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THE POINTED SUBOBJECT FUNCTOR, 3× 3 LEMMAS,
AND SUBTRACTIVITY OF SPANS

Dedicated to Dominique Bourn on the occasion of his sixtieth birthday

ZURAB JANELIDZE

Abstract. The notion of a subtractive category recently introduced by the author,
is a pointed categorical counterpart of the notion of a subtractive variety of universal
algebras in the sense of A. Ursini (recall that a variety is subtractive if its theory con-
tains a constant 0 and a binary term s satisfying s(x, x) = 0 and s(x, 0) = x). Let us
call a pointed regular category C normal if every regular epimorphism in C is a normal
epimorphism. It is well known that any homological category in the sense of F. Borceux
and D. Bourn is both normal and subtractive. We prove that in any subtractive normal
category, the upper and lower 3× 3 lemmas hold true, which generalizes a similar result
for homological categories due to D. Bourn (note that the middle 3 × 3 lemma holds
true if and only if the category is homological). The technique of proof is new: the
pointed subobject functor S = Sub(−) : C → Set∗ turns out to have suitable preser-
vation/reflection properties which allow us to reduce the proofs of these two diagram
lemmas to the standard diagram-chasing arguments in Set∗ (alternatively, we could use
the more advanced embedding theorem for regular categories due to M. Barr). The
key property of S, which allows to obtain these diagram lemmas, is the preservation
of subtractive spans. Subtractivity of a span provides a weaker version of the rule of
subtraction — one of the elementary rules for chasing diagrams in abelian categories,
in the sense of S. Mac Lane. A pointed regular category is subtractive if and only if
every span in it is subtractive, and moreover, the functor S not only preserves but also
reflects subtractive spans. Thus, subtractivity seems to be exactly what we need in
order to prove the upper/lower 3 × 3 lemmas in a normal category. Indeed, we show
that a normal category is subtractive if and only if these 3 × 3 lemmas hold true in it.
Moreover, we show that for any pointed regular category C (not necessarily a normal
one), we have: C is subtractive if and only if the lower 3× 3 lemma holds true in C.

Introduction

Homological categories in the sense of F. Borceux and D. Bourn [2] provide a convenient
non-abelian setting for proving homological lemmas such as the 3× 3 lemmas, the short
five lemma and the snake lemma (see [4, 2]). The aim of the present paper is to show
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that some of these lemmas can be proved in an even more general setting of subtractive
normal categories (see below).

The paper is organized as follows: Section 1 recalls the connections between the con-
cepts of homological / subtractive normal categories and some other closely related con-
cepts from categorical and universal algebra. Section 2 introduces notation used through-
out the rest of the paper.

In Section 3 we define exact sequences in pointed regular categories and show that for
such a category C, the pointed subobject functor S = Sub(−) : C→ Set∗ preserves and
reflects exactness. We also establish some other useful properties of the functor S. Note
that our definition of an exact sequence is different from the one given in [2]. However,
the two notions of exactness coincide for normal categories, i.e. pointed regular categories
in which every regular epimorphism is normal.

In Section 4 we recall the definition of a subtractive category [17], and obtain one
more property of the functor S (preservation and reflection of “subtractive spans”). In
subsequent sections these properties of S are used for diagram chasing in subtractive
regular categories and subtractive normal categories.

In Section 5 we investigate 3 × 3 lemmas in normal categories. Specifically, we show
that the upper/lower 3 × 3 lemma holds true in a normal category C if and only if C is
subtractive. We also observe that the middle 3× 3 lemma holds true in C if and only if
C is homological.

In Section 6 we give several characterizations of subtractive regular categories via
diagram lemmas. In particular, we show that a pointed regular category is subtractive if
and only if the lower 3× 3 lemma holds true in it.

In Section 7 we observe that the diagram chasing technique of the present paper is
in fact a direct adaptation of the diagram chasing via “members” developed for abelian
categories in S. Mac Lane’s book [23].

1. Connections between homological / subtractive normal categories and
other closely related classes of categories

Recall that a homological category is a pointed regular category [1] which is protomodular
in the sense of D. Bourn [3]. Any variety of universal algebras is regular, so a variety is
homological if and only if it is pointed protomodular, and also, if and only if it is semi-
abelian in the sense of G. Janelidze, L. Márki and W. Tholen [11] (which is defined as a
Barr exact [1] pointed protomodular category having binary sums). As shown in [5], such
varieties are also the same as pointed classically ideal determined varieties in the sense of
A. Ursini [26] (which were introduced as BIT speciale varieties in [25]).

We call a category normal if it is a pointed regular category [1] and every regular
epimorphism in it is a normal epimorphism (which in any finitely complete pointed cat-
egory is equivalent to every split epimorphism being a normal epimorphism — see [7]).
A pointed variety of universal algebras is normal if and only if it is a variety with ideals
in the sense of K. Fichtner [8], also known in universal algebra as a 0-regular variety
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(see [13]).
A subtractive normal category is a normal category which is subtractive in the sense of

[17] (see Section 4 below). The notion of a subtractive category is a categorical counterpart
of the notion of a subtractive variety due to A. Ursini [26] (see also [10] and see [17] for
further references): a pointed variety is a subtractive variety if and only if it is subtractive
as a category. It was shown in [17] that in a subtractive category product projections are
normal epimorphisms, however, in general, not every split epimorphism in a subtractive
category is normal. As shown in [10], a variety of universal algebras is subtractive and
0-regular, if and only if it is a BIT variety in the sense of A. Ursini [24], which in
[10] is also called an ideal-determined variety. Thus, subtractive normal varieties are
exactly the pointed ideal-determined varieties. In [12] a notion of an ideal-determined
category was introduced, as a categorical counterpart of the notion of an ideal-determined
variety (a pointed variety of universal algebras is an ideal-determined variety if and only
if it is ideal-determined as a category). Thus for varieties we have “ideal-determined =
subtractive + normal”, but in general, subtractive normal categories are not the same
as ideal-determined categories: as observed in [12], the category of torsion-free abelian
groups is a subtractive normal category but not ideal-determined. The precise relationship
between these two classes of categories has not been investigated yet — it was proposed
in [12] as an open question; more precisely, the following was asked in [12]: is it true that
a Barr exact normal category with finite colimits is ideal-determined if and only if it is
subtractive? This, however, is beyond the scope of the present paper.

2. Notation

Most of the time we work in a pointed regular category C. By 0 we denote the zero
object of C, as well as the zero morphism between any two objects in C. For a morphism
f : X → Y in C, the morphism

Kf
kf // X

denotes the kernel of f . We say that f has a trivial kernel if kf is a null morphism. For
a morphism f : X → Y in C, by mf and ef we denote the monomorphism and regular
epimorphism, respectively, appearing in the image decomposition of f :

If

mf

��????????

X

ef

??��������

f
// Y

We write Im(f) for the subobject of Y represented by mf . For any two morphisms u and
v having the same codomain, we write u 6 v if u factors through v, i.e. u and v are part



224 ZURAB JANELIDZE

of a commutative diagram
•

v

��
• u

//

w
??~~~~~~~
•

For any two morphisms f : C → X and g : C → Y having the same domain, we write
(f, g) for the induced morphism (f, g) : C → X × Y to the product X × Y . We write
[s1, s2] to denote a span

S
s1

��~~~~~~~
s2

��???????

X Y

Given two spans [s1, s2] and [s′1, s
′
2] from X to Y , we write [s′1, s

′
2] 6 [s1, s2] if these spans

are part of a commutative diagram

S
s1

~~}}}}}}}}
s2

  AAAAAAAA

X Y

S ′
s′
1

``AAAAAAA

OO

s′
2

>>~~~~~~~

When the product X × Y exists, this has the same meaning as (s′1, s
′
2) 6 (s1, s2).

3. The pointed subobject functor

Let C be a pointed regular category [1]. We construct a functor

S : C→ Set∗

which will have a number of useful properties, allowing to transfer certain diagram-chasing
arguments from Set∗ to C.

In fact, S is nothing but the covariant subobject functor (we assume that C is well-
powered)

S(X) = Sub(X),

where the base point in Sub(X) is the subobject represented by the zero morphism 0→
X (which is clearly a monomorphism). Note that elements of Sub(X) are not simply
monomorphisms with codomain X, but equivalence classes of such monomorphisms, under
the following equivalence relation: w1 : W1 → X is equivalent to w2 : W2 → X if w1 and
w2 factor through each other, i.e. w1 6 w2 and w2 6 w1. For any morphism f : X → Y ,
the map S(f) : S(X)→ S(Y ) sends a subobject of X, represented by, say, w : W → X,
to the image of the composite fw : W → Y , which is then a subobject of Y . Thus, S is
similar to the transfer functor in the sense of M. Grandis [9].
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3.1. Remark. If C is an abelian category, then for any object X in C the set S(X) is
nothing but the set of equivalence classes of members of X in the sense of S. Mac Lane
[23] (see Section 4 in Chapter VIII in [23]). As shown in [23], the language of “mem-
bers” can be used for repeating certain classical diagram-chasing arguments in arbitrary
abelian categories (without resorting to more advanced “embedding theorems”, see Notes
to Chapter VIII in [23]). In the present paper we show that some of these arguments
generalize to arbitrary subtractive normal categories (see also Section 7).

We begin studying properties of the functor S by stating the first few most basic
preservation/reflection properties of S. We omit straightforward proofs.

3.2. Proposition. The functor S : C → Set∗ preserves and reflects the zero objects
and the zero morphisms.

3.3. Proposition. The functor S preserves and reflects regular epimorphisms.

Proof. Regular epimorphisms in Set∗ are surjective morphisms of pointed sets. Using
this, it is easy to show that S preserves and reflects regular epimorphisms.

3.4. Lemma. The functor S preserves monomorphisms.

Proof. The proof is straightforward (recall that in Set∗ monomorphisms are injective
morphisms of pointed sets).

The following easy lemma (see Lemma 3.5 below), and the fact that S preserves regular
epimorphisms, allows to extend S to the categories of relations

S : Rel(C)→ Rel(Set∗).

3.5. Lemma. The functor S : C→ Set∗ preserves weak pullbacks.

Specifically, for an internal relation

R
r1

~~~~~~~~~
r2

��@@@@@@@

X Y

in C, which we write as [r1, r2] : X ⇀ Y , the relation S([r1, r2]) : S(X) ⇀ S(Y ) is defined
as the relation generated by the span

S(R)
S(r1)

{{wwwwwwwww S(r2)

##GGGGGGGGG

S(X) S(Y )

For the sake of formality, we should mention that we identify two relations [r1, r2] : X ⇀ Y
and [r′1, r

′
2] : X ⇀ Y if they define the same subobject of X × Y , i.e. if Im(r1, r2) =
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Im(r′1, r
′
2). This is the case precisely when the two relations are part of a commutative

diagram

R
r1

~~}}}}}}}}}
r2

  AAAAAAAAA

X A

e1

OO

e2

��

Y

R′
r′
1

>>~~~~~~~~~
r′
2

``AAAAAAAAA

where e1 and e2 are regular epimorphisms. Then, since S preserves regular epimorphisms,
S is indeed well defined.

In [2] a sequence

X
f // Y

g // Z

is said to be exact at Y , if both the following conditions are satisfied:

(i) mf is a kernel of eg,

(ii) and eg is a cokernel of mf .

When all regular epimorphisms in C are normal epimorphisms, this is equivalent to re-
quiring just (i) (since any normal epimorphism is a cokernel of its kernel). In this paper
we use (i) as the definition of exactness for general pointed regular categories. Note that
(i) is equivalent to the following:

(i′) mf is a kernel of g.

3.6. Definition. In a pointed regular category C, a sequence

A
f // B

g // C

of morphisms is said to be exact at B, if mf is a kernel of g.

In Set∗ exactness at B simply means

∀b∈B[g(b) = 0 ⇔ ∃a∈Af(a) = b].

3.7. Proposition. For any pointed regular category C, the functor S : C → Set∗
preserves and reflects exactness.

3.8. Lemma. For a morphism f : X → Y in a pointed regular category the following
conditions are equivalent:

(a) f is a regular epimorphism.

(b) The sequence

X
f // Y // 0

is exact at Y .
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3.9. Proposition. For a pointed category C with pullbacks, the following conditions
are equivalent:

(a) Any morphism having a trivial kernel is a monomorphism.

(b) Any regular epimorphism having a trivial kernel is an isomorphism.

(c) Any split epimorphism having a trivial kernel is an isomorphism.

Proof. The implications (a)⇒(b)⇒(c) are obvious. To show (c)⇒(a), take any morphism
f : X → Y having a trivial kernel. Then the pullback of f along itself also has a trivial
kernel, and being a split epimorphism, by (c) it should be an isomorphism. This implies
that f is a monomorphism.

3.10. Corollary. For a pointed regular category C the following conditions are equiv-
alent:

(a) Any morphism in C having a trivial kernel is a monomorphism.

(b) A sequence

0 // X
f // Y

in C is exact at X if and only if f is a monomorphism.

(c) A sequence

0 // X
f // Y // 0

in C is exact at both X and Y if and only if f is an isomorphism.

If these conditions are satisfied, then the functor S : C → Set∗ reflects monomorphisms
and isomorphisms.

The equivalent conditions of Proposition 3.9 are trivially satisfied when every regular
epimorphism is normal. It is natural to call pointed regular categories having this property
normal categories, since they can be defined in the same style as regular categories, using
normal epimorphisms in the place of regular ones:

3.11. Definition. A finitely complete pointed category C is said to be normal if every
morphism in C decomposes as a pullback-stable normal epimorphism followed by a mono-
morphism. In other words, a normal category is a pointed regular category in which every
regular epimorphism is normal.

3.12. Proposition. For a pointed regular category C the following conditions are equiv-
alent:

(a) C is normal.

(b) C satisfies equivalent conditions (a,b,c) of Proposition 3.9, and every normal mono-
morphism in C has a cokernel.
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Proof. (a)⇒(b): Suppose C is normal. Then 3.9(b) is trivially satisfied. Also, then
every normal monomorphism in C has a cokernel — indeed, for a morphism f : X → Y ,
the cokernel of the kernel kf of f is the morphism ef in the image decomposition of f :

If

mf

��????????

X

ef

??��������

f
// Y

(b)⇒(a): Suppose (b) holds true. Let e be a regular epimorphism and let c be the
cokernel of its kernel ke. Then there exists a unique morphism u such that uc = e. Since
e is a regular epimorphism, so is u. It is easy to show that u has a trivial kernel, which
implies that u is an isomorphism.

4. Subtractive regular categories

In a pointed category C, call a relation

R
r1

~~~~~~~~~
r2

��@@@@@@@

X Y

(1)

subtractive if for any object C in C, and for any two morphisms

x : C → X, y : C → Y

we have
([x, y] 6 [r1, r2] ∧ [x, 0] 6 [r1, r2]) ⇒ [0, y] 6 [r1, r2].

In other words, [r1, r2] is subtractive if it is (strictly) closed with respect to the matrix x y
x 0
0 y


in the sense of [18]. The use of the term “subtractive” here can be justified by the idea
that the pair [0, y] is obtained via the formal subtraction [0, y] = [x, y] − [x, 0] (in fact,
this idea can be exploited further — see [6, 7]).

4.1. Theorem. [18] For a finitely complete pointed category C the following conditions
are equivalent:

(a) C is subtractive in the sense of [17], i.e. for any relation (1) we have

([1X , 1X ] 6 [r1, r2] ∧ [1X , 0] 6 [r1, r2]) ⇒ [0, 1X ] 6 [r1, r2].
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(b) Every relation in C is subtractive.

In Set∗, a relation R ⊆ X × Y is subtractive if and only if for all x ∈ X and y ∈ Y
we have

[(x, y) ∈ R ∧ (x, 0) ∈ R] ⇒ (0, y) ∈ R.

4.2. Proposition. For any pointed regular category C, the functor S : Rel(C) →
Rel(Set∗) preserves and reflects subtractive relations.

Proof. Subtractivity of an internal relation (1) in any pointed category C having weak
pullbacks is equivalent to having

[0, r2q2s2] 6 [r1, r2], (2)

where q2 and s2 are morphisms from a diagram

S
s1

����������
s2

��????????

P
p1

����������
p2

��???????? Q
q1

����������
q2

��????????

����������

��????????

R
0

~~~~~~~~~
0

��@@@@@@@ R
r2

��~~~~~~~
r1

  @@@@@@@ R
r1

~~~~~~~~~
r2

��@@@@@@@

X Y X Y

whose all three diamonds are weak pullbacks. The inequality (2) implies

[0,S(r2)S(q2)S(s2)] 6 [S(r1),S(r2)].

Clearly [S(r1),S(r2)] 6 S([r1, r2]), and so the above yields

[0,S(r2)S(q2)S(s2)] 6 S([r1, r2]).

Using the fact that S preserves weak pullbacks, it is easy to check that the above inequality
is in fact equivalent to subtractivity of S([r1, r2]). This readily gives that S preserves
subtractive relations. To show that it also reflects subtractive relations, it suffices to have
the implication

[S(u),S(v)] 6 S([r1, r2]) ⇒ [u, v] 6 [r1, r2]

for a span [u, v] : X ⇀ Y , and specifically, for u = 0 and v = r2q2s2. Although the
above implication fails for general u, v, it is indeed satisfied when u = 0. To show this,
let w : W → R be a subobject such that S(r1)(w) = S(u)(1S) and S(r2)(w) = S(v)(1S),
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where S is the domain of u and v (such w exists once [S(u),S(v)] 6 S([r1, r2])). We can
then form a commutative diagram

T
t1

~~~~~~~~~
t2

��@@@@@@@

W

w

��

U
e1oo

e2   @@@@@@@@ V

e3��~~~~~~~

e4 //W

w

��
R

r1   BBBBBBBB S
u

~~~~~~~~~~
v

��@@@@@@@ R

r2~~}}}}}}}}

X Y

where the morphisms e1, e2, e3, e4 are regular epimorphisms and the diamond is a pullback
(hence t1 and t2 are also regular epimorphisms). To show [u, v] 6 [r1, r2], it is sufficient
to show [ue2t1, ve2t1] = [r1we4t2, r2we4t2], which we have as soon as u = 0 (since if u = 0
then r1we1 = 0 and hence r1w = 0, because e1 is an epimorphism).

4.3. Definition. A span
S

s1

��~~~~~~~
s2

��???????

X Y

(3)

in a pointed regular category C is said to be subtractive, if the relation generated by it is
subtractive.

From Proposition 4.2 we get:

4.4. Corollary. For any pointed regular category C, the functor S : C → Set∗ pre-
serves and reflects subtractive spans.

Notice that a span (3) in Set∗ is subtractive if and only if for any two elements a, b ∈ S
such that s1(a) = s1(b) and s2(b) = 0, there exists an element c ∈ S, such that s1(c) = 0
and s2(c) = s2(a). If we write c as a formal difference c = a−b, then the last two equalities
formally follow from the previous ones:

s1(a− b) = s1(a)− s1(b) = s1(a)− s1(a) = 0,

s2(a− b) = s2(a)− s2(b) = s2(a)− 0 = s2(a).
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5. 3× 3 lemmas and subtractive normal categories

In a pointed regular category, by a 3× 3 diagram we mean a commutative diagram

0

��

0

��

0

��
0 // A1

u1 //

f1

��

B1
v1 //

g1

��

C1

h1

��

// 0

0 // A2
u2 //

f2

��

B2
v2 //

g2

��

C2

h2

��

// 0

0 // A3 u3

//

��

B3 v3

//

��

C3
//

��

0

0 0 0

(4)

where all columns are exact sequences.

5.1. Lemma. [The upper 3 × 3 lemma] In any subtractive normal category C, for any
3 × 3 diagram (4), if the second and third rows are exact sequences then so is the first
row.

Proof. Since g1 and h1 have trivial kernels, they are monomorphisms by Proposition 3.12.
So, by the preservation/reflection properties of S, it suffices to prove that if in Set∗ we
have a 3× 3 diagram (4) where

(i) g1 is injective,

(ii) the span [g2, v2] is subtractive,

(iii) and h1 is injective,

then exactness of the second and the third rows imply exactness of the first row. Now
that we are in Set∗ we can carry out the standard diagram-chasing argument. First, let
us prove exactness at A1. That is, we show ku1 = 0. The diagram chasing needed to prove
this is summarized by the following display (where numbers indicate the progression of
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the diagram chase):
0_

5

��
0

� 6 // a � 1 //
_

2

��

0_

2
��

0
� 4 // • � 3 // 0

Notice that here we did not use any one of the conditions (i), (ii), (iii). Next, we prove
exactness at B1, for which we will use (i). kv1 6 mu1 can be proved by the following
diagram chase (to get the arrow 9 we use (i)):

• � 9 //
_

8

��

b
� 1 //

_

2

��

0_

2

��
• � 4 //

_

5

��

• � 3 //
_

3

��

0

0
�

7
// • �

6
// 0

mu1 6 kv1 (or, equivalently, v1u1 = 0) can be proved as follows:

0_

5
��

a � 1 //
_

1

��

• � 3 //
_

2

��

•_
4
��

• � 2 // • � 3 // 0
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Finally, we prove exactness at C1 (which amounts to showing that v1 is surjective). We
begin the diagram chase:

c_

2

��

� 1 // 0

a_

9

��

b
� 4 //

_

5

��

c′_

3
��

� 3 // 0

• �
7
//

_

8

��

• �
6
// 0

0

To be able to proceed we use (ii). Since g2(u2(a)) = g2(b) and v2(u2(a)) = 0, we can apply
(ii) to get an element b′ = b − u2(a) ∈ C2, such that g2(b

′) = 0 and v2(b
′) = v2(b). We

then replace b in the above display with b′ and continue the diagram chase (we get the
last arrow 12 by using (iii)):

• � 12 //
_

11
��

c_

2

��
b− u2(a) � 10 //

_

10
��

c′

0

The following 3× 3 lemma can be proved in a similar way (see Theorem 6.1):

5.2. Lemma. [The lower 3 × 3 lemma] In any subtractive normal category C, for any
3 × 3 diagram (4), if the first and second rows are exact sequences then so is the third
row.

The middle 3×3 lemma fails in a subtractive normal category, unless it is a homological
category (the following theorem is essentially well known):

5.3. Theorem. For a pointed regular category C the following conditions are equivalent:

(a) C is protomodular.
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(b) The middle 3× 3 lemma holds true in C, that is, for any 3× 3 diagram (4), if the
first and third rows are exact sequences, then the middle row is exact as soon as we
have v2u2 = 0.

(c) The short five lemma holds true in C, that is, for any commutative diagram

0 // A1
f1 //

u1

��

A2
f2 //

u2

��

A3
//

u3

��

0

0 // B1 g1

// B2 g2

// B3
// 0

with exact rows, if u1 and u3 are isomorphisms, then u2 is also an isomorphism.

Proof. (a)⇒(b) and (c)⇒(a) are well known (see e.g. [2]). To get (b)⇒(c), first we show
that (b) implies the following modified short five lemma: for any commutative diagram as
in (c), with exact rows, if u1 and u3 are isomorphisms, then u2 is a regular epimorphism.
For any diagram as in (c), construct the following diagram

0

��

0

��

0

��
0 // A1

u1 //

f1

��

B1
//

g1

��

0

��

// 0

0 // A2
u2 //

f2

��

B2
//

g2

��

0

��

// 0

0 // A3 u3

//

��

B3
//

��

0 //

��

0

0 0 0

If the assumptions in (c) are satisfied, then this diagram is a 3 × 3 diagram with top
and the bottom rows exact. Applying (b) we get that the middle row is exact. Thus,
u2 is regular epimorphism, proving the modified short five lemma. To get the short five
lemma, it suffices to be able to derive from the modified short five lemma the fact that
every regular epimorphism having a trivial kernel is an isomorphism. By Proposition 3.9,
we have this as soon as every split epimorphism having a trivial kernel is an isomorphism.
Let f : X → Y be a split epimorphism, with a splitting g : Y → X, and having a trivial
kernel. Then we obtain a commutative diagram

0 // 0 //

��

Y
1Y //

g

��

Y //

1Y

��

0

0 // 0 // X
f
// Y // 0
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with exact rows. It now follows from the modified short five lemma that f is an isomor-
phism.

It turns out that for a normal category, the upper and lower 3×3 lemmas are equivalent
to subtractivity, like the middle 3 × 3 lemma is equivalent to protomodularity (see also
Theorem 6.1).

5.4. Theorem. For any normal category C, the following conditions are equivalent:

(a) C is subtractive.

(b) The upper 3× 3 lemma holds true in C.

(c) The lower 3× 3 lemma holds true in C.

Proof. We have (a)⇒(b) and (a)⇒(c) by Lemmas 5.1 and 5.2, respectively.
(b)⇒(a): Consider a relation

R
r1

~~~~~~~~~
r2

  @@@@@@@

X X

in C. Suppose (1X , 1X) 6 (r1, r2) and (1X , 0) 6 (r1, r2). The first inequality gives that
both r1 and r2 are split epimorphisms and hence regular epimorphisms. The second in-
equality is equivalent to r1kr2 being an isomorphism, and similarly, r2kr1 is an isomorphism
if and only if (0, 1X) 6 (r1, r2) (note that both r1kr2 and r2kr1 are monomorphisms). So,
assuming that r1kr2 is an isomorphism, we want to show that r2kr1 is an isomorphism.
If r1kr2 is an isomorphism, then we get a 3 × 3 diagram where the second and the third
rows are exact:

0

��

0

��

0

��
0 // 0 //

��

Kr1

r2kr1 //

kr1

��

X

1X

��

// 0

0 // Kr2

kr2 //

1Kr2

��

R
r2 //

r1

��

X

��

// 0

0 // Kr2 r1kr2

//

��

X //

��

0 //

��

0

0 0 0

By (b), the top row is also exact, which means that r2kr1 is an isomorphism.
The proof of (c)⇒(a) is analogous, and uses the same diagram as above (with the roles

of r1 and r2 interchanged).
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6. Beyond normality

The main goal in this section is to show that in a pointed regular category, subtractivity
turns out to be equivalent to certain restricted homological diagram lemmas.

6.1. Theorem. For a pointed regular category C, the following conditions are equiva-
lent:

(a) C is a subtractive category.

(b) A modified upper 3× 3 lemma holds true in C: for any 3× 3 diagram (4), where g1

and h1 are monomorphisms, if the first and second rows are exact sequences then so
is the third row.

(c) The lower 3 × 3 lemma holds true in C, i.e. for any 3 × 3 diagram (4), if the first
and second rows are exact sequences then so is the third row.

Proof. The proof of (a)⇒(b) is the same as the proof of the upper 3× 3 lemma given in
the previous section (see Lemma 5.1). Indeed, the only time we used normality there was
to conclude that g1 and h1 are monomorphisms, which is now given as an assumption.

The proofs of (b)⇒(a) and (c)⇒(a) are the same as for Theorem 5.4.
(a)⇒(c): It suffices to show that in Set∗, for any 3 × 3 diagram (4), if the first and

second rows are exact sequences, and

(i) the span [u2, f2] is subtractive,

(ii) the span [g2, v2] is subtractive,

(iii) and the span [v2, g2] is subtractive,

then the third row is exact. Note that since h2 and v2 are regular epimorphisms, also v3 is
a regular epimorphism, which implies exactness of the third row at C3. By the standard
diagram chase, exactness at A3 follows from (i); this diagram chase is summarized in the
following displays:

0_

9

��
a′′

� 10 // • � 7 //
_

6

��

•_
8

��
a′

� 4 //
_

3

��

• � 5 //
_

5

��

0

a �
1
//

_

2

��

0

0

0
� 12 // a′ − f1(a

′′) � 11 //
_

11

��

0

0
�

13
// a



THE POINTED SUBOBJECT FUNCTOR, 3× 3 LEMMAS, SUBTRACTIVITY OF SPANS 237

Exactness at B3 follows from (ii) and (iii). In particular, we use (ii) to show v3u3 = 0:

a′_

3
��

b
� 4 //

_

3

��

c′_

5
��

a �
1
//

_

2
��

• �
2
//

_

2
��

c

0 0

b− u2(a
′) � 6 //

_

6
��

c′_

5

��
0

�
7

// c

Finally, we use (iii) to show kv3 6 mu3 :

b′′
� 8 // •_

6

��

� 7 // 0

b′
� 4 //

_

3
��

•_
5

��
b

�
1
//

_

2
��

0

0

• � 10 //
_

11

��

b′ − g1(b
′′) � 9 //

_

9
��

0

• �
12

// b

The following interesting question was first answered by A. Ursini for varieties of
universal algebras, and the answer was presented in the more general context of regular
categories with binary coproducts in [22]: is it possible to obtain subtractivity as a kind
of restricted version of the short five lemma? In the theorem below (Theorem 6.2) we
refine the answer given in [22].

As defined in [14] (see also [13]), an ideal (in a pointed regular category C) is a
monomorphism m which is a regular image of a normal monomorphism, i.e. m is part of
a commutative diagram

• //

m′

��

•

��
m

��
• // •

where horizontal arrows are regular epimorphisms and m′ is a normal monomorphism.
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6.2. Theorem. For a pointed regular category C the following conditions are equivalent:

(a) C is subtractive.

(b) Short five lemma for ideals holds true in C: for any commutative diagram

0 // A1
f1 //

u1

��

A2
f2 //

u2

��

A3
//

u3

��

0

0 // B1 g1

// B2 g2

// B3
// 0

with exact rows, if u1 and u3 are isomorphisms, then u2 is an isomorphism provided
it is an ideal.

Proof. (a)⇒(b): A monomorphism u2 is an ideal if and only if it is part of a commutative
diagram

C1

h1

��

e1 // A2

u2

��

// 0

C2
//

e2

//

h2

��

B2
// 0

C3

with exact rows and exact column. We show that u2 is a regular epimorphism (and hence
an isomorphism), by a chase along the diagram

C1
e1 //

h1

��

A2
f2 //

u2

��

A3

u3

��
C2 e2

//

h2

��

B2 g2

// B3

C3

Below, we use subtractivity of the spans [g2e2, h2], [e2, h2] and [h2, e2] for the steps 5,
10, and 11, respectively. Apart from this, we only use exactness at C2, the fact that
u1, u3, e1, e2, f2 are regular epimorphisms, and the inequality kg2 6 mg1 .

a � 4 // • � 3 // •_
2

��
c �

2
//

_

3

��

b
�

1
// •

c′

a′
� 9 // •_

8

��
c− h1(a)

�
5

55� 6 //
_

5
��

• � 7 // 0

c′
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(c− h1(a))− h1(a
′) �

10
//

_

10
��

0

c′

• � 13 //
_

12
��

•_
14

��
c− ((c− h1(a))− h1(a

′)) �
11
//

_

11
��

b

0

(b)⇒(a) follows directly from Corollary 3.6 in [22].

7. Final remarks

We now explain more elaborately than in Remark 3.1, how the diagram-chasing method
for abelian categories presented in Chapter VIII of S. Mac Lane’s book [23], can be
adapted to subtractive normal categories.

Let C be a pointed regular category. For each object X in C define a member x of X
to be a morphism x with codomain X. When x is a member of X, we write x ∈m X, as
in [23]. If x, y ∈m X, define x ≡ y to mean that there are regular epimorphisms u and
v with xu = yv. This is the same as to say that Im(x) = Im(y). Thus, we can think of
elements of S(X) as equivalence classes of members in X.

Theorem 3 in Chapter VIII of [23] gives “elementary rules for chasing diagrams” in
abelian categories. Due to the preservation/reflection properties of S established earlier,
we have the following analogue of this theorem:

7.1. Theorem. [Elementary rules for chasing diagrams in subtractive normal categories]
Let C be a subtractive normal category. Then members of objects in C obey the following
rules:

(a) f : X → Y is a monomorphism if and only if, for all x ∈m X, fx ≡ 0 implies
x ≡ 0;

(b) f : X → Y is a monomorphism if and only if, for all x, x′ ∈m X, fx ≡ fx′ implies
x ≡ x′;

(c) g : Y → Z is a regular epimorphism if and only if, for each z ∈m Z there exists
y ∈m Y such that gy ≡ z;

(d) h : X → Z is a zero morphism if and only if, for all x ∈m X, hx ≡ 0;

(e) A sequence X
f // Y

g // Z is exact at Y if and only if gf = 0 and for each
y ∈m Y with gy ≡ 0 there exists x ∈m X with fx ≡ y;

(f) (Subtraction) Given g : B → C and f : B → D, for any x, y ∈m B with gx ≡ gy
and fx ≡ 0, there exists z ∈m B with gz ≡ 0 and fy ≡ fz.
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As we saw, in some cases we can still perform carry out diagram chasing in subtractive
regular categories. But then the first two rules are not available any more:

7.2. Theorem. [Elementary rules for chasing diagrams in subtractive regular categories]
Members of objects in a subtractive regular category C obey the rules 7.1(c-f).

The author invites the Reader to formulate, as an exercise, elementary rules for chasing
diagrams in homological categories (see also [19]).

Notice that the rules 7.1(c,d,e) hold true for members of objects in any pointed reg-
ular category (see Section 3). Note also that the condition 7.1(a) is equivalent to the
condition 3.10(a), and hence, by Corollary 3.10, it implies 7.1(b). By Corollary 4.4, the
condition 7.1(f) is equivalent to the category being subtractive.

It can be easily seen that all results for normal categories that we obtain in Section 5,
are also valid for pointed regular categories in which members of objects obey the following
rule:

(M) if a morphism f has a trivial kernel then for all x, x′ ∈m X, fx ≡ fx′ implies x ≡ x′.

In other words, the above condition states that the pointed subobject functor S carries
morphisms with trivial kernels to monomorphisms in Set∗. In particular, the condition
7.1(a) clearly implies (M). It would be interesting to find examples (if there are any) of
pointed regular categories showing that all three conditions — normality, the condition
7.1(a) and the condition (M) — are different from each other.

The true role of normality becomes apparent in the investigation of the snake lemma.
In a forthcoming paper it will be shown that for a pointed regular category C the (suitably
formulated) snake lemma is in fact equivalent to C being a subtractive normal category.

Towards a further generalization: while the use of the pointed subobject functor for
diagram chasing is in fact a rather limited technique compared to M. Barr’s embedding
theorem for regular categories [1], it inspires to lift this theory beyond regular categories
where the Grothendieck topology of regular epimorphisms is replaced with a cover relation
in the sense of [20] (see also [21]); this direction of investigation leads to a unified frame-
work for proving diagram lemmas in homological categories in the sense of F. Borceux
and D. Bourn [2], and in homological categories in the sense of M. Grandis [9]. Work in
this direction is currently in progress (the proposed general setting will also include that
of quasi-pointed categories considered in [4]).

Finally, it would be interesting to investigate “relative” versions of these results in the
style of [15] (see also [16]).
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