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ON THE CATEGORICAL SEMANTICS OF ELEMENTARY LINEAR
LOGIC

OLIVIER LAURENT

Abstract. We introduce the notion of elementary Seely category as a notion of cate-
gorical model of Elementary Linear Logic (ELL) inspired from Seely’s definition of models
of Linear Logic (LL). In order to deal with additive connectives in ELL, we use the ap-
proach of Danos and Joinet [DJ03]. From the categorical point of view, this requires
us to go outside the usual interpretation of connectives by functors. The ! connective is
decomposed into a pre-connective ] which is interpreted by a whole family of functors
(generated by id, ⊗ and &).

As an application, we prove the stratified coherent model and the obsessional coherent
model to be elementary Seely categories and thus models of ELL.

Introduction

The goal of implicit computational complexity is to give characterizations of complexity
classes which rely neither on a particular computation model nor on explicit bounds. In
linear logic (LL) [Gir87], the introduction of the exponential connectives gives a precise
status to duplication and erasure of formulas (the qualitative analysis). It has been shown
that putting constraints on the use of exponentials permits one to give a quantitative
analysis of the cut elimination procedure of LL and to define light sub-systems of LL
characterizing complexity classes (for example BLL [GSS92], LLL [Gir98] or SLL [Laf04]
for polynomial time and ELL [Gir98, DJ03] for elementary time).

In order to have a better understanding of the mathematical structures underlying
these systems, various proposals have been made in the last years with the common goal
of defining denotational models of light systems [MO00, Bai04, DLH05, LTdF06, Red07].
Our goal is to define a general categorical framework for the study of these systems. We
will focus on ELL which is probably the simplest one.1

Our starting point is quite simple: starting from Seely’s notion of categorical model
of LL [See89], it is natural to define models of ELL by removing the comonad structure
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of ! since ELL is obtained from LL by removing the dereliction and digging rules which
correspond to this comonad structure. Things become more interesting when one wants
to deal with the additive connectives. The usual approach to categorical logic is based
roughly on the interpretation: connective 7→ functor, formula 7→ object, rule 7→ natural
transformation, proof 7→ morphism, ... The non-local definition of valid proof-nets with
additives for ELL given in [DJ03] is presented here by means of the pre-connectives [ and
], pre-formulas and pre-proofs. Their categorical interpretation requires us to use the
association: pre-connective 7→ family of functors. The particular choice of an element
of such a family to interpret a pre-formula will depend on the particular proof being
interpreted and on the particular occurrence of formula in this proof. The key point is
that a proof whose conclusion does not contain any pre-connective can still be interpreted
in the usual way.

A particular approach for building a denotational model of ELL is to start from a model
of LL and to restrict morphisms (without restriction we, of course, get a model of ELL, but
this has no interest from the ELL point of view). In such a case (the model we try to deal
with lives inside a model of LL), we give conditions to prove that we have in fact defined
a model of ELL. We apply this to the proof that obsessional coherent spaces [LTdF06]
provide a model of ELL. We also prove that stratified coherent spaces [Bai00, Bai04] are
an elementary Seely category.

Finally we propose an alternative definition for categorical models of ELL based on
linear non-linear models of LL [Ben94], and we prove that the two proposals we give, for
categories for ELL, are equivalent.

1. Elementary Linear Logic

We give a sequent calculus presentation of the ELL system [Gir98]. Our presentation of
the additive connectives is inspired by [DJ03].

1.1. Formulas. Formulas are given by:

A, B ::= X | A¡B | ⊥ | A & B | > | ?A
| X⊥ | A⊗B | 1 | A⊕B | 0 | !A

and pre-formulas by:
F,G ::= A | [A

The dual ] of [ could be introduced, but it is not used in practice for defining the sequent
calculus of ELL. This ] construction will however be used in the categorical setting.

A context is a multi-set of pre-formulas. We will use the notations Γ, ∆, Σ, ... for
arbitrary contexts, the notations Θ, Ξ, ... for contexts containing only formulas and the
notations [Γ, [∆, [Σ, ... for contexts containing only pre-formulas which are not formulas.

We deal with classical elementary linear logic2 so that sequents have the shape ` Γ.

2As usual with categories for linear logic, the intuitionistic case can be obtained by replacing any ?-
autonomous category by a symmetric monoidal closed category, the assumption of having finite products
being extended to the requirement of having also finite coproducts in such a setting.
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1.2. Rules.

ax` A,A⊥ ` Γ, A ` ∆, A⊥
cut` Γ, ∆

` Γ, A ` ∆, B ⊗` Γ, ∆, A⊗B

` Γ, A,B ¡` Γ, A¡B
1` 1

` Γ ⊥` Γ,⊥

` Γ, A ` Γ, B
&` Γ, A & B

` Γ, A ⊕1` Γ, A⊕B

` Γ, B ⊕2` Γ, A⊕B
>` Γ,>

` Γ, A
[` Γ, [A

` [Γ, A
!` ?Γ, !A

` Γ, [A, [A
[c` Γ, [A

` Γ
[w` Γ, [A

` Γ, ?A, ?A
?c` Γ, ?A

` Γ
?w` Γ, ?A

Proof-trees built with these rules are called pre-proofs and we use the word proof only
if the conclusion contains only formulas.

Here is an example of proof:

ax` A⊥, A
[` [A⊥, A

[w` [A⊥, [B⊥, A

ax` B⊥, B
[` [B⊥, B

[w` [A⊥, [B⊥, B
&` [A⊥, [B⊥, A & B

!` ?A⊥, ?B⊥, !(A & B)
¡` ?A⊥ ¡ ?B⊥, !(A & B)

1.2.1. Remark. If we translate pre-formulas into formulas by [A 7→ ?A and A 7→ A,
we transform any pre-proof in ELL into a proof in LL.

2. Categorical semantics of ELL

2.1. Definitions. For the remainder of the paper, by Seely category we do not exactly
mean the original notion introduced by Seely [See89] but the ?-autonomous version of the
modified notion of new Seely category [Bie95, Mel03].

2.1.1. Definition. [Seely category] A Seely category C is a ?-autonomous category
with finite products equipped with an endofunctor ! such that:

1. (!, δ, ε) is a comonad

2. (!, p, q) is a strong symmetric monoidal functor from (C, &,>) to (C,⊗, 1)
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3. the following diagram commutes:

!A⊗ !B
pA,B //

δA⊗δB

²²

!(A & B)

δA&B

²²
!!A⊗ !!B

p!A,!B &&NNNNNNNNNNN !!(A & B)

!〈!proj1,!proj2〉
²²

!(!A & !B)

If (C,⊗, 1) is a symmetric monoidal category, we denote by coMON (C) the category of
symmetric ⊗-comonoids (A, cA,wA) of C with comonoidal morphisms. (coMON (C),⊗, 1)
is a cartesian category thus a symmetric monoidal category.

2.1.2. Lemma. [Preservation of comonoids] A symmetric comonoidal functor between
two symmetric monoidal categories preserves symmetric comonoids.

Proof. See [Mel03, Lemma 16] for example.

In a Seely category, each object A has a canonical symmetric &-comonoid structure
(A,∆A, ∗A) coming from the product structure of & and the terminal object >. By the
previous lemma, this induces a symmetric ⊗-comonoid structure (!A, c!A,w!A) on objects
in the image of !.

2.1.3. Lemma. In a Seely category, ! is a symmetric monoidal functor from (C,⊗, 1) to
(coMON (C),⊗, 1).

Proof. See [Mel03, Lemmas 22 and 5] for example.

We now give the main definition of the paper.

2.1.4. Definition. [Elementary Seely category] An elementary Seely category C is a
?-autonomous category with finite products equipped with an endofunctor ! such that:

1. (!,m, n) is a symmetric monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1)

2. (!, p, q) is a strong symmetric monoidal functor from (C, &,>) to (C,⊗, 1)

3. ! maps the &-comonoid structure of A to the ⊗-comonoid structure of !A

To be a bit more precise: Condition 1 endows any object !A with a symmetric ⊗-
comonoid structure (!A, c!A,w!A) and Condition 3 corresponds to the commutation of the
following two diagrams:

!A
c!A //

!∆A $$IIIIIIIII !A⊗ !A

pA,A

²²
!(A & A)

!A
w!A //

!∗A !!B
BB

BB
BB

B 1

q

²²
!>
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2.1.5. Remark. Any Seely category is an elementary Seely category (the key point is
given by Lemma 2.1.3).

2.1.6. Lemma. In an elementary Seely category, ! is a strong symmetric monoidal func-
tor from (C, &,>) to (coMON (C),⊗, 1).

Proof. We have to show that pA,B and q are comonoidal morphisms.
The following diagram commutes:

(!A⊗ !B)⊗ (!A⊗ !B)

'
²²

!A⊗ !B

(a)

c!A⊗!B

33ggggggggggggggggggggggg c!A⊗c!B //

!∆A⊗!∆B ++WWWWWWWWWWWWWWWWWWWWWWW

pA,B

²²

(!A⊗ !A)⊗ (!B ⊗ !B)

pA,A⊗pB,B

²²

(b)

!(A & A)⊗ !(B & B)

pA&A,B&B

²²
(c)

!((A & A) & (B & B))

'
²²

!(A & B)

(d)

!(∆A&∆B)
33ggggggggggggggggggggggg !∆A&B //

c!(A&B) ++WWWWWWWWWWWWWWWWWWWWWWW !((A & B) & (A & B))

p−1
A&B,A&B

²²

(e)

!(A & B)⊗ !(A & B)

by (a) definition of c!A⊗!B, (b) Property 3 of elementary Seely categories, (c) naturality
of p, (d) definition of ∆ and (e) Property 3 again. Moreover the last column is equal to
pA,B ⊗ pA,B by definition of a symmetric monoidal functor.

The following diagram commutes:

!A⊗ !B

w!A⊗!B

¤¤©©
©©

©©
©©

©©
©©

©©
©

w!A⊗w!B

²²

!∗A⊗!∗B

ÁÁ>
>>

>>
>>

>>
>>

>>
>>

>

pA,B // !(A & B)

!(∗A&∗B)

~~~~
~~

~~
~~

~~
~~

~~
~~

!∗A&B
²²

w!(A&B)

¾¾8
88

88
88

88
88

88
88

1 '
//

(a)

1⊗ 1
q⊗q

//

(b)

!>⊗ !> p>,>
//

(c)

!(>&>) '
//

(d)

!>
q−1

//

(e)

1

by (a) definition of w!A⊗!B, (b) Property 3, (c) naturality of p, (d) definition of ∗ and
(e) Property 3 again. Moreover the last line is the identity by definition of a monoidal
functor.

Finally, q−1 is equal to w!> by Property 3:

!> w!> //

!∗> !!B
BB

BB
BB

B

id!>
22

1

!>
q−1

OO
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and thus it is comonoidal.

2.2. The family of functors S. In order to interpret proofs of ELL as morphisms
in an elementary Seely category C, we are going to interpret pre-proofs with conclusion
` A1, . . . , An, [B1, . . . , [Bk as a morphism from ]JB1K⊥⊗ . . .⊗ ]JBkK⊥ to JA1K¡ . . .¡ JAnK
where, if A is an object, ]A is a notation which stands for “some object built by applying
an arbitrary interleaving of ⊗ and & to copies of A (in particular 1 and >)” (for example
A⊗ ((A⊗A) & 1 & A)). More formally, ] can be any element of the smallest family S of
functors from C to C which:

• contains the constant functors 1 and >,

• contains the identity functor,

• is closed under ⊗ and &.

We immediately see that S is closed under composition.

2.2.1. Proposition. [Monoidality of ]] All the elements of S are symmetric monoidal
functors from (C,⊗, 1) to (C,⊗, 1).

Proof. See Appendix B.1.

We denote by (],m], n]) this monoidal structure on elements of S (an explicit inductive
definition is given in Appendix B.2).

As a consequence, for any element ] of S, (!],m!], n!]) (with m!]
A,B = m]A,]B ; !m]

A,B and

n!] = n ; !n]) is a symmetric monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1).

2.2.2. Definition. [The b morphisms] Let A be an object in C, the morphism b]
A from

!A to !]A is defined by induction on ] in S:

• b1
A = !A

w!A−−→ 1
n−→ !1

• b>A = !A
w!A−−→ 1

q−→ !>

• bid
A = !A

id!A−−→ !A

• b]1⊗]2
A = !A

c!A−−→ !A⊗ !A
b
]1
A ⊗b

]2
A−−−−→ !]1A⊗ !]2A

m]1A,]2A−−−−−→ !(]1A⊗ ]2A)

• b]1&]2
A = !A

c!A−−→ !A⊗ !A
b
]1
A ⊗b

]2
A−−−−→ !]1A⊗ !]2A

p]1A,]2A−−−−−→ !(]1A & ]2A)

This family of morphisms is parameterized over both ] in S and A object of C3. If we
fix the first parameter and let the second vary, we obtain the following property.

2.2.3. Proposition. [Monoidality of b]] For any element ] of S, b] is a monoidal
natural transformation from (!,m, n) to (!],m!], n!]).

Proof. See Appendix C.

3It would be interesting to understand the more general 2-categorical structures underlying the family
of functors S. However it seems uneasy to do since, in particular, Definition 2.2.2 is strongly relying on
the use of !A as source.
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If we now fix the second parameter and let the first one vary, we have additional
properties.

2.2.4. Proposition. Given two elements ]1 and ]2 of S, we have:

• bid
A = id!A and b]2]1

A = !A
b
]1
A−→ !]1A

b
]2
]1A−−→ !]2]1A

• b>A = !∗A and b]1
A = !A

b
]1&]2
A−−−→ !(]1A & ]2A)

!proj1−−−→ !]1A

Proof. See Appendix D.

2.3. Soundness. A pre-proof π of the sequent ` A1, . . . , An, [B1, . . . , [Bk will be inter-
preted as a morphism JπK from ]1JB1K⊥ ⊗ . . . ⊗ ]kJBkK⊥ to JA1K ¡ . . . ¡ JAnK for some
(]i)1≤i≤k ∈ Sk which depends on π. Note that for a proof (not a pre-proof) the parameter
(]i)1≤i≤k disappears and the source and the target of JπK only depend on the conclusion
of π (not on π itself).

By implicitly using the ?-autonomous structure, we will not always distinguish between
pre-formulas and formulas in contexts (when it is not crucial and makes things easier to
follow) for the following definition of JπK: if we have a pre-proof π of ` Γ with Γ = Θ, [∆,
and if we write JπK as a morphism from 1 to JΓK, we really mean the unique corresponding
morphism from ]J∆K⊥ to JΘK.

The interpretation of pre-proofs is given in the following way: if π1, π2, ... are the
premises of the last rule of π, we define JπK according to this last rule:

• ax-rule: The identity morphism from JAK to JAK gives, by the ?-autonomous struc-
ture, a morphism from 1 to JAK⊥ ¡ JAK.

• cut-rule: By the ?-autonomous structure, we can turn Jπ1K into a morphism from
JΓK⊥ to JAK and Jπ2K into a morphism from JAK to J∆K. By composition, we get a
morphism from JΓK⊥ to J∆K and by the ?-autonomous structure again, we obtain
JπK from 1 to JΓK¡ J∆K.

• ⊗-rule: By the ?-autonomous structure, we can turn Jπ1K into a morphism from
JΓK⊥ to JAK (and the same for Jπ2K from J∆K⊥ to JBK) and by the bifunctor ⊗, we
get a morphism from JΓK⊥ ⊗ J∆K⊥ to JAK ⊗ JBK. By the ?-autonomous structure
again, we obtain JπK from 1 to JΓK¡ J∆K¡ (JAK⊗ JBK).

• ¡-rule: We just have to apply the associativity of ¡.

• 1-rule: JπK is just the identity from 1 to 1.

• ⊥-rule: We compose on the right with the appropriate unit morphism of ⊥ with
respect to ¡.
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• &-rule: We decompose the context Γ into Θ and [∆. By the ?-autonomous structure,
we can turn Jπ1K into a morphism from JΘK⊥ ⊗ ]1J∆K⊥ to JAK (resp. Jπ2K into a
morphism from JΘK⊥⊗ ]2J∆K⊥ to JBK). We compose it on the left with JΘK⊥⊗proj1
(resp. JΘK⊥ ⊗ proj2) from JΘK⊥ ⊗ (]1J∆K⊥ & ]2J∆K⊥) to JΘK⊥ ⊗ ]1J∆K⊥ (resp. to
JΘK⊥ ⊗ ]2J∆K⊥). The pair of the two thus obtained morphisms is a morphism from
JΘK⊥⊗ (]1J∆K⊥ & ]2J∆K⊥) to JAK& JBK, that is a morphism from JΘK⊥⊗ ]3J∆K⊥ to
JAK& JBK with ]3 = ]1 & ]2. By the ?-autonomous structure, this gives a morphism
from ]3J∆K⊥ to JΘK¡ (JAK& JBK).

• ⊕1-rule: Since ⊕ is a coproduct we can compose on the right with the given mor-
phism from JAK to JAK⊕ JBK

• ⊕2-rule: Idem.

• >-rule: Since > is a terminal object, there is a unique morphism from JΓK⊥ to >
which gives JπK by applying the ?-autonomous structure.

• [-rule: Jπ1K is a morphism from 1 to JΓK¡JAK which, by the ?-autonomous structure,
is a morphism from ]JAK⊥ to JΓK with the trivial case ] = id.

• !-rule: If Γ = B1, . . . , Bk, Jπ1K is a morphism from ]1JB1K⊥⊗· · ·⊗]kJBkK⊥ to JAK. We
apply the functor ! and we get a morphism from !(]1JB1K⊥ ⊗ · · · ⊗ ]kJBkK⊥) to !JAK.
We compose it on the left with m to get a morphism from !]1JB1K⊥⊗ · · ·⊗ !]kJBkK⊥
to !JAK. We compose it again on the left with b]i

JBiK⊥ from !JBiK⊥ to !]iJBiK⊥ for each

Bi to get a morphism from !JΓK⊥ to !JAK. By the ?-autonomous structure, we turn
it into a morphism from 1 to ?JΓK¡ !JAK.

• [c-rule: Jπ1K is a morphism from ]1JAK⊥ ⊗ ]2JAK⊥ to JΓK, thus it is a morphism JπK
from ]3JAK⊥ to JΓK with ]3 = ]1 ⊗ ]2.

• [w-rule: Jπ1K is a morphism from 1 to JΓK. This is a morphism JπK from ]JAK⊥ to
JΓK with ] = 1.

• ?c-rule: Since, for each object C, !C has a ⊗-comonoid structure, ?JAK has a ¡-
monoid structure and we can compose Jπ1K on the right with the contraction mor-
phism from ?JAK¡ ?JAK to ?JAK.

• ?w-rule: As for the ⊥-rule, we can get a morphism from 1 to JΓK ¡ ⊥. Using the
¡-monoid structure of ?JAK, we can compose this morphism on the right with the
weakening morphism from ⊥ to ?JAK.

2.3.1. Theorem. [Soundness] According to the interpretation J.K, any elementary Seely
category is a model of ELL ( i.e. J.K is an invariant of cut elimination).
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Proof. We first prove that, for any pre-proof π of ` Θ, [∆ which reduces in one step to
π′, if JπK is a morphism from ]J∆K⊥ to JΘK then Jπ′K is a morphism from ]′J∆K⊥ to JΘK
where either ] = ]′ and JπK = Jπ′K, or ] = ]′& ]′′ (or ] = ]′′& ]′) and JπK = proj]′J∆K⊥ ; Jπ′K.

We only consider the cut elimination steps given in Appendix A. First, the reader can
check that the required complementary commutative steps do not modify the interpreta-
tion. Second, it would be possible to represent pre-proofs of ELL by proof-nets (with boxes
for the additive connectives) [Gir98, LTdF06, Gir87] and to interpret these proof-nets into
elementary Seely categories. In this setting the only cut elimination steps are those given
in Appendix A (the additional commutative steps are invisible in the proof-net syntax).

We rely on the notations introduced in Appendix A, and we omit semantic brackets
around the interpretations of formulas.

• ax: by properties of ?-autonomous categories.

• ⊗/¡: by properties of ?-autonomous categories.

• 1/⊥: by properties of ?-autonomous categories.

• &/⊕1: by properties of the cartesian product: the composition of 〈(id ⊗ proj1) ;
Jπ1K, (id⊗ proj2) ; Jπ2K〉 with proj1 is (id⊗ proj1) ; Jπ1K.

• ∗/&: Up to the ?-autonomous structure, Jπ2K is a morphism from C ⊗ Θ⊥ ⊗ ]1∆
⊥

to A and Jπ3K is a morphism from C ⊗ Θ⊥ ⊗ ]2∆
⊥ to B, and Jπ1K is a morphism

from Γ⊥ to C, by properties of pairs, we have:

Γ⊥ ⊗Θ⊥ ⊗ (]1∆
⊥ & ]2∆

⊥)
Jπ1K⊗id //

〈(id⊗proj1);(Jπ1K⊗id);Jπ2K,(id⊗proj2);(Jπ1K⊗id);Jπ3K〉
,,XXXXXXXXXXXXXXXXXXXXXXXXXXX

C ⊗Θ⊥ ⊗ (]1∆
⊥ & ]2∆

⊥)

〈(id⊗proj1);Jπ2K,(id⊗proj2);Jπ3K〉
²²

A & B

• ∗/>: > is a terminal object.

• ?c/!: A proof π0 ending with a !-rule is interpreted as a comonoidal morphism since
b]

A is a comonoidal morphism (Proposition 2.2.3), mA,B is a comonoidal morphism,
and if f is a morphism, !f is a comonoidal morphism. This shows that the following
diagram commutes:

!Γ⊥
Jπ0K //

c
!Γ⊥

²²

!A

c!A

²²
!Γ⊥ ⊗ !Γ⊥ Jπ0K⊗Jπ0K

// !A⊗ !A

• ?w/!: Idem with:

!Γ⊥
Jπ0K //

w
!Γ⊥ ÃÃA

AA
AA

AA
A !A

w!A
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ

1
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• !/!: We denote by Dj the formulas of ∆ and by Gi the formulas of Γ.

As a starting point, the following diagram commutes:

⊗
!D⊥j ⊗⊗

!G⊥i

(a)

⊗
b
]j

D⊥
j

⊗⊗
b
]i
G⊥

i //

⊗
b
]j

D⊥
j

⊗⊗
b
]]i
G⊥

i

²²

⊗
!]jD⊥j ⊗⊗

!]iG⊥i

(b)

id⊗⊗
b
]

]iG⊥
i

wwpppppppppppppppppppppppp

id⊗m // ⊗ !]jD⊥j ⊗ !
⊗

]iG⊥i

(c)

id⊗!Jπ1K //

id⊗b
]⊗

]iG⊥
i

²²

⊗
!]jD⊥j ⊗ !A

id⊗b
]
A

²²⊗
!]jD⊥j ⊗⊗

!]]iG⊥i
(d)

id⊗m

//

m

**VVVVVVVVVVVVVVVVV
⊗

!]jD⊥j ⊗ !
⊗

]]iG⊥i

(e)

id⊗!m]

//

m

²²

⊗
!]jD⊥j ⊗ !]

⊗
]iG⊥i

(f)

id⊗!]Jπ1K
//

m

²²

⊗
!]jD⊥j ⊗ !]A

m

²²
!(

⊗
]jD⊥j ⊗⊗

]]iG⊥i )
!(id⊗m])

// !(⊗ ]jD⊥j ⊗ ]
⊗

]iG⊥i )
!(id⊗]Jπ1K)

// !(⊗ ]jD⊥j ⊗ ]A)

!Jπ2K

²²
!B

by (a) Proposition 2.2.4, (b) Proposition 2.2.3 (with m!]
A,B = m]A,]B ; !m]

A,B),

(c) naturality of b], (d) properties of m (monoidality of !), (e) naturality of m
and (f) naturality of m.

By bifunctoriality of ⊗, the top-right path is JπK, and by functoriality of !, the left-
bottom path is the interpretation of a !-rule applied to (

⊗
]jD

⊥
j ⊗ (m] ;]Jπ1K)) ;Jπ2K.

We have to show this is the interpretation of the reduct. We prove it by induction
on the pre-proof π2. The key cases are when the last rule is a >, &, [, [w or [c rule:

– >-rule: Immediate since > is a terminal object.

– &-rule: We have Jπ1K from ]ΓΓ ( =
⊗

]iG
⊥
i ) to A, Jπ1

2K from Θ⊥⊗⊗
]1
jD

⊥
j ⊗]1A

to B and Jπ2
2K from Θ⊥⊗⊗

]2
jD

⊥
j ⊗ ]2A to C with ] = ]1 & ]2 and ]j = ]1

j & ]2
j ,

we want to show (Θ⊥⊗⊗
]jD

⊥
j ⊗ (m] ; ]Jπ1K)) ; 〈(Θ⊥⊗⊗

proj]1jD⊥j
⊗ proj]1A) ;

Jπ1
2K, (Θ⊥ ⊗⊗

proj]2jD⊥j
⊗ proj]2A) ; Jπ2

2K〉 is the same as 〈(Θ⊥ ⊗⊗
proj]1jD⊥j

⊗⊗
proj]1]iG⊥i

);(Θ⊥⊗⊗
]1
jD

⊥
j ⊗(m]1 ;]1Jπ1K));Jπ1

2K, (Θ⊥⊗⊗
proj]2jD⊥j

⊗⊗
proj]2]iG⊥i

);

(Θ⊥ ⊗⊗
]2
jD

⊥
j ⊗ (m]2 ; ]2Jπ1K)) ; Jπ2

2K〉. It comes from the commutation of the
following diagram and from properties of the product:

⊗
]]iG

⊥
i

m]
//

⊗
proj

]1]iG⊥
i

²²

]
⊗

]iG
⊥
i

]Jπ1K //

proj
]1

⊗
]iG⊥

i
²²

]A

proj]1A

²²⊗
]1]iG

⊥
i

m]1
// ]1

⊗
]iG

⊥
i ]1Jπ1K

// ]1A

which is obtained by definition of m]1&]2 since ] = ]1 & ]2 (Proposition 2.2.1
and Appendix B.2) and by naturality of projections.

– [-rule, [w-rule and [c-rule: These cases are immediate since they do not modify
the interpretation of the pre-proof π2.
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To conclude we show that, given a proof (not only a pre-proof), its interpretation and the
interpretation of a reduct are the same (not only up to composition with a projection).
The key point is that if π is followed by a !-rule (it must be the case at some point
since there is no [ in the conclusion of the whole proof), then the interpretation of the
whole proof is invariant under reduction. We only consider the particular case where π
is immediately followed by a !-rule and we show that if π reduces to π′ then J!πK = J!π′K
(where !π is π followed by a !-rule). This corresponds to the commutation of the following
diagram:

⊗
!]jD

⊥
j

m //

⊗
!proj

]′
j
D⊥

j

²²

!
⊗

]jD
⊥
j

!JπK

))SSSSSSSSSSSSSSSSSS

!
⊗

proj
]′
j
D⊥

j

²²

⊗
!D⊥

j

⊗
b
]j

D⊥
j

44jjjjjjjjjjjjjjjjjj

⊗
b
]′j
D⊥

j

**TTTTTTTTTTTTTTTTTT !C

⊗
!]′jD

⊥
j m

// !
⊗

]′jD
⊥
j

!Jπ′K

55kkkkkkkkkkkkkkkkkk

which is true by Proposition 2.2.4, naturality of m, and the first part of the present proof
which gives the last triangle.

3. Examples and applications

Two of the main models of ELL one can find in the literature are the stratified coherent
model [Bai04] and the obsessional coherent model [LTdF06]. We are going to show that
they both give elementary Seely categories.

In the case of the obsessional model, we will use a simple criterion which can be applied
to any model of ELL presented as a sub-model of a model of LL.

3.1. Coherent spaces. We first recall the definition and key properties of coherent
spaces [Gir87] to be used in the two models of ELL.

3.1.1. Definition. [Coherent space] A coherent space is a pair A = (|A|,¥A) where
|A| is a set and ¥A is a reflexive symmetric relation on |A|.

A clique x in A, denoted x @ A, is a set of elements of |A| such that if a, b ∈ x then
a ¥A b. A multiclique of A is a multiset of elements of |A| such that the underlying set
(the support) is a clique.

We use the following notations: a ¦A b if a ¥A b ∧ a 6= b, a §A b if ¬(a ¦A b), and
a ¨A b if a §A b ∧ a 6= b.

The basic constructions of coherent spaces are the following:

• A⊥ = (|A|,§A)

• > = 0 = (∅, ∅)
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• ⊥ = 1 = ({?}, {(?, ?)})
• A¡B: |A¡B| = |A| × |B| and (a, b) ¦A¡B (a′, b′) ⇐⇒ a ¦A a′ ∨ b ¦B b′

• A⊗B: |A⊗B| = |A| × |B| and (a, b) ¥A⊗B (a′, b′) ⇐⇒ a ¥A a′ ∧ b ¥B b′

• A ( B = A⊥ ¡B

• A&B: |A&B| = |A|+|B|, (1, a) ¥A&B (1, a′) ⇐⇒ a ¥A a′, (2, b) ¥A&B (2, b′) ⇐⇒
b ¥B b′, (i, a) ¦A&B (j, b) if i 6= j

• A⊕B: |A⊕B| = |A|+|B|, (1, a) ¥A⊕B (1, a′) ⇐⇒ a ¥A a′, (2, b) ¥A⊕B (2, b′) ⇐⇒
b ¥B b′, (i, a) ¨A⊕B (j, b) if i 6= j

• !A: |!A| is the set of all finite multicliques of A and µ ¥!A ν if µ + ν is a multiclique
of A

• ?A: |?A| is the set of all finite multicliques of A⊥ and µ ¦?A ν if µ + ν is not a
multiclique of A⊥

3.1.2. Proposition. [Category COH] The category COH given by:

• objects: coherent spaces

• morphisms: COH(A,B) is the set of cliques of A ( B

is a Seely category.

Proof. See [Mel03] for example.

3.2. Stratified coherent spaces. We look at the first denotational model of ELL
defined by Baillot [Bai04] from coherent spaces. In order to make things simpler, we
consider the presentation of the model given in [Bai00].

3.2.1. Definition. [Stratified coherent space] A stratified coherent space A is a se-
quence of triples (|A|i,¥i

A, ϕi
A)i∈N where, for each i, Ai = (|A|i,¥i

A) is a coherent space
and ϕi

A is a partial function from |A|i+1 to |A|i and moreover the sequence is stationary:
there exists some d (the depth of A) such that for any i ≥ d, |A|i = |A|d, ¥i

A = ¥d
A and

ϕi
A = id|A|d.

An element a of Ai is visible in A if ϕ0
A ◦ ϕ1

A ◦ · · · ◦ ϕi−1
A (a) is defined.

A clique of the stratified coherent space A is a clique of Ad (where d is the depth of
A). A visible clique is a clique containing only visible elements. A stratified clique is a
visible clique x such that for all i ≤ d, ϕi

A ◦ ϕi+1
A ◦ · · · ◦ ϕd−1

A (x) is a clique of Ai.

A stratified coherent space is called constant when its depth is 0. Any coherent space
can be considered as a constant stratified coherent space.

The multiplicative and additive constructions of stratified coherent spaces are obtained
from the corresponding constructions of coherent spaces applied level by level:



ON THE CATEGORICAL SEMANTICS OF ELEMENTARY LINEAR LOGIC 281

• (|A⊥|i,¥i
A⊥) = (|A|i,¥i

A)⊥ and ϕi
A⊥ = ϕi

A

• (|A⊗B|i,¥i
A⊗B) = (|A|i,¥i

A)⊗ (|B|i,¥i
B) and ϕi

A⊗B = ϕi
A × ϕi

B

• 1 = ({?}, {(?, ?)}, id)i∈N (the constant stratified coherent space with one point)

• (|A & B|i,¥i
A&B) = (|A|i,¥i

A) & (|B|i,¥i
B) and ϕi

A&B = ϕi
A + ϕi

B

• > = (∅, ∅, id)i∈N (the constant empty stratified coherent space)

and by orthogonality, we define: A ¡ B = (A⊥ ⊗ B⊥)⊥, A ⊕ B = (A⊥ & B⊥)⊥, ⊥ = 1⊥,
0 = >⊥, and A ( B = (A⊗B⊥)⊥.

The !A construction induces a lifting of levels:

• (|!A|0,¥0
!A) = 1

• for i ≥ 1, (|!A|i,¥i
!A) = !(|A|i−1,¥i−1

A )

• ϕ0
!A is the constant function mapping any element to ?.

• for i ≥ 1, ϕi
!A([a1, . . . , an]) = [ϕi−1

A (a1), . . . , ϕ
i−1
A (an)] if all the ϕi−1

A (aj) are defined
(1 ≤ j ≤ n) and if [ϕi−1

A (a1), . . . , ϕ
i−1
A (an)] belongs to |!A|i; and ϕi

!A([a1, . . . , an]) is
undefined otherwise.

and by orthogonality, we define ?A = (!A⊥)⊥.

3.2.2. Proposition. [Elementary Seely category SCOH] The category SCOH of strat-
ified coherent spaces and stratified cliques is an elementary Seely category.

Proof. The main ingredients are given in [Bai00], we give some additional material in
Appendix E.

3.3. Models of ELL inside models of LL. The previous example requires quite a
number of verifications in order to check all the axioms of elementary Seely categories.
In the particular case where the model of ELL under consideration lives inside a model of
LL, it is possible to give a much simpler approach.

We consider a Seely category L (thus a model of LL) and a sub-category C of L
containing all the objects of L (only some morphisms are removed). We are going to give
a simple criterion to show that C is an elementary Seely category, thus a model of ELL.

We say that C satisfies the closure criterion if the following properties about morphisms
of C hold:

• the morphisms for associativity, commutativity and neutral element of ⊗ corre-
sponding to the ?-autonomous structure of L belong to C

• if A
f−→ C ∈ C and B

g−→ D ∈ C then A⊗B
f⊗g−−→ C ⊗D ∈ C

• the morphism from (A ( ⊥) ( ⊥ to A coming from the ?-autonomous structure
of L belongs to C
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• A & B
proj1−−−→ A ∈ C, A & B

proj2−−−→ B ∈ C and A
∗−→ > ∈ C

• if C
f−→ A ∈ C and C

g−→ B ∈ C then C
〈f,g〉−−→ A & B ∈ C

• !A⊗ !B
m−→ !(A⊗B) ∈ C and 1

n−→ !1 ∈ C

• if A
f−→ B ∈ C then !A

!f−→ !B ∈ C
• !A⊗ !B

p−→ !(A & B) ∈ C and 1
q−→ !> ∈ C

• !(A & B)
p−1−−→ !A⊗ !B ∈ C and !> q−1−−→ 1 ∈ C

3.3.1. Theorem. [Elementarity criterion] If C satisfies the closure criterion then C is
an elementary Seely category.

Proof. The key points are that any diagram concerning morphisms of C which commutes
in L commutes in C, and that L is a Seely category thus an elementary Seely category
(Remark 2.1.5).

C is a ?-autonomous category with finite products since the corresponding structure
morphisms (together with the pairing construction) belong to C.

The restriction of ! to C defines an endofunctor of C.
By Property 3 of elementary Seely categories applied to L, c!A = !∆A ; p−1

A,A and
w!A = !∗A ; q−1 thus c!A and w!A belong to C. Moreover (!A, c!A,w!A) is a ⊗-comonoid in C
since the required diagrams commute in L. So that (!,m, n) is a functor from (C,⊗, 1) to
(coMON (C),⊗, 1) which is symmetric monoidal since the appropriate diagrams commute
in L.

(!, p, q) is a strong symmetric monoidal functor from (C, &,>) to (C,⊗, 1) since p and
q belong to C, are isomorphisms in C and the required diagrams commute in L thus in C.

Finally the Property 3 of elementary Seely categories is satisfied since it is given by
the commutation of two diagrams which are commutative in L.

The meaning of this result is in particular to show how the interaction between the
additive connectives and the exponential connectives in ELL can be axiomatized exactly
through the fact that ! is a strong symmetric monoidal functor from (C, &,>) to (C,⊗, 1)
(thus the existence of p and q). This was not obvious to us from a purely syntactic
point of view (additional conditions might have been required), and comes nicely from
the categorical approach. Indeed this question was the starting point for the present work.

3.4. Obsessional coherent spaces. We apply the previous criterion to show that
obsessional coherent spaces give an elementary Seely category. This second example is
coming from [LTdF06]. It was described there in the relational setting. We give here the
coherent version. All the results proved in [LTdF06] in the relational case are valid in the
coherent case with the same proofs.
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3.4.1. Definition. [N-coherent space] A N-coherent space is given by a coherent space
A and a function, called the action:

N∗ × |A| → |A|
(k, a) 7→ a(k)

which is an action of the monoid (N∗, ·, 1) on |A| (where N∗ = N \ {0}), that is a(1) = a
and a(kk′) = (a(k))(k′) and such that:

a ¦A b =⇒ a(k) ¦A b(k)

a ¨A b =⇒ a(k) ¨A b(k)

A clique x of A is obsessional if ∀a ∈ x,∀k ∈ N∗, a(k) ∈ x.

In the particular case where the action is the identity a(k) = a, the space is called
atomic. Any coherent space can be considered as an atomic N-coherent space.

The constructions of N-coherent spaces are obtained from the corresponding construc-
tions of coherent spaces and the actions are built in the following way:

• the action on A⊥ is the same as the action on A

• for ⊥, 1, > and 0, we use the only possible action (making them atomic)

• the action on A⊗B or A¡B is given by (a, b)(k) = (a(k), b(k))

• the action on A⊕B or A & B is given by (1, a)(k) = (1, a(k)) and (2, a)(k) = (2, a(k))

• the action on !A or ?A is given by [a1, . . . , an](k) = [ka
(k)
1 , . . . , ka

(k)
n ] (that is we take

k copies of each a
(k)
i )

3.4.2. Definition. [Category NCOH] The category NCOH is given by:

• objects: N-coherent spaces

• morphisms: NCOH(A,B) is the set of cliques of A ( B

3.4.3. Proposition. [Elementary Seely category OCOH] By restraining NCOH to the
obsessional cliques only, one gets a category OCOH which is an elementary Seely category.

Proof. The identity is obsessional and the composition of two obsessional cliques is
obsessional [LTdF06], thus OCOH is a sub-category of NCOH.

The categories COH and NCOH are equivalent categories: the forgetful functor from
NCOH to COH is full, faithful, surjective on objects (by considering atomic spaces) and
strictly preserves all the structures. As a consequence NCOH is a Seely category.

Finally we apply Theorem 3.3.1 to NCOH andOCOH sinceOCOH satisfies the closure
criterion: the properties concerning only the multiplicative and exponential structures are
given in [LTdF06] and we now check those concerning the additive ones.
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• If ((1, a), a) ∈ proj1 then ((1, a), a)(k) = ((1, a(k)), a(k)) ∈ proj1, thus proj1 is obses-
sional.

• ∗A from A to > is the empty clique which is obsessional.

• If f @ C ( A and g @ C ( B are obsessional, 〈f, g〉 = {(c, (1, a)) | (c, a) ∈
f} ∪ {(c, (2, b)) | (c, b) ∈ g} @ C ( A & B is obsessional since (c, (1, a))(k) =
(c(k), (1, a(k))) and (c(k), a(k)) ∈ f (and the same with g).

• If (([a1, . . . , an], [b1, . . . , bm]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)]) ∈ pA,B then:

(([a1, . . . , an], [b1, . . . , bm]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bm)])(k)

= (([ka
(k)
1 , . . . , ka(k)

n ], [kb
(k)
1 , . . . , kb(k)

m ]),

[k(1, a
(k)
1 ), . . . , k(1, a(k)

n ), k(2, b
(k)
1 ), . . . , k(2, b(k)

m )]) ∈ pA,B

thus pA,B is obsessional.

• q = {(?, [ ])} is obsessional since (?, [ ])(k) = (?, [ ]).

and if f is an isomorphism in NCOH which belongs to OCOH, it is an isomorphism in
OCOH: f−1 = {(y, x) | (x, y) ∈ f} thus if f is obsessional then f−1 is obsessional.

4. Linear non-linear models

An important alternative to Seely categories as a notion of categorical model of linear
logic is the notion of linear non-linear model introduced by Benton [Ben94]. We are going
to consider an elementary version of these models. Since we are interested in additive
connectives and classical linear logic, we directly consider the ?-autonomous case with
products.

4.0.4. Definition. [Linear non-linear model] A linear non-linear model is given by a
?-autonomous category C with finite products and a cartesian category M (with product
denoted × and terminal element I) with a symmetric monoidal adjunction between them
(given by a symmetric monoidal functor (F,m0, n0) from C to M which is right adjoint
to a symmetric monoidal functor (G,m1, n1) from M to C).

This entails the following two properties.

4.0.5. Lemma. In a linear non-linear model, G is strong.

Proof. See [Ben94, Proposition 1].

4.0.6. Lemma. In a linear non-linear model, F preserves products.

Proof. F is a right adjoint.
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4.1. Elementary linear non-linear model. We now turn to an elementary version
of linear non-linear models.

4.1.1. Definition. [Elementary linear non-linear model] An elementary linear non-
linear model is given by a ?-autonomous category C with finite products and a cartesian
category M, and two functors F from C to M and G from M to C such that:

• (F,m0, n0) is a symmetric monoidal functor from C to M
• (G,m1, n1) is a strong symmetric monoidal functor from M to C
• F preserves products (with p0 : FA× FB ' F (A & B) and q0 : I ' F>)

4.1.2. Remark. Any linear non-linear model is an elementary linear non-linear model
(by Lemmas 4.0.5 and 4.0.6).

4.1.3. Proposition. Any elementary linear non-linear model induces an elementary
Seely category.4

Proof. C is a ?-autonomous category with finite products.
For any object A of C, (GFA, G∆FA ; m−1

1 , G ∗FA ;n−1
1 ) is a ⊗-comonoid, and we

can define the symmetric monoidal functor ! = GF from C to coMON (C) (see [Mel03,
Lemma 16] and the remark just after in [Mel03]).

GF , equipped with the composition of m1 : GFA⊗GFB → G(FA× FB) and Gp0 :
G(FA×FB) → GF (A&B), and the composition of n1 : 1 → GI and Gq0 : GI→ GF>,
is a strong symmetric monoidal functor from (C, &,>) to (C,⊗, 1).

Finally if we apply the definition of the ⊗-comonoid structure of GFA given above,
we have to prove the commutation of the following two diagrams:

GFA
G∆FA //

GF∆

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR G(FA× FA)
m−1

1 // GFA⊗GFA

m1

²²
G(FA× FA)

Gp0

²²
GF (A & A)

GFA
G∗FA //

GF∗A

##GGGGGGGGGGGGGGGGGGGGG GI
n−1
1 // 1

n1

²²
GI

Gq0

²²
GF>

They both commute, mainly by using the preservation of products by F .

4There is a proposal by P.-A. Melliès to introduce an intermediate affine category between C and M
as a sufficient condition to get rid of the S family presented in Section 2.2.
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4.1.4. Proposition. Any elementary Seely category induces an elementary linear non-
linear model.

Proof. By hypothesis, C is a ?-autonomous category with finite product. Moreover, the
category M = (coMON (C),⊗, 1) is a cartesian category.

Let us assume F = ! and G is the forgetful functor fromM to C, (!,m, n) is a symmetric
monoidal functor from (C,⊗, 1) to (coMON (C),⊗, 1) (thus from C to M). (G, id, id1) is
a strong symmetric monoidal functor from (coMON (C),⊗, 1) to (C,⊗, 1) (thus from M
to C).

Finally, F preserves products since it maps & to ⊗ and the &-comonoid structure of
A in C (which is the product structure in C) to the ⊗-comonoid structure of !A in M
(which is the product structure in M).

4.2. Light linear non-linear model. As a final remark we just mention the exis-
tence of a natural refinement of elementary linear non-linear models which gives a proposal
for categorical models of light linear logic [Gir98].

4.2.1. Definition. [Light linear non-linear model] A light linear non-linear model is
given by a ?-autonomous category C with finite products and a cartesian category M, and
three functors F from C to M and G and H from M to C, and a natural transformation
α from G to H such that:

• (F,m0, n0) is a symmetric monoidal functor from C to M
• (G,m′

1, n
′
1) is a symmetric comonoidal functor from M to C

• (H,m2, n2) is a symmetric monoidal functor from M to C
• F preserves products

4.2.2. Remark. Any elementary linear non-linear model is a light linear non-linear
model (with G = H and α is the identity).

In this setting, we can define the functor ! = GF from C to C and the symmetric
monoidal functor § = HF , and αF is a natural transformation from ! to §. Moreover, for
any object A of C, (!A, G∆F ;m′

1, G∗F ;n′1) is a ⊗-comonoid. These are the key ingredients
required for interpreting light linear logic.

In order to model intuitionistic systems without additive connectives, elementary linear
non-linear models and light linear non-linear models can be weakened by only requiring
C to be a symmetric monoidal closed category and by removing the hypothesis that F
preserves products.

Conclusion

We have proposed two possible axiomatizations of categorical models of ELL: elementary
Seely categories and elementary linear non-linear models. They both come from natu-
ral restrictions of the corresponding notions for LL. As usual in categorical logic, such
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axiomatizations give a natural formalism for proving that a would-be model is indeed a
model of the corresponding logical system. This is particularly important here to deal
with the additive connectives of ELL. The ELL syntax with additives is not always easy to
manipulate while the axioms of our elementary models allow us to hide such difficulties.
These difficulties are moved into the soundness proof of our axiomatization, once and for
all. In some way, categorical models confirm that the choices made by Danos and Joinet
in the design of their syntax for ELL [DJ03] are the good one: the expressiveness of the
obtained system fits well with categorical semantics.

We have applied our categorical axiomatizations to (re)prove the soundness of two
crucial examples of models of ELL without reference to the syntax. In the particular case
where such a model of ELL arrives as a sub-model of a model of LL, we have extracted a
very simple criterion allowing us to check only minimal properties to derive a soundness
result with respect to ELL. It was not possible to apply this criterion to the stratified
model since it is not clear how to find a surrounding model of LL, but this would be an
interesting question to investigate.

While the system ELL and its syntactic presentations could be considered as canonical,
the situation is quite different with LLL: should the § modality be self-dual or not? should
we restrict the context of the !-rule to only one formula or to at most one formula? etc.
We have just proposed a definition of light linear non-linear model which comes naturally
as a refinement of elementary linear non-linear models. A whole study of categorical
models of LLL has to be given with the hope that the categorical setting will discriminate
between the various possible choices in the design of the syntax of the LLL system.

Finally, concerning both ELL and LLL, it is often useful from the expressiveness point
of view to consider their intuitionistic versions extended with general weakening (the
affine systems IEAL and ILAL). It should not be difficult to adapt our results to these sys-
tems. Another interesting system to address would be DLAL [BT04] which is particularly
adapted for type inference.

A. Cut elimination in ELL

We give the main steps of the cut elimination procedure of ELL.

π1

` Γ, A
ax

` A⊥, A
cut` Γ, A

Ã
π1

` Γ, A

π1

` Γ, A

π2

` ∆, B ⊗` Γ,∆, A⊗B

π3

` Σ, A⊥, B⊥
¡` Σ, A⊥ ¡B⊥
cut` Γ,∆, Σ

Ã π1

` Γ, A

π2

` ∆, B

π3

` Σ, A⊥, B⊥
cut` ∆,Σ, A⊥

cut` Γ,∆, Σ
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1` 1

π1

` Γ ⊥` Γ,⊥
cut` Γ

Ã
π1

` Γ

π1

` Γ, A

π2

` Γ, B
&` Γ, A & B

π3

` ∆, A⊥ ⊕1` ∆, A⊥ ⊕B⊥
cut` Γ,∆

Ã
π1

` Γ, A

π3

` ∆, A⊥
cut` Γ, ∆

π1

` Γ, C

π2

` C⊥,Θ, [∆, A

π3

` C⊥, Θ, [∆, B
&` C⊥,Θ, [∆, A & B

cut` Γ, Θ, [∆, A & B

Ã

π1

` Γ, C

π2

` C⊥, Θ, [∆, A
cut` Γ,Θ, [∆, A

π1

` Γ, C

π3

` C⊥,Θ, [∆, B
cut` Γ, Θ, [∆, B

&` Γ,Θ, [∆, A & B

π1

` Γ, C
>` C⊥, ∆,>
cut` Γ,∆,>

Ã >` Γ, ∆,>

π1

` [Γ, A
!` ?Γ, !A

π2

` ∆, ?A⊥, ?A⊥
?c` ∆, ?A⊥

cut` ?Γ, ∆

Ã

π1

` [Γ, A
!` ?Γ, !A

π1

` [Γ, A
!` ?Γ, !A

π2

` ∆, ?A⊥, ?A⊥
cut` ?Γ, ∆, ?A⊥

cut` ?Γ, ?Γ,∆
?c` ?Γ,∆

π1

` [Γ, A
!` ?Γ, !A

π2

` ∆ ?w` ∆, ?A⊥
cut` ?Γ, ∆

Ã
π2

` ∆
?w` ?Γ, ∆

π1

` [Γ, A
!` ?Γ, !A

· · ·

πi
2

` Σi, A⊥
[` Σi, [A⊥ · · ·

...
π2

...
` [∆, [A⊥, B

!` ?∆, ?A⊥, !B
cut` ?Γ, ?∆, !B

Ã

· · ·

π1

` [Γ, A

πi
2

` Σi, A⊥
cut` [Γ,Σi · · ·

...
π2

...
` [Γ, [∆, B

!` ?Γ, ?∆, !B



ON THE CATEGORICAL SEMANTICS OF ELEMENTARY LINEAR LOGIC 289

B. Proposition 2.2.1

B.1. Proof of Proposition 2.2.1.

Proof. The constructions presented here are related with the idea of multiplication on
monoidal categories [JS93].

• A constant functor from (C,⊗, 1) to (C,⊗, 1) mapping all objects to Z is symmetric
monoidal if and only if Z is a symmetric monoid in (C,⊗, 1). This is the case for
both 1 and >.

• The identity functor is a symmetric monoidal functor from (C,⊗, 1) to (C,⊗, 1).

• The diagonal functor from (C,⊗, 1) to (C × C,⊗, (1, 1)) (with the tensor product
given by tensor product on each component) is symmetric monoidal.

• The functor ⊗ from (C × C,⊗, (1, 1)) to (C,⊗, 1) is a symmetric monoidal functor
if we use the following natural transformation and morphism:

M = (A⊗B)⊗ (A′ ⊗B′) '−→ (A⊗ A′)⊗ (B ⊗B′)

N = 1
'−→ 1⊗ 1

The following three diagrams commute by properties of symmetric monoidal cate-
gories:

((A⊗B)⊗ (A′ ⊗B′))⊗ (A′′ ⊗B′′) α //

M⊗(A′′⊗B′′)
²²

(A⊗B)⊗ ((A′ ⊗B′)⊗ (A′′ ⊗B′′))

(A⊗B)⊗M
²²

((A⊗ A′)⊗ (B ⊗B′))⊗ (A′′ ⊗B′′)

M
²²

(A⊗B)⊗ ((A′ ⊗ A′′)⊗ (B′ ⊗B′′))

M
²²

((A⊗ A′)⊗ A′′)⊗ ((B ⊗B′)⊗B′′)
α⊗α

// (A⊗ (A′ ⊗ A′′))⊗ (B ⊗ (B′ ⊗B′′))

A⊗B
' //

'
²²

(A⊗B)⊗ 1

(A⊗B)⊗N
²²

(A⊗ 1)⊗ (B ⊗ 1) (A⊗B)⊗ (1⊗ 1)
M

oo

(A⊗B)⊗ (A′ ⊗B′)
γ //

M
²²

(A′ ⊗B′)⊗ (A⊗B)

M
²²

(A⊗ A′)⊗ (B ⊗B′)
γ⊗γ

// (A′ ⊗ A)⊗ (B′ ⊗B)
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• The functor & from (C ×C,⊗, (1, 1)) to (C,⊗, 1) is a symmetric monoidal functor if
we use the following natural transformation and morphism:

M = (A & B)⊗ (A′ & B′)
〈proj1⊗proj1,proj2⊗proj2〉−−−−−−−−−−−−−−→ (A⊗ A′) & (B ⊗B′)

N = 1
∆1−−→ 1 & 1

To prove the commutation of the following diagram:

((A & B)⊗ (A′ & B′))⊗ (A′′ & B′′) α //

M⊗(A′′&B′′)
²²

(A & B)⊗ ((A′ & B′)⊗ (A′′ & B′′))

(A&B)⊗M
²²

((A⊗ A′) & (B ⊗B′))⊗ (A′′ & B′′)

M
²²

(A & B)⊗ ((A′ ⊗ A′′) & (B′ ⊗B′′))

M
²²

((A⊗ A′)⊗ A′′) & ((B ⊗B′)⊗B′′)
α&α

// (A⊗ (A′ ⊗ A′′)) & (B ⊗ (B′ ⊗B′′))

it is enough to prove the commutation of the next diagram and of the corresponding
one with proj2 since the left side of the previous diagram is the pair of their left
sides and its right side is the pair of their right sides.

((A & B)⊗ (A′ & B′))⊗ (A′′ & B′′) α //

M⊗(A′′&B′′)
²²

(A & B)⊗ ((A′ & B′)⊗ (A′′ & B′′))

(A&B)⊗M
²²

((A⊗ A′) & (B ⊗B′))⊗ (A′′ & B′′)

proj1⊗proj1
²²

(A & B)⊗ ((A′ ⊗ A′′) & (B′ ⊗B′′))

proj1⊗proj1
²²

((A⊗ A′)⊗ A′′) α
// (A⊗ (A′ ⊗ A′′))

since M ; proj1 = proj1 ⊗ proj1, this is obtained by naturality of α.

The following diagram commutes:

A & B
' //

'
²²

(A & B)⊗ 1

(A&B)⊗N
²²

f

uujjjjjjjjjjjjjjj

(A⊗ 1) & (B ⊗ 1) (A & B)⊗ (1 & 1)
M

oo

with f = 〈proj1 ⊗ id1, proj2 ⊗ id1〉. The first triangle commutes by properties of
monoidal categories and of the product and the second triangle commutes by defi-
nition of M and N .

The following diagram commutes:

(A & B)⊗ (A′ & B′)
γ //

M
²²

(A′ & B′)⊗ (A & B)

M
²²

(A⊗ A′) & (B ⊗B′)
γ&γ

// (A′ ⊗ A) & (B′ ⊗B)
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by pairing the next diagram with the corresponding one obtained by using proj2
instead of proj1:

(A & B)⊗ (A′ & B′)
γ //

proj1⊗proj1
²²

(A′ & B′)⊗ (A & B)

proj1⊗proj1
²²

A⊗ A′
γ

// A′ ⊗ A

which commutes by naturality of γ.

• Finally the composition of two symmetric monoidal functors is symmetric monoidal.

B.2. The monoidal structure. We explicitly give the monoidal structure on ] ∈ S
obtained in the previous section/proof.

By induction on ], m]
A,B from ]A⊗ ]B to ](A⊗B) is given by:

• m1
A,B = 1⊗ 1 → 1 is the unit morphism of 1 with respect to ⊗

• m>
A,B = >⊗> → > is the unique such morphism since > is terminal

• mid
A,B = A⊗B

id−→ A⊗B

• m]1⊗]2
A,B = (]1A ⊗ ]2A) ⊗ (]1B ⊗ ]2B)

'−→ (]1A ⊗ ]1B) ⊗ (]2A ⊗ ]2B)
m

]1
A,B⊗m

]2
A,B−−−−−−−→

]1(A⊗B)⊗ ]2(A⊗B)

• m]1&]2
A,B = (]1A & ]2A) ⊗ (]1B & ]2B)

〈proj1⊗proj1,proj2⊗proj2〉−−−−−−−−−−−−−−→ (]1A ⊗ ]1B) & (]2A ⊗
]2B)

m
]1
A,B&m

]2
A,B−−−−−−−→ ]1(A⊗B) & ]2(A⊗B)

and n] from 1 to ]1 by:

• n1 = 1
id1−→ 1

• n> = 1
∗1−→ >

• nid = 1
id1−→ 1

• n]1⊗]2 = 1 → 1⊗ 1
n]1⊗n]2−−−−→ ]11⊗ ]21

• n]1&]2 = 1
∆1−−→ 1 & 1

n]1&n]2−−−−→ ]11 & ]21
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C. Proof of Proposition 2.2.3

Proof. We first prove that b]
A belongs to coMON (C) by induction on the definition:

• b1
A is comonoidal since w!A is comonoidal and n is comonoidal.

• b>A is comonoidal since w!A is comonoidal and q is comonoidal (by Lemma 2.1.6).

• bid
A is comonoidal since id is comonoidal.

• b]1⊗]2
A is comonoidal since c!A is comonoidal, b]1

A and b]2
A are comonoidal by induction

hypothesis and m]1A,]2A is comonoidal.

• b]1&]2
A is comonoidal since c!A is comonoidal, b]1

A and b]2
A are comonoidal by induction

hypothesis and p]1A,]2A is comonoidal (by Lemma 2.1.6).

In the same way, we easily check naturality by properties of all the constructions involved
in the definition of b].

We finally prove the commutation of the two diagrams corresponding to the monoidal-
ity of the natural transformation:

!A⊗ !B
m //

b]
A⊗b]

B
²²

!(A⊗B)

b]
A⊗B

²²
!]A⊗ !]B m

// !(]A⊗ ]B)
!m]

// !](A⊗B)

1
n //

n
ÁÁ=

==
==

==
= !1

b]
1

²²
!1

!n]
// !]1

By induction on ] for the first diagram:

• If ] = 1, the following diagram commutes:

!A⊗ !B
m //

b1
A⊗b1

B

²²

w!A⊗w!B

%%KKKKKKKKKK !(A⊗B)
w!(A⊗B)

xxqqqqqqqqqqqq

b1
A⊗B

²²

(b)

(d)

1⊗ 1(a)
' //

n⊗n

yytttttttttt
1 (c)

n

&&MMMMMMMMMMMMMM

!1⊗ !1 m
// !(1⊗ 1) '

// !1

by (a) definition of b1
A, (b) comonoidality of m, (c) definition of b1

A⊗B, and
(d) monoidality of !.

• If ] = >, the following diagram commutes:

!A⊗ !B
m //

b>A⊗b>B

²²

w!A⊗w!B

%%KKKKKKKKKK !(A⊗B)
w!(A⊗B)

xxpppppppppppp

b>A⊗B

²²

(b)

(d)

1⊗ 1(a)
' //

q⊗q

yyssssssssss
1 (c)

q

&&NNNNNNNNNNNNNN

!>⊗ !> p
// !(>⊗>)

!∗
// !>
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by (a) definition of b>A, (b) comonoidality of m, (c) definition of b>A⊗B, and
(d) monoidality of !.

• If ] = id, the following diagram immediately commutes:

!A⊗ !B
m //

id⊗id

²²

!(A⊗B)

id
²²

!A⊗ !B m
// !(A⊗B)

!id
// !(A⊗B)

• If ] = ]1 ⊗ ]2, the following diagram commutes:

!A⊗ !B

(b)

c!A⊗c!B

ttiiiiiiiiiiiiiiiiiii

(a)

c!A⊗!B

²²

m // !(A⊗ B)

c!(A⊗B)

²²
!A⊗ !A⊗ !B ⊗ !B

' //

b
]1
A
⊗b

]2
A
⊗b

]1
B
⊗b

]2
B

²²

!A⊗ !B ⊗ !A⊗ !B

(d)

m⊗m

//

b
]1
A
⊗b

]1
B
⊗b

]2
A
⊗b

]2
B

²²
(c)

!(A⊗ B)⊗ !(A⊗ B)

b
]1
A⊗B

⊗b
]2
A⊗B

²²
!]1A⊗ !]2A⊗ !]1B ⊗ !]2B

(e)

' //

m⊗m

²²

!]1A⊗ !]1B ⊗ !]2A⊗ !]2B
m⊗m

// !(]1A⊗ ]1B)⊗ !(]2A⊗ ]2B)

(f)

!m]1⊗!m]2

//

m

²²

!]1(A⊗ B)⊗ !]2(A⊗ B)

m

²²
!(]1A⊗ ]2A)⊗ !(]1B ⊗ ]2B)

m
// !(]1A⊗ ]2A⊗ ]1B ⊗ ]2B) '

// !(]1A⊗ ]1B ⊗ ]2A⊗ ]2B)
!(m]1⊗m]2 )

// !(]1(A⊗ B)⊗ ]2(A⊗ B))

by (a) definition of c!A⊗!B, (b) comonoidality of m, (c) symmetry of ⊗, (d) induc-
tion hypothesis, (e) monoidality and symmetry of !, and (f) naturality of m.

• If ] = ]1 & ]2, the diagram we want has the same first two lines as for ] = ]1 ⊗ ]2.
The last one becomes:

!]1A⊗ !]2A⊗ !]1B ⊗ !]2B

(a)

' //

p⊗p

²²

!]1A⊗ !]1B ⊗ !]2A⊗ !]2B
m⊗m

// !(]1A⊗ ]1B)⊗ !(]2A⊗ ]2B)

(b)

!m]1⊗!m]2

//

p

²²

!]1(A⊗ B)⊗ !]2(A⊗ B)

p

²²
!(]1A & ]2A)⊗ !(]1B & ]2B)

m
// !((]1A & ]2A)⊗ (]1B & ]2B))

!〈proj1⊗proj1,proj2⊗proj2〉
// !((]1A⊗ ]1B) & (]2A⊗ ]2B))

!(m]1&m]2 )

// !(]1(A⊗ B) & ]2(A⊗ B))

The square (b) commutes by naturality of p. We are going to prove the commutation
of the hexagon (a). We have:

!(A1 & A2)⊗ !(A1 & A2)⊗ !(B1 & B2)⊗ !(B1 & B2)

(b)

!proj1⊗!proj2⊗!proj1⊗!proj2//

'

²²

!A1 ⊗ !A2 ⊗ !B1 ⊗ !B2

'

²²
!(A1 & A2)⊗ !(B1 & B2)

(a)

(c)

c!(A1&A2)⊗c!(B1&B2)
33fffffffffffffffffffffff

c!(A1&A2)⊗!(B1&B2)
//

m

²²

!(A1 & A2)⊗ !(B1 & B2)⊗ !(A1 & A2)⊗ !(B1 & B2)

(d)

!proj1⊗!proj1⊗!proj2⊗!proj2//

m⊗m

²²

!A1 ⊗ !B1 ⊗ !A2 ⊗ !B2

m⊗m

²²
!((A1 & A2)⊗ (B1 & B2))

(e)

c!((A1&A2)⊗(B1&B2))//

!∆
++XXXXXXXXXXXXXXXXXXXXXXX !((A1 & A2)⊗ (B1 & B2))⊗ !((A1 & A2)⊗ (B1 & B2))

(f)

!(proj1⊗proj1)⊗!(proj2⊗proj2)//

p

²²

!(A1 ⊗ B1)⊗ !(A2 ⊗ B2)

p

²²
!((A1 & A2)⊗ (B1 & B2)) & ((A1 & A2)⊗ (B1 & B2))

!((proj1⊗proj1)&(proj2⊗proj2))
// !((A1 ⊗ B1) & (A2 ⊗ B2))
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by (a) definition of c!(A1&A2)⊗!(B1&B2), (b) symmetry of ⊗, (c) comonoidality of m,
(d) naturality of m, (e) Property 3 of elementary Seely categories and (f) natu-
rality of p.

The last line is !〈proj1 ⊗ proj1, proj2 ⊗ proj2〉 and the first line pre-composed with
p⊗ p is the identity:

!(A1 & A2)⊗ !(B1 & B2)

(b)

c!(A1&A2)⊗c!(B1&B2) //

id

++

!∆⊗!∆

²²
(a)

!(A1 & A2)⊗ !(A1 & A2)⊗ !(B1 & B2)⊗ !(B1 & B2)

!proj1⊗!proj2⊗!proj1⊗!proj2

²²
!(A1 & A2 & A1 & A2)⊗ !(B1 & B2 & B1 & B2) (c)

!(proj1&proj2)⊗!(proj1&proj2)

²²

p−1⊗p−1

22ddddddddddddddddddddddddddddddd
!A1 ⊗ !A2 ⊗ !B1 ⊗ !B2

!(A1 & A2)⊗ !(B1 & B2)

p−1⊗p−1

22ddddddddddddddddddddddddddddddd

by (a) properties of products, (b) Property 3 of elementary Seely categories, and
(c) naturality of p.

By induction on ] also for the second diagram:

• If ] = 1, the following diagram commutes:

1
n //

n

²² id1
&&MMMMMMMMMMMMMM !1

w!1

²²
!1

!id1 &&MMMMMMMMMMMMM 1

n

²²
!1

by comonoidality of n for the triangle and by properties of id for the square.

• If ] = >, the following diagram commutes:

1
n // !1

w!1 //

!∗1 ÃÃA
AA

AA
AA

A 1

q

²²
!>

by Property 3 of elementary Seely categories.

• If ] = id, the following diagram commutes:

1
n //

n

²²

!1

id!1

²²
!1

!id1

// !1
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• If ] = ]1 ⊗ ]2, the following diagram commutes:

!1

(a)
c!1

))TTTTTTTTTTTTTTTTTT

1

(d)n

´´

zzuuu
uuu

uuu
uu

n

99rrrrrrrrrrrr //

n

²²

1⊗ 1

(e)

n⊗n //

n⊗n

²²

!1⊗ !1

b
]1
1 ⊗b

]2
1

²²
1⊗ 1

(b)

(c)

n⊗1 $$IIIIIIIII !1 c!1

// !1⊗ !1

(g)

!n]1⊗!n]2

//

m1,1

²²

!]11⊗ !]21

m]11,]21

²²

!1⊗ 1

(f)

!1⊗n

99ssssssssss

!1 //

55kkkkkkkkkkkkkkkkkk !(1⊗ 1)
!(n]1⊗n]2 )

// !(]11⊗ ]21)

by (a) comonoidality of n, (b) properties of monoidal categories, (c) comonoidality
of n, (d) comonoidality of n, (e) induction hypothesis, (f) monoidality of ! and
(g) naturality of m.

• If ] = ]1 & ]2, the following diagram commutes:

!1

(a)
c!1

))TTTTTTTTTTTTTTTTTT

1

(b)

n

;;vvvvvvvvvv //

n

²²

1⊗ 1

(c)

n⊗n //

n⊗n

²²

!1⊗ !1

b
]1
1 ⊗b

]2
1

²²
!1

(d)

c!1 //

!∆1 ##FFFFFFFFF !1⊗ !1

(e)

!n]1⊗!n]2

//

p1,1

²²

!]11⊗ !]21

p]11,]21

²²
!(1 & 1)

!(n]1&n]2 )
// !(]11 & ]21)

by (a) comonoidality of n, (b) comonoidality of n, (c) induction hypothesis,
(d) Property 3 of elementary Seely categories, and (e) naturality of p.

D. Proof of Proposition 2.2.4

Proof.

• bid
A = id!A by definition.

• b ; b: by induction on ]2:
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– if ]2 = 1 or ]2 = >, we apply the definition of b]2
]1A and we obtain the following

commutative diagram:

!A
b
]1
A //

w!A

!!CC
CC

CC
CC

C !]1A

w!]1A

²²
1

n/q
// !1/!>

by comonoidality of b]1
A (Proposition 2.2.3).

– if ]2 = id, the result is immediate.

– if ]2 = ]2′ ⊗ ]2′′ or ]2 = ]2′ & ]2′′ , we apply the definition of b]2
]1A and we obtain

the following commutative diagram:

!A
b
]1
A //

c!A

²²

!]1A

c!]1A

²²
!A⊗ !A

b
]1
A ⊗b

]1
A //

b
]2′ ]1
A ⊗b

]2′′ ]1
A

&&LLLLLLLLLLLLLLLLLLLLLL !]1A⊗ !]1A

b
]2′
]1A⊗b

]2′′
]1A

²²
!]2′]1A⊗ !]2′′]1A

m/p
// !]2]1A

by comonoidality of b]1
A (Proposition 2.2.3), and induction hypothesis.

• b>A = !∗A by Property 3 of elementary Seely categories.

• b ; !proj: the following diagram commutes:

!A

(b)

b
]1&]2
A

''
c!A //

b
]1
A

²²

!A⊗ !A

(c)

(d)

b
]1
A ⊗b

]2
A //

b
]1
A ⊗w!A

²²

!]1A⊗ !]2A

(e)

(a)

p //

id⊗w!]2A

zzttttttttttttttttttttt

id⊗!∗]2A

²²

!(]1A & ]2A)

!(id&∗]2A)

²²
!]1A '

// !]1A⊗ 1
id⊗q

// !]1A⊗ !> p
// !(]1A &>)

'

gg

(f)
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by (a) definition of b]1&]2
A , (b) properties of the comonoid !A, (c) comonoidal-

ity of b]2
A , (d) Property 3 of elementary Seely categories, (e) naturality of p and

finally (f) monoidality of !. We conclude by using !proj1 = !(]1A & ]2A)
!(id&∗)−−−−→

!(]1A &>)
'−→ !]1A.

E. Proof of Proposition 3.2.2

Starting from the ingredients given in [Bai00], we prove that SCOH satisfies all the axioms
of elementary Seely categories.

E.0.1. Definition. [Category SCOH] The category SCOH is given by:

• objects: stratified coherent spaces

• morphisms: SCOH(A,B) is the set of cliques of A ( B

E.0.2. Lemma. SCOH is a Seely category.

Proof. The categories COH and SCOH are equivalent categories: the forgetful functor
from SCOH to COH (which maps a stratified coherent space A with depth d to the coher-
ent space Ad and which maps a clique to itself) is full, faithful, surjective on objects (by
considering constant stratified coherent spaces) and strictly preserves all the structures.

The visibility function V maps a clique to the sub-clique containing the visible ele-
ments.

A clique x of SCOH(A,B) is right-handed if for any (a, b) ∈ x, if a is visible then b
is visible and moreover V (x) is stratified. A clique x of SCOH(A,B) is left-handed if for
any (a, b) ∈ x, if b is visible then a is visible and moreover V (x) is stratified. A clique of
SCOH(A,B) is ambidextrous if it is both left-handed and right-handed.

It is immediate that stratified cliques are ambidextrous and that V is the identity on
visible cliques (thus on stratified cliques).

E.0.3. Lemma. [Sub-categories of SCOH] By keeping the same objects as in SCOH and
by restraining morphisms to left-handed, right-handed or ambidextrous cliques, one gets
three sub-categories LHCOH, RHCOH and ACOH of SCOH.

V defines a functor (objects are not modified) from any of LHCOH, RHCOH or
ACOH to SCOH.

Proof. The identity is clearly ambidextrous and V (id) is the identity of SCOH [Bai00,
Section 3.3].

If x ∈ SCOH(A, B) and y ∈ SCOH(B,C) are right-handed, if (a, c) belongs to x ; y
and if a is visible, then there exists b in B such that (a, b) ∈ x (so that b is visible) and
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(b, c) ∈ y thus c is visible. Moreover:

V (x ; y) = V ({(a, c) | ∃b (a, b) ∈ x ∧ (b, c) ∈ y})
= {(a, c) | v(a) ∧ v(c) ∧ ∃b (a, b) ∈ x ∧ (b, c) ∈ y}
= {(a, c) | v(a) ∧ v(c) ∧ ∃b (a, b) ∈ x ∧ v(b) ∧ (b, c) ∈ y}
= {(a, c) | ∃b (a, b) ∈ V (x) ∧ (b, c) ∈ V (y)}
= V (x) ; V (y)

where v(a) means “a is visible”. This entails that V (x ;y) is stratified [Bai00, Section 3.3]
and that V is a functor.

In the same way, left-handed cliques and ambidextrous cliques compose, and functo-
riality of V holds.

To avoid confusion with the ! construction of SCOH, we use !m for the usual multiset
construction from COH (applied in SCOH). As in [Bai00, Section 3.4], if x is a stratified
clique, !x is defined by !x = V (!m(x)).

The morphisms corresponding to the ?-autonomous structure of SCOH are ambidex-
trous and the application of ! to them is also ambidextrous.

The morphisms corresponding to the finite products of SCOH are ambidextrous.
If x is a stratified clique, !mx is right-handed [Bai00, Lemma 2].
The morphisms c!A and w!A are right-handed [Bai00, Section 3.4].
The morphism mA,B is left-handed [Bai00, Section 3.4], and n = {(?, [?])} is ambidex-

trous.
The morphism pA,B is ambidextrous [Bai00, Lemma 4], and q = {(?, [ ])} is ambidex-

trous.

We now turn to the proof of Proposition 3.2.2:

Proof. We are going to use V to show the commutation of the required diagrams in
SCOH: if a commutative diagram deals with right-handed morphisms only in SCOH,
the corresponding diagram in SCOH also commutes (and the same with left-handed
morphisms).

V strictly preserves all the multiplicative and additive constructions [Bai00, Sec-
tion 3.4], thus SCOH is a ?-autonomous category with finite products. Let us give the
example of naturality of the symmetry γ of ⊗ (which deals with ambidextrous morphisms
only):

A⊗B
γA,B //

x⊗y

²²

B ⊗ A

y⊗x

²²
A′ ⊗B′

γA′,B′
// B′ ⊗ A′

In order to distinguish between constructions/morphisms in SCOH and SCOH (when
required), we use an exponent notation (.)0 for SCOH. If x and y are stratified cliques,
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we have:

γA,B ; y ⊗ x = V (γ0
A,B) ; V (y)⊗ V (x)

= V (γ0
A,B) ; V (y ⊗ x)

= V (γ0
A,B ; y ⊗ x)

= V (x⊗ y ; γ0
A′,B′)

= V (x⊗ y) ; V (γ0
A′,B′)

= x⊗ y ; γA′,B′

Concerning the exponential constructions, ! is an endofunctor [Bai00, Section 3.4].
(!A, c!A,w!A) is a symmetric ⊗-comonoid (the required diagrams use right-handed mor-
phisms only), and if x is a stratified clique, !x is a comonoidal morphism [Bai00, Lemma 3].

m is a natural transformation [Bai00, Section 3.4] which defines comonoidal mor-
phisms [Bai00, Lemma 3]. n is also a comonoidal morphism (the required diagrams use
right-handed morphisms only). (!,m, n) is a symmetric monoidal functor since the addi-
tional required diagrams use left-handed morphisms only.

pA,B is an isomorphism [Bai00, Lemma 4]. It defines a natural transformation since the
required diagram uses right-handed morphisms only. We do it explicitly as an example:

!A⊗ !B
pA,B //

!x⊗!y

²²

!(A & B)

!(x&y)
²²

!A′ ⊗ !B′
pA′,B′

// !(A′ & B′)

we have:

pA,B ; !(x & y) = V (p0
A,B) ; V (!m(x & y))

= V (p0
A,B ; !m(x & y))

= V (!mx⊗ !my ; p0
A′,B′)

= V (!mx⊗ !my) ; V (p0
A′,B′)

= V (!mx)⊗ V (!my) ; pA′,B′

= !x⊗ !y ; pA′,B′

q is also an isomorphism (ambidextrous morphisms only). (!, p, q) is a symmetric monoidal
functor since the additional required diagrams use ambidextrous morphisms only.

Finally, the Condition 3 of the definition of elementary Seely categories is satisfied
since it corresponds to diagrams using right-handed morphisms only.
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