and let jk : Zk
// Zk−1, k ≥ 1, denote the

derived subobjects of f ; we have j0 = ī∞. We will prove that

Zk = Xk+1 + Xk+2 + · · · and jk = inr : Zk
// Xk + Zk,

and that the corresponding morphism opposite fk−1 is

fk = ēk+1 + ēk+2 + · · · : Zk
// Zk−1 (k ≥ 1).

This proves obviously that f is preguarded since
⋂

k∈N Zk = 0.
Case k = 1: To find a pullback of f = [⊥!, e·j0] along i0 : X // T (X + A), we just

compute a pullback of e·j0 along i0: in fact the component ⊥! contributes nothing to the
pullback because it factors through ī0, the complement of i0, and A is extensive. Here is
the pullback of e·j0 along i0:

X T (X + A)
i0

//

X∞ + X2 + X3 + · · · = X1

X

e1

��

X∞ + X2 + X3 + · · · = X1 X = X∞ + X1 + X2 + X3 + · · ·i1=inr // X = X∞ + X1 + X2 + X3 + · · ·

T (X + A)

e

��

X1 X//

X2 + X3 + · · · = Z1

X1

inr

��

X2 + X3 + · · · = Z1 X1 + X2 + X3 + · · ·inr // X1 + X2 + X3 + · · ·

X

j0=inr

��

Consequently, we have Z1 = X2 + X3 + · · · with j1 = inr : Z1
// X = X∞ + X1 + Z1,

and the corresponding morphism f1 : Z1
// X is

f1 ≡ Z1
inr // X∞ + Z1

e1 // X.

Case k = 2: We compute a pullback of f1 = e1· inr along j1:

∐
n≥2

Xn = Z1 X
j1

//

∐
n≥2

Xn+1

∐
n≥2

Xn = Z1

��

∐
n≥2

Xn+1 X1
// X1

X

e1

��

∐
n≥2

Xn+1 X1
//

Z2

∐
n≥2

Xn+1

��

Z2 Z1
// Z1

X1

inr

��
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by computing first a pullback Pn of e1 along the n-th component Xn
// X, n ≥ 2, of j1,

see (4)

Xn Xn−1
īn

//

Pn = Xn+1

Xn

ēn+1

��

Pn = Xn+1 Xn
īn+1 // Xn

Xn−1

en

��

Xn · · ·in //

Xn−1 · · ·
in−1

//

· · · X2
i3 //

· · · X1i2
// X1 X

i1
//

X2

X1

e2

��

X2 X1
i2 // X1

X

e1

��

The connecting maps are ēn : Pn
// Xn and i2· · · · ·in·̄in+1 : Pn

// X1. Thus, due
to extensivity, a pullback of e1 along j1 is

∐
n≥2 Xn+1 = Z2 with the connecting maps∐

n≥2 ēn+1 : Z2
// Z1 and inr : Z2

// X1 = X∞ + X2 + Z2. The pullback of f1 = e1· inr
along j1 is thus

X3 + X4 + X5 + · · · = Z2 X1 = X∞ + X2 + X3 + X4 + · · ·//

X3 + X4 + X5 + · · · = Z2

X3 + X4 + X5 + · · · = Z2

X3 + X4 + X5 + · · · = Z2 Z1 = X2 + X3 + X4 + · · ·inr // Z1 = X2 + X3 + X4 + · · ·

X1 = X∞ + X2 + X3 + X4 + · · ·

inr

��

Z1 X
j1

//

Z2

Z1

‘
n≥2

ēn+1

��

Z2 X1
inr // X1

X

e1

��

We obtain Z2 = X3 + X4 + X5 + · · · , j2 = inr, and f2 =
∐

n≥2 ēn+1.
Case k ≥ 3: Here we use the obvious pullbacks

· · · Z3 Z2
//

· · · Z4

· · · Z3

‘
n≥4

ēn+1

��

· · · Z4 Z3
// Z3

Z2

‘
n≥3

ēn+1

��
Z2 Z1inr

//

Z3

Z2

��

Z3 Z2
inr // Z2

Z1

‘
n≥2

ēn+1

��

(2) Proof of (b). If f † is a solution of f , then f † is strict. Observe first that the
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diagram below commutes:

T (X + A) TA
T [f†,A]

//

X

T (X + A)

f

��

X A
f† // A

TA

ea
��

⋂
Xn

X

i∞

��?
??

??
??

??
??

?

⋂
Xn

1

!

��
1

T (X + A)

⊥
��?

??
??

??
??

??
??

1

H0

⊥

��
H0

HT (X + A)

H!

��
HT (X + A)

T (X + A)

τ

??������������
HT (X + A) HTA

HT [f†,A]
// HTA

TA

τ

__?????????????

HTA

HA

Hea
OOHA

A

a

__?????????????

We see that the passage from H0 to HA is H! (because ã·T [f †, A]·! = ! : 0 // A), thus
f †·i∞ = a·H!·⊥·! = ⊥A·! as required.

And f † is a solution of e, i.e., the equation

ã·T [f †, A]·e = f † : X∞ +
∐
n≥1

Xn
// A (2)

holds (see (5) in the introduction). In fact for the right-hand component j0 :
∐

Xn
//X

this follows from e·j0 = f ·j0. For the left-hand component use the commutative diagram

X

T (X + A)

e

��

X∞

X

i∞

bbEEEEEEEEEEE

X∞

X∞

e′

��
X∞

X

i∞
��

X

T (X + A)

i0

||yy
yy

yy
yy

yy
y

X∞ 1! //

X A
f†

//

1

A

⊥A

��

X A
f† //

T (X + A) TA
T [f†,A]

//

1

A

⊥A

<<yyyyyyyyyyyy

A

A

A

HH��������������������������
A

TA

ηA

""EE
EE

EE
EE

EE
E

TA

A

ã

OO

X∞ 1! // 1

1{{{{{{{{{{

{{{{{{{{{{
1

A

⊥A !!CC
CC

CC
CC

C

whose left-hand square commutes for some e′ by 5.3.
(3) Proof of (a). If e† is a strict solution of e, then we are to prove that the equation

ã·T [e†, A]·f = e† holds (cf. (5)): for the right-hand component with domain
∐

Xn this
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follows from the fact that f ·j0 = e·j0. For the left-hand component use the fact that both
e† and f yield ⊥ (in A and T (X +A), respectively) and that ã·T [e†, A] preserves ⊥, being
a homomorphism (see Notation 5.4).

5.8. Notation. For every equation morphism e : X // T (X + A) we denote by

〈e〉 : X1
// T (X1 + A)

the guarded modification of the preguarded modification of e.

5.9. Corollary. In every cia every equation morphism has a unique strict solution, viz.,
the unique solution of the guarded morphism 〈e〉.

5.10. Remark. We will now turn our attention to the question of whether an equation
having a unique solution in every cia must be preguarded. In the case of A = Set, the
answer is affirmative whenever H1 has at least two elements. In general categories we
need the following

5.11. Definition. We say that the free completely iterative cia monad T is nontrivial
if it preserves monomorphisms and has at least two global constants:

card A (1, T0) ≥ 2.

5.12. Proposition. Suppose that morphisms from non-initial objects to 1 are epimor-
phisms. If the free cia monad is nontrivial, then every equation morphism e : X //T (X+
A) with a unique solution in TA is preguarded.

5.13. Remark. We consider e as an equation in TA via X
e //T (X+A)

T (X+η) //T (X+
TA).

Proof. Suppose that e is not preguarded. For every global element b : 1 // T0 we can
find a solution e†b : X // TA such that

e†b·i∞ ≡ X∞ // 1 b // T0 T ! // TA.

The proof is precisely the proof of Theorem 5.7 where a : HA // A is the replaced by
τA : HTA // TA (with τ̃A = µA) and ⊥ is replaced by b. We will prove that e has
more than one solution by showing that e†b determines b; for that we just observe that
T ! : T0 //TA is a monomorphism. In fact, ! : 0 //A is a monomorphism since in every
extensive category initial objects are strict, and T preserves monomorphisms.
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5.14. Example. Suppose that our base category is A = Set.
(1) Whenever H1 has more than one element then H has a nontrivial free completely

iterative cia monad. In fact, T preserves monomorphisms by Proposition 6.1 in [AMV1].
And to prove card T0 ≥ 2, we decompose H = H ′ + H ′′ with H ′1 6= ∅ and H ′′1 6= ∅. This
can be done by choosing any a ∈ H1 and defining H ′X and H ′′X as the inverse images
of {a} and H1− {a}, respectively, under H! : HX // H1. Consider the coalgebras

A ≡ 1 const a // H ′1 � � // H1 and B ≡ 1 const b // H ′′1 � � // H1

(a ∈ H ′1, b ∈ H ′′1), and recall that T0 is the final coalgebra for H. It is clear that the
unique homomorphism A // T0 is disjoint with the unique homomorphism B // T0.
Therefore, card T0 ≥ 2.

(2) Conversely, whenever for every equation morphism e the implication

e has unique solution =⇒ e is preguarded

holds, then H1 must have more than one element. In fact, card H1 = 1 implies that
T0 has a unique element. Then the equation x ≈ x has a unique solution in T0.

5.15. Remark. The previous results of the present section only hold for a functor with a
chosen morphism 1 // H0. The last assumption can be dropped: we now work with an
arbitrary iteratable endofunctor H. And we apply the previous results to the endofunctor

H ′ = H(−) + 1 with injections γ : H // H ′, ⊥ : 1 // H ′.

5.16. Definition. By a strict H-algebra is meant an H-algebra α : HA // A to-
gether with a morphism ⊥A : 1 // A. Let (A, α) be a cia. Given an equation morphism
e : X // T (X + A), a strict solution is a solution e† : X // A (i.e., (5) commutes)
such that its restriction to every ungrounded subobject is ⊥A (i.e., (1) commutes).

5.17. Theorem. Let H be an iteratable endofunctor. In every strict cia every equation
morphism has a unique strict solution.

Proof. (1) Since H is iteratable (i.e., H(−) + X has a terminal coalgebra for every X),
it follows that H ′ is iteratable—in fact, substitute X + 1 for X. Let T ′ denote the free
completely iterative monad of H ′.

(2) If α : HA //A is a cia, then for every ⊥A : 1 //A the corresponding H ′-algebra
[α,⊥A] : HA+1 //A is a cia. In fact, given a flat equation morphism e : X //HX+1+A
denote

f ≡ X e // HX + 1 + A
HX+[⊥A,id] // HX + A;

we prove that a morphism f † : X //A is a strict solution of e w.r.t. H (see 5.16) iff f † is
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a strict solution of f w.r.t H ′ (see 5.5). This follows from the commutative diagram

HX + 1 + A HA + 1 + A
Hf†+1+A

//

X

HX + 1 + A

e

��

X A
f† // A

HA + 1 + A

OO

[α,⊥A,id]

HX + A HA + A
Hf†+id

//

HX + 1 + A

HX + A

HX+[⊥A,id]

��

HX + 1 + A HA + 1 + A// HA + 1 + A

HA + A

HA+[⊥A,id]

��
HA + A

A

[α,id]

bbX

HX + A

f

!!

(∗)

More detailed: if f † is a solution of f , then the outward part commutes, and since all
inner parts without denotation commute, it follows that (∗) commutes. Thus, f † is a
solution of e. Conversely, if f † is a solution of e, then (∗) commutes—thus the diagram
above commutes, proving that f † is a solution of f .

(3) Let us recall the notation (3)

αZ : TZ // HTZ + Z

of the structure of a terminal coalgebra for H(−) + Z, and let us use the analogous
notation for H ′:

α′
Z : T ′Z // HT ′Z + 1 + Z.

We obtain a natural transformation

δ : T // T ′

whose components are the unique coalgebra homomorphisms δZ for H ′(−) + Z:

TZ HTZ + Z
αZ // HTZ + Z HTZ + 1 + Z� � //TZ

T ′Z

δZ

��
T ′Z HT ′Z + 1 + Z

α′Z

//

HTZ + 1 + Z

HT ′Z + 1 + Z

HδZ+id

��

For every strict cia A we have the homomorphism

α̃ : TA // A with α̃·ηA = id

of Notation 3.8, as well as the corresponding homomorphism, say,

ᾱ : T ′A // A with ᾱ·η′A = id.
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The uniqueness makes it clear that the triangle

TA A
α̃ //TA

T ′A

δA

��?
??

??
??

??
??

??
A

T ′A

OO

ᾱ

commutes.
(4) To prove the theorem, let A be a strict cia (for H) and let e : X // T (X + A) be

an equation morphism. For the equation morphism

g ≡ X e // T (X + A)
δX+A // T ′(X + A)

there is, due to Corollary 5.9, a unique strict solution g† : X // A in the sense of Defini-
tion 5.5. We show that g† is the unique strict solution of e in the sense of Definition 5.16.
It is not difficult to prove that the largest ungrounded subobject of g and e coincide.
Thus, the two notions of strictness (according to Definition 5.5 and 5.16, respectively)
coincide. Finally, the diagram below shows that solutions of g and e coincide:

T (X + A) TA
T [g†,id]

//

X

T (X + A)

e

��

X A
g† // A

TA

OO

α̃

T (X + A)

T ′(X + A)

δX+A

��
T ′(X + A) T ′A

T ′[g†,id]
//

TA

T ′A

δA

��?
??

??
??

??
??

??

T ′A

A

ᾱ

WW///////////////////////

5.18. Remark. Theorem 5.17 extends from objects to morphisms in the following natural
sense. Given cias α : HA // A and β : HB // B, every homomorphism of H-algebras

HB B
β

//

HA

HB

Hh

��

HA Aα // A

B

h

��

preserves solutions of the flat equation morphisms, and conversely, every solution-pre-
serving morphism is a homomorphism of H-algebras, as proved in [AMV1]. Preservation
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of solutions means that given a flat equation morphism e : X // HX + A and forming
the corresponding equation morphism

h • e ≡ X e // HX + A
id +h // HX + B

then the triangle

X A
e† //X

B

(h•e)†

��?
??

??
??

??
??

??
A

B

h

��

(3)

commutes.
Now assume that A and B are strict cias, and f is a strict homomorphism, i.e.,

a homomorphism preserving the chosen global elements (h ·⊥A = ⊥B). It follows that
h preserves strict solutions of non-flat equation morphisms, too. That is, given an equation
morphism

e : X // T (X + A)

and forming

h • e ≡ X
e // T (X + A)

T (id +h) // T (X + B)

then the following holds: the unique strict solutions e† : X // A and (h • e)† : X // B
form a commutative triangle (3). This follows from the commutative diagram

T (X + A) TA
T [h·e†,η]

//

X

T (X + A)

e

��

X Ae† // A

TA

OO

eα
T (X + A)

T (X + B)

T (id +h)

��

A Bh //

T (X + B) TB
T [h·e†,η]

// TB

B

eβ

OO

TA

TB

Th

��?
??

??
??

??
??

??

and the fact that the largest ungrounded subobjects of e and h • e coincide.

6. Iterative Algebras

6.1. Assumption. In this section A is a hyper-extensive locally finitely presentable cat-
egory and H is a finitary endofunctor for which a morphism

⊥ : 1 // H0

has been chosen. (Or, alternatively, we work with pointed algebras, see Section 4.)
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6.2. Definition. For a rational equation morphism e : X // R(X + A) (see Remark
3.14 (ii)), we define derived subobjects Xn

// // X precisely as in Definition 4.5, just
replacing T by R everywhere.

6.3. Remark. We thus have pullbacks

X2 X1i2
//

X3

X2

e3

��

X3 X2
i3 // X2

X1

e2

��
X1 X

i1
//

X2

X1

��

X2 X1
i2 // X1

X

e1

��
X R(X + A)

i0=inr
//

X1

X
��

X1 X
i1 // X

R(X + A)

e

��

X3

X2

. . .

��

We also use the remaining notation īn : Xn
// Xn−1 and ēn : Xn

// Xn−1 etc. as in
Section 3.

6.4. Lemma. Every rational equation morphism e has the greatest ungrounded subobject
equal to the least derived subobject: there exists n such that in is an isomorphism, and
then i∗n : Xn

// X, see (3) is the greatest ungrounded subobject.

Proof. Let e : X //R(X +A) be a rational equation morphism. By assumption, X is a
coproduct of k indecomposable objects, X = Y1 + · · ·+ Yk. For every coproduct injection
z : Z //X we obtain the corresponding morphisms zi : Zi

//Yi with Z = Z1 + · · ·+Zk

and z = z1 + · · ·+zk. Since each zi is a coproduct injection of Yi, either Zi = 0 or Zi = Yi.
Consequently, there are (in case Yi � 0 for every i) precisely 2k subjects of X which are
coproduct injections. Since the subobjects Xn

// // X, n ∈ N, are pairwise disjoint, it
follows that there exists an m ∈ N such that Xm

∼= 0. Thus Xm
∼= Xm+1+Xm+1

∼= Xm+1.
The proof that the intersection of derived subobjects is the greatest ungrounded subobject
is as in Proposition 4.7.

6.5. Definition. A rational equation morphism e is called preguarded provided that it
has no nontrivial ungrounded subobject, i.e., Xn

∼= 0 for some n.

6.6. Remark. This is equivalent to X∞ = 0, thus, e is preguarded iff X =
∐

n≥1 Xn.
This is analogous to Proposition 4.7.

6.7. Theorem. In every iterative algebra all preguarded rational equation morphisms have
unique solutions.

Proof. This is completely analogous to the proof in Section 3, see Theorem 4.12 and
Corollary 4.14. Given the preguarded rational equation morphism e : X // R(X + A),
we have n with Xn = 0, i.e., X = X1 + · · · + Xn and we define a guarded equation
morphism

f ≡ X1
ī1 // X

e // R(X + A)
R(u+A) // R(X1 + A)

where u : X // X1 has components idX1
, e1, e1·e2, . . . , e1·e2· · · · ·en. Observe that since

u is a split epimorphism and X is finitely presentable, so is X1. Thus, f is a rational
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equation morphism. Since f is guarded, it has a unique solution f † : X // A, see
Remark 5.6. The rest is as in Section 3.

6.8. Definition. Let e : X // R(X + A) be a rational equation morphism in an iter-
ative algebra A. A solution e† : X // A of e is called strict if its restriction to every
ungrounded subobject is ⊥A. Equivalently, the square

X A
e†

//

Xn

X

in

��

Xn 1! // 1

A

⊥A

��

where Xn is the largest ungrounded subobject, commutes.

6.9. Theorem. In every iterative algebra every finitary equation morphism has a unique
strict solution.

Proof. This is completely analogous to Section 4, see Theorem 5.7 and Corollary 5.9:
choose n such that Xn = Xn+1, see Lemma 6.4, then the role of X∞ in Section 4 is now
played by Xn.

6.10. Example. In the category JT of Jónsson-Tarski algebras we present a preguarded
morphism with infinitely many (strict) solutions. This demonstrates that hyper-extensi-
vity is crucial: recall from Example 2.9 that JT is a locally finitely presentable topos!

We use the constant endofunctor H with value 1. Thus, an H-algebra is a pointed
Jónsson-Tarski algebra (given by an object A of JT and a morphism a : 1 // A) or a
Jónsson-Tarski algebra A with a specified idempotent a ∈ A. Every algebra is a cia, see
Example 3.3(ii). The free H-algebra on A is of course A + 1 and thus equations in an
algebra A have the form

e : X // X + A + 1 for X finitely presentable.

In particular we can use as X the free Jónsson-Tarski algebra Φ(1) on one generator
g = g′ ∗ g′′, see 2.9, and we have, for every algebra A, the following equation morphism

eA : Φ(1) // Φ(1) + A + 1, eA(g) = g′ ∗ ⊥.

(The right-hand side is the result of the operation ∗ applied to g′ ∈ Φ(1) and ⊥, the
unique element of 1,)
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(a) The equation eA is preguarded. In fact, recall that Φ(1) = Φ(1) + Φ(1) with
coproduct injections l, r, see 2.9. The squares

Φ(1) Φ(1) + A + 1
inl

//

Φ(1)

Φ(1)

id

��

Φ(1) Φ(1)l // Φ(1)

Φ(1) + A + 1

e

��

Φ(1)Φ(1) roo Φ(1)

1

!
��
1

A + 1

inr

��
A + 1Φ(1) + A + 1

inr
oo

are pullbacks. This follows from the extensivity of JT : observe that both squares clearly
commute and the lower and upper horizontal parts are coproducts. Thus, x0 = inl implies
x1 = l. This shows that all derived subobjects are composites of l:

· · · Φ(1) Φ(1)
l

//

· · · Φ(1)

· · · Φ(1)

id

��

· · · Φ(1) Φ(1)l // Φ(1)

Φ(1)

id

��
Φ(1) Φ(1)

l
//

Φ(1)

Φ(1)
��

Φ(1) Φ(1)l // Φ(1)

Φ(1)

id

��
Φ(1) Φ(1) + A + 1

inl
//

Φ(1)

Φ(1)
��

Φ(1) Φ(1)l // Φ(1)

Φ(1) + A + 1

eA

��

The intersection of all of those subobjects is clearly empty. Consequently, eA has no
nontrivial ungrounded subobject: by Remark 4.9 every ungrounded subobject factorizes
through the empty (initial) object and is thus empty.

(b) For some algebras A there exist infinitely many solutions of eA. For example,
choose A = Z and let the binary operation be any bijection

∗ : Z× Z // Z with n ∗ 0 = n for all n ∈ N.

Since 0 is an idempotent, we consider (Z, ∗) as an H-algebra. Every natural number
n = n ∗ 0 yields a solution

e†Z : Φ(1) // Z, g � // n.

Conclusions and Future Research

Iterative algebras A are more iterative than what follows immediately from their definition:
every equation morphism possesses a unique strict solution in A. This has been known
for algebras in Set, see the work of L. Moss [Mo] and S. L. Bloom, C. C. Elgot and J. B.
Wright [BEW1, BEW2]. In the present paper we proved this in a general setting (by
using a new technique): we worked in locally presentable categories where objects are
coproducts of connected components. If A is such a category, then so is every presheaf
category, thus, also the category

Fin[A , A ]
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of all finitary endofunctors on A .
In the future research we will apply our result to the study of monadic algebras of the

monad
Rat on Fin[A , A ]

which assigns to every finitary endofunctor H the free iterative monad Rat(H) on H
(in the sense of Elgot). This monad Rat(H) exists as proved in [AMV1]. We hope to
describe the monadic algebras for Rat as “Elgot monads” which are analogous to the
Elgot algebras studied in [AMV3].

Another application of the results of the present paper is within the analysis of the
relationship of iterative algebras and iteration algebras of Zoltán Ésik, see [ABM].

The assumption that objects are coproducts of their connected components is some-
what restrictive. However, it cannot be completely lifted since in the last example we
presented a locally finitely presentable category which, although it is a topos, has non-
unique strict solutions of equation morphisms.
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Jiř́ı Adámek and Stefan Milius
Technical University of Braunschweig, Germany

Reinhard Börger
Fernuniversität Hagen, Germany
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