
Theory and Applications of Categories, Vol. 23, No. 10, 2010, pp. 199–220.

A METRIC TANGENTIAL CALCULUS

We dedicate this article to Dominique Bourn.

ELISABETH BURRONI AND JACQUES PENON

Abstract. The metric jets, introduced here, generalize the jets (at order one) of
Charles Ehresmann. In short, for a “good” map f (said to be “tangentiable” at a)
between metric spaces, we define its metric jet tangent at a (composed of all the maps
which are locally lipschitzian at a and tangent to f at a) called the “tangential” of f
at a, and denoted Tfa. So, in this metric context, we define a “new differentiability”
(called “tangentiability”) which extends the classical differentiability (while preserving
most of its properties) to new maps, traditionally pathologic.

Introduction

First, let us mention that most of the proofs concerning the statements given here can be
found in the first chapter of a paper published in arXiv (see [4]).

This paper contains a reference to two previous talks (see [2] and [3]). Our aim being a
deep thought inside the fundamentals of differential calculus. Focussing on what is at the
heart of the notion of differential, it is the concept of “tangency” which imposed itself in
its great simplicity. Now, amazingly, this concept of tangency can be formulated without
resorting to the whole traditional structure of normed vector space (here on R), which
will be denoted n.v.s.: see Section 1. It is thus the more general structure of metric space
in which we work from now on, asking if it is possible to construct a meaningful “metric
differential calculus”. We will see that this aim has been essentially reached, even if, on
the way, it required the help of an additional structure (the “transmetric” structure).

The first challenge was in the very formulation of a “differential” in a metric context:
what can we replace the continuous affine maps with, though they are essential to the
definition of the classical differentials? Jets (that we call metric jets in order to emphasize
that the metric structure is enough to define them) will play the part of these continuous
affine maps, willingly forgetting their algebraic feature. So, we introduce a “new differ-
ential” for a map f which admits a tangent at a which is locally lipschitzian at a (such a
map being said to be “tangentiable” at a): it is a metric jet, tangent to f at a, called the
“tangential” of f at a, and denoted Tfa.

As is well known, jets were first introduced by C.Ehresmann in 1951 [5], in order to
adapt Taylor’s expansions to differential geometry; more precisely, his infinitesimal jets
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(at order one) can be seen as equivalence classes of maps of class C1 between differentiable
manifolds, under an equivalence relation of tangency. The metric jets we are proposing
here are more general (being also equivalence classes of locally lipschitzian maps between
metric spaces, under an analogous equivalence relation of tangency).

In analogy with the distance between two continuous affine maps, we will construct a
metric to evaluate the distance between two metric jets: fixing a pair of points (a and a′,
respectively in the metric spaces M and M ′), the set Jet((M,a), (M ′, a′)) of the metric
jets from (M,a) to (M ′, a′) can, itself, be equipped with a metric structure!

Noticing that our distance between metric jets does not fit to speak of the distance
between the tangentials of one map at two different points (these tangentials being metric
jets which are tangent to this map at different points), we add a geometrical structure
to our metric spaces, inspired by the translations of the usual vector space framework.
These particular metric spaces are called “transmetric”. In their frame, we introduce the
notion of “free metric jets” (invariant by given “translation jets”). Now, if M and M ′ are
such transmetric spaces, the set Jet

free
(M,M ′) of the free metric jets from M to M ′ can

be equipped with a metric structure.
Among these free metric jets, we find the free metric jets of the form tfa “associated” to

the tangential Tfa for an f supposed to be tangentiable at a. Finally, when f : M −→M ′

is a tangentiable map (i.e. tangentiable at every point of M), we construct its tangential
tf : M −→ Jet

free
(M,M ′), whose domain and codomain are here metric spaces (since M

and M ′ are transmetric spaces). We thus obtain a new map on which we can apply the
different techniques of the new theory, as, for instance, to study the continuity or the
tangentiability of this tangential tf .

For general definitions in category theory (for instance cartesian or enriched cate-
gories), see [1].
Acknowledgements: It is a talk about Ehresmann’s jets, given by Francis Borceux at the
conference organised in Amiens in 2002 in honour of Andrée and Charles Ehresmann
which has initiated our work. Since at that epoch we where interested, in our teaching, in
what could be described uniquely with metric tools . . . hence the idea of the metric jets!

We wish to thank Christian Leruste for his constant help with linguistical matters.
We don’t forget our “brother in category” René Guitart: his opening to listening, his
interest in our work and his encouragements have been a precious stimulating help.

1. The relation of tangency

The relation of tangency, which is at the heart of the differential calculus, is an essentially
metric notion, since it can merely be written: lima6=x→a

d(f(x),g(x))
d(x,a)

= 0 for two maps

f, g : M −→ M ′. However, this definition uses the term “lima6=x→a” which makes sense
solely for a point a, not isolated in M ; this lead to a more general definition.

Furthermore, to make this relation of tangency compatible with the composition, we
have to restrict the type of maps on which we will work. Then we will be able to define
the concepts of metric jets and of tangentials.
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The right definition of the notion of tangency will arise from the following equivalences,
where M and M ′ are two metric spaces, a a fixed point in M and f, g : M −→ M ′ two
maps (a priori without any hypothesis).

1.1. Proposition. The following properties are equivalent :

(i) ∀ε > 0 ∃η > 0 ∀x ∈M (d(x, a) ≤ η =⇒ d(f(x), g(x)) ≤ εd(x, a)),

(ii) f(a) = g(a) and the map C : M −→ R+ defined by

C(a) = 0 and C(x) =
d(f(x), g(x))

d(x, a)
∀x 6= a

is continuous at a,

(iii) there exists a map c : M −→ R+ which is continuous at a and which verifies:
c(a) = 0 and ∀x ∈M (d(f(x), g(x)) = c(x)d(x, a)),

(iv) there exist a neighborhood V of a in M and a map c : V −→ R+ which is continuous
at a and which verifies: c(a) = 0 and ∀x ∈ V (d(f(x), g(x)) ≤ c(x)d(x, a)).

1.2. Definition. We say that f and g are tangent at a (which is denoted by f �≺a g)
if they verify anyone of the equivalent conditions of the above 1.1.

1.3. Remarks.

1. When a is not an isolated point in M (i.e a ∈ M − {a}), we have: f �≺a g iff

(f(a) = g(a) and lima6=x→a
d(f(x),g(x))

d(x,a)
= 0).

2. When a is an isolated point in M , we have f �≺a g for any
f and g verifying f(a) = g(a).

3. The relation �≺a is an equivalence relation on the set of maps from M to M ′ ; this
relation �≺a is called the relation of tangency at the point a.

4. If f �≺a g, then f is continuous at a iff g is continuous at a.

To study the behaviour of the relation of tangency towards composition, we consider
the following situation (S) :

M0
f0 // M1

f1 //

g1
// M2

f2 // M3

where M0, M1, M2, M3 are metric spaces with ao ∈M0, a1 = f0(a0), a2 = f1(a1) = g1(a1).
Under what conditions do we have one of the implications :

f1 �≺a1 g1 =⇒ f1.f0 �≺a0 g1.f0 and f1 �≺a1 g1 =⇒ f2.f1 �≺a1 f2.g1.
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1.4. Remark. The above implications are not true in general, even if the maps are
continuous. Consider

M0 = M1 = M2 = M3 = R

with
f0 = f2 : x 7→ x1/3 , f1 : x 7→ x3 and g1 : x 7→ 0

Even though f1 �≺0 g1, however f1.f0 6�≺0 g1.f0 and f2.f1 6�≺0 f2.g1

In order to give sufficient conditions to make the above implications true (see 1.6
below), we need the following definition:.

1.5. Definition. Let M and M ′ be metric spaces, f : M −→ M ′ a map, and a ∈ M ;
let also k be a strictly positive real number. We say that :

1. f is locally k-lipschitzian at a (in short k-LLa) if there exists a neighborhood V of a
in M for which the restriction f : V −→M ′ is k-lipschitzian. f locally lipschitzian
at a (in short LLa) means that there exists k > 0 such that f is k-LLa.

2. f is k-semi-lipschitzian at a (in short k-SLa) if we have: ∀x ∈M (d(f(x), f(a)) ≤
kd(x, a))). f semi-lipschitzian at a (in short SLa) means that there exists k > 0
such that f is k-SLa.

3. f is locally k-semi-lipschitzian at a (in short k-LSLa) if, on a neighborhood V of
a in M , the restriction f : V −→ M ′ is k-SLa. f locally semi-lipschitzian at a (in
short LSLa) means that there exists k > 0 such that f is k-LSLa.

Naturally, f is LL or LSL will mean that f is LLa or LSLa at every point a ∈M .

1.6. Remarks. Let M and M ′ be metric spaces, f : M −→M ′ a map, and a ∈M .

1. We have the implications: f LLa =⇒ f LSLa and f LSLa =⇒ f continuous
at a. The inverses of these implications are not true (see Section 3).

2. In the above situation (S), let us assume that f1 �≺a1 g1 ; we then have the two
following implications :

(a) f0 LSLa0 =⇒ f1.f0 �≺a0 g1.f0,

(b) f2 LLa2 and f1, g1 continuous at a1 =⇒ f2.f1 �≺a1 f2.g1.

3. Let g : M −→ M ′ such that f �≺a g ; we then have (still by 1.1) the equivalence:
f LSLa ⇐⇒ g LSLa.

4. Let E,E ′ be two n.v.s., U an open subset of E, a ∈ U and f : U −→ E ′ a map; let
us denote L(E,E ′) the set of continuous linear maps from E to E ′. We have the
implications :

(a) f differentiable at a =⇒ f LSLa,
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(b) f differentiable and df :U−→L(E,E ′) continuous at a =⇒ f LLa (in partic-
ular, f of class C1 =⇒ f LL).

The inverses of these implications are not true (see Section 3).

5. Let M0,M1,M2 be metric spaces ; f0 : M0 −→ M1, f1 : M1 −→ M2 two maps, and
a0 ∈M0, a1 = f0(a0). We have the implications:

(a) f0 LSLa0 and f1 LSLa1 =⇒ f1.f0 LSLa0 .

(b) f0 LLa0 and f1 LLa1 =⇒ f1.f0 LLa0 .

6. Let M0,M1,M2 be metric spaces, a0 ∈ M0; and also maps f0, g0 : M0 −→ M1,
f1, g1 : M1 −→ M2, with a1 = f0(a0) = g0(a0). We assume that f0 �≺a0 g0 and
f1 �≺a1 g1 where g0 is LLa0 and g1 is LLa1 ; then f1.f0 �≺a0 g1.g0.
We could have weakened the hypothesis : g0 LSLa0 would have been enough.

7. Let M,M0,M1 be metric spaces, a ∈ M ; and also maps f0, g0 : M −→ M0 and
f1, g1 : M −→M1. We have the implication:

f0 �≺a g0 and f1 �≺a g1 =⇒ (f0, f1) �≺a (g0, g1)

8. Let M,M0,M1 be metric spaces, a ∈ M ; and also maps f0 : M −→ M0 and
f1 : M −→M1. Then:

(a) f0, f1 LSLa =⇒ (f0, f1) LSLa,

(b) f0, f1 LLa =⇒ (f0, f1) LLa.

This implies that the categories whose objects are metric spaces and whose morphisms
are maps which are LSL (resp. LL) at a point, are cartesian categories.

We conclude this section by giving a metric generalization of the mean value theorem
(weakening the hypothesis of being differentiable by the one of being LSL).

1.7. Proposition. Let M be a metric space, [a, b] a compact interval of R, k > 0 a
fixed real number and f : [a, b] −→M a continuous map which is k-LSLx for all x in the
open interval ]a, b[. Then we have d(f(b), f(a)) ≤ k(b− a).

For the proof, we use the following well-known lemma :

1.8. Lemma. Let g : [a, b] −→ R be a continuous map and k a real number such that
the following property is true:

∀x ∈ ]a, b[ ∃x′ ∈ ]a, b] (x′ > x and g(x′)− g(x) ≤ k(x′ − x)).

Then we have g(b)− g(a) ≤ k(b− a).
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1.9. Corollary.

1. Let M be a metric space, [a, b] a compact interval of R, F a finite subset of ]a, b[; let
also f : [a, b] −→M be a continuous map. Let us assume that, for all x ∈ ]a, b[−F ,
the map f is k-LSLx ; then d(f(b), f(a)) ≤ k(b− a).

2. Let E be a n.v.s., U an open subset of E, a, b ∈ U such that [a, b] ⊂ U and F a
finite subset of ]a, b[; let also M be a metric space and f : U −→ M a continuous
map. Let us assume that, for all x ∈ ]a, b[−F , the map f is k-LSLx ; then, we have
again: d(f(b), f(a)) ≤ k‖b− a‖.

2. Metric jets

The metric jets (in short, the jets), which are merely equivalence classes for the relation
of tangency, will play the part of the continuous affine maps of the classical differential
calculus (but here, without any algebraic properties); it seems natural to equip the set of
jets with a metric structure. Thanks to this metric structure, we will enrich the category
of jets, between pointed metric spaces, in the category Met (a well chosen category of
metric spaces).

M and M ′ being metric spaces, with a ∈M, a′ ∈M ′, let us denote

LL((M,a), (M ′, a′))

the set of maps f : M −→ M ′ which are LLa and which verify f(a) = a′. These sets
LL((M,a), (M ′, a′)) are the “Hom” of a category, denoted LL, whose objects are pointed
metric spaces; this category LL is a cartesian category (i.e. it has a final object and finite
products). Now, since �≺a is an equivalence relation on LL((M,a), (M ′, a′)), we set

Jet((M,a), (M ′, a′)) = LL((M,a), (M ′, a′))/ �≺a

2.1. Definition. An element of Jet((M,a), (M ′, a′)) is called a jet from (M,a) to
(M ′, a′).

Let q : LL((M,a), (M ′, a′)) −→ Jet((M,a), (M ′, a′)) be the canonical surjection. Re-
ferring to Section 1, we can compose the jets: q(g.f) = q(g).q(f) when g and f are
composable. So, we construct a category, denoted Jet, called the category of jets, whose:

- objects are pointed metric spaces (M,a),
- morphisms ϕ : (M,a) −→ (M ′, a′) are jets (i.e. elements of Jet((M,a), (M ′, a′))).
The previous canonical surjections extend to a functor

q : LL −→ Jet

(constant on the objects) which makes Jet a quotient category of LL.

2.2. Proposition. The functor q : LL−→ Jet creates a cartesian structure on the
category Jet (q being constant on the objects, it means that Jet is cartesian and q a strict
morphism of cartesian categories).



A METRIC TANGENTIAL CALCULUS 205

2.3. Remarks.

1. Let ϕ : (M,a) −→ (M ′, a′) be a morphism in Jet and f ∈ ϕ. If f is locally “anti-
lipschitzian” at a (i.e if there exist k > 0 and a neighborhood V of a on which we
have d(f(x), f(y)) ≥ kd(x, y)), then ϕ is a monomorphism in Jet. The jet of an
isometric embedding is thus a monomorphism (in particular, in the case of a metric
subspace).

2. Let M be a metric space, V a neighborhood of a ∈ M . Let us set ja = q(j) :
(V, a) −→ (M,a) where j : V ↪→ M is the canonical injection. Then, the jet ja is
an isomorphism in Jet.

Time has now come to equip the category Jet((M,a), (M ′, a′)) with a metric structure
(where (M,a), (M ′, a′) ∈ |Jet|).

First, we define d(f, g) for f, g ∈ LL((M,a), (M ′, a′)); for such f, g, we consider the

map C : M −→ R+ defined by C(x) = d(f(x),g(x))
d(x,a)

if x 6= a and C(a) = 0. We notice
that C is bounded on a neighborhood of a: indeed, since f and g are LLa, there exist
a neighborhood V of a and a real number k > 0 such that the restrictions f |V and g|V
are k-lipschitzian. Then, for x ∈ V , we have: d(f(x), g(x)) ≤ d(f(x), a′) + d(a′, g(x)) ≤
d(f(x), f(a)) + d(g(a), g(x)) ≤ 2kd(x, a), so that C(x) ≤ 2k for all x ∈ V .

Now, for each r > 0, we set dr(f, g) = sup{C(x) |x ∈ B′(a, r) ∩ V } (where B′(a, r) is
a closed ball; this definition does not depend on V for small r). The map r 7→ dr(f, g) is
increasing and positive, we can put: d(f, g) = limr→0 d

r(f, g) = infr>0 d
r(f, g).

2.4. Proposition. Let d : (LL((M,a), (M ′, a′)))2 −→ R+ be the map defined just above.

I. For each f, g, h ∈ LL((M,a), (M ′, a′)), the map d verifies the following properties:

1) d(f, g) = d(g, f),

2) d(f, h) ≤ d(f, g) + d(g, h),

3) d(f, g) = 0 ⇐⇒ f �≺a g.

II. The map d factors through the quotient, giving a “true” distance on the category
Jet((M,a), (M ′, a′)), defined by d(q(f), q(g)) = d(f, g) for f, g ∈ LL((M,a), (M ′, a′)).

Now, we need to establish some technical properties about what we call the lipschitzian
ratio of a jet (that we also need in Section 4).

2.5. Definition. For ϕ ∈ Jet((M,a), (M ′, a′)), we set

ρ(ϕ) = inf K(ϕ) , where K(ϕ) = {k > 0 | ∃f ∈ ϕ, f is k-LLa}

We call ρ(ϕ) the lipschitzian ratio of ϕ. Furthermore, we will say that ϕ is k-bounded if
ρ(ϕ) ≤ k.
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2.6. Proposition. (Properties of ρ)

1. Let (M0, a0), (M1, a1), (M2, a2) ∈ |Jet|; and also jets ϕ0 : (M0, a0) −→ (M1, a1),
ϕ1 : (M1, a1) −→ (M2, a2). Then, ρ(ϕ1.ϕ0) ≤ ρ(ϕ1)ρ(ϕ0).

2. For each ϕ ∈ Jet((M,a), (M ′, a′)), we have d(ϕ,Oaa′) ≤ ρ(ϕ) (where Oaa′ = q(â′),
and â′ : M −→M ′ is the constant map on a′).

2.7. Definition. We say that a jet ϕ is a good jet if the previous inequality given in
2.6.2 becomes an equality.

2.8. Examples. In all that follows (M,a), (M ′, a′), (Mi, ai) are objects of Jet, i.e pointed
metric spaces.

0. We have ρ(Oaa′) = 0.

1. For every jet ϕ : (M,a) −→ (M ′, a′), where a or a′ are isolated (respectively in M
or M ′), then ρ(ϕ) = 0.

2. If we denote πi : (M1, a1) × (M2, a2) −→ (Mi, ai) the canonical projections in Jet;
then d(πi, Oaai

) = ρ(πi) = 1 (where a = (a1, a2), with ai non isolated in Mi).

3. Let M,M ′ be metric spaces, f : M −→ M ′ an isometric embedding, a a non
isolated point in M and a′ = f(a); then d(q(f), Oaa′) = ρ(q(f)) = 1. Thus, a being
not isolated in M , Id(M,a), ja and j−1

a are good jets (see 2.3 for ja).

2.9. Remarks. Let (M,a), (M ′, a′) ∈ Jet.

1. Let us assume that there exists ϕ ∈ Jet((M,a), (M ′a′)) which is an isomorphism in
Jet. Then, a is isolated in M iff a′ is isolated in M ′.

2. (M,a) is a final object in Jet iff a is isolated in M .

3. Let (M,a), (M1, a1), (M2, a2) ∈ |Jet|; consider two jets ϕ1 : (M,a) −→ (M1, a1)
and ϕ2 : (M,a) −→ (M2, a2). Then ρ(ϕ1, ϕ2) = supi(ρ(ϕi)).

4. For each i ∈ {1, 2}, let (Mi, ai), (M
′
i , a
′
i) ∈ |Jet|, and ψi : (Mi, ai) −→ (M ′

i , a
′
i) be

two jets. Then ρ(ψ1 × ψ2) ≤ supi ρ(ψi).

2.10. Theorem. Let us consider the following diagram in Jet:

(M0, a0)
ϕ0 //

ψ0

// (M1, a1)
ϕ1 //

ψ1

// (M2, a2)

We then have the inequalities:

1. d(ψ1.ψ0, ϕ1.ϕ0) ≤ d(ψ1, ϕ1)d(ψ0, O) + ρ(ϕ1)d(ψ0, ϕ0) (where O = Oa0a1: see 2.6).

2. d(ψ1.ψ0, ϕ1.ϕ0) ≤ d(ψ1, ϕ1) + d(ψ0, ϕ0) if ψ0 and ϕ1 are 1-bounded (see 2.5).
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Proof : 1. Let i ∈ {0, 1}; and fi ∈ ϕi and gi ∈ ψi. Then, there exist ki, k
′
i > 0 and

Vi a neighborhood of ai in Mi such that the restrictions fi|Vi
and gi|Vi

are respectively
ki-lipschitzian and k′i-lipschitzian.

For all x near a, we have: d(g1.g0(x), f1.f0(x)) ≤ dk
′
0r(g1, f1)dr(g0, â1)d(x, a0) +

k1d
r(g0, f0)d(x, a0) (where â1 is the constant map on a1), which provides d(g1.g0, f1.f0) ≤

d(g1, f1)d(g0, â1) + k1d(g0, f0); hence the wanted inequality.
2. Clear. �

2.11. Remarks.

1. The sets of jets being equipped with their distance, the maps:

Jet((M0, a0), (M1, a1)) −→ J et((M0, a0), (M2, a2)) : ψ 7→ ϕ1.ψ

and

Jet((M1, a1), (M2, a2)) −→ J et((M0, a0), (M2, a2)) : ψ 7→ ψ.ϕ0

are respectively ρ(ϕ1)-lipschitzian and d(ϕ0, O)-lipschitzian (where ϕ0 and ϕ1 are
jets as in 2.10).

2. ψ0, ψ1, Obeing jets as in 2.10 (with O = Oa0a2 , Oa1a2 or Oa0a1), we have the inequal-
ity: d(ψ1.ψ0, O) ≤ d(ψ1, O)d(ψ0, O).

3. The inequalities obtained just above and in 2.6.1 are both generalisations of the
well-known inequality ‖l1.l0‖ ≤ ‖l1‖ ‖l0‖ for composable continuous linear maps
(see 2.16 below).

2.12. Corollary.

1. The composition of jets:

Jet((M0, a0),(M1, a1))×Jet ((M1, a1),(M2, a2)) −→comp Jet((M0, a0),(M2, a2)) is LSL.

2. The category Jet can thus be enriched in the cartesian category Met (whose objects
are the metric spaces and whose morphisms are the locally semi-lipschitzian maps).

3. Let M,M ′ be metric spaces, V, V ′ be two neighborhoods, respectively of a ∈ M and
a′ ∈M ′. Then, the map:

Γ : Jet((V, a), (V ′, a′)) −→ Jet((M,a), (M ′, a′)) : ϕ 7→ j′a′ .ϕ.j
−1
a

is an isometry (where ja and j′a′ have been defined in 2.3).

2.13. Proposition. (M,a), (M0, a0), (M1, a1) being objects in the category Jet, the fol-
lowing canonical map can is an isometry:

Jet((M,a), (M0, a0)× (M1, a1))

can

��
Jet((M,a), (M0, a0))× Jet((M,a), (M1, a1))
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2.14. Remark. As isometries are isomorphisms in Met, it means that Jet is an enriched
cartesian category.

We conclude this section with a come back to vectorial considerations.

2.15. Proposition.

1. Let M be a metric space (with a ∈M) and E a n.v.s. Then, we can canonically equip
the sets LL((M,a), (E, 0)) and Jet((M,a), (E, 0)) with vectorial space structures,
making linear the canonical surjection q : LL((M,a), (E, 0)) −→ Jet((M,a), (E, 0)).
Besides, the distance on Jet((M,a), (E, 0)) derives from a norm (providing a struc-
ture of n.v.s. on Jet((M,a), (E, 0))).

2. Let M,M ′ be metric spaces, a ∈ M , a′ ∈ M ′; let also ϕ ∈ Jet((M ′, a′), (M,a)) and
E a n.v.s. Then, the map ϕ̃ : Jet((M,a), (E, 0)) −→ Jet((M ′, a′), (E, 0)) : ψ 7→ ψ.ϕ
is linear and continuous.

3. E and E ′ being n.v.s., the canonical map : j : L(E,E ′) −→ Jet((E, 0), (E ′, 0)) :
l 7→ q(l) is a linear isometric embedding (L(E,E ′) being equipped with the norm
‖l‖ = sup‖x‖≤1 ‖l(x)‖).

2.16. Corollary. If l : E −→ E ′ is a continuous linear map, then q(l) is a good jet;
more precisely, we have the equalities: d(q(l), O) = ρ(q(l)) = ‖l‖. Here, we can replace
“linear” by “affine”.

3. Tangentiability

In this new context, the notion of tangentiability plays the part of the one of differ-
entiability, of which it keeps lots of properties. This section gives some examples and
counter-examples to understand and visualize this new notion.

3.1. Definition. Let f : M −→ M ′ be a map between metric spaces and a ∈ M . We
say that f is tangentiable at a (in short Tanga) if there exists a map g : M −→M ′ which
is LLa such that g �≺a f .

When f is Tanga, we set Tfa = {g : M −→ M ′ | g �≺a f ; g LLa}; Tfa is a jet
(M,a) −→ (M ′, f(a)), said tangent to f at a, and that we can call the tangential of f at
a (not to be mixed up with tfa, defined in a special context (see Section 5)).

3.2. Proposition. The inverses of the following implications are not true (see 3.7).

1. We have the implications: f LLa =⇒ f Tanga and f Tanga =⇒ f LSLa =⇒
continuous at a.

2. Let E,E ′ be n.v.s., U an open subset of E, a ∈ U and f : U −→ E ′ a map. We
have the implication: f differentiable at a =⇒ f tangentiable at a.
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3.3. Remarks.

1. f is LLa iff f is Tanga with f ∈ Tfa (then Tfa = q(f)); in particular, T(IdM)a =
q(IdM) = Id(M,a). Moreover, for every jet ϕ : (M,a) −→ (M ′, a′), we have ϕ = Tga
for every g ∈ ϕ.

2. Actually, f is differentiable at a iff f is Tanga where its tangential Tfa at a possesses
an affine map. For such a differential map, it is the unique affine map Afa defined
by Afa(x) = f(a) + dfa(x − a)(the translate at a of its differential dfa); thus
Tfa = q(Afa).

3.4. Proposition. (properties of the tangential)

1. Let M,M ′,M ′′ be metric spaces, f : M −→ M ′, g : M ′ −→ M ′′ two maps, and
a ∈ M , a′ = f(a). If f is Tanga and g is Tanga′, then g.f is Tanga and we have
T(g.f)a = Tga′ .Tfa.

2. Let M,M0,M1 be metric spaces, f0 : M −→ M0, f1 : M −→ M1 be two maps,
and a ∈ M . If f0 and f1 are tangentiable at a, then (f0, f1) : M −→ M0 ×M1 is
tangentiable at a and we have T(f0, f1)a = (Tf0a,Tf1a).

3. Let M0,M1,M
′
0,M

′
1 be four metric spaces, f0 : M0 −→ M ′

0 and f1 : M1 −→ M ′
1

two maps, and a0 ∈ M0, a1 ∈ M1. If f0 is Tanga0 and f1 Tanga1, then f0 × f1 :
M0×M1 −→M ′

0×M ′
1 is Tang(a0,a1) and we have T(f0× f1)(a0,a1) = Tf0a0 ×Tf1a1.

3.5. Examples and counter-examples. All the maps considered below are func-
tions R −→ R, where R is equipped with its usual structure of normed vector space
(these different functions give counter-examples to the inverses of the implications given
in 3.2).

1. Consider f0(x) = x1/3; this function is continuous but not LSL0.

2. Consider f1(x) = x sin 1
x

if x 6= 0 and f1(0) = 0; this function is obviously LSL0,
however not Tang0: indeed, if f1 was Tang0, there would exist a fonction g : R −→
R and a neighborhood V of 0 such that g �≺0 f1 and g|V is k-lipschitzian for a
k > 0. Let us consider the two sequences of reals defined by xn = 1/2nπ and

yn = 1/(4n + 1)π
2
; they verify limn |f1(xn)−g(xn)

xn
| = 0 = limn |f1(yn)−g(yn)

yn
|, so that

limn 2πng(xn) = 0 and limn(4n + 1)π
2
g(yn) = 1. Now, since g|V is k-lipschitzian,

we have |g(xn)−g(yn)
xn−yn

| ≤ k for n big enough, which is equivalent to |4n+1
n

(2nπg(xn))−
4((4n+ 1)π

2
g(yn))| ≤ k

n
. It remains to do n→ +∞ which leads to a contradiction.

3. Consider f2(x) = x2 sin 1
x2 if x 6= 0 and f2(0) = 0; this function is Tang0 (since it is

differentiable at 0); however not LL0 (because limk→+∞f
′
2( 1√

2kπ
) = −∞).

4. Consider ϑ(x) = |x|; this function is Tang0 (it is 1-lipschitzian!), however not dif-
ferentiable at 0.
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Let us now consider two metric spaces M,M ′, and two mapsf, g : M −→ M ′ which
are Tanga where a ∈M . As for general jets (see Section 2), we can speak of the distance
between the two jets Tfa, Tga. The question is: do we still have d(Tfa,Tga) = d(f, g)?,
provided that we can define d(f, g) for maps f and g which are only Tanga:

So, let M,M ′ be metric spaces, a ∈M , a′ ∈M ′ and f, g : M −→M ′ two maps which
are Tanga and which verify f(a) = g(a) = a′. Let us consider f1 ∈Tfa and g1 ∈Tga;
then f1 �≺a f and g1 �≺a g; so that there exists a neighborhood V of a on which we
have d(f1(x), f(x)) ≤ d(x, a) and d(g1(x), g(x)) ≤ d(x, a). Furthermore, since f1 and
g1 are LLa, we know that there exists also a neighborhood W of a on which the map
x 7→ d(f1(x),g1(x))

d(x,a)
, if x 6= a, is bounded (let us say by R). Now, if we take x ∈ V1 = V ∩W ,

x 6= a, we obtain: d(f(x),g(x))
d(x,a)

≤ d(f(x),f1(x))
d(x,a)

+ d(f1(x),g1(x))
d(x,a)

+ d(g1(x),g(x))
d(x,a)

≤ 2 + R. So,

the map C(x) = d(f(x),g(x))
d(x,a)

, if x 6= a and C(a) = 0, is still bounded on V1. Thus,

for r > 0, we can again set dr(f, g) = sup{C(x)|x ∈ V1 ∩ B′(a, r)} and finally again
d(f, g) = limr→0 d

r(f, g) = infr>0 d
r(f, g).

3.6. Proposition. If f, g : M −→M ′ are Tanga where a ∈M , we have d(Tfa,Tga) =
d(f, g), this d being defined just above.

4. Transmetric spaces

In order to define a tangential map tf : M −→ “Jet(M,M ′)” for a tangentiable map
f : M −→ M ′ (see Section 5), we need to define first such a set “Jet(M,M ′)” equipped
with an adequate distance. We have succeeded in it, assuming that M and M ′ are
transmetric spaces and introducing new jets called free metric jets (in opposition to the
metric jets we have used up to now) whose set will be denoted Jet

free
(M,M ′); this set

being a good candidate for our unknown “Jet(M,M ′)”.

4.1. Definition. A transmetric space is a metric space M , supposed to be non empty,
equipped with a functor γ : Gr(M) −→ Jet (where the category Jet has been defined at the
beginning of Section 2, and Gr(M) is the groupoid associated to the undiscrete equivalence
relation on M ; thus |Gr(M)| = M and Hom(a, b) = {(a, b)} for all a, b ∈M) verifying:

- for every a ∈M , γ(a) = (M,a),
- for every morphism (a, b) : a −→ b in Gr(M), the jet γ(a, b) : (M,a) −→ (M, b) is

1-bounded (i.e. verifies ρ(γ(a, b)) ≤ 1: see Section 2); thus invertible in Jet.

Before giving some examples, let us give the following special case:

4.2. Definition. A left isometric group is a metric space G equipped with a group
structure verifying the following condition: ∀g, g0, g1 ∈ G (d(g.g0, g.g1) = d(g0, g1)).

4.3. Remarks.

1. In an equivalent manner, in 4.2 we could assume only that d(g.g0, g.g1) ≤ d(g0, g1)
for all g, g0, g1 ∈ G.
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2. Let G be a left isometric group; then, for all g ∈ G, the map G −→ G : g′ 7→ g.g′ is
isometric.

4.4. Proposition. Every left isometric group G can be equipped with a canonical struc-
ture of transmetric space.

Proof : Here, γ is the composite Gr(G)
θ−→LL

q−→Jet, where θ is the functor defined
by θ(g) = (G, g) and θ(g0, g1) is the morphism (G, g0) −→ (G, g1) in LL which assignes
g1.g

−1
0 .g to g. �

4.5. Examples.

1. Here are examples of transmetric spaces which are even left isometric groups:

(a) Every n.v.s. is a left isometric (additive) group: here, γ(a, b) = q(θ(a, b)),
where θ(a, b) is the translation x 7→ b− a+ x.

(b) The multiplicative group S1 = {z ∈ C| |z| = 1} is also a left isometric group.

(c) E being an euclidian space, the orthogonal group O(E), equipped with its
operator norm, is a left isometric group.

(d) The additive subgroups of R (as, for example Q) are left isometric groups
whuch are not n.v.s.

2. Every non empty discrete space has a unique structure of transmetric space; con-
versely, if a transmetric space possesses an isolated point, it is a discrete space.

3. The 4.6 below will provide a lot of transmetric spaces which are not left isometric
groups.

4.6. Proposition.

1. Let M0 and M1 be transmetric spaces; then M0 ×M1 has a canonical stucture of
transmetric space.

2. Let M be a transmetric space and U 6= ∅, an open subset of M ; then, U has a
canonical structure of transmetric space.

Proof : 1. The functor γ : Gr(M0 ×M1) −→ Jet is defined by γ((a0, a1), (b0, b1)) =
γ0(a0, b0)× γ1(a1, b1), where γ0 and γ1 give the transmetric structures on M0 and M1.
2. The functor γ̆ : Gr(U) −→ Jet is defined by γ̆(a) = (U, a) and γ̆(a, b) = j−1

b .γ(a, b).ja :
(U, a) −→ (U, b). �
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4.7. Definition. Let M,M ′ be transmetric spaces; a map f : M −→ M ′ is called a
morphism of transmetric spaces if it is a tangentiable map (at every point of M) such
that, for every a, b ∈M , the following diagram commutes in the category Jet:

(M,a)

γ(a,b)

��

Tfa // (M ′, f(a))

γ(f(a),f(b))

��
(M, b)

Tfb

// (M ′, f(b))

We will denote Trans the category whose objects are the transmetric spaces and whose
morphisms are the morphisms of transmetric spaces.

4.8. Examples. (of such morphisms)

1. Every continuous affine map f : E −→ E ′ (between n.v.s.).

2. IdM : M −→M and the canonical injection j : U ↪→M , if U 6= ∅, is an open subset
of a transmetric space M .

3. Every constant map (on c ∈ M ′ ) ĉ : M −→ M ′ between transmetric spaces; it is
the case for the unique map !M : M −→ I (where M is a transmetric space and
I = {0}).

4. The canonical projections pi : M0 ×M1 −→Mi, where M0 and M1 are transmetric
spaces.

4.9. Proposition. The category Trans is a cartesian category, and the forgetful functor
Trans −→ Ens is a morphism of cartesian categories.

We are now ready to construct the set Jet
free

(M,M ′) of free metric jets, when M and
M ′ are transmetric spaces. First, we consider the set J(M,M ′) =∐

(a,a′)∈M×M ′ Jet((M,a), (M ′, a′)) on which we define the following equivalence relation:

(ϕ, a, a′) ∼ (ψ, b, b′) if the following diagram commutes in the category Jet:

(M,a)

γ(a,b)
��

ϕ // (M ′, a′)

γ(a′,b′)
��

(M, b)
ψ

// (M ′, b′)

Then, we set Jet
free

(M,M ′) = J(M,M ′)/ ∼ .
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4.10. Definition. The elements of Jet
free

(M,M ′) are called free metric jets (in short,
free jets, here from M to M ′).

If q : J(M,M ′) −→ Jet
free

(M,M ′) is the canonical surjection, we set [ϕ, a, a′] =
q(ϕ, a, a′) when (ϕ, a, a′) ∈ J(M,M ′).

We are going to canonically equip Jet
free

(M,M ′) with a structure of metric space. First,
for (ϕ, a, a′), (ψ, b, b′) ∈ J(M,M ′), we denote d((ϕ, a, a′), (ψ, b, b′)) the distance between
the jets γ(a′, b′).ϕ and ψ.γ(a, b) (see Section 2). Using the properties of the lipschitzian
ratio and the theorem of Section 2, we prove:

4.11. Proposition.

1. For each (ϕ, a, a′), (ψ, b, b′), (ξ, c, c′) ∈ J(M,M ′), we have the following properties:

(a) d((ϕ, a, a′), (ψ, b, b′)) = d((ψ, b, b′), (ϕ, a, a′)),

(b) d((ϕ, a, a′), (ξ, c, c′)) ≤ d((ϕ, a, a′), (ψ, b, b′)) + d((ψ, b, b′), (ξ, c, c′)),

(c) d((ϕ, a, a′), (ψ, b, b′)) = 0 ⇐⇒ (ϕ, a, a′) ∼ (ψ, b, b′).

2. The map d : (J(M,M ′))2 −→ R+ factors through the quotient, giving a “true”
distance on Jet

free
(M,M ′), defined by d([ϕ, a, a′], [ψ, b, b′]) = d((ϕ, a, a′), (ψ, b, b′))

for all (ϕ, a, a′), (ψ, b, b′) ∈ J(M,M ′).

4.12. Remark. Let M,M ′ be transmetric spaces; then Jet
free

(M,M ′) possesses a par-
ticular element [Oaa′ , a, a

′] denoted O: for [Oaa′ , a, a
′] does not depend on the choice of

(a, a′) ∈ M × M ′; this free jet O will be called the free zero of Jet
free

(M,M ′). In the
same way, Jet

free
(M,M) possesses also a free identity, denoted IM , which is equal to

[Id(M,x), x, x].

4.13. Proposition. Let M,M ′ be transmetric spaces, a, b ∈M and a′, b′ ∈M ′.

1. If c(ϕ) = (ϕ, a, a′), then the composite

can : Jet((M,a), (M ′, a′))
c−→J(M,M ′)

q−→Jet
free

(M,M ′)

is an isometry.

2. Let us set Ω(ϕ) = γ(a′, b′).ϕ.γ(b, a); this defines a map

Ω : Jet((M,a), (M ′, a′)) −→ Jet((M, b), (M ′, b′))

which is an isometry, and the following diagram commutes:

Jet((M,a), (M ′, a′)) Ω //

can ))SSSSSSSSSSSSSS
Jet((M, b), (M ′, b′))

canuukkkkkkkkkkkkkk

Jet
free

(M,M ′)
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Let now M0,M1,M2 be three transmetric spaces; we consider the map

comp : J(M0,M1)× J(M1,M2) −→ J(M0,M2)

defined by (ϕ1, b1, b2).(ϕ0, a0, a1) = (ϕ1.γ(a1, b1).ϕ0, a0, b2) (as in the diagram below):

(M0, a0)
ϕ0 // (M1, a1)

γ(a1,b1)// (M1, b1)
ϕ1 // (M2, b2)

4.14. Proposition.

1. This map comp factors through the quotient:

J(M0,M1)× J(M1,M2)

q×q
��

comp // J(M0,M2)

q

��
Jet

free
(M0,M1)× Jet

free
(M1,M2)

comp
// Jet

free
(M0,M2)

(and we will write [ϕ1, b1, b2].[ϕ0, a0, a1] = [ϕ1.γ(a1, b1).ϕ0, a0, b2], which gives simply

[ϕ1, b1, b2].[ϕ0, a0, a1]
?
= [ϕ1.ϕ0, a0, b2] when a1 = b1).

2. The composition comp : Jet
free

(M0,M1) × Jet
free

(M1,M2) −→ Jet
free

(M0,M2),
defined just above, is LSL.

So, we construct a new category, enriched in Met, denoted Jet
free

, called the category
of free jets,whose:

- objects are the transmetric spaces M ,
- “Hom” are the metric spaces Jet

free
(M,M ′),

- identity I −→ Jet
free

(M,M), is the map giving the free identity IM = [Id(M,a), a, a],
- composition Jet

free
(M,M ′)×Jet

free
(M ′,M ′′) −→ Jet

free
(M,M ′′) is the previous comp.

4.15. Definition. We will denote Jet′ the full subcategory of the category Jet whose
objects are the pointed transmetric spaces. Just as Jet (see Section 2), it is a category
enriched in Met.

4.16. Proposition.

1. Actually, we have a forgetful enriched functor U : Jet′ −→ Jet.

2. We have a functor can′ : Jet′ −→ Jet
free

, defined by can′(M,a) = M and, for
ϕ : (M,a) −→ (M ′, a′), by can′(ϕ) = can(ϕ) = [ϕ, a, a′]; then, this functor is
enriched in Met.

We now come back to cartesian considerations.

4.17. Remark. By definition, f : M −→ M ′ is a morphism of transmetric spaces iff
we have (Tfx, x, f(x)) ∼ (Tfy, y, f(y)) for all x, y ∈ M ; so that the free jet [Tfx, x, f(x)]
is independent on the choice of x ∈M ; we denote κ(f) this element of Jet

free
(M,M ′). In

particular, if c ∈M ′, we have seen that the constant map ĉ is a morphism of transmetric
spaces and that κ(ĉ) = O.
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4.18. Proposition.

1. The map Trans(M,M ′) −→ Jet
free

(M,M ′) : f 7→ κ(f) extends to a functor
κ : Trans −→ Jet

free
which is constant on the objects.

2. This functor κ : Trans −→ Jet
free

creates a cartesian structure on the category Jet
free

(κ being constant on the objects, it means that Jet
free

is cartesian and κ a strict
morphism of cartesian categories).

3. The functor can′ : Jet′ −→ Jet
free

is a morphism of cartesian categories.

4. M,M0,M1 being transmetric spaces, the canonical map

can : Jet
free

(M,M0 ×M1) −→ Jet
free

(M,M0)× Jet
free

(M,M1)

is an isometry (like its analogue for Jet).

4.19. Proposition. Let M , M ′ be two transmetric spaces, and U , U ′ two non empty
open subsets of M and M ′ respectively (with j : U ↪→ M and j′ : U ′ ↪→ M ′ the canonical
injections).

1. κ(j) : U −→M is an isomorphism in Jet
free

.

2. The canonical map Γ : Jet
free

(U,U ′) −→ Jet
free

(M,M ′) : Φ 7→ κ(j′).Φ.κ(j)−1 is an
isometry.

4.20. Proposition.

1. Let M,M ′ be two transmetric spaces. Then the map J(M,M ′) −→ R+ : (ϕ, a, a′) 7→
ρ(ϕ) factors through the quotient; we still denote ρ : Jet

free
(M,M ′) −→ R+ this

factorization. (see Section 2 for the definition of the lipschitzian ratio of a jet).

2. Let M0,M1,M2 be three transmetric spaces; then, if Φ0 : M0 −→ M1 and
Φ1 : M1 −→M2 are free jets, we have ρ(Φ1.Φ0) ≤ ρ(Φ1)ρ(Φ0).

Again, we conclude this paragraph with vectorial considerations.

4.21. Proposition.

1. Let M be a transmetric space and E a n.v.s. Then, the metric space Jet
free

(M,E) has
also a canonical structure of n.v.s. (its distance defined in 4.11 derives from a norm).
Besides, for every a ∈ M , the map can : Jet((M,a), (E, 0)) −→ Jet

free
(M,E) (see

4.13) is a linear isometry.

2. Let M be a transmetric space and E a n.v.s. Let also Φ ∈ Jet
free

(M ′,M). Then, the

map Φ̃ : Jet
free

(M,E) −→ Jet
free

(M ′, E) : Ψ 7→ Ψ.Φ is linear and continuous.



216 ELISABETH BURRONI AND JACQUES PENON

5. Tangential

Untill now, we have only spoken of the tangential Tfa, at a, of a map f : M −→ M ′,
tangentiable at a (see Section 3). ¿From now on, we will speak of the tangential
tf : M −→ Jet

free
(M,M ′) when f : M −→ M ′ is a tangentiable map between trans-

metric spaces (as we speak of the differential df : U −→ L(E,E ′) for a differentiable map
f : U −→ E ′ when U is an open subset of E, a n.v.s., just as E ′).

First, consider M,M ′ two transmetric spaces and f : M −→ M ′ a tangentiable map
at the point x ∈M ; then, we set tfx = [Tfx, x, f(x)].

Now, if f : M −→ M ′ is tangentiable (at every point in M), we can define the map
tf : M −→ Jet

free
(M,M ′) : x 7→tfx (in fact, this map tf is the following composite

M
Tf−→ J(M,M ′)

q−→ Jet
free

(M,M ′), where J(M,M ′), Jet
free

(M,M ′) and q have been
defined in Section 4, and where Tf(x) = (Tfx, x, f(x)).

5.1. Definition. The map tf defined just above (for a tangentiable map f between
transmetric spaces) will be called the tangential of f .

5.2. Proposition. Let f : M −→M ′ be a tangentiable map between transmetric spaces.
Then, the map tf : M −→ Jet

free
(M,M ′) is constant iff f is a morphism of transmetric

spaces; in this case we have tfx = κ(f) for every x ∈M .

Let us now begin with the particular vectorial context: we assume here that E,E ′ are
n.v.s. and U a non empty open subset of E; consider then the following composite:

J : L(E,E ′)
j // Jet((E, 0), (E ′, 0)) can // Jet

free
(E,E ′) Γ−1

// Jet
free

(U,E ′)

See Section 2 for j and Section 4 for can and Γ. We set Im(J) = J(L(E,E ′)), the image
of J in Jet

free
(U,E ′).

5.3. Remark. The map J : L(E,E ′) −→ Jet
free

(U,E ′) defined just above is a linear
isometric embedding.

5.4. Proposition.

1. Let f : U −→ E ′ be a tangentiable map and a ∈ U ; then, f is differentiable at a iff
tfa ∈ Im(J); in this case, we have tfa = J(dfa).

2. Let f : U −→ E ′ a differentiable map; then f is tangentiable and the following
diagram commutes:

U
df

{{vvvvvvvvv
tf

%%KKKKKKKKKKK

L(E,E ′)
J

// Jet
free

(U,E ′)

The proof of 5.4.1 uses the result of the following lemma:
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5.5. Lemma. Let [ϕ, a, b] ∈ Jet
free

(U,E ′). Then, [ϕ, a, b] ∈ Im(J) iff there exists
l ∈ L(E,E ′) such that Al|U ∈ ϕ, where Al(x) = b+ l(x− a); and we have J(l) = [ϕ, a, b].

We now come back to the general transmetric context.

5.6. Proposition. Let M,M ′,M ′′ be three transmetric spaces; f : M −→ M ′,
g : M ′ −→ M ′′ two maps. We assume that f and g are tangentiable and that their
tangentials tf : M −→ Jet

free
(M,M ′) and tg : M ′ −→ Jet

free
(M ′,M ′′) are continuous,

respectively at a ∈ M and a′ = f(a) ∈ M ′. Then the map t(g.f) : M −→ Jet
free

(M,M ′′)
is well defined and continuous at a, and we have t(g.f)a = tga′ .tfa.

Proof : The continuity of the map t(g.f) comes from the following composite:

M
(Id,f) // M ×M ′ tf×tg // Jet

free
(M,M ′)× Jet

free
(M ′,M ′′)

comp // Jet
free

(M,M ′′)

�

5.7. Proposition. Let M,M0,M1 be transmetric spaces, with a ∈ M and f0 : M −→
M0, f1 : M −→M1 two maps. We assume that, for each i ∈ {0, 1}, fi : M −→Mi is tan-
gentiable and that its tangential tfi : M −→ Jet

free
(M,Mi) is continuous at a. Then, the

map
t(f0, f1) : M −→ Jet

free
(M,M0 ×M1) is well defined and continuous at a, and we have

t(f0, f1)a = (tf0a, tf1a).

Proof : The continuity of the map t(f0, f1) comes from the following composite:

M
(tf0,tf1) // Jet

free
(M,M0)× Jet

free
(M,M1) can−1

// Jet
free

(M,M0 ×M1)

�

5.8. Proposition. Let E be a n.v.s., U an open subset of E, a, b ∈ U such that [a, b] ⊂
U and F a finite subset of ]a, b[; let also M be a transmetric space and f : U −→ M a
continuous map. Now, if we assume that, for all x ∈ ]a, b[−F , the map f is Tangx and
that d(tfx, O) ≤ k (where O is the free zero of 4.12 and k a fixed positive real number),
then we have d(f(b), f(a)) ≤ k||b− a||.

Proof : Comes from 1.7 and the following lemma:

5.9. Lemma. Let f : M −→ M ′ be a map, a ∈ M and b = f(a). We assume that f is
Tanga and that d(Tfa, Oab) < k. Then, f is k-LSLa (thanks to 3.6).

We now give a generalization of 1.6.4.(b):

5.10. Theorem. Let E and M be respectively a n.v.s. and a transmetric space, U a non
empty open subset of E and f : U −→ M a tangentiable map such that
tf : U −→ Jet

free
(U,M) is continuous at a ∈ U . Then, f is LLa and we have d(tfa, O) =

ρ(tfa); i.e tfa is a good free jet (the analogue, for the free jets, of what we have previously
defined for the jets in Section 2).
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Proof : First, thanks to 2.6.2 and by definition of the lipschitzian ratio ρ for jets or
free metric jets (see 2.5 and 4.25), we have d(tfa, O) = d(Tfa, Oaf(a)) ≤ ρ(Tfa) = ρ(tfa).

Now, let f̄ : U −→ R be the following composite:

U
tf // Jet

free
(U,M)

d(−,O) // R

The map f̄ is continuous at a, by composition. Let us fix ε > 0; then, there exists r > 0
such that B(a, r) ⊂ U and f̄(x) < f̄(a) + ε for all x ∈ B(a, r). Let us set R = f̄(a) + ε;
then, for all x ∈ B(a, r), we have d(tfx, O) = f̄(x) < R, so that (thanks to 5.8), the
restriction f |B(a,r) is R-lipschitzian (since B(a, r) is convex). Thus f is LLa, so that
Tfa = q(f). Furthermore, we have ρ(tfa) = ρ(Tfa) = ρ(q(f)) ≤ R = f̄(a) + ε; we have
thus obtained ρ(tfa) ≤ d(tfa, O) + ε for all ε > 0, so that ρ(tfa) ≤ d(tfa, O). �

5.11. Proposition. Let E be a n.v.s. and U a non empty open subset of E, and M a
transmetric space.

1. If U is convex, then every morphism of transmetric spaces f : U −→ M is
R-lipschitzian (where R = d(κ(f), O); see Section 4 for κ(f)). Hence, d(κ(f), O) =
ρ(κ(f)); i.e κ(f) is a good free jet (this result is true for every continuous affine
map).

2. If U is not convex, f is R-LL on U , and κ(f) is still a good free jet.

Proof : 1. We use 5.8, since, for all x ∈ U , we have d(tfx, O) = d(κ(f), O) = R; thus f
is R-lipschitzian on U (which is convex), so that ρ(κ(f)) ≤ R. For the inverse inequality,
we use 2.6.2.
2. Because every open subset of a n.v.s. is locally convex. �

5.12. Definition. Let M,M ′ be transmetric spaces and f : M −→M ′ a map. We say
that f is continuously tangentiable if f is tangentiable and if its tangential
tf : M −→ Jet

free
(M,M ′) is continuous.

5.13. Proposition. The continuously tangentiable maps are stable under composition
and under pairs.

5.14. Examples. (of continuously tangentiable maps)

1. Every morphism of transmetric spaces.

2. Every map which is of class C1.

5.15. Theorem. Let E,E ′ be n.v.s. where E ′ is complete, U a non empty open subset
of E and f : U −→ E ′ a continuously tangentiable map which is also differentiable at
every point of a dense subset D of U . Then, f is of class C1.

Proof : Referring to 5.4.1, we know that, a priori, the set of the points of U at which

f is differentiable is nothing but
−1

tf (Im(J)); thus, we must first show that this set is



A METRIC TANGENTIAL CALCULUS 219

equal to U . Since, by hypothesis, we have the inclusions D ⊂
−1

tf (Im(J)) ⊂ U with D

dense in U , we have just to prove that
−1

tf (Im(J)) is closed in U . Actually, since Im(J)
is complete (just as the n.v.s. L(E,E ′), for J : L(E,E ′) −→ Jet

free
(U,E ′) is an isometric

embedding), it is closed in Jet
free

(U,E ′), so that
−1

tf (Im(J)) is also closed in U (since
tf : U −→ Jet

free
(U,E ′) is continuous); f is thus differentiable on U . Finally, the fact

that the map df : U −→ L(E,E ′) is continuous comes from the fact it factors through
tf (see the commutative triangle in 5.4.2. �

5.16. Example. The function ϑ : R −→ R : x 7→ |x| is tangentiable (for it is lips-
chitzian); however, it cannot be continuously tangentiable on R, since it is differentiable
on R∗ and not of class C1 on R.

We now give a generalization of the fact that the composite of two maps of class C2

is also of class C2.

5.17. Theorem. Let M,M ′ be transmetric spaces, E a n.v.s. and U a non empty open
subset of E. Let also f : M −→ U and g : U −→ M ′ be two continuously tangen-
tiable maps. We assume that tf : M −→ Jet

free
(M,U) is Tanga where a ∈ M and that

tg : U −→ Jet
free

(U,M ′) is LLa′ where a′ = f(a) ∈ U . Then, t(g.f) :
M −→ Jet

free
(M,M ′) is Tanga.

Proof : Since g : U −→ M ′ is continuously tangentiable, we know (by 5.10) that
d(tgy, O) = ρ(tgy) for all y ∈ U . We now need the following lemma:

5.18. Lemma.

1. Let (M1, a1), (M2, a2) ∈ |Jet| and Jeg((M1, a1), (M2, a2)) be the set of good jets, i.e
{ϕ ∈ Jet ((M1, a1), (M2, a2)) |d(ϕ,Oa1a2) = ρ(ϕ)}. Then the following restriction is
LL: Jet((M0, a0),(M1, a1))!×Jeg((M1, a1),(M2, a2)) −→comp Jet((M0, a0),(M2, a2)).

2. Let M0,M1,M2 be transmetric spaces; if Jeg
free

(M1,M2) =
= {Φ ∈ Jet

free
(M1,M2) | d(Φ, O) = ρ(Φ)}. Then the following restriction is LL:

Jet
free

(M0,M1)× Jeg
free

(M1,M2)
comp−→ Jet

free
(M0,M2).

Thus, coming back to the proof of 5.17, we deduce that tgy ∈ Jeg
free

(U,M ′). We

can then consider the restriction t̆g : U −→ Jeg
free

(U,M ′) of tg. Besides, knowing that
g.f is continuously tangentiable with t(g.f)x =tgf(x).tfx for all x ∈ M , we can write its
tangential t(g.f) as the composite:

M
(Id,f) // M × U tf×t̆g // Jet

free
(M,U)× Jeg

free
(U,M ′)

comp // Jet
free

(M,M ′)

So that we only have to justify the tangentiability, at the right point, of every fore-
mentionned map: by Section 3, (Id, f) is Tanga and tf × t̆g is Tang(a,a′); and comp is
LL(tfa,tga′ )

(by lemma 5.18), thus Tang(tfa,tga′ )
. Their composite t(g.f) is thus Tanga. �
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Here are some open problems that we submit to the sagacity of the reader (after having
gone through this paper)

1. We have seen, in the examples given in 4.8, that every continuous affine map between
n.v.s. is a morphism of transmetric spaces. The question is: are there any other
morphisms of transmetric spaces in such a vectorial context?

2. Still in the case of the n.v.s., does there exist continuously tangentiable maps which
are not of class C1 (see 5.14 and 5.15)?
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Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Cuill Inc.: valeria@cuill.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu
Tom Leinster, University of Glasgow, T.Leinster@maths.gla.ac.uk
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