
Theory and Applications of Categories, Vol. 23, No. 2, 2010, pp. 22–41.

HOMOLOGY OF N-FOLD GROUPOIDS

Dedicated to Dominique Bourn on the occasion of his sixtieth birthday

TOMAS EVERAERT AND MARINO GRAN

Abstract. Any semi-abelian category A appears, via the discrete functor, as a full
replete reflective subcategory of the semi-abelian category of internal groupoids in A.
This allows one to study the homology of n-fold internal groupoids with coefficients in
a semi-abelian category A, and to compute explicit higher Hopf formulae. The crucial
concept making such computations possible is the notion of protoadditive functor, which
can be seen as a natural generalisation of the notion of additive functor.

Introduction

In recent years a new approach to non-abelian homological algebra is being developed
in the context of homological [1] and of semi-abelian categories [23]. A crucial role in
the definition of these categories is played by the notion of “protomodularity” discovered
by Bourn [5], which is a fundamental property the categories of groups, rings, algebras,
crossed modules, topological groups and other similar structures all have in common.

In a semi-abelian category A, it has been possible to develop a theory of higher central
extensions [15, 14], a generalisation of the theory by Janelidze and Kelly [22] also inspired
by [20], allowing one to define and study a natural notion of semi-abelian homology of a
given object G inA, where the “coefficients” can now be taken in any Birkhoff subcategory
B of A. The corresponding “homology objects”, which can be expressed in terms of higher
Hopf formulae involving generalised commutators depending on the choice of B, include,
in particular, the formulae giving the homology groups of a group discovered by Brown
and Ellis [10]: for this, it suffices to choose for A the category Gp of groups and for B
its Birkhoff subcategory Ab of abelian groups. Other examples have been studied in [15],
obtaining, for instance, the new formulae describing the homology of a precrossed module
with coefficients in the category XMod of crossed modules.

Once the general theory has been settled, the crucial step in order to make the Hopf
formulae precise in specific examples consists in finding an explicit characterisation of the
higher central extensions. In some cases, it is not easy to find such a characterisation:
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accordingly, it is natural to look for some additional “good” properties of the reflector
from A to B which could be helpful to effectively compute the commutators appearing in
the formulae of the homology objects.

In this paper we introduce and begin to study a property which is useful for this
purpose, namely the notion of protoadditive functor, which can be seen as a generalisation
of the classical notion of additive functor: when A and B are pointed protomodular
categories, a functor F :A −→ B is protoadditive if it preserves split short exact sequences.
The protoadditivity for a functor F :A −→ B is thus equivalent to its additivity whenever
both A and B are additive categories.

When a Birkhoff reflector F :A −→ B is protoadditive, it is quite simple to characterise
the higher central extensions. We examine this fact here in detail by looking at a chain of
Birkhoff adjunctions in which all the left adjoints are protoadditive functors, as we show
in the first section. If A is semi-abelian, the category Gpd(A) of internal groupoids and
functors is semi-abelian [7], and this implies that the same remains true for the category
Gpdn(A) = Gpd(Gpdn−1(A)) of n-fold internal groupoids. Consequently, it is meaningful
to investigate the semi-abelian homology of an n-fold internal groupoid with coefficients
in A by considering the chain of adjunctions

A
D
// Gpd(A)⊥

π0oo

D2
// Gpd2(A) . . . Gpdn−1(A)⊥

π2
0oo

Dn
// Gpdn(A) . . .⊥

πn0oo
(1)

where the Di’s and the πi0’s are the higher order “discrete” and “connected components”
functors, respectively. Observe that when the coefficients are taken in the semi-abelian
category A = Gp of groups, the objects of Gpdn(A) can be seen as the n-cat-groups
considered in [24]. The n-fold internal groupoids in the category of groups form an
interesting algebraic category, which has been intensively investigated in recent years, as
it shares many remarkable properties with the category of groups.

In the second section we obtain, by induction, a precise characterisation of the k-fold
central extensions of the n-fold internal groupoids relative to (1) (Theorem 2.12), yielding
a “higher extension version” of a result in [17] (recalled here below as Corollary 2.8). In
the last section we first show that the category Gpdn(A) of internal n-fold groupoids has
enough regular projectives whenever A has enough regular projectives (Proposition 3.2):
this is due to the fact that the forgetful functor U : Gpdn(A) −→ A sending an n-fold
internal groupoid to its “object of n-fold arrows” is monadic and preserves regular epi-
morphisms (Proposition 3.1). Finally, we give explicit Hopf formulae for the homology of
an n-fold internal groupoid (Theorem 3.3).

Acknowledgement. The authors would like to thank the referee for some useful sug-
gestions.

1. Internal groupoids and protoadditive functors

Let A be a semi-abelian category [23]. This means that A is
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• finitely complete and finitely cocomplete ;

• pointed, with zero object 0 ;

• Barr exact ;

• Bourn protomodular.

Recall that, in the presence of a zero object, the property of protomodularity of A can
be expressed by asking the validity of the split short five lemma : in any commutative
diagram of split short exact sequences in A

0 // K

u

��

// A

v

��

// B
oo

w

��

// 0

0 // K ′ // A′ // B′
oo // 0

the arrow v is an isomorphism whenever u and w are isomorphisms.
We denote an (internal) groupoid in A by A = (A,A0,mA, dA, cA, iA) or, more briefly,

by A: it can be pictured as a diagram in A of the form

A×A0 A
mA // A

dA //

cA
//
A0,iAoo (2)

where A0 represents the “object of objects”, A the “object of arrows”, A×A0A the “object
of composable arrows”, dA the “domain”, cA the “codomain”, iA the “identity”, and mA

the “composition”. Of course, these arrows have to satisfy the usual commutativity
conditions expressing, internally, the fact that A is a groupoid, as explained, for instance,
in [25]. A groupoid is connected if the canonical arrow (dA, cA):A→ A0×A0 is a regular
epimorphism. When A is a semi-abelian category, the category Gpd(A) of groupoids in
A and (internal) functors is again semi-abelian [7]; furthermore, the groupoid structure
on any (internal) reflexive graph is unique, when it exists, and the forgetful functor from
Gpd(A) to the category RG(A) of reflexive graphs in A is full [11].

In the present article we shall be interested in studying the higher central extensions
and the homology arising from the adjunction

A
D
// Gpd(A) ,⊥

π0oo
(3)

where D:A −→ Gpd(A) is the discrete functor associating, with any object A ∈ A, the
discrete equivalence relation on A, and the functor π0: Gpd(A) −→ A is the connected
components functor. This functor π0 sends a groupoid A as in (2) to the object π0(A) in
A given by the coequalizer of dA and cA.

Note that D restricts to an equivalence A ∼= Dis(A), where Dis(A) is the full sub-
category of Gpd(A) whose objects are the discrete equivalence relations. This category
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Dis(A) is clearly closed in Gpd(A) under subobjects and regular quotients, therefore it is
a Birkhoff subcategory of Gpd(A).

The adjunction (3) determines a torsion theory (T ,F) (in the sense of [8]) in the semi-
abelian category Gpd(A). Indeed, the subcategory F = Dis(A) of Gpd(A) is the “torsion-
free subcategory”, while the “torsion subcategory” T = ConnGpd(A) is the category
of connected groupoids in A. To see this, it suffices to observe that any groupoid A
determines a short exact sequence

0 // ΓA(0) //A
ηA // Dπ0(A) // 0 ,

where ηA: A −→ Dπ0(A) is the A-component of the unit of the adjunction (3) and
Dπ0(A) is then the discrete equivalence relation on the coequalizer of dA and cA, while
the kernel ΓA(0) of ηA is a connected groupoid, as one can easily see by checking that
ΓA(0) is precisely the full subgroupoid of A given by the “connected component of 0”.
Furthermore, any functor from a connected groupoid to a discrete groupoid clearly is
the zero arrow, so that also the second axiom HomGpd(A)(T ,F) = {0} in the definition
of torsion theory is satisfied. The fact that π0: Gpd(A) −→ A determines a torsion-free
reflection could also be deduced from the results in [4] and [8].

The reflection in (3) will be shown to have the following important property, which
will be defined in the context of pointed protomodular categories in the sense of Bourn
[5].

1.1. Definition. Let A and B be pointed protomodular categories. A functor F :A → B
is a protoadditive functor if it preserves split short exact sequences: if

0 // K // A // B
oo // 0 (4)

is a split short exact sequence in A, then

0 // F (K) // F (A) // F (B)
oo // 0

is a split short exact sequence in B.

Any additive functor between additive categories (with pullbacks) is protoadditive. In
particular any reflective subcategory of an additive category has a protoadditive reflector.
Of course, any left exact functor between pointed protomodular categories is protoaddi-
tive. In the homological and semi-abelian contexts any protolocalisation in the sense of
[3] gives a protoadditive functor.

The principal example of a protoadditive functor considered in the present article will
be the connected components functor π0: Gpd(A) −→ A, with A semi-abelian: remark
that this is not a protolocalisation, since π0 does not preserve kernels.

1.2. Theorem. Let A be a semi-abelian category. Then π0: Gpd(A) −→ A is a pro-
toadditive functor.
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Proof. As explained in [4], the adjunction (3) can be decomposed into the composite of
two adjunctions as in the diagram

A
D
// Eq(A)⊥

π0oo

H
// Gpd(A)⊥

Suppoo

where Eq(A) is the category of (internal) equivalence relations in A, H: Eq(A)→ Gpd(A)
is the inclusion and its left adjoint Supp : Gpd(A) → Eq(A) is the “support” functor,
sending a groupoid A = (A,A0,mA, dA, cA, iA) as in (2) to the equivalence relation

Supp (A)

δA //

γA
//
A0,ιAoo

where Supp (A) is the “regular image” of the arrow (dA, cA):A→ A0×A0. Consequently,
in order to show that π0: Gpd(A)→ A is a protoadditive functor, it suffices to prove that
both the left adjoints Supp : Gpd(A) → Eq(A) and π0: Eq(A) → A preserve split short
exact sequences, and this is what we are now going to check.

First, by applying the functor Supp to a split short exact sequence in Gpd(A)

0 //K
k //A

f
// B

soo // 0,

one gets the following commutative diagram in A :

Supp (K)

δK

��

γK

��

Supp (k)// Supp (A)

δA

��

γA

��

Supp (f)
// Supp (B)

Supp (s)oo

δB

��

γB

��
0 // K0 k0

// A0
f0

// B0

s0oo // 0.

(5)

It suffices to check that the upper sequence in (5) is left exact. But this follows from the
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3× 3-Lemma [6] applied to the following commutative diagram in A

0

��

0

��

0

��
0 // K[ηK]

��

// K[ηA]

��

// K[ηB]
oo

��

// 0

0 // K
k //

ηK

��

A
f

//

ηA

��

B
soo //

ηB

��

0

Supp (K)

��

Supp (k)
// Supp (A)

��

Supp (f)
// Supp (B)

��

Supp (s)oo

0 0 0

where η is the (“object of arrows component” of the) unit of the adjunction Supp a H.
Note that the upper sequence is indeed short exact: it can also be obtained by vertically
taking kernels in the following diagram of split short exact sequences:

0 // K
k //

(δK ,γK)
��

A
f

//

(δA,γA)
��

B
soo //

(δB ,γB)
��

0

0 // K0 ×K0 k0×k0
// A0 × A0

f0×f0
// B0 ×B0

s0×s0oo // 0.

Secondly, consider a split short exact sequence in Eq(A) :

0 // R

δR
��
γR
��

k // S

δS
��
γS
��

f
// T

soo //

δT
��
γT
��

0

0 // A0 k0
// B0

f0
// C0

s0oo // 0.
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The functor π0: Eq(A)→ A then induces the commutative diagram

0

��

0

��

0

��
0 // K[δR]

γR◦Ker (δR)

��

k // K[δS]

γS◦Ker (δS)

��

f

// K[δT ]
soo

γT ◦Ker (δT )

��

// 0

0 // A0
k0 //

qR

��

B0
f0

//

qS

��

C0

s0oo //

qT

��

0

π0(R)

��

π0(k)
// π0(S)

��

π0(f)
// π0(T)

��

π0(s)oo // 0

0 0 0

where the top sequence, induced by the “normalisation” of the equivalence relations R, S
and T (the vertical sequences are then exact by construction), is easily seen to be exact.
By the 3× 3-Lemma [6] it follows that the lower sequence is exact.

As we mentioned in the introduction, the fact that A is semi-abelian implies that the
category Gpdn(A) of n-fold groupoids is semi-abelian. When considering the composite
adjunction (1) we shall write Πn

0 = π0 ◦ π2
0 ◦ . . . ◦ πn0 : Gpdn(A) → A for the composite

reflector.

1.3. Proposition. Let A be a semi-abelian category. Then Πn
0 : Gpdn(A) −→ A is a

protoadditive functor for all n ≥ 1.

Proof. This follows easily from Theorem 1.2, by taking into account the fact that
Gpdn(A) = Gpd(Gpdn−1(A)).

2. Higher central extensions of n-fold internal groupoids

In this section, we shall characterise the higher central extensions of n-fold groupoids
in a semi-abelian category. As an extension of Janelidze and Kelly’s categorical notion
of central extension [22], higher central extensions have been defined in [15] in order to
study the Brown-Ellis-Hopf formulae [10] in the context of semi-abelian categories. We
shall adopt here the axiomatic approach to (higher) extensions from [14], which we now
briefly recall.

Let us write ArrA for the category of arrows in a categoryA. With a class of morphisms
E in a category with pullbacks A, one can associate a class E− of objects of A, and a
class E1 of morphisms of ArrA (commutative squares in A), as follows: E− consists of all
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objects A ∈ A with the property that there exists in E at least one arrow A −→ B or one
arrow C −→ A; E1 consists of all morphisms (f1, f0): a −→ b in ArrA

A1
f1

$$

a

��

r

  
P //

��

B1

b
��

A0 f0
// B0,

such that every arrow in the above commutative diagram is in E , where r is the unique
factorisation to the pullback P = A0 ×B0 B1. The full subcategory of A determined by
E− will be denoted by AE .

2.1. Definition. A class E of regular epimorphisms in a semi-abelian category A is a
class of extensions whenever it satisfies the following properties:

1. E contains all split epimorphisms in AE , and 0 ∈ E−;

2. E is closed under pulling back along arrows of AE , is closed under composition, and
if a composite g ◦ f of morphisms of AE is in E, then also g ∈ E;

3. E is completely determined by the class of objects E− in the following way: a regular
epimorphism f :A −→ B is in E if and only if both its domain A and its kernel K[f ]
are in E−;

4. For a commutative diagram with short exact rows in A as below,

0 // K //

k
��

A //

a

��

B // 0

0 // L // C // B // 0,

one has: if k ∈ E and a lies in AE , then a ∈ E.

2.2. Example. The class of all regular epimorphisms in a semi-abelian category is a
class of extensions in the sense of Definition 2.1. In this case E− = Ob(A) and AE = A.

If E is a class of extensions, then a morphism f ∈ E is called an (E-)extension, and
the full subcategory of ArrA determined by E is denoted by ExtEA or, simply, ExtA.
An element of E1 is called a double (E-)extension and the full subcategory of Arr2A =
Arr(ArrA) determined by E1 is denoted by Ext2A. The class of double E-extensions E1

is itself a class of extensions, in the (semi-abelian) category ArrA (see [14], Proposition
1.8). Therefore, inductively, any class of extensions E determines, for any k ≥ 1, a class of
extensions Ek in ArrkA, called (k+1)-fold extensions. The corresponding full subcategory



30 TOMAS EVERAERT AND MARINO GRAN

of Arrk+1A is denoted by Extk+1A. Note that, for any k ≥ 1, we have that (Ek)− = Ek−1

and (ArrkA)Ek = ExtkA (where E0 = E , Ext1A = ExtA and Arr1A = ArrA).
(Higher) central extensions in a semi-abelian category A are defined with respect to

a strongly E-Birkhoff subcategory B of A, by which we mean the following:

2.3. Definition. Let E be a class of extensions in a semi-abelian category A, and B a
full and replete reflective subcategory of AE with reflector I:AE −→ B. B is a strongly E-
Birkhoff subcategory of A if for every E-extension f : A −→ B the canonical commutative
square induced by the adjunction

A
ηA //

f

��

I(A)

I(f)
��

B ηB
// I(B)

(6)

is a double E-extension.

Remark that, under the assumptions of Definition 2.3, all ηA:A → I(A) are regular
epimorphisms (since they are E-extensions), thus B is a (regular epi)-reflective subcategory
of AE .

2.4. Example. Any Birkhoff subcategory of a semi-abelian category is a strongly E-
Birkhoff subcategory of A, with E the class of all regular epimorphisms [22]. In particular,
this accounts for the subcategory Disn(A) of Gpdn(A) of n-fold discrete equivalence rela-
tions, where A is a semi-abelian category and n ≥ 1.

Now, assume that B is a strongly E-Birkhoff subcategory of a semi-abelian category
A, where E is a class of extensions in A. For an object B of A, we write Ext(B) for the
full subcategory of the comma category A ↓ B determined by the arrows f :A→ B in E .
When g:E → B is an arrow with E ∈ E−, one defines the functor g∗: Ext(B) → Ext(E)
by associating, with an extension f :A→ B, its pullback g∗(f):E×B A→ A along g. We
write π1, π2:R[f ]→ A for the kernel pair projections.

2.5. Definition. Let E be a class of extensions in a semi-abelian category A, B a
strongly E-Birkhoff subcategory of A, f :A→ B an extension in E.

1. f :A→ B is a trivial extension when the square (6) is a pullback ;

2. f :A→ B is a normal extension when the first projection π1:R[f ]→ A (equivalently,
the second projection π2) is a trivial extension;

3. f :A→ B is a central extension when there exists a g:E → B in Ext(B) such that
g∗(f):E ×B A→ E is a trivial extension.
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2.6. Remark. By definition, every normal extension is central. Under our assumptions
one also has the converse (see Proposition 4.5 in [15]).

We shall write CExtBA for the full subcategory of ExtA determined by the central
extensions with respect to B.

Note that it follows from Definition 2.1 that the category AE has pullbacks of arbi-
trary morphisms along extensions, which are pullbacks in A. Since, moreover, any split
epimorphism in AE is an extension, it follows that AE is protomodular because A is so.
Furthermore, since B is a replete (regular epi)-reflective subcategory of AE , B is closed in
AE under products and subobjects, so that B is closed in AE under limits. Consequently,
B is protomodular as well.

The case where the reflector I:AE −→ B is protoadditive, is of interest:

2.7. Proposition. Let B be a strongly E-Birkhoff subcategory of A such that the re-
flector I:AE −→ B is a protoadditive functor. Then an extension f :A −→ B is central if
and only if K[f ] ∈ B.

Proof. Let f :A −→ B be an extension. Using Remark 2.6, f is a central extension if
and only if the first projection π1 of its kernel pair is trivial, i. e. if the right hand square
below is a pullback:

K[π1] //

��

R[f ]
π1 //

��

A

��
I(K[π1]) // I(R[f ])

I(π1)
// I(A).

Using that I preserves split short exact sequences, we see that both rows of the diagram
are short exact sequences, so that the right hand square is a pullback if and only if the
left hand vertical morphism is an isomorphism, i. e. if and only if K[π1] ∈ B. It suffices
now to note that K[π1] = K[f ].

Applying this proposition to the particular case of the adjunction (3), we find:

2.8. Corollary. [17] If A is a semi-abelian category, then the central extensions in
Gpd(A), with respect to Dis(A), are precisely the extensions f : A −→ B with K[dA] ∩
K[f ] = 0 (or, equivalently, K[cA] ∩K[f ] = 0) i.e. the discrete fibrations.

Proof. Consider an extension f : A −→ B of groupoids and its kernel K[f ], as in the
following diagram:

0 // K[f ]

dK[f ]

��

cK[f ]

��

// A

dA

��

cA

��

f // B //

dB

��

cB

��

0

0 // K[f0] // A0 f0
// B0

// 0.
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By Proposition 2.7 and Theorem 1.2, we know that f is central if and only if K[f ] is a
discrete equivalence relation. By protomodularity of A this is equivalent to f being a dis-
crete fibration. Since the right hand squares in the diagram are double extensions as split
epimorphisms between extensions, this is also equivalent to any of the two factorisations
A −→ A0 ×B0 B being a monomorphism. Again, by protomodularity, this amounts to
any of the conditions K[dA] ∩K[f ] = 0 or K[cA] ∩K[f ] = 0.

Let us now consider the case of n-fold groupoids, for n ≥ 1. As in the case n = 1,
we write A for the “object of n-fold arrows” of an n-fold groupoid A. If f : A −→ B is
a morphism in Gpdn(A), we write f for the morphism A −→ B “at the level of n-fold
arrows”. Furthermore, we write diA (1 ≤ i ≤ n) for the domain arrows starting from the
“object of n-fold arrows”; similarly, ciA will denote the codomain arrows.

Corollary 2.8 extends to the following:

2.9. Proposition. The central extensions with respect to the adjunction

A
Dn◦...◦D

// Gpdn(A)⊥

π0◦...◦πn0oo

are precisely the extensions f : A −→ B with K[diA] ∩K[f ] = 0 for all 1 ≤ i ≤ n.

Proof. Since Πn
0 = π0◦ . . .◦πn0 is a protoadditive functor by Proposition 1.3, an extension

f : A −→ B is central if and only if K[f ] ∈ Disn(A), which means that all the arrows in
the diagram of K[f ] are isomorphisms. This is easily seen to be equivalent to all diK[f ]

being isomorphisms (1 ≤ i ≤ n). By protomodularity of A, and because the diK[f ] are

restrictions of the diA to K[f ], this is equivalent to the conditions K[diA] ∩ K[f ] = 0
(1 ≤ i ≤ n).

Recall from [14] that the category CExtBA is a strongly E1-Birkhoff subcategory of
ArrA. This allows one to define double central extensions as those double extensions
that are central with respect to CExtBA and then, inductively, for k ≥ 2, k-fold central
extensions as those k-fold extensions that are central with respect to CExtk−1

B A (where
we have put CExt1BA = CExtBA, and CExtk−1

B A for the category of (k − 1)-fold central
extensions). If I is the reflector AE −→ B, with unit η, then we shall write Ik for the
reflector ExtkA −→ CExtkBA and ηk for the corresponding unit. If I is a protoadditive
functor, then so is I1, hence Ik, for any k ≥ 1, as we shall prove in the next proposition.

We denote the kernel of the unit ηA:A −→ I(A) by κA: [A] −→ A, for A ∈ A, so
that I(A) = A/[A]. This defines a functor [·]:AE −→ AE which is easily seen to be
protoadditive whenever I is a protoadditive functor.

2.10. Proposition. Let B be a strongly E-Birkhoff subcategory of a semi-abelian cate-
gory A with reflector I:AE −→ B. If I is a protoadditive functor, then so is the reflector
I1: ExtA −→ CExtBA. Moreover, I1 sends an extension f :A −→ B to the induced exten-
sion A/[K[f ]] −→ B.
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Proof. It suffices to prove that the reflection into CExtBA of an extension f :A −→ B
is given by the induced extension A/[K[f ]] −→ B. From this and from the fact that
[·] is protoadditive it will then easily follow, by using the 3 × 3-Lemma, that I1 is a
protoadditive functor, as desired.

First observe that [K[f ]] is a normal subobject of A: to see this, consider the following
diagram

[K[π1]]
[Ker (π1)]//

κK[π1]

��

[R[f ]]
[π1] //

κR[f ]

��

[A]

κA

��
K[π1]

Ker (π1)
// R[f ] π1

// A

where K[π1] = K[f ]. Since [·]:AE → AE is a protoadditive functor, both rows are short
exact sequences. It follows that the left hand square is a pullback, because κA is a
monomorphism. Consequently, [K[π1]] is a normal subobject of R[f ], as an intersection
of normal subobjects. The regular image of Ker (π1) ◦ κK[π1]: [K[π1]] → R[f ] along π2 is
then also a normal monomorphism: but this is just π2 ◦Ker (π1) ◦ κK[π1] = Ker (f) ◦ κK[f ],
as desired.

Next remark that A/[K[f ]] −→ B is a central extension: indeed, by the “double
quotient” isomorphism theorem (see Theorem 4.3.10 in [1]) its kernel is K[f ]/[K[f ]], so
that it belongs to B, as K[f ]/[K[f ]] = I(K[f ]). Then, by Proposition 2.7, A/[K[f ]] −→ B
is a central extension.

Now, let g:C −→ D be a central extension as well, and (a, b): f −→ g a morphism of
extensions. We need to show that there is a morphism a such that the following diagram
commutes:

A
GF ED

a

��
//

f

��

A
[K[f ]]

I1(f)

��

a // C

g

��
B B

b
// D.

For this, it suffices to note that there is a commutative square

[K[f ]] //

Ker (f)◦κK[f ]

��

[K[g]]

Ker (g)◦κK[g]

��
A a

// C,

and that [K[g]] = 0 because g is central, so that a ◦ Ker (f) ◦ κK[f ] = 0.

The above proposition will allow us to characterise the k-fold central extensions of n-
fold groupoids with respect to the Birkhoff subcategory Disn(A) in Theorem 2.12. First,
we continue to consider the general case.
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In order to fix notations, note that a k-fold arrow in a categoryA (k ≥ 1) can be seen as
a contravariant functor A:P(k)op −→ A, where P(k) is the powerset of k = {0, 1, . . . , k−
1} (here we consider the natural numbers by their von Neumann construction). If S ⊆ T
are subsets of k, let us write AS for the image of S by the functor A and aTS :AT −→ AS
for the image of S ⊆ T . If f :A −→ B is a morphism of k-fold arrows—a natural
transformation—we write fS:AS −→ BS for the S-component of f . Furthermore, we
also write (AS)S⊆k instead of A and (fS)S⊆k instead of f . Moreover, in order to simplify
our notations, we write ai instead of akk\{i} for the “initial” arrows Ak −→ Ak\{i} in the

diagram of A (0 ≤ i ≤ k − 1). Note that ArrkA can be identified with Arr(Arrk−1A) via
the isomorphism δ: ArrkA −→ Arr(Arrk−1A) given by sending a k-fold arrow A in A to
the morphism (

a
S∪{k−1}
S

)
S⊆k−1

: (AS∪{k−1})S⊆k−1 −→ (AS)S⊆k−1

of (k − 1)-fold arrows in A.
For a k-fold extension A, [A]k denotes the object K[ηkA]k, the “initial” (and only non-

zero [13]) object in the diagram of K[ηkA]k. Note that one has that (IkA)k = Ak/[A]k. If
the reflector I:AE −→ B is protoadditive, [A]k can be characterised as follows:

2.11. Proposition. Let B be a strongly E-Birkhoff subcategory of a semi-abelian cate-
gory A, where E is a class of extensions in A. If the reflector I:AE −→ B is protoadditive,
then, for any k ≥ 1 and any k-fold extension A, one has that

[A]k = [
⋂

0≤i≤k−1

K[ai]].

It follows that the k-fold central extensions with respect to B are precisely the k-fold ex-
tensions A with ⋂

0≤i≤k−1

K[ai] ∈ B.

Proof. The proof is by induction on k. Recall from Proposition 2.10 that, as soon as
I:AE −→ B is protoadditive, the reflector I1: ExtA −→ CExtBA, which is protoadditive as
well, is obtained as follows: for any extension f :A −→ B, I1(f) is the induced extension
A/[K[f ]] −→ B. This provides the case k = 1. Now suppose that, for some k − 1 ≥ 1,
the reflection Ik−1(A) of any (k−1)-fold extension A is the induced (k−1)-fold extension
determined by

(Ik−1(A))k−1 = Ak−1/[∩0≤i≤k−2K[ai]]

and (Ik−1(A))S = AS, for S ( k − 1. Then, again taking into account Proposition 2.10,
as well as the induction hypothesis, the reflection Ik(A) of a k-fold extension A is the
induced k-fold extension determined by

(Ik(A))k = Ak/[K[δ(A)]]k−1

= Ak/[
⋂

0≤i≤k−2

K[(K[δ(A)])i]]
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= Ak/[
⋂

0≤i≤k−2

K[ai] ∩K[ak−1]]

= Ak/[
⋂

0≤i≤k−1

K[ai]],

and (Ik(A))S = AS, for S ( k, as desired.

Let us then go back to the special case of n-fold groupoids. As above, we write diA
(1 ≤ i ≤ n) and ciA for the domain and codomain arrows starting from the “object of
n-fold arrows”, respectively.

2.12. Theorem. The k-fold central extensions with respect to the adjunction

A
Dn◦...◦D

// Gpdn(A)⊥

π0◦...◦πn0oo

are precisely the k-fold extensions A of n-fold groupoids, with

K[diA] ∩
⋂

0≤j≤k−1

K[aj] = 0

for all 1 ≤ i ≤ n.

Proof. By Proposition 2.11 a k-fold extension A of n-fold groupoids is central with
respect to A if and only if ⋂

0≤j≤k−1

K[aj] ∈ Disn(A).

This can be seen to be equivalent to all

di⋂
0≤j≤k−1K[aj ]

being isomorphisms and, by protomodularity of A, this amounts to their kernel being 0.
It remains to observe that

K[di⋂
0≤j≤k−1K[aj ]

] = K[diA] ∩
⋂

0≤j≤k−1

K[aj] = 0,

for all 1 ≤ i ≤ n.

3. Homology of n-fold internal groupoids

In this section, we shall characterise the generalised higher Hopf formulae introduced in
[15, 14] associated with the composite adjunction (1).

Recall that, in general, the Hopf formulae are defined with respect to the following
data: a semi-abelian category A, a class of extensions E in A, and a strongly E-Birkhoff
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subcategory B of A with corresponding unit η. Recall from the previous section that
those data induce, for each k ≥ 1, a class of extensions Ek of the semi-abelian category
ArrkA, and a strongly Ek-Birkhoff subcategory Bk = CExtkBA with unit ηk. Furthermore,
the assumption that AE has enough E-projective objects is made. Here an object P ∈ AE
is called E-projective if, for any extension f :A −→ B ∈ E and any morphism b:P −→ B
in A, there exists at least one morphism a:P −→ A such that f ◦ a = b:

P

b
��

a

~~
A

f
// B.

AE is said to have enough E-projective objects if, for any object A ∈ AE , there exists an
E-projective object P and an extension P −→ A. Thus, in particular, the Hopf formulae
can be considered in the following situation: A is a semi-abelian category with enough
regular projective objects and B is a Birkhoff subcategory of A.

Let us recall the definition. Consider A, E and B with the assumptions mentioned
above. First recall that, for k ≥ 1, a k-fold presentation of an object A ∈ AE is a k-fold
extension P such that PS is an E-projective object for any 0 6= S ⊆ k, and P0 = A. Since
AE has enough E-projective objects, it follows that for any object A ∈ AE and k ≥ 1,
there exists at least one k-fold presentation P of the object A. Then the Hopf formula
Hk+1(A,B)E = Hk+1(A,B) for the (k + 1)st homology of A, with respect to B, is defined
as

Hk+1(A,B) =
[Pk] ∩

⋂
0≤i≤k−1K[pi]

[P ]k
.

It turns out that this definition does not depend on the particular choice of k-fold pre-
sentation of the object A.

It was shown in [15] that the functors Hk+1(−,B):AE −→ B coincide with the Barr-
Beck left derived functors of the reflector I:AE −→ B, whenever the categoryA is monadic
over Set, the category of sets and maps, and E is the class of all regular epimorphisms in
A (so that B is a Birkhoff subcategory of A). Now, if AE has enough E-projective objects,
then ExtA = (ArrA)E1 has enough E1-projective objects as well, so that the higher Hopf
formulae can be considered with respect to ArrA, E1 and B1 = CExtBA. It was shown in
[13] that any extension f :A −→ B ∈ E induces a long exact sequence (G)

. . . −→ Hk+1(A,B) −→ Hk+1(B,B) −→ K[Hk(f,B1)] −→ Hk(A,B) −→ . . .

. . . −→ H2(A,B) −→ H2(B,B) −→ K[H1(f,B1)] −→ H1(A,B) −→ H1(B,B) −→ 0

in A. Here we recall that, for any A, E , B and A ∈ AE , by definition H1(A,B) = I(A).
In the case A = Gp is the variety of groups, and B = Ab the variety of abelian groups,
the final part of the above sequence is the classical Stallings Stammbach sequence of low
dimensional group homology. As explained in [16], the universality of the above long
exact sequence completely determines the Hopf formulae.
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In order to consider the Hopf formulae associated with the Birkhoff subcategory
Disn(A) of Gpdn(A) (n ≥ 1), we need that the category Gpdn(A) has enough regular
projectives. For this, it suffices that the category A has this property, as we are now
going to show. In fact, it suffices for this that the category A is, more generally, regular
and Mal’tsev, with finite colimits, rather than semi-abelian. Recall that a category A is
Mal’tsev if any (internal) reflexive relation in A is an equivalence relation.

Let us denote by Un the forgetful functor Gpdn(A) −→ A that maps an n-fold groupoid
A to its “object of n-fold arrows” A.

3.1. Proposition. When A is a regular Mal’tsev category with finite colimits, then the
functor Un: Gpdn(A) −→ A is monadic, for any n ≥ 1.

Proof. Since Gpdn(A) has all coequalisers, which are level-wise in A [17], Un preserves
and reflects coequalisers, hence it suffices by Beck’s Weak Monadicity Theorem (see,
exercise V I.7.2 [25]) to prove that Un has a left adjoint. Of course, it will suffice to prove
this in the case n = 1.

But U = U1 factors as U2 ◦ U1, where U1 is the inclusion functor and U2 the functor
that sends a reflexive graph (A,A0, dA, cA, iA) to the object A:

Gpd(A)
U1 // RG(A)

U2 // A.

The functor U1 is known to have a left adjoint (see Theorem 2.8.13 in [1]). We claim that
also U2 has a left adjoint, F2. Indeed, for an object A ∈ A, let F2(A) be the reflexive
graph

A+ A+ A

[i1,i1,i2] //

[i1,i2,i2]
//
A+ A,[i1,i3]oo

where the ij’s are the injections of A in the considered coproducts. This defines a functor
F2:A −→ RG(A) (with the obvious definition on morphisms). To see that F2 is left adjoint
to U2, it suffices to note that, for an object A and a reflexive graph B = (B,B0, dB, cB, iB),
sending a morphism f :A −→ B to the morphism of reflexive graphs

A+ A+ A
[iB◦dB◦f,f,iB◦cB◦f ] //

[i1,i1,i2]

��
[i1,i2,i2]

��

B

dB
��

cB
��

A+ A

OO

[dB◦f,cB◦f ]
// B0

OO

defines a bijection
HomA(A,B) ∼= HomRG(A)(F2(A),B),

which is natural both in A and B.
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3.2. Proposition. Let A be a regular Mal’tsev category with finite colimits and n ≥ 1.
Then Gpdn(A) has enough regular projective objects as soon as A has enough regular
projective objects.

Proof. As for the previous proposition, it suffices to prove the case n = 1. This follows
from the fact that the forgetful functor U : Gpd(A) −→ A is monadic and preserves regular
epimorphisms. In order to explain why this is the case, let us write F for the left adjoint
to U : Gpd(A) −→ A and µ and ϕ for the unit and counit of this adjunction.

Now, for any groupoid A in A, and any projective presentation p:P −→ U(A) of
U(A), we claim that ϕA ◦ F (p):F (P ) −→ A is a projective presentation of A. Indeed,
on the one hand, we have that ϕA ◦ F (p) is a regular epimorphism because both F (p)
and ϕA are: it is easily verified in this case that the counit ϕA is a regular epimorphism
(but this is in fact true for any monadic functor U with left adjoint F [25]); and F (p)
is a regular epimorphism as the image of the regular epimorphism p by the left adjoint
functor F .

On the other hand, we have that F (P ) is a projective object of Gpd(A). Indeed, let
g: B −→ C be a regular epimorphism and c:F (P ) −→ C be any morphism in Gpd(A).
Since U preserves regular epimorphisms and P is projective, there exists a morphism b in
A such that the right hand triangle here below commutes :

F (P )
ϕB◦F (b)

}}
c

��

P

U(c)◦µP
��

b

zz
B g

// C U(B)
U(g)
// U(C).

Note that the morphism U(c) ◦ µP corresponds to c via the bijection

HomA(P,U(C)) ∼= HomGpd(A)(F (P ),C)

and that b corresponds to ϕB ◦ F (b) via the bijection

HomA(P,U(B)) ∼= HomGpd(A)(F (P ),B).

Using the naturality of the above bijections, we can now conclude that ϕB ◦ F (b) makes
the left hand triangle commute.

Let us now characterise the higher Hopf formulae associated with the adjunction (1)
in the case that A has enough regular projective objects.

For an n-fold groupoid A (n ≥ 1) in a semi-abelian category A, ΓA(0) denotes the
full n-fold subgroupoid determined by the connected component of 0: ΓA(0) is the kernel
K[ηnA] of the unit ηn: 1Gpdn(A) ⇒ Dn ◦ Πn

0 in A, i. e. ΓA(0) = [A]Disn(A). Thanks to
Proposition 2.11, we find that the Hopf formulae take the following shape:
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3.3. Theorem. Let A be a semi-abelian category with enough regular projective objects,
and A an n-fold groupoid in A. For k ≥ 1 and P an arbitrary k-fold presentation of A,
one has that

Hk+1(A,Disn(A)) =
ΓPk(0) ∩

⋂
0≤i≤k−1K[pi]

Γ⋂
0≤i≤k−1K[pi](0)

.

In particular, the right hand expression is independent of the choice of k-fold presentation
of A.

3.4. Remark. By Proposition 1.5.11 in [13], Hk+1(A,Disn(A)) belongs to the Birkhoff
subcategory A ∼= Disn(A) of Gpdn(A).

Let us finally mention that the long exact homology sequence (G) particularises to
the following:

3.5. Proposition. Any short exact sequence of n-fold groupoids

0 //K //A
f // B // 0

in a semi-abelian category A with enough regular projective objects induces a long exact
homology sequence

. . . −→ Hk+1(A,Disn(A)) −→ Hk+1(B,Disn(A)) −→ K[Hk(f ,Disn(A)1)]

−→ Hk(A,Disn(A)) −→ Hk(B,Disn(A)) −→ . . .

. . . −→ H1(K,Disn(A)) −→ H1(A,Disn(A)) −→ H1(B,Disn(A)) −→ 0

Proof. It suffices to prove that K[H1(f ,Disn(A)1)] = H1(K,Disn(A)). From Proposition
2.10 it follows that (Πn

0 )1(f) is the morphism A/[K]Disn(A) −→ B induced by f , so that

K[(Πn
0 )1(f)] = K/[K]Disn(A) = Πn

0 (K),

hence
K[H1(f ,Disn(A)1)] = K[(Πn

0 )1(f)] = Πn
0 (K) = H1(K,Disn(A)).
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