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TENSOR PRODUCTS OF SUP-LATTICES AND GENERALIZED
SUP-ARROWS

T. KENNEY AND R.J. WOOD

Abstract. An alternative description of the tensor product of sup-lattices is given
with yet another description provided for the tensor product in the special case of CCD
sup-lattices. In the course of developing the latter, properties of sup-preserving functions
and the totally below relation are generalized to not-necessarily-complete ordered sets.

1. Introduction

We write sup for the category of complete lattices and sup-preserving functions and speak
of its objects as sup-lattices. When sup is considered as a category over set, the category
of sets, by the obvious forgetful functor, bi-sup-preserving functions make sense. Given
sup-lattices M , N , and L, a function φ :M × N // L is bi-sup-preserving if it preserves
suprema in each variable separately. Every sup-preserving φ : M × N // L is bi-sup-
preserving (unlike the corresponding situation for abelian groups) but the converse is not
true. If φ : M × N // L is bi-sup-preserving and l : L // L′ is sup-preserving, then the
composite lφ :M×N // L′ is bi-sup-preserving. The tensor productM⊗N for sup-lattices
M and N is the codomain for a universal bi-sup-preserving function ι :M ×N // M ⊗N ,
composition with which provides a natural bijection between sup-preserving functions
f :M ⊗N // L and bi-sup-preserving functions φ :M ×N // L, as in:

M ×N M ⊗Nι //M ×N

L

φ

��?
??

??
??

??
??

??
M ⊗N

L

f

��

It is now classical that M ⊗N can be constructed as the quotient of the free sup-lattice
on M × N , obtained from the smallest congruence ≡ with (

∨
imi, n) ≡

∨
i(mi, n) and

(m,
∨
i ni) ≡

∨
i(m,ni). The free functor P : set // sup is given by the power set and

The first author did part of this work while an AARMS-funded postdoctoral fellow at Dalhousie
University, and part of this work while a postdoctoral researcher at Univerzita Mateja Bela. The second
author gratefully acknowledges financial support from the Canadian NSERC. Diagrams typeset using M.
Barr’s diagram package, diagxy.tex.

Received by the editors 2010-02-06 and, in revised form, 2010-05-26.
Transmitted by Susan Niefield. Published on 2010-05-31.
2000 Mathematics Subject Classification: 18A25.
Key words and phrases: adjunction, tensor product, totally below, CCD, idempotent.
c© T. Kenney and R.J. Wood, 2010. Permission to copy for private use granted.

266



TENSOR PRODUCTS OF SUP-LATTICES AND GENERALIZED SUP-ARROWS 267

direct images. For our purposes, the best references for this approach are [J&T] and
[PIT], but the story is much older than even the first of those papers.

The quotient P(M × N) // M ⊗ N , being an arrow in sup, has a right adjoint in
ord, the 2-category of ordered sets, so that in ord, M ⊗N is a full reflective subobject of
P(M ×N). It should be, and is, easier to give an explicit description of M ⊗N as a full
reflective subobject, and this is our purpose in Section 3. We find it convenient to regard
sup as a 2-category over ord. The 2-functor sup // ord has a left 2-adjoint, and bi-sup-
preserving functions are automatically in ord so that we could simply lift the classical
approach to ord. However, the 2-dimensional structure of ord allows us to exploit the
calculus of adjoints within ord, and this simplifies the description of the tensor product
considerably. We first arrive at our description of the tensor product using some of its
known properties, but we also show that our description allows a direct verification of the
defining universal property.

In Section 4, we study sup-preserving functions in terms of upper and lower bounds,
arriving quickly at a definition of sup-preserving function that makes sense in the absence
of suprema (and infima). We study the sup-completion of an ordered set in the category
of sup-preserving functions. We build on this work in Section 5, to describe and study the
totally below relation for orders with no completeness properties. We isolate a property
of ordered sets, which we call STB, that captures the essence of completely distributive
(CCD) lattices, in the sense that a sup-lattice is CCD if and only if its underlying ordered
set is STB. More remarkably, we show, in Theorem 5.9, that an ordered set is STB if and
only if its sup-preserving sup-completion is CCD.

In Section 6 we apply our study of the totally below relation to give a very simple
description of the tensor product of sup-lattices in the case that they are CCD sup-lattices.
Section 2 sets some notation and recalls a few of the tools that we need.

2. Preliminaries

2.1. It is convenient to take an object (X,≤) of ord to be a set X together with
a reflexive, transitive relation ≤. From our perspective, antisymmetry is an unnecessary
and unnatural requirement. If we have x ≤ y and y ≤ x in X, then x and y are isomorphic
elements and we could write x ∼= y. But since x ∼= y looks both pedantic and irritating,
we will usually write x = y in this case and treat it as an abuse of notation.

The arrows of ord are order-preserving functions, which we freely call functors. Given
our interests here, we note that a bi-sup-preserving function φ :M ×N // L is necessarily
a functor. For, if (m,n) ≤ (m′, n′) then

φ(m,n) ≤ φ(m,n) ∨ φ(m,n′) ∨ φ(m′, n) ∨ φ(m′, n′) = φ(m ∨m′, n ∨ n′) = φ(m′, n′)

The 2-cells of ord are (pointwise) inequalities of functors.

2.2. The free sup-lattice on (X,≤) is D(X,≤), the set of subsets S of X for which
x ≤ y ∈ S implies x ∈ S, ordered by inclusion. We call the elements of DX, downsets of
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(X,≤). For a functor f :X // A and a downset S ∈ DX, we have

Df(S) = {a ∈ A | (∃x)(a ≤ fx & x ∈ S)}

For all f , Df has a right adjoint Df : DA // DX given by inverse image. In turn, Df
has a right adjoint Df :DX // DA given by:

Df(S) = {a ∈ A | (∀x)(fx ≤ a =⇒ x ∈ S)}

Thus for any f :X // A we have Df a Df a Df :DX // DA.
All functors in ord are faithful, so if f is full then Df ⊆ Df follows from general

adjunction calculations. However, it is easy to argue directly with the quantifiers. Suppose
that a ≤ fx0 and x0 ∈ S. Then for any x, if fx ≤ a then fx ≤ fx0, which gives x ≤ x0 ∈ S
by fullness, and x ∈ S because S is a downset.

The inverter of an inequality f ≤ g : X // A in ord is just the full suborder of X
determined by the set {x ∈ X | g(x) ≤ f(x)}. In particular:

2.3. Proposition. If f :X // A and Df ⊆ Df then the inverter is

{Y ∈ DX | Df(Y ) ⊆ Df(Y )} = {Y ∈ DX | (∀B ∈ DA)(Df(B) ⊆ Y =⇒ B ⊆ Df(Y ))}

We remark that the implication in the equation of the proposition can be replaced by
“if and only if” because the other implication holds automatically.

2.4. The unit for the 2-adjunction D a | − | : sup // ord is the full (and faithful)
downsegment functor ↓X :X // |DX| in ord, where ↓X(x) = {y ∈ X | y ≤ x}. Writing
D also for the resulting 2-monad on ord, we recall that it has the KZ-property which,
as characterized in [MAR], means that its multiplication components

⋃
X :DDX // DX

satisfy D ↓X a
⋃
X a ↓DX . We can verify this condition using subsection 2.2, for we have

(D ↓
X

)(S) = {T ∈ DX | (∀x)(↓
X

(x) ⊆ T =⇒ x ∈ S)} = {T ∈ DX | T ⊆ S} = ↓
DX

(S)

Since suprema for DX are given by union, we have
⋃
X a ↓DX . Thus the equality

D ↓X = ↓DX just established (a special case of a key result in [S&W]) shows that
⋃
X =

D ↓X a D ↓X and hence D ↓X a
⋃
X . It is convenient to record here that

(D ↓
X

)(S) = {T ∈ DX|(∃x)(T ⊆ ↓
X
x & x ∈ S)} = {T ∈ DX|(∃x)(T ⊆ ↓

X
x ⊆ S)}

2.5. Because sup is the 2-category of algebras ordD for the KZ-monad, it follows that,
for each sup-lattice M , we have a reflexive coinverter diagram in sup.

DM DDM
vv
D
∨

DM DDMff ⋃
M

KS
DMM

∨
oo

Reflexivity is provided by D ↓M :DM // DDM , and we note D
∨
a D ↓M a

⋃
M . More-

over, the coinverter is | − |-contractible with data provided by the right adjoints in the
adjunctions

∨
a ↓M :M // DM and

⋃
M a ↓DM :DM // DDM .
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3. Tensor Products of Sup-Lattices

3.1. We know that the tensor product of sup-lattices has a right adjoint in each variable
separately, so that, for general reasons, a tensor product of reflexive coinverters is a
reflexive coinverter. Thus for sup-lattices M and N , we have M ⊗N the coinverter of

DM ⊗DN DDM ⊗DDN
ss

D
∨
⊗D

∨
DM ⊗DN DDM ⊗DDNkk ⋃

M⊗
⋃

N

KS

However, the tensor product of free lattices simplifies:

3.2. Lemma. For X and Y in ord, DX ⊗ DY
' // D(X × Y ) in sup where the iso-

morphism corresponds to the bi-sup-preserving functor γ : DX × DY // D(X × Y ), the
downset comparison functor for the left exact functor Γ = − × − : set × set // set, as
defined and studied in [RW1].

Proof. (Sketch) In general, γX : ΓDX // DΓX corresponds to the order ideal ΓDX // ΓX
obtained by applying Γ to the order ideal ↓+

X : DX // X, arising from ↓ : X // DX. In
the case at hand, γ(S, T ) = S × T . We establish the isomorphism by a Gentzen-Lawvere
proof tree. We follow Kelly’s notation (see [KEL]) in using sup0(−,−) for the ord hom
for sup and sup(−,−) for the sup-enriched hom. So sup0(L,L′) = |sup(L,L′)|. For
L in sup and Y in ord, we write LY for the cotensor in the sense of enriched category
theory and |L|Y for the exponential in ord. Thus |LY | ∼= |L|Y .

D(X × Y ) // L in sup

X × Y // |L| in ord

X // |L|Y in ord

X // |LY | in ord

DX // LY in sup

Y // sup0(DX,L) in ord

Y // |sup(DX,L)| in ord

DY // (sup(DX,L)) in sup

DX ×DY // L bi-sup-preserving

Taking L = D(X × Y ) and starting with the identity, we leave the reader the task of
showing that the last line results in γ :DX ×DY // D(X × Y ) : (S, T )| // S × T .

We recall from [RW1] that γ.Γ ↓X = ↓ΓX , so ↓x× ↓ y = γ(↓x, ↓ y) = ↓(x, y).
The next, well-known lemma recalls that coinverters in sup are calculated easily via

inverters in ord.
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3.3. Lemma. For

X A
xx

f

X Aff
g

KS

in sup (where we use double-shafted arrows for instances of inequality) with f a φ and
g a γ in ord, and

X A

φ

%%
X A

γ

99��
I X

κ //

an inverter in ord, the full (and faithful) κ has a left adjoint k :X // I which provides a
coinverter for g // f . Moreover, if h : X // J in sup coinverts g // f , then the unique
l : I // J satisfying `k = h is given by ` = hκ.

3.4. Note that the inverter of D ↓X ⊆ D ↓X is

{Y ∈ DX|(∃x)(Y = ↓
X
x)}

which, as shown in [RW2], is the Cauchy completion of X. (It is also the antisymmetriza-
tion of X.)

3.5. Theorem. The tensor product of sup-lattices M and N can be calculated as the
inverter

M ⊗N D(M ×N)κ // D(M ×N) D(DM ×DN)

D(↓M ×↓N )
,,

D(M ×N) D(DM ×DN)

D(↓M ×↓N )

22��

Explicitly

M ⊗N = {W ∈ D(M ×N)|(∀(S, T ) ∈ DM ×DN)(S × T ⊆ W =⇒ (
∨
S,

∨
T ) ∈ W )}

and this subset of D(M ×N) is reflective with the reflector providing the coinverter of the
diagram in 3.1.

Proof. The first and last parts of the statement follow from using Lemma 3.3 to calculate
the coinverter of the the diagram in 3.1, after rewriting the domain of the 2-cell using
Lemma 3.2. Since the domain of the relevant 2-cell in 3.1 is the right adjoint of the right
adjoint of the codomain, the codomain of the inverter 2-cell must be the right adjoint of
the right adjoint of D(↓M ×↓N), which by subsection 2.2 is D(↓M ×↓N).

For the explicit description: using 2.2 we have

D(↓
M
× ↓

N
)(U) = {(S, T ) ∈ DM ×DN | (∃(m,n))((S ⊆ ↓m & T ⊆ ↓n) & (m,n) ∈ U)}
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and

D(↓
M
× ↓

N
)(U) = {(S, T ) ∈ DM ×DN | (∀(m,n))((↓m ⊆ S & ↓n ⊆ T ) =⇒ (m,n) ∈ U)}

= {(S, T ) ∈ DM ×DN | S × T ⊆ U}
From these descriptions, we see that M⊗N , calculated in ord, is the subset of D(M×N)
consisting of those W satisfying

(∀(S, T ) ∈ DM ×DN)(S × T ⊆ W =⇒ (∃(m,n))(S ⊆ ↓m & T ⊆ ↓n & (m,n) ∈ W ))

Because M and N are sup-lattices, we can replace S ⊆ ↓m with
∨
S ≤ m and T ⊆ ↓n

with
∨
T ≤ n and the condition above simplifies to

(∀(S, T ) ∈ DM ×DN)(S × T ⊆ W =⇒ (
∨
S,

∨
T ) ∈ W )

3.6. We will write (−)∨∨ for the left adjoint to the inclusion κ :M ⊗N // D(M ×N).
Of course, infima in M ⊗N are given by intersection, as in D(M ×N), while for any S
in D(M ⊗N), we have

∨
S = (

⋃
S )∨∨.

For any W ∈M ⊗N , the special rectangles M × ∅ = ∅ and ∅ ×N = ∅ are contained
in W so that we have (>M ,⊥N) ∈ W and (⊥M ,>N) ∈ W . Since W is a downset, the
axis wedge M × {⊥N} ∪ {⊥M} ×N is contained in W . Moreover, at least using Boolean
logic, it is clear that M × {⊥N} ∪ {⊥M} × N ∈ M ⊗ N , so that the bottom element of
M ⊗N is ⊥M⊗N = M × {⊥N} ∪ {⊥M} ×N .

Any downset is the union of the principal downsegments determined by its elements.
Thus for any W in D(M × N), we have W =

⋃
{↓(m,n)|(m,n) ∈ W}. For any W in

M ⊗N , we have

W = W∨∨ = (
⋃
{↓(m,n)|(m,n) ∈ W})∨∨ =

∨
{(↓(m,n))∨∨|(m,n) ∈ W} (1)

Define ι :M × N // M ⊗ N by ι(m,n) = (↓(m,n))∨∨. At least using Boolean logic, it is
easy to see that

(↓(m,n))∨∨ = ⊥M⊗N ∪ ↓(m,n) = M × {⊥N} ∪ ↓(m,n) ∪ {⊥M} ×N

It is suggestive to write m⊗ n for ι(m,n) = (↓(m,n))∨∨, so W =
∨
{m⊗ n|(m,n) ∈ W},

for any W ∈M ⊗N .
From Equation (1) it follows that, for any sup-preserving f, g :M ⊗ N // L, fι = gι

implies f = g. In fact, for any sup-preserving f such that fι = φ, we must have f(W ) =∨
{φ(m,n) | (m,n) ∈ W}. Since (m,n) ∈ W if and only if ι(m,n) ≤ W in M ⊗ N , f is

the left Kan extension of φ along ι. In particular, the identity is the left Kan extension
of ι along ι, so ι is dense.

Using known properties of tensor products of sup-lattices, we have deduced that tensor
products can be described as in Theorem 3.5. However, we can sharpen our understanding
of the concepts involved, by showing that the universal property of the tensor product
follows directly from the description in the theorem.
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3.7. Proposition. For sup-lattices M , N , and L, a functor φ :M ×N // L is bi-sup-
preserving if and only if the following equation holds, where γ is the downset comparison
functor mentioned in Lemma 3.2:

M ×N

DM ×DN

M ×N

∨
×
∨

��

DM ×DN D(M ×N)
γ // D(M ×N)

L

D(M ×N)D(M ×N) DL
Dφ // DL

L

∨
��

M ×N L
φ

//

Proof. Assume that φ is bi-sup-preserving. For any (S, T ) in DM×DN , we have (using

(−)↓
−

to denote the down-closure of a subset):

φ(
∨
S,

∨
T ) =

∨
{φ(s,

∨
T ) | s ∈ S}

=
∨
{
∨
{φ(s, t) | t ∈ T} | s ∈ S}

=
∨
{φ(s, t) | (s, t) ∈ S × T}

=
∨
{φ(s, t) | (s, t) ∈ S × T}↓

−

=
∨
Dφ(γ(S, T ))

Conversely, assume that the equation given by the diagram holds, and consider an
arbitrary subset A of M and an element b of N . Now

φ(
∨
A, b) = φ(

∨
A↓
−
,
∨
↓ b)

=
∨
Dφ(γ(A↓

−
, ↓ b))

=
∨
Dφ(γ(A↓

−
, {b}↓

−
))

=
∨
Dφ(A× {b})↓

−

=
∨
{φ(a, b)|a ∈ A}↓

−

=
∨
{φ(a, b)|a ∈ A}

where the second equation is the assumption. Similarly, for any a ∈ M and B ⊆ N ,
φ(a,

∨
B) =

∨
{φ(a, b)|b ∈ B}.

In the introduction, we remarked that if φ : M × N // L is bi-sup-preserving and
l :L // L′ is sup-preserving, then lφ is bi-sup-preserving. This follows immediately from
the characterization of bi-sup-preservation provided by Proposition 3.7, since “l preserves
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sups” is expressed by the following equation:

L L′
l

//

DL

L

∨
��

DL DL′Dl // DL′

L′

∨
��

which can be pasted to that of Proposition 3.7 along the edge
∨

: DL // L. We want
to show that ι : M × N // M ⊗ N is bi-sup-preserving. Our next lemma builds on our
remarks in 3.6.

3.8. Lemma. The following equation holds:

M ×N M ⊗Nι
//

DM ×DN

M ×N

∨
×
∨

��

DM ×DN D(M ×N)
γ // D(M ×N)

M ⊗N

(−)∨∨

��

Proof. Let (S, T ) be an element ofDM×DN . We must show (S×T )∨∨ = (↓(
∨
S,

∨
T ))∨∨.

From S × T ⊆ (S × T )∨∨, we have (
∨
S,

∨
T ) ∈ (S × T )∨∨, which is the same as

↓(
∨
S,

∨
T ) ⊆ (S × T )∨∨ and hence (↓(

∨
S,

∨
T ))∨∨ ⊆ (S × T )∨∨. On the other hand,

S × T ⊆ ↓
∨
S × ↓

∨
T = ↓(

∨
S,

∨
T )

so (S × T )∨∨ ⊆ (↓(
∨
S,

∨
T ))∨∨

3.9. Corollary. The functor ι :M ×N // M ⊗N is bi-sup-preserving.

Proof. Consider the following diagram in the light of the diagrams in Proposition 3.7
and Lemma 3.8:

M ×N M ⊗Nι
//

DM ×DN

M ×N

∨
×
∨

��

DM ×DN D(M ⊗N)D(M ⊗N)

M ⊗N

∨

��

DM ×DN D(M ×N)
γ // D(M ×N) D(M ⊗N)Dι //D(M ×N)

M ⊗N

(−)∨∨

��?
??

??
??

??
??

??
??

??
??

??

Commutativity of the outer square expresses the statement of the corollary. It remains
to establish the equation given by the triangle. Since all arrows in the triangle preserve
suprema, it suffices to show that the composites agree on principal downsets of M × N .
In other words we have only to show

(↓(m,n))∨∨ =
∨
{(↓(a, b))∨∨ | (a, b) ≤ (m,n)}

which is trivial.



274 T. KENNEY AND R.J. WOOD

3.10. Lemma 3.7 shows that if a functor φ preserves suprema then, unlike the situation
for abelian groups, φ is bi-sup-preserving. To see this, just observe that the triangle in
the following diagram commutes:

M ×N

DM ×DN

M ×N

∨
×
∨

��

DM ×DN D(M ×N)
γ // D(M ×N)

L

D(M ×N)D(M ×N) DL
Dφ // DL

L

∨
��

M ×N L
φ

//

D(M ×N)

M ×N

∨
zzttttttttttttttt

Also, since γ :DM ×DN // D(M ×N) has a left adjoint, given in terms of the product
projections p and r by 〈Dp,Dr〉 : D(M × N) // DM × DN , and γ.(↓M ×↓N) = ↓M×N ,
we have

DM ×DN D(M ×N)oo 〈Dp,Dr〉DM ×DN

M ×N

∨
×
∨

��

D(M ×N)

M ×N

∨
wwooooooooooooooooooo

Thus general suprema for M ×N are suprema of rectangles. Of course, this does not say
that bi-sup-preserving implies sup-preserving. (Given U in D(M ×N), Dp(U)×Dr(U)
is the smallest rectangle that contains U .)

Writing bisup(M×N,L) for the ordered set of bi-sup-preserving functors from M×N
to L, and recalling our remark in 3.6 that a sup-preserving f with fι = φ is necessarily
the left Kan extension of φ along ι, we have

sup(M ⊗N,L)
−·ι // bisup(M ×N,L)

one to one.

3.11. Theorem. The sup-lattice M ⊗ N , as given by Theorem 3.5, classifies functors
that are bi-sup-preserving, in the sense that

sup(M ⊗N,L)
−·ι // bisup(M ×N,L)

is a bijection.

Proof. Any φ : M × N // L gives rise to a unique sup-functor F : D(M × N) // L for
which F ↓M×N = φ, namely the left Kan extension of φ along ↓M×N , which is given by
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F =
∨
·Dφ. Now consider

D(M ×N) D(DM ×DN)
rr

D(
∨
×
∨

)

D(M ×N) D(DM ×DN)
ll

D(
∨
×
∨

)

KS
D(M ×N)

DL

Dφ

����
��

��
��

��
��

DL

L

∨
����

��
��

��
��

��
�

D(M ×N)M ⊗N (−)∨∨oo

To show that − · ι of the theorem statement is surjective, it suffices to show that if
φ :M ×N // L is bi-sup-preserving then F =

∨
Dφ coinverts the inequality. For, in that

case, we have a sup-preserving f :M ⊗N // L with f.(−)∨∨ = F , and hence

fι = f.(−)∨∨. ↓
M×N

= F ↓
M×N

= φ

To show that
∨
Dφ coinverts the inequality is, by Theorem 3.5, to show that its right

adjoint takes values in M ⊗ N , which is to show, for all l ∈ L, that φ−1(↓ l) ∈ M ⊗ N .
So assume that, for (S, T ) ∈ DM ×DN , we have S × T ⊆ φ−1(↓ l), which is equivalent
to assuming that Dφ(S × T ) ⊆ ↓ l. We must show that (

∨
S,

∨
T ) ∈ φ−1(↓ l). By

Proposition 3.7, φ(
∨
S,

∨
T ) =

∨
Dφ(S × T ), but by applying

∨
to the assumption,∨

Dφ(S × T ) ≤
∨
↓ l = l. So we have φ(

∨
S,

∨
T ) ≤ l and hence (

∨
S,

∨
T ) ∈ φ−1 ↓(l).

4. Sup-Arrows

4.1. We will soon turn to a description of M ⊗N , for CCD lattices M and N , in terms
of the totally below relation. For a and b in L a complete lattice, we define

a� b iff (∀S ∈ DL)(b ≤
∨

S =⇒ a ∈ S)

and read “a is totally below b” for a � b, as in [RW2]. (We caution that other authors
use a � b for the way below relation, which requires that the S in our definition be an
up-directed downset. The two relations are not the same. Totally below trivially implies
way below, but the converse is false. For example, in any power set lattice, to say that
S is totally below T is to say that S is a sub-singleton subset of T while S is way below
T if and only if S is a finite subset of T .) We will provide an interesting extension of
the totally below relation to ordered sets that are not necessarily complete. Before doing
so, we define a few other concepts, without completeness, that are familiar for complete
lattices.
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4.2. From [RW3], for any X in ord, we have (−)+ :DX // UX = (D(Xop))op, where,
for S in DX, we define S+ = {u ∈ X | (∀s ∈ S)(s ≤ u)} as the set of upper bounds for
S. Similarly, we have (−)− :UX // DX, where T− is the set of lower bounds for T . We
always have (−)+ a (−)− and the two equations on the left below. The two equations on
the right hold if X is complete (equivalently cocomplete).

X

UX

↑

��?
??

??
??

??
??

??

DX

X

??

↓

��
��

��
��

��
��

�
DX

UX

(−)+

��
UX

DX

(−)−

OO

a X

UX

__

∧
??

??
??

??
??

??
?

DX

X

∨
����

��
��

��
��

��
�
DX

UX

(−)+

��
UX

DX

(−)−

OO

a

For the monad (−)+− on DX, we will write (DX)+− for the (−)+−-closed subsets of
DX. In ord, (DX)+− is a full reflective subobject of DX, so it is also a complete lattice,
and ↓ :X // DX factors through (DX)+−. We will write d :X // (DX)+− for the first
such factor.

4.3. Lemma. For x in X and S in DX, if
∨
S exists then

x ∈ S+− ⇐⇒ x ≤
∨

S

.

Proof. Observe that
∨
S exists if and only if

∧
S+ exists, in which case they are equal.

x ∈ S+−

(∀u ∈ S+)(x ≤ u)

x ≤
∧
S+

x ≤
∨
S

4.4. Corollary. For S in DX,
∨
S exists if and only if S+− ∩ S+ is non-empty.

4.5. Corollary. For S in DX, if
∨
S exists then S+− = ↓

∨
S.

Proof. Trivially, x ≤
∨
S if and only if x is in ↓

∨
S.

4.6. Corollary. An ordered set X is complete if and only if d : X // (DX)+− is an
equivalence.
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For any f :X // A in ord, we have Df :DX // DA. If S in DX has a supremum in X
and Df(S) has a supremum in A, then f preserves

∨
S if and only if f(

∨
S) ≤

∨
Df(S)

(the opposite inequality holding automatically). Lemma 4.3 allows us to express sup
preservation for an arrow f :X // A in ord without requiring existence of any suprema.

4.7. Definition. An arrow f :X // A in ord will be called a sup-arrow if, for x ∈ X
and S ∈ DX,

x ∈ S+− =⇒ f(x) ∈ (Df(S))+−

We write ordsup for the locally full sub-ord-category of ord determined by the sup-arrows.

Note that a sup-arrow preserves any suprema that exist. For, if
∨
S exists, then from∨

S ∈ S+−, we have f(
∨
S) ∈ (Df(S))+−, while it is trivial that f(

∨
S) ∈ (Df(S))+, so

by Corollary 4.4, f(
∨
S) =

∨
Df(S).

Hence, if A is complete, then f is a sup-arrow if and only if

x ∈ S+− =⇒ f(x) ≤
∨

Df(S)

Clearly, there is an inclusion functor, I : sup // ordsup. We should also note that (after
extending the definition of Df to arbitrary functions between ordered sets) sup-arrows
are automatically order preserving.

While ↓ :X // DX preserves only trivial suprema, we have:

4.8. Theorem. For X an ordered set, the arrow d :X // (DX)+− is a sup-arrow and
provides the unit for an adjunction (D−)+− a I : sup // ordsup.

Proof. For the first clause, let S be a downset of X, and take x ∈ S+−. We must show
d(x) ∈ (Dd(S))+−. First observe that

(Dd(S))+ = {T ∈ (DX)+− | (∃s ∈ S)(T ⊆ d(s))}+ = {U ∈ (DX)+− | S ⊆ U}

It follows that, to show d(x) ∈ (Dd(S))+− is to show d(x) ⊆ U for all U ∈ (DX)+− which
contain S. But this is to show x ∈ U for all U ∈ (DX)+− which contain S. But this says
precisely that x ∈ S+−.

For the second clause, observe that any S ∈ (DX)+− satisfies S ∼=
∨
{d(s) | s ∈ S}.

It follows that, for any f :X // A in ordsup with A complete, there is at most one arrow

f̂ : (DX)+− // A in sup (to within isomorphism) satisfying the equation

X (DX)+−d //X

A

f

��?
??

??
??

??
??

??
(DX)+−

A

f̂

��
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and it is given by f̂(S) =
∨
{f(s) | s ∈ S}. To see that f̂ : (DX)+− // A as defined is an

arrow in sup, we must show that f̂(
∨

S ) ≤
∨
Df̂(S ), for any S ∈ D((DX)+−). But

f̂(
∨

S ) = f̂((
⋃

S )+−)

=
∨
{f(x) | x ∈ (

⋃
S )+−}

and ∨
Df̂(S ) =

∨
{f̂(S) | S ∈ S }

=
∨
{
∨
{f(s) | s ∈ S} | S ∈ S }

=
∨
{f(s) | s ∈

⋃
S }

so it suffices to show that, for x ∈ (
⋃

S )+−, f(x) ≤
∨
{f(s) | s ∈

⋃
S }. We have this

because f is a sup-arrow and
⋃

S is a downset.

The theorem tells us that d :X // (DX)+− is the completion of X that preserves any
existing suprema in X. Indeed, it is the completion by one-sided Dedekind cuts.

5. The Totally Below Relation

5.1. Definition. For y and x in X in ord, we define

y � x iff (∀S ∈ DX)(x ∈ S+− =⇒ y ∈ S)

read y � x as “y is totally below x”, and write ⇓x = {y | y � x}.

By Lemma 4.3, the definition of the totally below relation for general orders agrees
with the previous definition for complete X. The elementary properties of� for complete
orders persist: for any (X,≤),�X is an order ideal from X to X (so b ≤ y � x =⇒ b� x
and y � x ≤ a =⇒ y � a) and y � x =⇒ y ≤ x. It follows that � is transitive.

5.2. We recall that a completely distributive, CD, lattice is a complete lattice L which
satisfies

(∀S ⊆PL)(
∧
{
∨
S | S ∈ S } =

∨
{
∧
{T (S) | S ∈ S } | T ∈ ΠS }

where we have written ΠS for the set of choice functions T on S so that, for each S ∈ S ,
T (S) ∈ S. A complete lattice is constructively completely distributive, CCD, if it satisfies
the above but with “∀S ⊆PL” replaced by “∀S ⊆ DL”. Evidently, CD implies CCD,
and the converse holds in the presence of the axiom of choice, AC. In fact, we have

(AC)⇐⇒ ((CD)⇐⇒ CCD)
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which surely motivates the terminology. Many familiar theorems for CD lattices have
been proven constructively for CCD lattices, so that they become theorems about CCD
lattices in a topos. In particular we have, constructively, the Raney-Büchi theorem that a
complete lattice is CCD if and only if it is a complete-homomorphic image of a complete
ring of sets.

For our present purposes, we recall from [RW2] that a complete lattice L is CCD if
and only if, for all x ∈ L, x ≤

∨
⇓x. In other words, every element of L is the supremum

of all the elements totally below it. Since we have generalized the totally below relation
from complete lattices to general ordered sets, the characterization of CCD lattices in this
paragraph suggests the following:

5.3. Definition. An ordered set (X,≤) is said to be STB if, for all x ∈ X, we have
x ∈ (⇓x)+−. We write stb for the full subcategory of ordsup determined by the (X,≤)
with the STB property.

It follows from Lemma 4.3 that a complete lattice is CCD if and only if it is STB as
an ordered set. Hence the inclusion functor I : sup // ordsup restricts to an inclusion
functor I : ccdsup

// stb where ccdsup is the full subcategory of sup determined by the
CCD lattices. Clearly, the following diagram is a pullback:

stb ordsup
// //

ccdsup

stb

��

I

��

ccdsup sup// // sup

ordsup

��

I

��

The STB condition allows a simple, useful characterization of (−)+−-closed downsets.
In fact, this characterization of (−)+−-closed downsets characterizes STB orders:

5.4. Lemma. For (X,≤) in ord, (X,≤) is STB if and only if, for all S ∈ DX, S+− =
{x ∈ X | ⇓x ⊆ S}.

Proof. Assume (X,≤) is STB. If ⇓x ⊆ S then x ∈ (⇓x)+− ⊆ S+− shows x ∈ S+−,
while if x ∈ S+− then for any y � x we have y ∈ S, so that ⇓x ⊆ S.

Conversely, assume the condition and, for any x ∈ X, consider the downset (⇓x)+− =
{y ∈ X | ⇓ y ⊆ ⇓x}. Since ⇓x ⊆ ⇓x, x ∈ (⇓x)+− and X is STB.

5.5. Lemma. (Interpolation) If (X,≤) is STB and y � x then (∃z)(y � z � x).

Proof. Let S = {u|(∃z)(u� z � x)} and assume y � x, so that ⇓ y ⊆ S. By STB for
X, y ∈ S+− and since y is arbitrary ⇓x ⊆ S+−. By STB for X again, x ∈ S+−+− = S+−.
But now y � x ∈ S+− implies y ∈ S.
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Thus if (X,≤) is STB, � is idempotent as a relation from X to X. (To say that
� ◦ �=� is to say that � ◦ �⊆�, transitivity, and that �⊆� ◦ �, interpolativity
in the sense of Lemma 5.5.) Recall the ord-category idm studied in detail in [MRW].
The objects of idm are pairs (X,<) where X is a set and < is an idempotent relation on
X. An arrow f : (X,<) // (A,<) is a function f :X // A for which x < y in X implies
fx < fy in A. If f, g : X // A in idm then f ≤ g if and only if, for all x < y in X,
we have fx < gy in A. Notice that ord is a 2-full sub-ord-category of idm. Clearly,
if (X,≤) is STB then (X,�) is an object of idm and the identity function provides an
arrow (X,�) // (X,≤) in idm.

There is an alternative description of the arrows in stb.

5.6. Proposition. For STB objects X and A and f : X // A in ord, f is in ordsup

(and hence in stb) if and only if

(∀a ∈ A, x ∈ X)(a� fx =⇒ (∃y ∈ X)(a ≤ fy & y � x))

Proof. Assume f ∈ ordsup and a � fx. Since X is STB, x ∈ (⇓x)+−, and then since
f is a sup-arrow, f(x) ∈ (Df(⇓x))+−. By definition of �, we have a ∈ (Df(⇓x)) so
(∃y)(a ≤ f(y) and y � x).

Conversely, assume the condition and x ∈ S+−. To show f ∈ ordsup we must show
f(x) ∈ (Df(S))+−. By Lemma 5.4, it is sufficient to show that, for a � f(x), we have
a ∈ Df(S). But by assumption we have y with a ≤ fy and y � x. Since x ∈ S+−, the
second conjunct gives us y ∈ S and hence a ∈ Df(S).

We recall from [MRW] that the 2-functor D extends to idm. For any (X,<) in idm,
we say that a subset S of X is a downset of the idempotent if

x ∈ S ⇐⇒ (∃y)(x < y ∈ S)

We write D(X,<) for the set of downsets of (X,<), ordered by inclusion. In fact, see
[RW2], D(X,<) is a CCD lattice and every CCD lattice arises in this way. The 2-natural
transformation ↓ also extends to idm. For any (X,<) in idm we define ↓ :X // D(X,<)
by ↓x = {y | y < x}.

5.7. Lemma. For x, y ∈ (X,≤) an ordered set, x� y in X if and only if ↓x� ↓ y in
(D(X,≤))+−.

Proof. Assume x � y and that, for S ∈ D((D(X,≤))+−), we have ↓ y ⊆
∨

S in
(D(X,≤))+−. Now

⋃
S is certainly a downset of D(X,≤) and since

∨
S = (

⋃
S )+−,

↓ y ⊆ (
⋃

S )+−, so y ∈ (
⋃

S )+− and from from x � y, we get x ∈
⋃

S . Thus
x ∈ S ∈ S , for some S ∈ S . Now we have ↓x ⊆ S ∈ S in (D(X,≤))+− so that ↓x ∈ S
since S is a downset of elements of (D(X,≤))+−. This shows that ↓x� ↓ y.

For the converse, assume ↓x � ↓ y and y ∈ S+− for some S ∈ D(X,≤). We know
that S =

⋃
{↓ s | s ∈ S}, so y ∈ S+− gives y ∈ (

⋃
{↓ s | s ∈ S})+−, which means that

y ∈
∨
{↓ s | s ∈ S} in (D(X,≤))+−. So ↓ y ⊆

∨
{↓ s | s ∈ S} =

∨
{T | T ⊆ ↓ s & s ∈ S}

in (D(X,≤))+− and {T | T ⊆ ↓ s & s ∈ S}, call it S , is a downset of (D(X,≤))+−.
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Since ↓x� ↓ y, we have ↓x ∈ S . But now ↓x ⊆ ↓ s, for some s ∈ S. Hence x ≤ s ∈ S,
and thus x ∈ S, which shows that x� y.

5.8. Remark. Before stating the next theorem, it is convenient to point out that an
STB order (X,≤) allows us to construct D(X,�), for � an idempotent, in addition to
the usual D(X,≤). Every �-downset is easily seen to be a ≤-downset and we leave it
as an exercise for the reader to show that S◦ = {x ∈ X | (∃y)(x � y ∈ S)} describes
a right adjoint (−)◦ :D(X,≤) // D(X,�) to the inclusion i :D(X,�) // D(X,≤), and
S◦ = ⇓

∨
S.

5.9. Theorem. For (X,≤) an ordered set, the following are equivalent:

(i) (X,≤) is STB;

(ii) The composites

D(X,�) // i //oo
(−)◦

D(X,≤)
(−)+− //oo
j

oo (D(X,≤))+−

are inverse isomorphisms;

(iii) D(X,�) ∼= D(X,≤))+−;

(iv) (D(X,≤))+− is CCD.

Proof. (i) =⇒ (ii) For T ∈ D(X,�), we have T ⊆ (T+−)◦ from the composite of the
adjunctions i a (−)◦ and (−)+− a j. For S ∈ (D(X,≤))+−, we have (S◦)+− ⊆ S, also
from the composite adjunction. Using the characterization given in Lemma 5.4, we have
(T+−)◦ = {x | (∃y)(x � y & ⇓ y ⊆ T )} ⊆ T . On the other hand, again by Lemma 5.4,
(S◦)+− = {y | ⇓ y ⊆ S◦}. Take y ∈ S. Then for any x � y, we have x ∈ S◦. Thus
⇓ y ⊆ S◦, and so y ∈ (S◦)+−. So S ⊆ (S◦)+−.

(ii) =⇒ (iii) is trivial.
(iii) =⇒ (iv) follows from the fact that all lattices of the form D(A,<) for < an

idempotent on a set A are CCD.
(iv) =⇒ (i) Assume (D(X,≤))+− is CCD, and take x ∈ X. We have

x ∈ ↓x =
∨
{S ∈ (D(X,≤))+− | S � ↓x}

=
∨
{
∨
{↓ s | s ∈ S} | S � ↓x}

=
∨
{↓ s | s ∈ S � ↓x}

=
∨
{↓ s | ↓ s� ↓x}

=
∨
{↓ s | s� x}

= (
⋃
{↓ s | s� x})+−

= {t | t� x}+−

= (⇓x)+−
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where the fifth equality uses Lemma 5.7.

5.10. Remark. In the special case where X of the theorem is taken to be a CCD lattice
L, then a minor replacement in (ii), using Corollary 4.5, gives us that the composites

D(L,�) // i //oo
(−)◦

D(L,≤)

∨
//oo

↓
oo L

are inverse isomorphisms. This is Proposition 13 of [RW2].

Since D(X,�) is a CCD lattice it follows that (D−)+− : ordsup
// sup restricts

to give (D−)+− : stb // ccdsup and the following corollary follows immediately from
Theorems 4.8 and 5.9.

5.11. Corollary. For X an STB order, the arrow d : X // (DX)+− is a sup-arrow
and provides the unit for a 2-adjunction (D−)+− a I : ccdsup

// stb.

We deduce further:

5.12. Corollary. The mate with respect to the adjunctions (D−)+− a I in the pullback
diagram preceding Lemma 5.4 is also an equality and the resulting diagram

stb ordsup
// //

ccdsup

stb

OO

(D−)+−

ccdsup sup// // sup

ordsup

OO

(D−)+−

is also a pullback.

Observe that the condition of Proposition 5.6 is implied by

(∀a ∈ A, x ∈ X)(a� fx =⇒ (∃y ∈ X)(a� fy & y � x))

simply because a� fy implies a ≤ fy.

5.13. Lemma. If X and A are STB orders and f :X // A is a function that preserves
merely �, then the condition above is equivalent to the condition of Proposition 5.6.

Proof. Assume the condition of Proposition 5.6, and let a� fx. We have z with a ≤ fz
and z � x. From the second conjunct, we have z � y � x, and since f preserves �, we
have a ≤ fz � fy and hence a� fy (and y � x).
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Since the displayed condition above is the condition for an arrow f : (X,�) // (A,�)
in idm between STB orders (X,≤) and (Y,≤) to be a sup-arrow and it makes no mention
of order preservation, we generalize one step further and say:

5.14. Definition. An arrow f : (X,<) // (A,<) in idm is a sup-arrow if

(∀a ∈ A, x ∈ X)(a < fx =⇒ (∃y ∈ X)(a < fy & y < x))

We caution however that a sup-arrow in idm does not speak about preserving suprema
with respect to the idempotents <, even if the idempotents should happen to be reflexive
relations and hence orders. We have not defined suprema for general idempotents here
(and have no need to do so) but it can be done using the 2-structure of idm.

5.15. We write idmsup for the locally-full sub-2-category of idm determined by the
sup-arrows. We recall from [RW2] that an arrow f : L // A in ccdsup preserves the
totally below relation if and only if the right adjoint of f has a right adjoint, so that f is
a map in sup, meaning that f has a right adjoint in the 2-category sup. We will write
ccdmapsup for the locally full sub-2-category of ccdsup determined by the maps. It follows
from Lemma 5.13 that there is a forgetful functor (−,�) : ccdmapsup

// idmsup, which
sends a CCD lattice L to the idempotent (L,�) given by its totally below relation, and
regards a map f :L // A in sup as an arrow f : (L,�) // (A,�) in idmsup.

5.16. Theorem. For (X,<) an idempotent, the arrow ↓ :X // D(X,<) in idm gives
an arrow ↓ : (X,<) // (D(X,<),�) in idmsup, and provides the unit for a 2-adjunction
D a (−,�) : ccdmapsup

// idmsup.

Proof. Since D(X,<) is a CCD lattice, (D(X,<),�) is also an idempotent. It was
shown in [RW2] that if x < y in X then ↓x� ↓ y in D(X,<). Now assume S � ↓x. We
have S ⊆ ↓ t and t < x. We interpolate to get t < y < x and now S ⊆ ↓ t, t ∈ ↓ y, and
y < x provides S � ↓ y and y < x, which shows ↓ : (X,<) // (D(X,<),�) in idmsup.
Next assume that we are given an arbitrary f : (X,<) // (A,�) in idmsup, with A a
CCD lattice. To finish the proof of the theorem, we must show that there is a unique (to

within isomorphism) arrow f̂ :D(X,<) // A in ccdmapsup for which (f̂ ,�) satisfies the
following equation in idmsup.

(X,<) (D(X,<),�)
↓ //(X,<)

(A,�)

f

$$JJJJJJJJJJJJJJJ
(D(X,<),�)

(A,�)

f̂

��

For every element S in D(X,<), we have S =
∨
{↓ s | s ∈ S}. Thus any f̂ satisfying our

requirements must have

f̂(S) = f̂(
∨
{↓ s | s ∈ S}) =

∨
{f̂(↓ s) | s ∈ S} =

∨
{fs | s ∈ S}
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Thus it remains to show that f̂(S) =
∨
{fs | s ∈ S} meets all of our requirements. To

show that the equation f̂ . ↓ = f holds, we have

f̂(↓ s) =
∨
{fx | x < s} =

∨
{a | a ≤ fx & x < s}

=
∨
{a | a� fs} = fs

The last equality holds because A is CCD and the penultimate equality uses the properties
of f being in idmsup. Now f̂ preserves all suprema because, taking S in D(D(X,<)),
we have

f̂(
∨

S ) = f̂(
⋃

S ) =
∨
{fs | s ∈

⋃
S } =

∨
{
∨
{fs | s ∈ S} | S ∈ S }

=
∨
{f̂(S) | S ∈ S }

Because f̂ preserves suprema and D(X,<) is complete, it follows that f̂ has a right adjoint

in ord. This right adjoint has a right adjoint (making f̂ an arrow in ccdmapsup) if and

only if f̂ preserves �. (See [RW2].) So assume S � T in D(X,<). We have S ⊆ ↓ t for

some t ∈ T and hence also t < u for some u ∈ T . Applying f̂ and f we have:

f̂(S) ≤ f̂(↓ t) = ft� fu ≤ f̂(T )

and hence f̂(S)� f̂(T ).

6. Tensor Products of CCD Lattices

6.1. The paper [RW2] exhibits a biequivalence between ccdsup and the idempotent
splitting completion of the bicategory of relations, kar(rel), which has a tensor product
that is given on objects by cartesian product. The paper then shows that the tensor
product of CCD lattices as sup-lattices agrees with the tensor product of kar(rel). We
conclude now with yet another description of the tensor product of CCD lattices that uses
our results about the totally below relation.

6.2. Lemma. For CCD lattices M and N , the reflector (−)∨∨ :D(M ×N) // M ⊗N is
given by U∨∨ = {(m,n) | ⇓m× ⇓n ⊆ U}
Proof. Provisionally write U = {(m,n) | ⇓m × ⇓n ⊆ U}. To show that U ∈ M ⊗ N ,
assume we have S × T ⊆ U for (S, T ) ∈ DM × DN . We need to show (

∨
S,

∨
T ) ∈ U .

For this we require ⇓
∨
S × ⇓

∨
T ⊆ U . From Remark 5.8 this means precisely that we

require S◦ × T ◦ ⊆ U and we recall that S◦ = {x | (∃s)(x � s ∈ S)}. So if we have
(x, y) ∈ S◦ × T ◦, we have x � s ∈ S and y � t ∈ T with (s, t) ∈ S × T ⊆ U . So
(x, y) ∈ ⇓ s×⇓ t ⊆ U . Thus U ∈M⊗N . It is clear that, for any U ∈ D(M×N), we have
U ⊆ U . Assume now that W ∈M ⊗N and U ⊆ W . It suffices to show that U ⊆ W . But
if (m,n) satisfies ⇓m×⇓n ⊆ U then U ⊆ W implies ⇓m×⇓n ⊆ W and hence (m,n) =
(
∨
⇓m,

∨
⇓n) ∈ W . Since (−) is left adjoint to the inclusion κ :M ⊗N // D(M ×N,≤),

U = U∨∨.
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Generalizing very slightly what we observed in Remark 5.8, we note that every downset
of M ×N with respect to the idempotent�M × �N is a downset of M ×N with respect
to ≤M×N=≤M × ≤N so that we have an inclusion

i :D(M ×N,�M × �N) // D(M ×N,≤)

It has a right adjoint

(−)◦ :D(M ×N,≤) // D(M ×N,�M × �N)

which, for U ∈ D(M × N,≤), is given by U◦ = {(a, b) | ∃((x, y) ∈ U)(a � x & b � y)}
Again, we leave the details to the reader.

6.3. Theorem. For CCD lattices M and N CCD, M ⊗N ∼= D(M ×N,�M × �N).
The composites

D(M ×N,�M × �N) // i //oo
(−)◦

D(M ×N,≤)
(−)∨∨ //oo
κ

oo M ⊗N

are inverse isomorphisms;

Proof. Write < for the idempotent �M × �N on M ×N . For any V ∈ D(M ×N,<),
we have V ⊆ V ∨∨◦ and, for any W ∈ M ⊗N , we have W ◦∨∨ ⊆ W , by adjointness. Now
take (x, y) ∈ V ∨∨◦. This implies (x, y) < (m,n) ∈ V ∨∨, which implies

(x, y) ∈ ⇓m× ⇓n & (m,n) ∈ V ∨∨

which implies (x, y) ∈ V , so that V ∨∨◦ ⊆ V . Finally, assume (x, y) ∈ W . We want to
show that (x, y) ∈ W ◦∨∨, which is to show ⇓x×⇓ y ⊆ W ◦. For any (a, b) ∈ ⇓x×⇓ y, its
membership in W ◦ is witnessed by (x, y).

6.4. Remark. The reader may have noticed that the proof of Theorem 6.3 is similar
to that which establishes the isomorphism (ii) in Theorem 5.9. Both can be seen to
follow from (a dual of) Eilenberg and Moore’s theorem, Proposition 3.3 in [E&M]. This
is the theorem which asserts that for t a g :A // A in the 2-category of categories, with
t underlying a monad and g a comonad, the category of algebras At is isomorphic to the
category of coalgebras Ag, via a functor that identifies the forgetful functors. Eilenberg
and Moore’s theorem is easily seen to hold in any 2-category in which the objects At and
Ag exist. In particular, it holds in each of the duals of the 2-category of categories and in
the duals of ord. Thus if g a t then the Kleisli categories, Ag and At are isomorphic via a
functor that identifies the free functors. If a monad t is idempotent, then the Eilenberg-
Moore object and the Kleisli object coincide and the Kleisli arrow is the left adjoint of
the Eilenberg-Moore arrow. In ord all monads and comonads are idempotent.
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6.5. Remark. For M and N CCD lattices, the (fully faithful) adjoint string

D(↓×↓) a D(↓×↓) a D(↓×↓)

gives rise to the longer adjoint string

D(⇓×⇓) a D(
∨
×

∨
) a D(↓×↓) a D(↓×↓) a D(↓×↓)

In the terminology of [RW4], these are distributive adjoint strings and the inverter, λ,
of the inequality D(⇓×⇓) ≤ D(↓×↓) is necessarily the left adjoint of the left adjoint
of the inverter, κ, of D(↓×↓) ≤ D(↓×↓). It follows that, for M and N CCD lattices,
M ⊗N can equally well be calculated as the inverter of D(⇓×⇓) ≤ D(↓×↓). Of course
the inclusions λ and κ are in general different but it is easy to calculate and see that the
inverter of D(⇓×⇓) ≤ D(↓×↓) reveals directly that M ⊗ N is the set of downsets of
(M × N,≤) that are also downsets for the idempotent �M × �N as already shown in
Theorem 6.3. Moreover, the fully faithful adjoint string λ a (−)∨∨ a κ reveals M ⊗N to
be a complete quotient of D(M ×N) and hence CCD by Proposition 11 of [F&W].

D(M ×N) D(DM ×DN)

// D(⇓×⇓) //
⊥

D(M ×N) D(DM ×DN)
oo D(

∨
×

∨
)
⊥D(M ×N) D(DM ×DN)// D(↓×↓) //
⊥D(M ×N) D(DM ×DN)

oo D(↓×↓) ⊥
D(M ×N) D(DM ×DN)

//
D(↓×↓)

//

M ⊗N D(M ×N)
// λ //

⊥M ⊗N D(M ×N)oo (−)∨∨ ⊥M ⊗N D(M ×N)
//

κ
//

References

[E&M] S. Eilenberg and J.C. Moore. Adjoint functors and triples. Illinois J. Math. 9 (1965),
381–398.

[F&W] B. Fawcett and R.J. Wood. Constructive complete distributivity I. Math. Proc. Cam.
Phil. Soc., 107:81–89, 1990.

[J&T] A. Joyal and M. Tierney. An extension of the Galois theory of Grothendieck. Memoirs
of the American Mathematical Society, Vol. 51, No. 309, 1984.

[KEL] G. M. Kelly. Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture
Notes Series 64, Cambridge University Press, 1982.

[MAR] F. Marmolejo. Doctrines whose structure forms a fully faithful adjoint string. Theory
Appl. Categ. 3 (1997), No. 2, 24–44.

[MRW] F. Marmolejo, Robert Rosebrugh, and R.J. Wood. Duality for CCD lattices. Theory
Appl. Categ. 22 (2009), No. 1, 1–23.

[PIT] A.M. Pitts. Applications of sup-lattice enriched category theory to sheaf theory. Proc.
London Math. Soc. 57 (1988), 433–480.



TENSOR PRODUCTS OF SUP-LATTICES AND GENERALIZED SUP-ARROWS 287

[RW1] Robert Rosebrugh and R.J. Wood. Constructive complete distributivity III. Canad.
Math. Bull. 35 (1992), No. 4, 537–547.

[RW2] Robert Rosebrugh and R.J. Wood. Constructive complete distributivity IV. Appl.
Categ. Structures 2 (1994), No. 2, 119–144.

[RW3] Robert Rosebrugh and R.J. Wood. Boundedness and complete distributivity. Appl.
Categ. Structures 9 (2001), No. 5, 437–456.

[RW4] Robert Rosebrugh and R.J. Wood. Distributive adjoint strings Theory Appl. Categ. 1
(1995), No.6, 119–145.

[S&W] R. Street and R.F.C Walters. Yoneda structures on 2-categories. J. Algebra 75 (1982),
538–545.

Department of Mathematics and Statistics
Dalhousie University
Halifax, NS, B3H 3J5 Canada
Email: tkenney@mathstat.dal.ca, rjwood@dal.ca

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/24/11/24-11.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information. Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors. The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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