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ANALYTIC FUNCTORS AND WEAK PULLBACKS

For the sixtieth birthday of Walter Tholen

J. ADÁMEK AND J. VELEBIL

Abstract. For accessible set-valued functors it is well known that weak preservation
of limits is equivalent to representability, and weak preservation of connected limits to
familial representability. In contrast, preservation of weak wide pullbacks is equivalent
to being a coproduct of quotients of hom-functors modulo groups of automorphisms. For
finitary functors this was proved by André Joyal who called these functors analytic. We
introduce a generalization of Joyal’s concept from endofunctors of Set to endofunctors
of a symmetric monoidal category.

1. Introduction

From among accessible set-valued functors those preserving limits are known to be just the
representable ones. And those preserving connected limits (or, equivalently, preserving
wide pullbacks) were characterized by Aurelio Carboni and Peter Johnstone [CJ] as pre-
cisely the coproducts of representables; they call these functors familially representable.
Moreover, Peter Freyd and André Scedrov proved in [FS], 1.829 that weak preservation
of (connected) limits implies strong preservation of them. Surprisingly, many more acces-
sible functors weakly preserve wide pullbacks; here the characterization is: all coproducts
of symmetrized representables by which we mean the quotient of a hom-functor A (A,−)
modulo a group of automorphisms of A.

The latter is connected to the concept of analytic functor of André Joyal. In his
categorical study of enumerative combinatorics, see [J1] and [J2], he introduced species
of structures as functors from the category B of natural numbers and permutations
into Set. Example: the species p : B // Set of permutations assigning to n the set p(n)
of all permutations on n and to every permutation σ : n // n the action of σ on p(n). A
set functor F is called analytic if it is the left Kan extension of a species f : B // Set.
In other words, F is given on objects by the coend formula

FX =

∫ n:B

Xn × f(n).
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192 J. ADÁMEK AND J. VELEBIL

Example: the species p of permutations yields the analytic functor PX =
∑

n∈N Xn, the
free-monoid functor. Joyal characterized analytic functors as precisely the finitary set
functors weakly preserving wide pullbacks.

Another category in which Joyal studied analytic functors is the category VecK of
vector spaces over a given field. Here a species is a functor from B to VecK. The analytic
functor F : VecK // VecK corresponding to f is then given by the coend formula

FX =

∫ n:B

X⊗n ⊗ f(n).

Example: the species of permutations yields the functor PX =
∑

n∈N X⊗n, the tensor-
algebra functor. We can obviously play the same game in every symmetric monoidal
category E and define analytic endofunctors of E as those obtained from a species via
the above coend formula. Example: The analytic endofunctors of S-sorted sets are the
S-tuples of analytic endofunctors of Set; they weakly preserve wide pullbacks but the
converse does not hold.

Weak wide pullbacks appear in several applications of category theory, e.g. in coal-
gebra [G] and in stable domain theory [Ta]. However, the connection between them and
analytic functors is, beyond the category of sets, quite loose: in many-sorted sets Exam-
ple 4.4(iii) below demonstrates that a wide pullback preserving endofunctor need not be
analytic, and in vector spaces Corollary 3.9 below implies that almost no analytic functor
weakly preserves wide pullbacks.

Acknowledgement. We are grateful to the referee whose suggestions helped us improv-
ing the presentation of our paper.

Related Work

Ryu Hasegawa [H] presented an alternative proof of Joyal’s characterization of analytic
endofunctors of Set. In the first section we provide a new proof which is simpler than
both of the previously published ones. We also prove that countable wide pullbacks are
sufficient.

Analytic functors of André Joyal have recently been generalized by Brian Day [D]
who defined E-analytic functors for a kernel E(n,X); our definition is the special case
of E(n,X) = X⊗n. A different approach has been taken by Marcello Fiore et al, see [F]
and [FGHW]: for a small category A they form the groupoid BA of all isomorphisms
in the free completion of A under finite coproducts. Then a functor F : [A op,Set] //

[C op,Set] is called analytic if it is the left Kan extension of a functor f : BA //[C op,Set]
along canonical functor BA // [A op,Set]. In [F] these functors are, in case A and C
are groupoids, characterized as precisely the finitary functors weakly preserving quasipull-
backs. Finally, M. Abbot et al [AAGB] study quotient containers which generalize species
of structures by considering groups of automorphisms on infinite sets. The corresponding
generalization of analytic functor is called an extension of the quotient container. These
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are precisely the accessible set functors weakly preserving wide pullbacks as we prove in
Section 3.

Weak preservation of various types of limits is also studied, for endofunctors of Set,
in [AGT]. The characterization of weak preservation of wide pullbacks in Theorem 3.3
generalizes a result of that paper; the present proof is simpler.

2. Analytic Set Functors

2.1 Definition (A. Joyal). A functor F : Set // Set is called analytic provided that
it is the left Kan extension of a functor f from B, the category of natural numbers and
bijections, into Set. In other words, F is defined on objects X by the coend

FX =

∫ n:B

Xn × f(n). (2.1)

2.2 Remark. For every natural number n the (symmetric) group of all permutations of n
is denoted by Sn.

(i) Suppose that a species f is given on objects by

f(n) = V and f(k) = ∅ for all k 6= n.

The coend formula then expresses FX as the joint coequalizer for all the automorphisms
σ̄ = Xσ × f(σ−1) of Xn × V for σ ∈ Sn. In other words

FX = Xn × V/∼ (2.2)

where ∼ is the equivalence relation consisting of all pairs

(x, i) ∼
(
x·σ, f(σ−1)(i)

)
for all x ∈ Xn, i ∈ V , σ ∈ Sn. (2.3)

(ii) Every species is an (objectwise) coproduct of species of the type (i) above. Since
left Kan extension preserves coproducts, every analytic functor is a coproduct of functors
given by (2.2).

2.3 Examples (see [J1], [J2]). (i) The representable functor (−)n is, for every n ∈ N,
analytic. The corresponding species is given on objects by f(n) = Sn and f(k) = ∅ for
k 6= n; on morphisms put f(σ) : τ � // σ·τ for σ, τ ∈ Sn.

(ii) The species of permutations

p(n) = Sn for all n ∈ N

which is the coproduct of those in (i) yields the analytic functor

PX =
∑
n∈N

Xn = free monoid on X.
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(iii) Let G be a group of permutations, a subgroup of Sn. We denote by

FX = Xn/G

the quotient functor of Xn modulo the following equivalence ∼G :

x ∼G y iff x = y·σ for some σ ∈ G .

These functors are called symmetrized representables. They are analytic: the correspond-
ing species is the quotient of that in (i) given by

f(n) = Sn/∼G .

In fact, in the equivalence (2.3) all pairs (x, [idn]) fulfil

(x, [idn]) ∼ (y, [idn]) iff x ∼G y,

and every pair (x, [σ]) is equivalent to (x·σ, [idn]). Consequently, the equivalence rela-
tion (2.3) yields the quotient Xn × (Sn/∼G ) // FX assigning to (x, [τ ]) the value [x·τ ].

(iv) The trivial species
e(n) = 1 for all n ∈ N

yields the analytic functor

EX = finite multisets in X.

In fact, (2.2) implies that

EX =
∑
n∈N

Xn/Sn

and this means that in an n-tuple in Xn the order of the coordinates does not matter,
but the number of repetitions does.

(v) The species of trees assigns to every n the set t(n) of all (directed, rooted) trees
on n = {0, 1, . . . , n− 1}. The corresponding analytic functor is

TX = isomorphism classes of trees labelled in X.

2.4 Remark. (i) As already observed by Věra Trnková [T], every set-valued functor F is
a coproduct of functors preserving the terminal object: the coproduct is indexed by F1
and for every i ∈ F1 we consider the subfunctor Fi of F given on objects X by FiX =
(Ft)−1(i) for the unique morphism t : X // 1. This fact immediately generalizes to
functors F : A // Set for an arbitrary category A having a terminal object.

(ii) We now characterize functors preserving weak pullbacks from among a special class
of set functors; the same result was already published in [AT] but with a complicated proof.
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2.5 Definition (see [AT]). A set functor F is called super-finitary if there exists a
natural number n such that the elements of Fn generate all of F . That is, for every set X
we have

FX =
⋃

f : n→X

Ff [Fn]. (2.4)

2.6 Theorem. For a super-finitary set functor the following conditions are equivalent:

(i) F weakly preserves pullbacks,

(ii) F is analytic,

and

(iii) F is a coproduct of symmetrized representables.

Proof. (i) ⇒ (iii) Due to 2.4(i) we can assume F1 = 1. Then F weakly preserves finite
products. Let us choose the least number n with (2.4). Then there exists x0 ∈ Fn which
is minimal, i.e. such that x0 does not lie in Fi[Fk] for any proper subobject i : k � � // n. It
follows that

if x0 ∈ Ff [FX] for some f : X // n, then f is epic. (2.5)

In particular, every element of

G =
{
σ : n // n; Fσ(x0) = x0

}
(2.6)

is an epimorphism, thus an isomorphism. We obtain a subgroup G ⊆ Sn, and we prove
are going to that

F ∼= (−)n/G .

In fact, the Yoneda transformation

(−)n // F, u � // Fu(x0)

yields a natural isomorphism (−)n/G ∼= F . This is clear provided that we prove that

(a) every element of F has the form Fu(x0)

and

(b) given u, v ∈ Xn then Fu(x0) = Fv(x0) iff u ∼G v.

To prove (a) use (2.4): it is sufficient to prove that every element y ∈ Fn has the
form y = Fu(x0). Since F weakly preserves finite products, for x0, y ∈ Fn there exists
z ∈ F (n× n) with

Fπ1(z) = x0 and Fπ2(z) = y for the projections π1, π2 : n× n // n.
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By (2.4) we have z0 ∈ Fn with Ff(z0) = z. From

x0 = Fπ1(z) = F (π1·f)(z0)

we conclude that π1·f : n // n is epimorphism, see (2.5), thus, an isomorphism. Put

u = π2·f ·(π1·f)−1,

then
y = Fπ2(z) = F (π2·f)(z0) = F (π2·f)·F (π1)

−1(x0) = Fu(x0)

as requested.
To prove (b), observe that u ∼G v implies u = v·σ with Fσ(x0) = x0, thus, Fu(x0) =

Fv(x0). Conversely, assuming Fu(x0) = Fv(x0), form a pullback

n
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u
��?
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??
??
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v
����

��
��

��
��
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��
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ū
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??

Since F weakly preserves it, there exists z ∈ FP with

Fū(z) = x0 = F v̄(z).

Express, using (a),
z = Ff(x0) for f : n // P

then the morphisms ū·f, v̄·f : n // n lie in G , and

u = u·(v̄·f)·(v̄·f)−1 = v·(ū·f)·(v̄·f)−1

which yields the desired equation u = v.σ for

σ = (ū·f).(v̄·f)−1 ∈ G .

(iii) ⇒ (ii) See Example 2.3(iii).
(ii) ⇒ (i) Let us verify that every functor F given by (2.2) weakly preserves pullbacks

A1

B
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In fact, given elements [xk, ik] with Fa1([(x1, i1)]) = Fa2([(x2, i2)]), we have

(a1·x1, i1) ∼ (a2·x2, i2).

Thus there exists σ ∈ Sn with

a1·x1·σ = a2·x2 and f(σ−1)(i1) = i2.

The first equality yields a unique b : n // P with

x1·σ = p1·b and x2 = p2·b.

Then the element [(b, i2)] is mapped by Fp1 to [(x1·σ, f(σ−1)(i1))] = [(x1, i1)] and by Fp2

to [(x2, i2)], as requested.

2.7 Corollary. For every finitary functor F : Set // Set the following conditions are
equivalent:

(i) F is analytic,

(ii) F is a coproduct of symmetrized representables,

(iii) F weakly preserves countable wide pullbacks,

(iv) F weakly preserves wide pullbacks.

Proof. In fact, it is sufficient to prove this for functors with F1 = 1. The implication
(ii) ⇒ (i) follows from 2.3(iii), and (iii) ⇒ (ii) follows from 2.6 because F is super-
finitary. In fact, assuming the contrary, for every n ∈ N we have xn ∈ FXn with xn /∈⋃

h∈Xn Fh[Fn]. But F1 = 1 implies that F weakly preserves countable products. Thus,
there exists x ∈

∏
n∈N FXn with Fπn(x) = xn for all n ∈ N. Since F is finitary, there

exists a morphism g : k // X and y ∈ Fk with x = Fg(y). Then xk = F (πk·g)(y), a
contradiction.

Finally, (iv) ⇒ (iii) trivially and (i) ⇒ (iv) is proved as in 2.6.

2.8 Example. The finite-powerset functor Pfin preserves weak pullbacks. This demon-
strates that in 2.7(iii) pullbacks are not sufficient.

2.9 Remark. (a) The equivalence of (i), (iii) and (iv) was proved by André Joyal [J2],
and a compact proof was later presented by Ryu Hasegawa [H].

(b) Condition (iii) trivially implies that F preserves limits of cofiltered diagrams (and
the formulation of Joyal used that plus weak preservation of pullbacks). In fact, let

pt : P // Xt (t ∈ T )

be a cofiltered limit and assume, without loss of generality, that T has a terminal el-
ement t0; thus we have connecting morphisms xt : Xt

// Xt0 for t ∈ T . The limit



198 J. ADÁMEK AND J. VELEBIL

cone is, obviously, a wide pullback of the cocone (xt)t∈T , thus, FP is a wide pullback
of (Fxt)t∈T .To prove that Fpt (t ∈ T ) is a limit cone we only need to observe that it
is collectively monic. Given elements x1 6= x2 in FP find a finite set m : M � � // X with
x1, x2 ∈ Fm[FM ]. Since the limit is cofiltered, there exists t ∈ T such that pt·m is monic,
therefore F (pt·m) is monic: recall that F preserves monomorphisms because it (weakly)
preserves intersections. This implies Fpt(x1) 6= Fpt(x2).

2.10 Corollary. A finitary set functor preserving countable limits is representable.

In fact, from 2.7 and F1 = 1 we know that F is a symmetrized representable. More-
over, if F = (−)n/G preserves equalizers, then G is the trivial group: for every σ ∈ G
consider the equalizer e of σ and idn, since Fe is the equalizer of Fσ and idFn it is easy
to derive σ = idn.

3. Weak Wide Pullbacks

3.1 Assumption. Throughout this section A denotes a locally λ-presentable category.
Recall that this means that (i) A is complete and (ii) (for some infinite cardinal λ) it has
a set Aλ of objects that are λ-presentable (that is, the hom-functors preserve λ-filtered
colimits) and whose closure under λ-filtered colimits is all of A . In fact, we could require
less: all we need is that A be cowellpowered, λ-accessible (that is, have λ-filtered colimits
and satisfy (ii) above), have weak pullbacks an initial object, and (epi, strong mono)
factorizations. All this holds in locally λ-presentable categories, see [AR].

Recall that a functor is called λ-accessible if it preserves λ-filtered colimits.

3.2 Definition. By a symmetrized representable functor is meant a quotient of a
hom-functor A (A,−) modulo a group G of automorphisms of A; notation:

A (A,−)/G : A // Set .

Explicitly, to an object X this functor assigns the set

A (A, X)/∼G

where for f, f ′ : A // X we put

f ∼G f ′ iff f = f ′·σ for some σ ∈ G .

3.3 Theorem. An accessible functor F : A // Set weakly preserves wide pullbacks iff
it is a coproduct of symmetrized representables.

Remark. More detailed, for a λ-accessible functor F : A // Set we prove equivalence
of the following conditions:

(i) F weakly preserves wide pullbacks

and

(ii) F is a coproduct of functors A (A,−)/G where A is λ-accessible.
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Proof. (ii) ⇒ (i) is trivial and analogous to 2.6, let us prove (i) ⇒ (ii). Due to 2.4(i)
we can assume that F1 = 1, thus, F weakly preserves products. Let λ be a cardinal such
that A is a locally λ-presentable category and F is λ-accessible. Then all elements

x ∈ FA (A λ-presentable)

generate F in the sense that every element y ∈ FY has, for some such x ∈ FA, the form
y = Ff(x) where f : A // Y is a morphism. Since F weakly preserves products, there
is a single element x0 ∈ FA generating F , and since F (weakly) preserves intersections
we can assume that x0 lies in no image of Fm where m : M // A is a proper subobject.
It follows that x0 is minimal, that is, (2.5) holds. (In fact given x0 ∈ Ff [FX], factorize
f = m·e where e is epic and m is strongly monic, then x0 lies in the image of Fm which
implies that m is an isomorphism, thus, f is an epimorphism.) This element x0 yields a
surjective Yoneda transformation A (A,−) // F . Since F is λ-accessible, it is easy to see
that the minimality implies that A is λ-presentable. We prove

F ∼= A (A,−)/G

for the group G of all automorphisms σ : A // A with Fσ(x0) = x0. The proof is
completely analogous to that in 2.6: (a) is clear. In (b) we need to verify that the
morphism

e = ū·f : A1
// A1

is an isomorphism (by symmetry, so is v̄·g). From the minimality of x0 we know that e is
an epimorphism, since Fe(x0) = x0. We will now construct a chain

C : Ordop // A

with connecting morphisms Cij : C(i) // C(j) for i ≥ j such that

C(i) = A and Ci+1,i = e for all i ∈ Ord.

Since A is cowellpowered, the object A has less than α quotients for some cardinal α,
therefore the quotients

Cα,i : A // A (i < α)

are not pairwise distinct. Consequently, there exists i < α such that Cα,i+1 and Cα,i

represent the same quotient, and then from Ci+1,i = e it follows that e is an isomorphism.
The chain C is defined by transfinite induction in such a way that for all i ≥ j we

have that x0 is a fixed point of FCi,j. Put C(0) = A. Given C(i) put C(i + 1) = A and
let Ci+1,j = Ci,j·e for all j ≤ i. If i is a limit ordinal, form a limit lj : L //A (j < i) of the
i-chain already defined. This is a wide pullback of all Cj,0 with j < i, and since F weakly
preserves this wide pullback, we know from FCj,0(x0) = x0 that there exists b ∈ FL with
Flj(b) = x0 for all j < i. There exists f : A // L with b = Ff(x0). Put

Ci,j = lj·f for all j < i

then x0 is a fixed point of Ci,j as requested.
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3.4 Corollary. Let A and B be locally presentable categories. An accessible functor
F : A // B weakly preserves wide pullbacks iff every functor B(B, F−) for B ∈ obj B
is a coproduct of symmetrized representables.

In fact, the functors B(B,−) are accessible and collectively create wide weak pull-
backs.

3.5 Example. An accessible functor F : SetI // SetI weakly preserves wide pullbacks
iff it is an I-tuple of coproducts symmetrized representables.

3.6 Remark. (i) Mark Weber introduced in [W] the concept of generic factorizations for
a given functor. From his results it easily follows that only functors weakly preserving
wide pullbacks can admit generic factorizations. Our Corollary 3.4 shows the converse
implication for accessible functors between locally presentable categories.

(ii) The definition of analytic functor in 2.1 has an obvious infinitary variant: given a
cardinal λ let Bλ be the category of all cardinals smaller than λ and all isomorphisms. We
can investigate all set functors that are left Kan extensions of functors from Bλ to Set.
Each of them is clearly λ-accessible, i.e., preserves λ-filtered colimits. Theorem 3.3 gives a
full characterization of these functors: they are the λ-accessible functors weakly preserving
wide pullbacks. Or, equivalently, coproducts of symmetrized representables Set(A,−)/G
with card A < λ.

(iii) More generally, if A is a locally λ-presentable category then the following condi-
tions are equivalent for accessible functors F : A // Set:

(a) F weakly preserves wide pullbacks

and

(b) F is the left Kan extension of a functor from the category of λ-presentable objects
and isomorphisms into Set.

3.7 Remark. André Joyal considered in [J1] also analytic endofunctors of the category

VecK

of vector spaces over a given field. Here we prove that, in contrast to Set, almost none
of them weakly preserves wide pullbacks:

3.8 Proposition. Let A be a complete abelian category. An endofunctor F weakly pre-
serves wide pullbacks iff it has the form F (−) = F0(−) + B where F0 preserves limits.
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Proof. The condition is clearly sufficient. To prove that it is necessary, consider an
endofunctor F preserving weak wide pullbacks and with F0 = 0. Then F preserves limits.
In fact, F preserves weak products and intersections. We will prove that F preserves
every product πi : X // Xi (i ∈ I) strongly, that is, (Fπi) is collectively monic. In fact,
F preserves kernels because a kernel m of a morphism f is characterized by the weak
pullback

m

����
��

��
�

0
��?

??
??

??

f ��?
??

??
??

����
��

��
�

which F preserves. Since (πi) is collectively monic, we have
⋂

i∈I ker πi = 0, therefore,⋂
i∈I ker Fπi = F (

⋂
i∈I ker πi) = 0, thus, F preserves products. Consequently, it preserves

limits.
To conclude the proof, let F0 be arbitrary, put

B = F0.

The zero morphisms eX : X // 0 define short exact sequences

F0X // mX // FX
FeX // // B

and since FeX is a split epimorphism, we conclude

FX = F0X + B.

Thus m : F0
// F is a subfunctor such that F0 weakly preserve wide pullbacks. In fact,

this follows from F having this property and F (−) = F0(−)×B: given a wide pullback
pi : P // Ai of ai : Ai

// A (i ∈ I) and given elements xi ∈ F0Ai with F0ai(xi) = x for
all i ∈ I, then for (xi, 0) ∈ FAi we have Fai(xi, 0) = (x, 0). Consequently, there exists
(y, b) ∈ FP = F0P × B with F0ai(y) = xi for all i ∈ I. Since F00 = 0, we conclude from
the above that F0 preserves limits.

3.9 Corollary. The only endofunctors of VecK weakly preserving wide pullbacks are
the coproducts

VecK(A,−) + B

of enriched representables and constant functors.

In fact, a limit preserving endofunctor F0 has a left adjoint G (use Special Adjoint
Functor Theorem). For A = GK we have G ∼= A⊗− (since G preserves copowers of K),
thus, F0

∼= VecK(A,−).
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4. Generalized Analytic Functors

Throughout this section (E ,⊗, I) denotes a symmetric monoidal category with colimits.
We assume that ⊗ commutes with coproducts.

The symmetry isomorphisms sX,Y : X ⊗ Y // Y ⊗ X allow us to define, for every
permutation σ in Sn, the corresponding automorphism X⊗σ of X⊗n = X ⊗ (X ⊗ · · · ⊗
X)) . . . ). For example, if σ just swaps i and i + 1 then X⊗σ = X⊗(i−1)⊗sX,X⊗X⊗(n−i−1).
This extends to all permutations by the rule

X⊗ id = idX⊗n and X⊗σ·τ = X⊗τ ·X⊗σ

since every permutation is a composite of transpositions i oo // i + 1.
In fact, we obtain a functor

K : Bop × E // E

given on objects by
(n, X) � // X⊗n

and on morphisms by

(σ, f) � // X⊗n X⊗σ
// X⊗n f⊗n

// Y ⊗n.

The following definition is an obvious extension of the cases E = Set and E = VecK
considered by André Joyal in [J2]:

4.1 Definition. By a E -species is meant a functor

f : B // E .

The corresponding analytic functor F : E // E is the functor defined by the ordinary
coend

FX =

∫ n:B

X⊗n ⊗ f(n). (4.1)

4.2 Remark. The coend formula (4.1) indeed defines a functor F : E //E since K(n, X) =
X⊗n is functorial in X. Thus, for h : X // Y , Fh : FX // FY is defined by

Fh =

∫ n:B

h⊗n ⊗ f(n).

4.3 Remarks. (i) The (objectwise) coproduct
∑

i∈I fi of E -species yields a coproduct of
the corresponding analytic functors. This follows from ⊗ commuting with coproducts.

(ii) Suppose f is a species such that for some n ∈ B we have

f(n) = V and f(k) = 0 for all n 6= k



ANALYTIC FUNCTORS AND WEAK PULLBACKS 203

(where 0 is the initial object). Then FX is defined by the joint coequalizer

X⊗n ⊗ V

FX

k

��

X⊗n ⊗ V

σ̄

		 (σ ∈ Sn)

(4.2)

of the morphisms
σ̄ = X⊗σ ⊗ f(σ−1) : X⊗n ⊗ V // X⊗n ⊗ V. (4.3)

This follows from the usual formula for coends together with the obvious “shortening” of
zig-zags

X⊗n ⊗ V X⊗n ⊗ V
X⊗σ⊗f(σ−1)

//

X⊗n ⊗ V

X⊗n ⊗ V

id⊗f(σ)

����
��

��
��

��
��

�
X⊗n ⊗ V

X⊗n ⊗ V

X⊗σ⊗id

��?
??

??
??

??
??

??

(iii) Every species is a coproduct of species of type (ii) above. Thus, every analytic
functor is a coproduct of functors given on objects X by the coequalizer (4.2).

4.4 Example. (i) For every n ∈ N the n-th tensor power functor

FX = X⊗n

is analytic. Its species is defined by

f(n) = Sn • I and f(k) = 0 for k 6= n

on objects and by f(σ)·iτ = iσ·τ on morphisms σ ∈ Sn, where iτ : I // Sn • I are
the injections. In fact, the coequalizer (4.2) is easily seen to be the morphism k : Sn •
X⊗n // X⊗ defined by k·iτ = X⊗τ for all τ ∈ Sn.

(ii) The functor

FX =
∑
n∈N

X⊗n

is analytic. This is, in case E = Set, the free-monoid functor and in case E = VecK (with
the tensor product) the functor of tensor algebra on X.

(iii) The analytic endofunctors of the category

A = SetS

of S-sorted sets are precisely the functors

F
(
Xs

)
s∈S

=
(
FsXs

)
s∈S
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given by an S-tuple of analytic functors Fs : Set // Set. This follows easily from the
fact that a species f : B // SetS is just an S-tuple of species in the sense of Section 2.

Every analytic functor is finitary and weakly preserves wide pullbacks—but not con-
versely. For example the functor F : Set×Set // Set×Set defined by

F (X, Y ) = (X × Y, 1)

preserves limits but is not analytic.
(iv) Let E be a symmetric monoidal closed category. The endomorphism operad of an

object Z, see [MSS], is the analytic functor whose species is

f(n) = [Z⊗n, Z] for all n ∈ B.

(v) For every group G ⊆ Sn we define the functor

FX = X⊗n/G

called symmetrized tensor power on objects by the joint coequalizer of all X⊗σ, σ ∈ G :

X⊗n

X⊗n/G
��

X⊗n

X⊗σ

		 (σ ∈ G )

This functor is analytic as proved below.
Consequently, coproducts of symmetrized tensor powers are analytic. For example

in VecK the functor of symmetric algebra on X

FX =
∑
n∈N

X⊗n/Sn

is analytic.

4.5 Remark. (1) The reason why we do not work with E -functors is that important
examples of analytic functors are not E -functors. For E = VecK this means linearity on
hom-sets, and it is easy to see that neither the tensor-algebra functor nor the symmetric-
algebra functor are linear on hom-sets.

(2) In case of Set the elegant definition of analytic functors was: they are the Kan ex-
tensions of species. This, however, does not work in general. For VecK the Kan extension
would be given by

∫ n:B
Xn × f(n).

4.6 Observation. Every species in Set, f : B // Set yields a E -species

fE : B // E
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by putting
fE (n) = f(n) • I

and analogously on morphisms. For the corresponding analytic functor F : Set // Set
we denote by FE : E // E the analytic endofunctor of E .

In the following examples we consider the monoidal category VecK of vector spaces
on a field K.

(i) The free monoid functor P , see 2.3(ii), yields the above tensor algebra functor

PVecKX =
∑
n∈N

X⊗n.

(ii) The finite multiset functor E of 2.3(iv) yields

EVecKX =
∑

X⊗n/Sn (symmetric algebra on X).

(iii) The tree species, 2.3(v), yields the functor

TVecKX = free pre-Lie algebra on X,

see [BL]. Also the free Lie algebras define an analytic functor, see [J2].

4.7 Proposition. The analytic functors FE obtained from analytic set functors F are
precisely the coproducts of symmetrized tensor powers.

Proof. (1) Consider the species f defining the analytic set functor FX = Xn/G in 2.3(iii).
The corresponding analytic endofunctor FE of E is given by the coequalizer (4.2):

(Sn/∼G ) •X⊗n

FE X

c

��

(Sn/∼G ) •X⊗n

σ̄

		

We will verify that FE is the symmetrized power X⊗n/G . For every [τ ] ∈ Sn/∼G let
i[τ ] be the coproduct injection of (Sn/∼G ) •X⊗n, then σ̄ is defined by

σ̄·i[τ ] = i[σ−1·τ ]·X⊗σ.

The property c·σ̄ = c thus yields

c·i[τ ] = c·i[σ−1·τ ]·X⊗σ

for all σ, τ ∈ Sn. By putting σ = τ we get

c·i[σ] = c·i[id]·X⊗σ.
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For all σ ∈ G we thus see that, since [σ] = [id], the morphism c0 = c·i[id] : X⊗n // FE X
coequalizes X⊗σ, σ ∈ G . To prove that c0 is the joint coequalizer (and therefore FE X =
X⊗n/G ), let f : X⊗n // Y also coequalize X⊗σ, σ ∈ G . Define g : (Sn/∼G ) •X⊗n // Y
by

g·i[τ ] = f ·X⊗τ .

Then for all σ ∈ Sn we have

g·σ̄·i[τ ] = g·i[σ−1·τ ]·X⊗σ

= f ·X⊗σ−1·τ ·X⊗σ

= f ·X⊗τ

= g·i[τ ].

Thus g coequalizes all σ̄, σ ∈ Sn, and then it uniquely factorizes through c. Consequently,
f = g·i[id] uniquely factorizes through c0 = c·i[id].

(2) Every analytic functor F : Set // Set yields as FE a coproduct of symmetrized
tensor powers. This follows from (1) and 2.7: F is a coproduct of symmetrized repre-
sentables and the corresponding species is a coproduct of the species in (1).

(3) Every coproduct of symmetrized tensor powers is of the form FE for the corre-
sponding coproduct F of symmetrized representables—again, this follows from (1).

4.8 Example. There are important examples of analytic functors on VecK that are not
obtained from set functors:

(i) The functor
FX = X ⊗X/(x⊗ x = 0)

of the tensor square modulo the subspaces spanned by all the vectors x⊗x. This is given
by the species

f(2) = K×K and f(k) = 0 for k 6= 2

which assigns to the transposition σ : 2 // 2 the linear map

f(σ) : (u0, u1)
� // (u0,−u1).

In fact, the coequalizer (4.2) yields the equivalence ∼ on X ⊗X ⊗ (K⊗K) given by

x⊗ y ⊗ (u0, u1) ∼ y ⊗ x⊗ (u0,−u1) = −y ⊗ x⊗ (u0, u1)

and the representatives of the form x⊗ y ⊗ (0, 1) present the quotient space as precisely
FX above.

(ii) For every n ∈ N let An be the subspace of the tensor power X⊗n spanned by all
vectors x1 ⊗ · · · ⊗ xn with xi = xj for some i 6= j. Then the functor

FX =
∑
n∈N

X⊗n/An (external algebra of X)
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is analytic. The corresponding species is defined on objects by

f(n) = Kn

and on morphisms so that it assigns to the transposition σi : 0 oo // i (for i = 1, . . . , n− 1)
the linear map

(u0, u1, . . . , un−1)
� // (u0, u1, . . . , ui−1,−ui, ui+1, . . . , un−1).

4.9 Corollary. Analytic endofunctors of presheaf categories E = [C op,Set] are pre-
cisely the finitary endofunctors weakly preserving wide pullbacks.

We also know that these are precisely the functors F : E // E that are object-
wise coproducts of symmetrized representables, that is, for each C ∈ C the composite
evC ·F : [C op,Set] // Set has the form

evC ·F =
∑
i∈I

E (Ai,−)/Gi with Ai finitely presentable.

See Corollary 3.4.

4.10 Example. Analytic endofunctors of Gra are precisely those carried by the analytic
endofunctor of Set×Set, see 4.4(iv).

5. Conclusions and Open Problems

André Joyal [J2] introduced analytic endofunctors of Set and characterized them as pre-
cisely the finitary endofunctors weakly preserving wide pullbacks. We have presented a
short proof of that result. Ryu Hasegawa observed in [H] that the category of species,
[B,Set], is equivalent to the category of analytic functors and weakly cartesian transfor-
mations (that is, those for which all naturality squares are weak pullbacks).

In the present paper we study analytic endofunctors in a symmetric monoidal cate-
gory E . This is a special case of the concept introduced recently by Brian Day [D] who
studies Fourier transforms depending on a choice of a kernel; we concentrated on the
kernel X⊗n. The case of E = VecK, the monoidal category of vector spaces, has also been
studied by Joyal [J2] who presented a number of examples of important analytic functors;
none of them weakly preserves wide pullbacks, as we proved in Proposition 3.8. An open
problem is a characterization of the morphisms between analytic functors (correspond-
ing to the transformations between species). An abstract condition has been formulated
in [D], however, in the important case of vector spaces a more concrete characterization
is desirable.

We also study weak preservation of wide pullbacks by functors F : A // Set. In
case A is locally presentable and F is accessible, we have proved that precisely the
coproducts of symmetrized representables weakly preserve wide pullbacks. In contrast,
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weak preservation of connected limits is equivalent to familial representability: see [CJ]
and [FS].

Here accessibility cannot be omitted: the power-set functor weakly preserves wide
pullbacks but it is not accessible. A characterization of general set functors preserving
weak wide pullbacks is an open problem.
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(1981), 1–82.

[J2] A. Joyal, Foncteurs analytiques et espèces de structures, Lecture Notes Math.
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