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ON ENDOMORPHISM ALGEBRAS OF SEPARABLE MONOIDAL
FUNCTORS

BRIAN DAY AND CRAIG PASTRO

Abstract. We show that the (co)endomorphism algebra of a sufficiently separable
“fibre” functor into Vectk, for k a field of characteristic 0, has the structure of what
we call a “unital” von Neumann core in Vectk. For Vectk, this particular notion of
algebra is weaker than that of a Hopf algebra, although the corresponding concept in
Set is again that of a group.

1. Introduction

Let C = (C ,⊗, I, c) be a braided (or even symmetric) monoidal category. Recall that
an algebra in C is an object A ∈ C equipped with a multiplication µ : A ⊗ A → A and
a unit η : I → A satisfying µ3 = µ(1 ⊗ µ) = µ(µ ⊗ 1) : A⊗3 → A (associativity) and
µ(η ⊗ 1) = 1 = µ(1⊗ η) : A→ A (unit conditions). Dually, a coalgebra in C is an object
C ∈ C equipped with a comultiplication δ : C → C⊗C and a counit ε : C → I satisfying
δ3 = (1⊗ δ)δ = (δ⊗ 1)δ : C → C⊗3 (coassociativity) and (ε⊗ 1)δ = 1 = (1⊗ ε)δ : C → C
(counit conditions).

A very weak bialgebra in C is an object A ∈ C with both the structure of an algebra
and a coalgebra in C related by the axiom

δµ = (µ⊗ µ)(1⊗ c⊗ 1)(δ ⊗ δ) : A⊗ A→ A⊗ A.

For example, when C = Vectk, any k-bialgebra or weak k-bialgebra is a very weak
bialgebra in this sense.

We note briefly that, if A is such a structure, but has no unit or counit, we simply
call A a semibialgebra, or core for short. This minimal structure on A is then called a
von Neumann core in C if it also is equipped with an endomorphism S : A → A in C
satisfying the axiom

µ3(1⊗ S ⊗ 1)δ3 = 1 : A→ A.
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A von Neumann regular semigroup is precisely a von Neumann core in Set, while the free
k-vector space on it is a special type of von Neumann core in Vectk. However, within
this article we shall always suppose that A has both a unit and a counit. For example,
when C = Vectk, a Hopf k-algebra or a weak Hopf k-algebra is a von Neumann core in
this somewhat stronger sense.

Since groups A in Set are characterized by the (stronger) axiom

1⊗ η = (1⊗ µ)(1⊗ S ⊗ 1)δ3 : A→ A⊗ A, (†)

a very weak bialgebra A satisfying (†), in the general C , will be called a unital von
Neumann core in C . Such a unital von Neumann core A always has a left inverse to the
“fusion” operator [9]

(1⊗ µ)(δ ⊗ 1) : A⊗ A→ A⊗ A,

namely
(1⊗ µ)(1⊗ S ⊗ 1)(δ ⊗ 1) : A⊗ A→ A⊗ A.

Any Hopf algebra in C satisfies the stronger axiom (†), but a weak Hopf algebra does
not necessarily do so. In this article we are mainly interested in producing a unital von
Neumann core, namely End∨U , associated to a certain type of split monoidal functor
U into Vectk. It seems unlikely that all unital von Neumann cores in Vectk may be
reproduced as such.

We will tacitly assume throughout the article that the ground category [8] is Vect =
Vectk, for k a field of characteristic 0, so that the categories and functors considered
here are all k-linear (although any reasonable category [D ,Vect] of parameterized vector
spaces would suffice). We denote by Vectf the full subcategory of Vect consisting of the
finite dimensional vector spaces, and we further suppose that C = (C ,⊗, I, c) is a braided
monoidal category with a “fibre” functor

U : C → Vect,

with both a monoidal structure (U, r, r0) and a comonoidal structure (U, i, i0), which need
not be inverse to one another. We call U separable1 if ri = 1 and i0r0 = dim(UI) · 1; i.e.,
for all A,B ∈ C , the diagrams

U(A⊗B) UA⊗ UB

U(A⊗B)

i //

r

��1 ''OOOOOOOOOOOO k UI

k

r0 //

i0

��
dimUI·1

##GGGGGGGGGGGG

1Strictly, we should also require the conditions (cf. [1, 10])

(r ⊗ 1)(1⊗ i) = ir : UA⊗ U(B ⊗ C)→ U(A⊗B)⊗ UC, and
(1⊗ r)(i⊗ 1) = ir : U(A⊗B)⊗ UC → UA⊗ U(B ⊗ C)

in order for U to be called “separable”, but we do not need these here.
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commute.
First we produce an algebra structure (µ, η) on

End∨U =

∫ C

U(C)∗ ⊗ UC

using the monoidal and comonoidal structures on U . Secondly, we suppose that C has
a suitable small generating set A of objects, and produce a coalgebra structure (δ, ε) on
End∨U when each value UA, A ∈ A , is finite dimensional. Finally, we assume that each
A ∈ A has a ⊗-dual A∗ which also lies in A , and that U is equipped with an isomorphism

U(A∗) ∼= U(A)∗

for all A ∈ A . This isomorphism should be suitably related to the evaluation and
coevaluation maps of C and Vectf which then allows us to define a natural non-degenerate
form

U(A∗)⊗ UA→ k.

This last assumption is sufficient to provide End∨U with an automorphism S so that it
becomes a unital von Neumann core in the above sense whenever (U, r, r0) is a braided
monoidal functor.

By way of examples, we note that many separable monoidal functors are constructable
from separable monoidal categories, i.e., from monoidal categories C for which the tensor
product map

⊗ : C (A,B)⊗ C (C,D)→ C (A⊗ C,B ⊗D)

is a naturally split epimorphism (as is the case for some finite cartesian products such as
Vectnf ). A closely related source of examples is the notion of a weak dimension functor
on C (cf. [6]); this is a comonoidal functor

(d, i, i0) : C → Setf

for which the comonoidal transformation components

i = iC,D : d(C ⊗D)→ dC × dD

are injective functions, while the unique map i0 : dI → 1 is surjective. Various examples
are described at the conclusion of the paper.

We suppose the reader is familiar to some extent with the standard Tannaka recon-
struction problem when restricted to the case of U strong monoidal (see [7] for example).

2. The very weak bialgebra End∨U

If C is a (k-linear) monoidal category and

U : C → Vect
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has a monoidal structure (U, r, r0) and a comonoidal structure (U, i, i0), then End∨U ,
when it exists, has an associative and unital k-algebra structure whose multiplication µ
is the composite map∫ C

U(C)∗ ⊗ UC ⊗
∫ D

U(D)∗ ⊗ UD

∫ C,D

U(C)∗ ⊗ U(D)∗ ⊗ UC ⊗ UD

∼=
��

∫ C,D

(UC ⊗ UD)∗ ⊗ UC ⊗ UD

can
�� ∫ C,D

U(C ⊗D)∗ ⊗ U(C ⊗D)∫
i∗⊗r

//

∫ B

U(B)∗ ⊗ UB

∫ ⊗
OO

µ //

while the unit η is given by

k

k∗ ⊗ k

∼=

��
UI∗ ⊗ UI.

i∗0⊗r0
//

∫ C

U(C)∗ ⊗ UC

coprC=I

OO

η //

The associativity and unit axioms for (End∨U, µ, η) now follow directly from the corre-
sponding associativity and unit axioms for (U, r, r0) and (U, i, i0). An augmentation ε is
given by

U(D)∗ ⊗ UD

∫ C

U(C)∗ ⊗ UC

coprC=D

]]:::::::

k
ε //

e

AA���������

in Vect, where e denotes evaluation in Vect.
We also observe that the coend

End∨U =

∫ C

U(C)∗ ⊗ UC

actually exists in Vect if C contains a small full subcategory A with the property that
the family

{Uf : UA→ UC | f ∈ C (A,C), A ∈ A }
is epimorphic in Vect for each object C ∈ C . In fact, we shall use the stronger condition
that the maps

αC :

∫ A∈A

C (A,C)⊗ UA→ UC
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should be isomorphisms, not just epimorphisms. This stronger condition implies that we
can effectively replace

∫ C∈C
by
∫ A∈A

since by the Yoneda lemma∫ C

U(C)∗ ⊗ UC ∼=
∫ C

U(C)∗ ⊗ (

∫ A

C (A,C)⊗ UA)

∼=
∫ A

U(A)∗ ⊗ UA.

If we furthermore ask that each value UA be finite dimensional for A in A , then

End∨U ∼=
∫ A∈A

U(A)∗ ⊗ UA

is canonically a k-coalgebra with counit the augmentation ε, and comultiplication δ given
by

U(A)∗ ⊗ UA

∫ A

U(A)∗ ⊗ UA

copr

OO

∫ A

U(A)∗ ⊗ UA⊗
∫ A

U(A)∗ ⊗ UAδ //

U(A)∗ ⊗ UA⊗ U(A)∗ ⊗ UA,
1⊗n⊗1

//

copr ⊗ copr

OO

where n denotes the coevaluation morphism in Vectf .

2.1. Proposition. If U is separable then End∨U satisfies the k-bialgebra axiom ex-
pressed by the commutativity of

End∨U ⊗ End∨U

End∨U

µ

��
End∨U ⊗ End∨U.

δ //

(End∨U)⊗4δ⊗δ //

(End∨U)⊗4

1⊗c⊗1

��

µ⊗µ
��

Proof. Let B denote the monoidal full subcategory of C generated by A (we will
essentially replace C by this small category B). Then, for all C,D in B, we have, by
induction on the tensor lengths of C and D, that U(C ⊗D) is finite dimensional since it
is a retract of UC ⊗ UD. Moreover, we have∫ A∈A

U(A)∗ ⊗ UA ∼=
∫ B∈B

U(B)∗ ⊗ UB

by the Yoneda lemma, since the natural transformation

α = αB :

∫ A∈A

C (A,B)⊗ UA→ UB
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is an isomorphism for all B ∈ B. Since ri = 1, the triangle

k

(UC ⊗ UD)⊗ (UC ⊗ UD)∗

U(C ⊗D)⊗ U(C ⊗D)∗,

r⊗i∗

��

n
77oooooooo

n ''OOOOOOOOOO

commutes in Vectf , where n denotes the coevaluation maps. The asserted bialgebra
axiom then holds on End∨U since it reduces to the following diagram on filling in the
definitions of µ and δ (where, for the moment, we have dropped the symbol “⊗”):

UC U(C)∗ UD U(D)∗

UC UD U(C)∗ U(D)∗

UC UD (UC UD)∗

U(C D) U(C D)∗

UC (UC U(C)∗) U(C)∗ UD (UD U(D)∗) U(D)∗

UC UD UC UD U(C)∗ U(D)∗ U(C)∗ U(D)∗

UC UD UC UD (UC UD)∗ (UC UD)∗

U(C D) U(C D) U(C D)∗ U(C D)∗

∼=
��

∼=
��

r i∗

��

∼=
��

∼=
��

r r i∗ i∗

��

1 n 1 1 n 1 //

1 n 1 //

1 n 1 //

for all C,D ∈ B.

Notably the bialgebra axiom expressed by the commutativity of

End∨U ⊗ End∨U End∨U
µ //

k

ε
�����������

ε⊗ε
##GGGGGGGGGGG

does not hold in general, while the form of the axiom expressed by

k

End∨U

η

aaDDDDDDDDDD

End∨U ⊗ End∨U
δ //

η⊗η

99rrrrrrrrrrrrr

holds only if η = r0 ⊗ i∗0. Also εη = dimUI · 1 for U separable.
The single k-bialgebra axiom established in the above proposition implies that the

“fusion” operator (1⊗µ)(δ⊗ 1) : A⊗A→ A⊗A satisfies the fusion equation (see [9] for
details).

The k-linear dual of End∨U is of course[ ∫ C

U(C)∗ ⊗ U(C), k
] ∼= ∫

C

[U(C)∗, U(C)∗]
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which is the endomorphism k-algebra of the functor

U(−)∗ : C op → Vect.

If ob A is finite, so that ∫ A

U(A)∗ ⊗ UA

is finite dimensional, then∫
C

[U(C)∗, U(C)∗] ∼=
∫
A

[U(A)∗, U(A)∗]

is also a k-coalgebra.

3. The unital von Neumann core End∨U

We now take C = (C ,⊗, I, c) to be a braided monoidal category and A ⊂ C to be a
small full subcategory of C for which the monoidal and comonoidal functor U : C → Vect
induces

U : A → Vectf

on restriction to A . We suppose that A is such that

• the identity I of ⊗ lies in A , and each object of A ∈ A has a ⊗-dual A∗ lying in
A .

With respect to U , we suppose A has the properties

• “U -irreducibility”: A (A,B) 6= 0 implies dimUA = dimUB for all A,B ∈ A ,

• “U -density”: the canonical map

αC :

∫ A∈A

C (A,C)⊗ UA→ UC

is an isomorphism for all C ∈ C ,

• “U -trace”: each object of A has a U -trace in C (I, I), where by U -trace of A ∈ A
we mean an isomorphism d(A) in C (I, I) such that the following two diagrams
commute.

I

A⊗ A∗

n

��
A∗ ⊗ Ac //

I

e

OO
d(A) // k

UI

r0

��
UI

dimUI·U(d(A)) //

k
dimUA //

r0

��

We shall assume dimUI 6= 0 so that the latter assumption implies dimUA 6= 0, for
all A ∈ A .
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We require also a natural isomorphism

u = uA : U(A∗)
∼=−→ U(A)∗

such that

k UI
r0 //

U(A⊗ A∗)

Un

��
UA⊗ U(A)∗

n

��

UA⊗ U(A∗)
1⊗u−1

  AAAAAAAA

r

>>}}}}}}}}

(n, r, r0)

commutes, and

U(A∗ ⊗ A)

UI

Ue

OO k
i0 //

U(A∗)⊗ UA
i   AAAAAAAA

U(A)∗ ⊗ UA

u⊗1

>>}}}}}}}}

e

OO

(e, i, i0)

commutes. This means that U “preserves duals” when restricted to A .
An endomorphism

σ : End∨U → End∨U

may be defined by components

U(A)∗ ⊗ UA U(A∗)∗ ⊗ U(A∗),
σA //

∫ A

U(A)∗ ⊗ UA

copr

OO

∫ A

U(A)∗ ⊗ UA

copr

OO

σ //

each σA being given by commutativity of

U(A)∗ ⊗ UA U(A∗)∗ ⊗ U(A∗)
σA //

U(A)∗ ⊗ U(A)∗∗

1⊗ρ

��
U(A∗)⊗ U(A∗)∗,

u−1⊗u∗ //

c

OO

where ρ denotes the canonical isomorphism from a finite dimensional vector space to its
double dual. Clearly each component σA is invertible.
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3.1. Theorem. Let C , A , and U be as above, and suppose that U is braided and
separable as a monoidal functor. Then there is an automorphism S on End∨U such that
(End∨U, µ, η, δ, ε, S) is a unital von Neumann core in Vectk.

Proof. A family of maps {SA | A ∈ A } is defined by

SA = dimUI · (dimUA)−1 · σA.

Then, by the U -irreducibility assumption on the category A , this family induces an
automorphism S on the coend

End∨U ∼=
∞∑
n=1

∫ A∈An

U(A)∗ ⊗ UA,

where An is the full subcategory of A determined by {A | dimUA = n}. We now take S
to be the prospective core endomorphism on End∨U and check that

1⊗ η = (1⊗ µ)(1⊗ S ⊗ 1)δ3.

From the definition of µ and δ, we require commutativity of the exterior of the following
diagram (where, again, we have dropped the symbol “⊗”):

U(A)∗ UA U(A)∗ UA U(A)∗ UA

U(A)∗ UA U(A)∗ UA

U(A)∗ UA

U(A)∗ UA k

U(A)∗ UA U(A∗)∗ U(A∗) U(A)∗ UA

U(A)∗ UA U(A)∗∗ U(A)∗ U(A)∗ UA

U(A)∗ UA U(A)∗∗ U(A)∗ U(A)∗ UA

U(A)∗ UA U(A∗)∗ U(A∗) U(A)∗ UA

∼=
��

U(A)∗ UA (U(A∗) UA)∗ U(A∗) UA

∼=
��

U(A)∗ UA U(A∗ A)∗ U(A∗ A)

1 1 i∗ r
��

U(A)∗ UA

∫ B

U(B)∗ UB

1 1 copr

��

U(A)∗ UA UA U(A)∗ U(A)∗ UA

1 1 n 1 1

66mmmmmmmmmmmmm

U(A)∗ UA UA U(A)∗ U(A)∗ UA

1 1 1 c 1

OO

1 1 c 1 1
hhQQQQQQQQQQQQQ

1 n 1 1 1

OO

1 n 1

OO

∼=

OO

1 1 SA 1 1 //

dimUI·(dimUA)−1·(1 1 e∗ 1 1)
//

1 1 η //

1 1 u∗ u−1 1 1

OO

1 1 1 c 1

OO
(1)

(2)

(3)
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The region labelled by (1) commutes on composition with 1⊗ n⊗ 1 since

k UA⊗ U(A)∗n //

UA⊗ UA⊗ U(A)∗ ⊗ U(A)∗

1⊗n⊗1

��

UA⊗ UA⊗ U(A)∗ ⊗ U(A)∗

1⊗1⊗c
��

UA⊗ U(A)∗ ⊗ UA⊗ U(A)∗

1⊗c⊗1

��
UA⊗ U(A)∗

n

��
n⊗1⊗1 //

commutes (choose a basis for UA). The region labelled by (2) now commutes by inspection
of

UA⊗ U(A)∗

UA⊗ UA⊗ U(A)∗ ⊗ U(A)∗

1⊗n⊗1

OO

UA⊗ UA⊗ U(A)∗ ⊗ U(A)∗

1⊗1⊗c

OO

UA⊗ U(A)∗ ⊗ UA⊗ U(A)∗

1⊗c⊗1

OO

UA⊗ U(A)∗∗ ⊗ U(A)∗ ⊗ U(A)∗.
1⊗e∗⊗1 //

UA⊗ U(A)∗∗ ⊗ U(A)∗ ⊗ U(A)∗

1⊗1⊗c

OO

UA⊗ U(A)∗ ⊗ U(A)∗∗ ⊗ U(A)∗

1⊗c⊗1

OO

UA⊗ U(A∗)⊗ U(A∗)∗ ⊗ U(A)∗
OO

UA⊗ U(A∗)∗ ⊗ U(A∗)⊗ U(A)∗
OO

1⊗u−1⊗u∗⊗1

OO

1⊗c⊗1

OO
1⊗σA⊗1 //

1⊗1⊗ρ⊗1
QQQQQQQQQQQQQQQQQQQQ

((QQQQQQQQQQQQQQQQQQQQ

1⊗ρ⊗1⊗1
VVVVVVVVVVVVVVVV

**VVVVVVVVVVVVVVVV

From the definition of the U -trace d(A) of A ∈ A , we have that

k k
dimUI·(dimUA)−1

//

UI

r0

��
UI

r0

��

U(d(A)−1)
//
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commutes, so that the exterior of

k

k

dimUI·(dimUA)−1

OO

UA⊗ U(A)∗

n

OO

UA⊗ U(A)∗

1⊗u−1 ::ttttttt
U(A⊗ A∗)

r

$$JJJJJJJ

UI
r0 //

UI

U(d(A)−1)

OO

Un

OO

r0
//

(n,r,r0)

commutes.
Finally, the region labelled by (3) commutes on examination of the following diagram

k∗ ⊗ k

k∗ ⊗ UA⊗ U(A)∗

k∗ ⊗ U(A)∗ ⊗ UA

(U(A)∗ ⊗ UA)∗ ⊗ U(A)∗ ⊗ UA

(U(A∗)⊗ UA)∗ ⊗ U(A∗)⊗ UA

U(A∗ ⊗ A)∗ ⊗ U(A∗ ⊗ A)

∫ B

U(B)∗ ⊗ UB

k∗ ⊗ U(A∗)⊗ UA
1⊗u−1⊗1

OOO

''OOO

U(I)∗ ⊗ U(A∗ ⊗ A)

i∗0⊗r
OOO

''OOO

U(e)∗⊗1

++WWWWWWWWWWWWWWW

k∗ ⊗ UA⊗ U(A∗)

1⊗1⊗u−1
OOO

''OOO

U(I)∗ ⊗ U(A⊗ A∗)
i∗0⊗r

OOO

''OOO

U(I)∗ ⊗ UI

U(I)∗ ⊗ UIU(I)∗ ⊗ UI

1

::ttttttttttttttt

copr
��?????????

i∗0⊗r0
//

copr
//

1⊗dimUI·(dimUA)−1·n

OO

1⊗c

OO

e∗⊗1⊗1
44iiiiiiiiiiiiiiiiii

(u⊗1)∗⊗(u−1⊗1)

**UUUUUUUUUUUUUUUUUU

i∗⊗r

��

copr

��

1⊗c

OO

1⊗Uc

OO

1⊗Ue

��1
111111111111111111111111111111

1⊗U(d(A)−1)

OO

1⊗Un

OO

(n,r,r0)

(∗)

(e,i,i0)

whose commutativity depends on the hypothesis that (U, r, r0) is braided monoidal in
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order for
UA⊗ U(A∗) U(A∗)⊗ UAc //

U(A∗ ⊗ A)

r

��
U(A⊗ A∗)

r

��

Uc
//

(∗)

to commute.

4. The fusion operator

The unital von Neumann axiom on End∨U implies that the fusion operator

f = (1⊗ µ)(δ ⊗ 1) : End∨U ⊗ End∨U → End∨U ⊗ End∨U

has a left inverse, namely g = (1⊗µ)(1⊗S⊗1)(δ⊗1). For this we consider the following
diagram.

End∨U ⊗ End∨U (End∨U)⊗3 End∨U ⊗ End∨U

(End∨U)⊗3

End∨U ⊗ End∨U

(End∨U)⊗4

(End∨U)⊗4

(End∨U)⊗3

(End∨U)⊗3

δ⊗1 //

1⊗η⊗1

��

δ3⊗1
((QQQQQQQQQQQQQQQQQQQ

1

��

1⊗µ //

1⊗δ⊗1

��

δ⊗1⊗1

��

δ⊗1

��
1⊗1⊗µ //

1⊗S⊗1⊗1

��
1⊗S⊗1

��

1⊗µ

��

1⊗µ⊗1oo

1⊗1⊗µ

((QQQQQQQQQQQQQQQQQQQ

1⊗µoo

In particular f = (1⊗ µ)(δ ⊗ 1) is a partial isomorphism, i.e., fgf = f and gfg = g.

5. Examples of separable monoidal functors in the present context

Unless otherwise indicated, categories, functors, and natural transformations shall be
k-linear, for k a field of characteristic 0.

For these examples we recall that a (small) k-linear promonoidal category (A , p, j)
(previously called “premonoidal” in [2]) consists of a k-linear category A and two k-linear
functors

p : A op ⊗A op ⊗A → Vect

j : A → Vect
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equipped with associativity and unit constraints satisfying axioms (as described in [2])
analogous to those used to define a monoidal structure on A . The notion of a symmetric
promonoidal category (also introduced in [2]) was extended in [4] to that of a braided
promonoidal category.

The main point is that (braided) promonoidal structures on A correspond to cocon-
tinuous (braided) monoidal structures on the functor category [A ,Vect]. This latter
monoidal structure is often called the convolution product of A and Vect and is given
explicity by the coend formula

(f ∗ g)(c) =

∫ a,b

p(a, b, c)⊗ fa⊗ gb

in Vect. The unit of this convolution product is given by j.

5.1. Example. Let (A , p, j) be a small braided promonoidal category with

A (I, I) ∼= k where j = A (I,−),

and suppose that each hom-space A (a, b) is finite dimensional. Let f : A → Vectf be a
very weak bialgebra in the convolution [A ,Vect] so that we have maps

µ : f ∗ f → f and η : j → f

and
δ : f → f ∗ f and ε : f → j,

satisfying associativity and unital axioms, plus the very weak bialgebra axiom. Suppose
also that A ⊂ C where C is a separable braided monoidal category, with

p(a, b, c) ∼= C (a⊗ b, c) and j(a) ∼= C (I, a)

naturally, and suppose the induced maps∫ c∈A

p(a, b, c)⊗ C (c, C)→ C (a⊗ b, C)

are isomorphisms (e.g., A monoidal). We also suppose that each a ∈ A has a dual
a∗ ∈ A .

Define a functor U : C → Vect by

UC =

∫ a∈A

fa⊗ C (a, C);

then, by the Yoneda lemma, U(a∗) ∼= U(a)∗ if f(a∗) ∼= f(a)∗ for a ∈ A . Furthermore, by
the Yoneda lemma,

UI =

∫ a∈A

fa⊗ C (a, I) ∼= fI
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so that, by our assumption A (I, I) ∼= k the maps η and ε induce respectively maps

r0 : k → UI and i0 : UI → k.

Maps r and i are described in the following diagram.

UC ⊗ UD
∫ a,b

fa⊗ fb⊗ C (a, C)⊗ C (b,D)
∼= //

∫ a,b

fa⊗ fb⊗ C (a⊗ b, C ⊗D)

∫ a,b

fa⊗ fb⊗
∫ c

p(a, b, c)⊗ C (c, C ⊗D)

∫ c

fc⊗ C (c, C ⊗D)U(C ⊗D) 1oo

r

��

i

OO

��
C separable

OO

∼=
��

µ

��
δ

OO

These then produce a braided monoidal and comonoidal structure on U . Moreover, we
have i0r0 = dimUI · 1 if and only if εIηI = dim fI · 1, and if f is a separable very weak
bialgebra, then U is separable since ri = 1 if µδ = 1.

Therefore, Theorem 3.1 may be applied when A and U satisfy the “U -irreducibility”
and “U -trace” criteria.

5.2. Example. Suppose that (A op, p, j) is a small braided promonoidal category with
I ∈ A such that j ∼= A (−, I) and with each x ∈ A an “atom” in C (i.e., an object
x ∈ C for which C (x,−) preserves all colimits) where C is a cocomplete and cocontinuous
braided monoidal category containing A and each x ∈ A has a dual x∗ ∈ A . Suppose
that the inclusion A ⊂ C is dense over Vect (that is, the canonical evaluation morphism∫ a

C (a, C) · a→ C

is an isomorphism for all C ∈ C ), and

x⊗ y ∼=
∫ z

p(x, y, z) · z (naturally in x, y ∈ A )

so that

C (a, x⊗ y) = C (a,

∫ z

p(x, y, z) · z)

∼=
∫ z

p(x, y, z)⊗ C (a, z) since a ∈ A is an atom in C ,

∼= p(x, y, a) by the Yoneda lemma applied to z ∈ A .
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Let W : A → Vect be a strong braided promonoidal functor on A . This means that
we have structure isomorphisms

Wx⊗Wy ∼=
∫ z

C (z, x⊗ y)⊗Wz and

k ∼= WI

satisfying suitable associativity and unital coherence axioms. Define a functor U : C →
Vect by

UC =

∫ a

C (a, C)⊗Wa.

Then, if we suppose that W (x∗) ∼= W (x)∗ for all x ∈ A , we have

U(x∗) =

∫ a

C (a, x∗)⊗Wa

∼= W (x∗)
∼= W (x)∗

∼=
(∫ a

C (a, x)⊗Wa
)∗

= U(x)∗,

so that U(x∗) ∼= U(x)∗, and

i0 : UI =

∫ a

C (a, I)⊗Wa

∼= WI
∼= k,

so that i0r0 = 1 and r0i0 = 1. Also there are mutually inverse composite maps r and i
given by:

r : UC ⊗ UD ∼=
∫ x,y

C (x,C)⊗ C (y,D)⊗ Ux⊗ Uy

∼=
∫ x,y

C (x,C)⊗ C (y,D)⊗Wx⊗Wy

∼=
∫ x,y

C (x,C)⊗ C (y,D)⊗
∫ z

C (z, x⊗ y)⊗Wz

∼=
∫ z

C (z, C ⊗D)⊗Wz

∼= U(C ⊗D),

which uses the assumptions that C is cocontinuous monoidal and A ⊂ C is dense. Thus,
ri = 1 and ir = 1 so that U is a braided strong monoidal functor.
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5.3. Example. (See [6] Proposition 3.) Let C be a braided compact monoidal category
and let A ⊂ C be a full finite discrete Cauchy generator of C which contains I and is
closed under dualization in C . As in the Häring-Oldenburg case [6], we suppose that each
hom-space C (C,D) is finite dimensional with a chosen natural isomorphism C (C∗, D∗) ∼=
C (C,D)∗.

Then we have a separable monoidal functor

UC =
⊕
a,b∈A

C (a, C ⊗ b),

whose structure maps are given by the composites

UC ⊗ UD ∼=
⊕
a,b,c,d

C (c, C ⊗ b)⊗ C (a,D ⊗ d)

c=d //
adjoint
oo

⊕
a,b,c

C (c, C ⊗ b)⊗ C (a,D ⊗ c)

∼=
⊕
a,b

C (a,D ⊗ (C ⊗ b))

∼=
⊕
a,b

C (a, (D ⊗ C)⊗ b)

∼=
⊕
a,b

C (a, (C ⊗D)⊗ b)

= U(C ⊗D),

and r0 : k → UI the diagonal, with i0 its adjoint. Moreover

U(C∗) =
⊕
a,b

C (a, C∗ ⊗ b)

∼=
⊕
a,b

C (a∗, C∗ ⊗ b∗)

∼=
⊕
a,b

C (a, C ⊗ b)∗

∼= UC∗

for all C ∈ C .

5.4. Example. Let (A , p, j) be a finite braided promonoidal category over Setf with
I ∈ A such that j ∼= A (I,−) and with a braided promonoidal functor

d : A op → Setf

for which each structure map

u :

∫ z

p(x, y, z)× dz → dx× dy
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is an injection, and u0 : dI → 1 is a surjection. Then we have corresponding maps∫ z

k[p(x, y, z)]⊗ k[dz] // //
oooo k[dx]⊗ k[dy]

and
k[dI] // //

oooo k[1],

where k[s] denotes the free k-vector space on the (finite) set s, in Vectf . Define the
functor U : C → Vectf by

Uf =

∫ x

fx⊗ k[dx]

for f ∈ C = [k∗A ,Vectf ], with the convolution braided monoidal closed structure, where
k∗A is the free k-linear category on A so that

r : Uf ⊗ Ug =

(∫ x

fx⊗ k[dx]

)
⊗
(∫ y

gx⊗ k[dy]

)
∼=
∫ x,y

fx⊗ gy ⊗ (k[dx]⊗ k[dy])

�
∫ x,y

fx⊗ gy ⊗
(∫ z

k[p(x, y, z)]⊗ k[dz]

)
∼=
∫ z (∫ x,y

fx⊗ gy ⊗ k[p(x, y, z)]

)
⊗ k[dz]

=

∫ z

(f ⊗ g)(z)⊗ k[dz]

=

∫ z

U(f ⊗ g)

and

i0 : UI =

∫ x

k[A (I, x)]⊗ k[dx]

∼= k[dI]

� k[1] ∼= k.

Hence i0r0 = dimUI ·1 = |dI| ·1. Thus, U becomes a braided separable monoidal functor.

5.5. Example. Let A be a finite (discrete) set and give the cartesian product A ×A
the Setf -promonoidal structure corresponding to bimodule composition (i.e., to matrix
multiplication). If

d : A ×A → Setf
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is a braided promonoidal functor, then its associated structure maps∑
z,z′

p((x, x′), (y, y′), (z, z′))× d(z, z′) =
∑
z,z′

A (z, x)×A (x′, y)×A (y′, z′)× d(z, z′)

∼= A (x′, y)× d(x, y′)

→ d(x, x′)× d(y, y′),

and ∑
z,z′

j(z, z′)× d(z, z′) =
∑
z,z′

A (z, z′)× d(z, z′)

∼=
∑
z

d(z, z)

→ 1,

are determined by components

d(x, y′) � d(x, y)× d(y, y′)

d(z, z) � 1

which give A the structure of a discrete cocategory over Setf .
Define the functor U : C = [k∗(A ×A ),Vectf ]→ Vectf by

Uf =
⊕
x,y

(f(x, y)⊗ k[d(x, y)]).

Then we obtain monoidal and comonoidal structure maps

U(f ⊗ g)
i
//

roo Uf ⊗ Ug

UI
i0
//

r0oo k ∼= k[1]

from the canonical maps⊕
x,y,z

f(x, z)⊗ g(z, y)⊗ k[d(x, y)]

z=u=v
//

adjointoo
⊕
x,u

(
f(x, u)⊗ k[d(x, u)]

)
⊗
⊕
v,y

(
g(v, y)⊗ k[d(v, y)]

)
and ⊕

z

k[d(z, z)] � k ∼= k[1].

These give U the structure of a separable braided monoidal functor on C .
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6. Concluding remarks

If the original “fibre” functor U is faithful and exact then the Tannaka equivalence (du-
ality)

Lex(C op,Vect) ' Comod(End∨U)

is available, where Lex(C op,Vect) is the category of k-linear left exact functors from C op

to Vect. (See [3] for example.) Thus, since C is braided monoidal, so is Comod(End∨U)
with the tensor product and unit induced by the convolution product on Lex(C op,Vect);
for convenience we recall [3] that, for C compact, this convolution product is given by the
restriction to Lex(C op,Vect) of the coend

F ∗G =

∫ C,D

FC ⊗GD ⊗ C (−, C ⊗D)

∼=
∫ C

FC ⊗G(C∗ ⊗−)

computed in the whole functor category [C op,Vect]. Moreover, when U is separable
monoidal, the category Co(End∨U) of cofree coactions of End∨U (as constructed in [7]
for example) also has a monoidal structure (Co(End∨U),⊗, k), this time obtained from
the algebra structure of End∨U . The forgetful inclusion

Comod(End∨U) ⊂ Co(End∨U)

preserves colimits while Comod(End∨U) has a small generator, namely {UC | C ∈ C },
and thus, from the special adjoint functor theorem, this inclusion has a right adjoint.
The value of the adjunction’s counit at the functor F ⊗G in Co(End∨U) is then a split
monomorphism and, in particular, the monoidal forgetful functor

Comod(End∨U)→ Vect,

which is the composite Comod(End∨U) ⊂ Co(End∨U) → Vect, is a separable braided
monoidal functor extension of the given functor U : C → Vect.
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