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LAX PRESHEAVES AND EXPONENTIABILITY

SUSAN NIEFIELD

Abstract. The category of Set-valued presheaves on a small category B is a topos.
Replacing Set by a bicategory S whose objects are sets and morphisms are spans, rela-
tions, or partial maps, we consider a category Lax(B,S) of S-valued lax functors on B.
When S = Span, the resulting category is equivalent to Cat/B, and hence, is rarely
even cartesian closed. Restricting this equivalence gives rise to exponentiability char-
acterizations for Lax(B,Rel) in [9] and for Lax(B,Par) in this paper. Along the way,
we obtain a characterization of those B for which the category UFL/B is a coreflective
subcategory of Cat/B, and hence, a topos.

1. Introduction

If B is a small category, then the category SetB of functors B // Set and natural trans-
formations is a topos (c.f., [6]). But, what happens if we replace Set by the bicategories
Rel, Par, and Span, whose objects are sets and morphisms are relations, partial maps,
and spans, respectively? Given a bicategory S, we consider the categories Lax(B,S) and
Pseudo(B,S) whose objects are lax functors and pseudo functors B // S, respectively,
and morphisms are function-valued op-lax transformation. We will see that Lax(B,S)
is rarely cartesian closed, when S is Rel, Par, and Span, whereas Pseudo(B,Span) is
often a topos, but rarely in the other two cases.

Although it appears that exponentiability in Lax(B,Span) has not explicitly been
considered, Lax(B,Span) is known to be equivalent to the slice category Cat/B, and ex-
ponentiable objects in Cat/B were characterized independently by Giraud [5] and Con-
duché [4] as those functors satisfying a factorization lifting property, sometimes called
the Giraud-Conduché condition. More recently, using the equivalence with Cat/B with
category Lax(B,Prof) of normal lax functors B // Prof and map-valued op-lax trans-
formations, Street [11] showed that X // B is exponentiable in Cat if and only if the
corresponding lax functor is a pseudo functor. Inspired by Street’s note and a preprint of
Stell [10] using lax functors B // Rel to model data varying over time, we established an
equivalence between Lax(B,Rel) and the full subcategory Catf/B of Cat/B consisting
of faithful functors. Using this, we showed that a faithful functor p:X // B is exponen-
tiable if and only if the corresponding lax functor B // Rel preserves composition up to
isomorphism if and only if p satisfies a weak factorization lifting condition WFL [9].
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We begin this paper, in Section 2, describing Lax(B,Par) as a category of variable
sets, and then, in Section 3, obtain an equivalence with a full subcategory of Cat/B,
by restricting that of Lax(B,Rel) and Catf/B. Necessary and sufficient conditions for
exponentiability in Lax(B,Par) are presented in Section 4. In Section 5, we give a short
and simple proof that Pseudo(B,Span) is a topos, whenever it is a coreflective sub-
category of Lax(B,Span), and then show that this occurs precisely when B satisfies
the interval glueing property IG defined in [3]. We conclude, in Section 6, by showing
that Pseudo(B,Rel) is rarely a topos, and present conditions under which it is a carte-
sian closed coreflective subcategory of Lax(B,Rel). We do not consider the analogous
question for Pseudo(B,Par) since, in this case, there are pseudo functors which are not
exponentiable in Lax(B,Par).

Our interest in Pseudo(B,Span) began when Robin Cockett mentioned its equivalence
to the full subcategory UFL/B of Cat/B consisting of functors satisfying the unique
factorization lifting condition. In a 1996 talk [8], Lamarche had conjectured that UFL/B
is a topos. Subsequently, Bunge and Niefield [3] showed that if B satisfies IG, then
UFL/B is coreflective in Cat/B, and used this to show that UFL/B is a topos. Then
Johnstone [7] showed that it is not a topos when B is a commutative square, and used
sheaves to show that UFL/B is a topos when B satisfies certain cancellation and fill-in
properties (CFI). Shortly thereafter, Bunge and Fiore gave an alternate sheaf-theoretic
proof, using IG, and also showed that the conditions IG and CFI are, in fact, equivalent.
Our theorem (see 5.5) shows that these conditions hold whenever UFL/B is coreflective
in Cat/B, thus providing a converse to the Bunge and Niefield result from [3].

2. Lax functors as variable sets

In this section, we describe Lax(B,Par) as a category of relational variable sets on a
small category B (in the sense of [9]).

Recall that a relational variable set or Rel-set is a lax functor X:B // Rel. Thus, a
Rel-set X consists of a set Xb, for every object b, and a relation Xβ:Xb−7→Xb′ , for every
morphism β: b // b′, satisfying ∆Xb

⊆ Xidb , for every object b, and Xβ′ ◦Xβ ⊆ Xβ′β, for
every composable pair. Writing x→β x′ for (x, x′) ∈ Xβ, these conditions become

(R1) x→idb x, for all x ∈ Xb.

(R2) x→β x′, x′ →β′ x′′ =⇒ x→β′β x′′.

A morphism f :X // Y of Rel-sets consists of a function fb:Xb
// Yb, for every object b

such that

Xb′ Yb′fb′
//

Xb

Xb′

Xβ

��

Xb Yb
fb // Yb

Yb′

Yβ

��
⊆− −
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for every morphism β: b // b′, or equivalently, x →β x′ implies fbx →β fb′x
′. Then

Lax(B,Rel) denotes the category of Rel-sets and morphisms.

A lax functor X:B // Par consists of a set Xb, for every object b, and a partial map
Xβ:Xb ⇀ Xb′ , for every morphism β: b // b′, such that idXb

≤ Xidb , for object b, and
Xβ′ ◦ Xβ ≤ Xβ′β, for every composable pair. Since a relation Xβ:Xb−7→Xb′ is a partial
map if and only if Xβ ◦X◦

β ⊆ ∆Xb′
, it follows that a Rel-set X is a lax functor X:B //Par

if and only if it satisfies

(P3) x→β x′
1, x→β x′

2 =⇒ x′
1 = x′

2

Thus, Lax(B,Par) is the full subcategory of Lax(B,Rel) consisting of those Rel-sets
which satisfy (P3).

3. Lax Functors and Subcategories of Cat/B

In [9], we showed that the well-known equivalence between Lax(B,Span) and Cat/B re-
stricts to one between Lax(B,Rel) and the full subcategory Catf/B of Cat/B consisting
of faithful functors over B. In particular, a faithful functor p:X // B corresponds to a
Rel-set, also denoted by X, and defined as follows. For each object b, Xb is the fiber of
X over b, i.e., the set of objects x such that px = b. Given β: b // b′, the relation Xβ is
defined by x →β x′, if there is a morphism α: x // x′ such that pα = β. Moreover, the
product of X and Y in Lax(B,Rel) is given by (X × Y )b = Xb × Yb and

(x, y)→β (x′, y′) ⇐⇒ x→β y and x′ →β y′

Identifying Par with the subcategory of Rel consisting of morphisms R:X−7→Y with
R ◦R◦ ⊆ ∆Y , it is not difficult to show that Lax(B,Par) is equivalent to the full subcat-
egory Catpf/B of Cat/B consisting of faithful functors p:X // B such that given

X

B

p

��
b b′

β //

x
x′
1α1 44jjjjjx

x′
2

α2
**TTTTT

if p(α1) = p(α2) = β, then α1 = α2, and Lax(B,Par) has finite products which agree
with those of Lax(B,Rel).

4. Exponentiability in Categories of Lax Functors

A Rel-set X is exponentiable in Lax(B,Rel) if and only if X preserves composition, i.e.,
for every composable pair, the containment Xβ′ ◦Xβ ⊆ Xβ′β is an equality if and only if
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the corresponding faithful functor p:X // B has the weak factorization lifting condition
(WFL)

X

B

p

�� px

b′
β ��;

;;
px px′′pα′′

// px′′

b′

AA

β′��
�

x

x′
α ��

x x′′α′′
// x′′

x′

AA

α′

i.e., given α′′ and a factorization pα′′ = β′β, there exists a factorization α′′ = α′α such
that pα = β and pα′ = β′ [9]. Moreover, X:B // Span is exponentiable in Lax(B,Span)
if and only if the corresponding functor p:X //B satisfies the Giraud-Conduché condition,
i.e., WFL plus a connectivity condition on the objects over b′ through which α′′ factors
[5, 4].

To establish a characterization of exponentiable objects in Lax(B,Par), we use its
equivalence with Catpf/B as well as the description, given in 2.1, of X:B // Par as a
Rel-set satisfying (P3).

A functor p:X // B will be called a partial fibration if it satisfies the lifting condition

X

B

p
��

b px′β //

x x′α //

i.e, given x′ and β, there exists α such that pα = β. It is easy to show that a faithful
functor is a partial fibration if and only if the associated lax functor X:B // Rel satisfies
∆Xb′ ⊆ Xβ ◦X◦

β, i.e., Xβ is onto.

4.1. Theorem. The following are equivalent for a lax functor X:B // Par with corre-
sponding functor p:X // B.

(a) X is exponentiable in Lax(B,Par).

(b) X is a functor and Xβ:Xb ⇀ Xb′ is onto, for all β: b // b′.

(c) p is exponentiable in Catpf/B.

(d) p is a partial fibration satisfying the weak factorization lifting condition WFL.

Proof. We know (a) and (c) are equivalent, since Lax(B,Par) ≃ Catpf/B. The equiva-
lence of (b) and (d) follows from the remarks above, the definition of WFL, and the fact
that Xidb = idXb

in Lax(B,Par), for all b, since x1 →idb x2 implies x1 = x2 by (P3).
Thus, it suffices to show that (b) ⇒ (a) and (c) ⇒ (d).

For (b) ⇒ (a), suppose X is a functor and Xβ is onto, for all β: b // b′. Then X
is exponentiable in Lax(B,Rel). Thus, given Y :B // Par, it suffices to show that the
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exponential Rel-set Y X is an object of Lax(B,Par), i.e., satisfies (P3), where Y X is
defined as follows [9]. Let (Y X)b denote the set of functions σ:Xb

// Yb, and define
σ →β σ′ if σx→β σ′x′, for all x→β x′ in X.

To see that Y X satisfies (P3), suppose σ →β σ′
1, σ →β σ′

2, and x′ ∈ Xb′ . Then
x →β x′, for some x ∈ Xb, since Xβ is onto, and so σx →β σ′

1x
′ and σx →β σ′

2x
′.

Thus, σ′
1x

′ = σ′
2x

′, since Y satisfies (P3), and it follows that σ′
1 = σ′

2. Therefore, X is
exponentiable in Lax(B,Par).

For (c) ⇒ (d), suppose p is exponentiable in Catpf/B. Then the elements σ of the
fiber (Y X)b can be identified with the functions Xb

// Yb, since

1

B
b ��5

55
51 Y Xσ // Y X

B
qp��		

		
1×B X

B
b×p ��5

55
51×B X Y// Y

B
q��		

		
Xb

B
b ��5

55
5Xb Y// Y

B
q��		

		←→ ←→

Moreover, every morphism σ // σ′ over β satisfies σx // σ′x′, for all x // x′ over β, since
the counit is the evaluation functor ε:Y X ×B X // Y , under this identification.

To see that p satisfies WFL, suppose α′′:x //x′′ in X and pα′′ = β′β, where β: px // b′

and β′: b′ // px′′. Then the composite β′β gives rise to a pushout in Catpf/B of the form

2 3//

1

2

1

��

1 20 // 2

3
��
3

B
��?

??
??

2

B
β ))SSSSSSSSSSSSSS

2

B

β′

��+
++

++
++

++
++

++
+

where 2 and 3 are the categories 0 // 1 and 0 // 1 // 2, respectively. Since −× p preserves
pushouts (as it has a right adjoint), it follows that the corresponding diagram

2×B X 3×B X//

1×B X

2×B X
��

1×B X 2×B X// 2×B X

3×B X
��

3×B X

B
%%LLL

LLL
L2×B X

B++
WWWWWWWWWWWWWWWWWW

2×B X

B
��3

33
33

33
33

33
33

33

is a pushout in Catpf/B. The pushout P // B of this diagram can be constructed as
follows. Let Xβ and Xβ′ denote the subcategories of X obtained by identifying p× β and
p × β′ with their images in X. Then the objects of P are the union of those of Xβ and
Xβ′ , and the morphisms are those of Xβ and Xβ′ together with pairs (α, α′):x // x′′ such
that α: x //x′ in Xβ and α′:x′ //x′′ in Xβ′ , subject to an appropriate equivalence relation.
Since α′′:x // x′′ corresponds to a morphism of 3×B X, and hence one of P over β′β, the
desired factorization of α′′ follows.
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It remains to show that p is a partial fibration. Suppose x′ is in X and β: b // px′ in
B. Let Y denote the category

y1 y′1
γ //

y′2

with q:Y // B given by qγ = β and qy′2 = px′. Let σ ∈ (Y X)b denote the constant
y1-valued map, σ′

1 ∈ (Y X)px′ the constant y′1-valued map, and σ′
2 ∈ (Y X)px′ the function

σ′
2x̂

′ =

{
y′1 if x̂′ ∈ Image(Xβ)
y′2 otherwise

Thus, for i = 1, 2, we have x̂
β

// x̂′ implies σx̂
β

//σ′
ix̂

′, and so σ
β

//σ′
i, and we get a diagram

Y X

B
��

b px′β //

σ
σ′
144jjjjjσ

σ′
2

**TTTTT

Since Y X // B satisfies (P3), it follows that σ1 = σ2. Thus, Xb′ = Image(Xβ), and so
there exists α:x // x′ such that pα = β, to complete the proof.

4.2. Corollary. The inclusion Lax(B,Par) //Lax(B,Rel) preserves exponentiability
and exponentials.

Proof. Since the exponentials Y X defined in the proof of (b)⇒(a) agree with those of
Lax(B,Rel) given in [9] when X satisfies WFL, the desired result follows.

5. Pseudo(B,Span) and UFL/B

Since every pseudo functor X:B // Span is exponentiable in Lax(B,Span), one might
conjecture that Pseudo(B,Span) is cartesian closed. As noted in the introduction, this
is not the case when B is a commutative square [7] since

Pseudo(B,Span) ≃ UFL/B

where the latter is the full subcategory of Cat/B consisting of functors satisfying the
unique factorization lifting property UFL, i.e., the condition WFL given in Section 4 plus
uniqueness of the lifted factorization. However, UFL/B is a topos which is coreflective
in Cat/B, if B satisfies a condition called the interval glueing condition (IG) in [3]. The
proof in [3] makes extensive use of (IG), and one in [7] exhibits UFL/B as a topos of
sheaves, using a condition equivalent to (IG). In the following, we show that UFL/B is
a topos, assuming only that it is coreflective in Cat/B. Although this appears to be a
more general theorem than that of [3] and [7], we will see that coreflectivity of UFL/B
in Cat/B is, in fact, equivalent to (IG), thus proving the converse of the result in [3].
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5.1. Lemma. Suppose Y is a category with finite products and X // Y is a product
preserving inclusion of a coreflective subcategory. If X is an object of X which is expo-
nentiable in Y, then X is exponentiable in X.

Proof. Given Y ∈ X, then Ŷ X is the exponential in X, where ̂ denotes the coreflection,

since X(W ×X,Y ) ∼= Y(W ×X, Y ) ∼= Y(W,Y X) ∼= X(W, Ŷ X).

5.2. Theorem. If UFL/B is a coreflective subcategory of Cat/B, then UFL/B is a
topos.

Proof. A straightforward calculation shows that the inclusion UFL/B // Cat/B pre-
serves products, and so UFL/B is cartesian closed by Lemma 5.1. To see that it is a
topos, let Ω denote the UFL subobject classifier in Cat [3]

· ·//· ·//·
��

and consider Ω × B // B via the projection. Then SubUFL/B(X) ∼= SubUFL(X) ∼=
Cat(X,Ω) ∼= Cat/B(X,Ω×B) ∼= UFL/B(X, ̂Ω×B), for all X // B in UFL/B.

5.3. Corollary. If Pseudo(B,Span) is a coreflective subcategory of Lax(B,Span),
then Pseudo(B,Span) is a topos.

Proof. Since Pseudo(B,Span) ≃ UFL/B, the desired result follows.

Given β: b // b′ in B, consider the category [[β]] over B whose objects are factorizations

b

·β1 ��;
;;

;;
b b′

β // b′

·

AA

β2��
��

�

morphisms are commutative diagrams

b

·β̄1
""EEEEE

·

b

<<β1

yyyyy ·

·

γ

��

b′

·

<<

β̄2
yy

yy
y

·

b′

β2

""EE
EE

E·

·
��

and projection toB takes the factorization β = β2β1 to the codomain of β1, or equivalently,
the domain of β2. Then we say B satisfies IG if the induced diagram

[[β]] [[β′β]]//

[[idb′ ]]

[[β]]
��

[[idb′ ]] [[β′]]// [[β′]]

[[β′β]]
��

(∗)

is a pushout in Cat, for all b
β // b′

β′
// b′′.
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5.4. Lemma. The diagram (*) is a pushout in UFL/B, for all b
β // b′

β′
// b′′.

Proof. Suppose p:X // B is a UFL and we are given a commutative diagram

[[β]] [[β′β]]//

[[idb′ ]]

[[β]]
��

[[idb′ ]] [[β′]]// [[β′]]

[[β′β]]
��

X
f ))SSSSSSSSSSSSSSS

X

f ′

��,
,,

,,
,,

,,
,,

,,
,

over B. Applying f and f ′ to the diagrams

b

b′
β ""EE

EE
E

b

b

<<idb

yy
yy

y b

b′

β

��
b′

b′

<<

idb′
yyy

yy

b

b′

β

""EE
EE

Eb

b′
��

b′

b′′
β′ ""EE

EE

b′

b′

<<idb′

yyy
yy
b′

b′′

β′

��
b′′

b′′

<<

idb′′
yy

yy

b′

b′′

β′

""EE
EE

b′

b′′
��

gives morphisms α and α′ of X over β and β′, respectively, and these morphisms are
composable by the commutativity of the diagram. Thus, we get a morphism α′α over β′β

X

B

p

�� b

b′
β ��;

;;
;b b′′

β′β // b′′

b′

AA

β′��
��

x

x′
α ��

x x′′α′α // x′′

x′

AA

α′

To define g: [[β′β]] //X over B, suppose β′β = β2β1 is an object of [[β′β]], and take g(β2β1)
to be the codomain of α1, where α′α = α2α1 is the unique lifting of the factorization
β′β = β2β1. Given a morphism

b

·β̄1
""EEEEE

·

b

<<β1

yyyyy ·

·

δ

��

b′′

·
<<

β̄2
yy

yy
y

·

b′′

β2

""EEE
EE·

·
��

of [[β′β]], let α′α = ᾱ2ᾱ1 be the unique lifting of β′β = β̄2β̄1 and ᾱ1 = γ2γ1 be the unique
lifting of β̄1 = δβ1. Thus, we get a diagram

x

·ᾱ1 ""EE
EE

E

·

x

<<γ1

yy
yy

y ·

·

γ2

��

x′′

·
<<

ᾱ2yy
yy

y

·

x′′

ᾱ2γ2
""EEE

EE·

·
��
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Then α1 = γ1 and α2 = ᾱ2γ2, by uniqueness of the factorization α′α = α2α1, and we can
take γ2 to be the morphism g(δ): g(β2β1) // g(β̄2β̄1). To establish the uniqueness of g,
one shows that for any other such morphism ḡ the commutativity of the triangles implies
that ḡ(β′β) = α′α, and so g = ḡ, by uniqueness of factorizations of α′α over β′β.

5.5. Theorem. UFL/B is coreflective in Cat/B if and only if B satisfies IG.

Proof. Suppose UFL/B is coreflective in Cat/B and b
β // b′

β′
// b′′. Then (*) is a pushout

in UFL/B by Lemma 5.4, and hence, in Cat/B, since the inclusion preserves pushouts
being a left adjoint. Thus, (*) is a pushout in Cat, and it follows that B satisfies IG, as
desired. The converse holds by Proposition 3.2 and (the proof of) Lemma 4.3 of [3].

Applying the equivalence Pseudo(B,Span) ≃ UFL/B, gives:

5.6. Corollary. Pseudo(B,Span) is coreflective in Lax(B,Span) if and only if B
satisfies IG.

Although IG works well in the proof of Theorem 5.5, the equivalent condition, called
CFI in [2], is a good source of examples. This condition consists of two parts, namely,
cancellation: given a diagram

· ·f // · ·
g //· ·
h

// · ·k //

in B such that gf = hf and kg = kh, then g = h, and fill in: given a commutative square

c d
k

//

a

c

h
��

a b
f // b

d

g
��

in B, there exists a morphism b // c or c // b making the diagram commute. Thus,
Theorem 5.5 does not apply to the following two simple examples. A commutative square
B does not satisfy the fill-in property, and cancellation fails in the category B with
one object and a single non-identity idempotent morphism. Johnstone [7] showed that
UFL/B (and hence, Pseudo(B,Span)) is not cartesian closed in the former case and the
following example does so in the latter.

5.7. Example. Let B denote the category

b

β

��

with one non-identity idempotent morphism β. Then the discrete category X = {0}
over B is not exponentiable, since the following shows that Y X does not exist when
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Y = {y1, y2} is the discrete category with two objects. One can show that Y X = {σ1, σ2},
where σi is the constant yi-valued map, and there is a (unique) morphism σi

// σj over β,
for all i, j, since 0 has no endomorphisms over β. Thus, we have a diagram

σ1 σ2
//σ1

��
σ2

��

over β, contradicting the uniqueness of the lifting of the factorization β = β2. Thus,
UFL/B, and hence, Pseudo(B,Span), is not cartesian closed.

6. Pseudo(B,Rel)

As in the case of Span, every object of Pseudo(B,Rel) is exponentiable in Lax(B,Rel),
and so one might conjecture that Pseudo(B,Rel) is cartesian closed. However, we will
see that, unlike Pseudo(B,Span), it is not often a topos, since every topos is balanced,
i.e., every morphism which is both a monomorphism and an epimorphism is necessarily
an isomorphism [6].

6.1. Example. Let B be any category with no non-trivial retractions. If |B| denotes
the discrete category with the same objects as B, then the Rel-set corresponding to the
inclusion i: |B| // B is a pseudo functor. Consider the diagram

|B| B
i // B X

f //
B X

g
//B

B

idB
��

|B|

B
��:

::
::

::
X

B

p
����

��
��

��

Now, i is an epimorphism, since fi = gi implies f = g, whenever p is faithful. Since
i is clearly a monomorphism which is not an isomorphism in Catf/B, it follows that
Pseudo(B,Rel) is not a topos.

6.2. Theorem. If Pseudo(B,Rel) is a coreflective subcategory of Lax(B,Rel), then
Pseudo(B,Rel) is cartesian closed.

Proof. Since the inclusion Pseudo(B,Rel) // Lax(B,Rel) preserves products, we can
apply Lemma 5.1 to obtain the desired result.

Unfortunately, it is not possible to show that coreflectivity is equivalent to B satisfying
condition IG, as it is in the case of Span, though we will see that IG is sufficient for a
certain class of categories. In fact, IG is not necessary as only one of the non-cartesian
closed examples carries over from Section 5. In particular, since every subobject of 1
in Pseudo(B,Rel) corresponds to a UFL subobject in Cat/B, Johnstone’s example [7]
applies, and so Pseudo(B,Rel) is not cartesian closed when B is a commutative square.
However, the following corollary shows this is not the case for Example 5.7.
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6.3. Corollary. If B is the category

b

β

��

with one non-identity idempotent morphism β, then Pseudo(B,Rel) is coreflective in
Lax(B,Rel), and hence, is cartesian closed.

Proof. Let Ib =
{ a

2n
| n ≥ 1, 0 ≤ a ≤ 2n

}
with

a

2n
→β

a′

2n′ ⇐⇒
a

2n
<

a′

2n′

and letM denote the pseudo functor corresponding to the category overB with morphisms
over β given by

0 m// m
��

m 1//

Then, given a pseudo functor X:B //Rel, one can show that x→β x′ in X if and only if
there is a morphism f : I // X or f :M // X such that f(0) = x and f(1) = x′. If X is a
lax functor, we call this property of an arrow x→β x′, the pseudo functor property. Note
that this property is hereditary, in the sense that, if x →β x′ satisfies the property, then
so do the other morphisms in the image of corresponding f .

Given a lax functor X:B // Rel, let X̂ denote the Rel-set with the same elements
as X and the following relations. Let X̂idb = ∆X̂b

and X̂β denote the set of (x, x′) ∈ Xβ

satisfying the pseudo functor property. Then it is not difficult to show that

Lax(B,Rel) ̂ // Pseudo(B,Rel)

is right adjoint to the inclusion, giving the necessary coreflection to apply Theorem 6.2,
and it follows that Pseudo(B,Rel) is cartesian closed.

To apply Theorem 6.2 when B satisfies IG, we first construct a cartesian closed sub-
category Catf/B, and then establish conditions on B making this category equivalent to
Pseudo(B,Rel), using the following lemma.

6.4. Lemma. Suppose B is a category satisfying IG and the only isomorphisms are the
identity morphisms. Then [[β]] is a totally ordered set, for every morphism β: b // b′.

Proof. Suppose

b

ūβ̄ ""EE
EE

E

u

b

<<β

yy
yy

y
u

ū

b′

ū

<<

β̄′yyy
yy

u

b′

β′

""EEE
EEu

ū

are objects of [[β]]. Then, since B satisfies the fill-in property, there is a morphism u // ū
or ū // u of the corresponding factorizations in [[β]], and not more than one, since B has
no non-identity isomorphisms and satisfies the cancellation property. Thus, [[β]] is totally
ordered.
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6.5. Corollary. Suppose B satisfies IG, has no non-identity isomorphisms, and [[β]] is
finite, for all β in B. Then Pseudo(B,Rel) is a coreflective cartesian closed subcategory
of Lax(B,Rel).

Proof. We will show that Pseudo(B,Rel) is equivalent to a cartesian closed coreflective
subcategory C of Catf/B.

Given a faithful functor p:X // B, let X̂ denote the subcategory of X with the same
objects and those morphisms α: x // x′ over β for which there is a commutative diagram

[[β]]

B
��5

55
[[β]] X

fα // X

B
p��		

		

such that fα(b
idb // b

β // b′) = x and fα(b
β // b′

idb′// b′) = x′. Note that X̂ is closed under
composition, since IG says that

[[β]] [[β′β]]//

[[idb′ ]]

[[β]]
��

[[idb′ ]] [[β′]]// [[β′]]

[[β′β]]
��

(∗)

is a pushout in Cat, for every composable pair. Thus, we get a commutative diagram

X̂

B
p̂ ��5

55
5X̂ X

iX // X

B
p��		

		

in Catf/B. Let C denotes the full subcategory of Catf/B consisting of p:X // B such

that X̂ = X.

To see that C is coreflective inCatf/B, it suffices to show that
̂̂
X = X̂, for all p:X //B

in Catf/B. To do so we will show that every α: x // x′ of X̂ is in
̂̂
X by showing that the

image of fα: [[β]] // X over β is contained in X̂. Given a morphism

b

ūβ̄1
""EE

EE
E

u

b

<<β1

yy
yy

y
u

ū

γ

��

b′

ū

<<

β̄2
yyy

yy

u

b′

β2

""EEE
EEu

ū
��

of [[β]], there is a functor i: [[γ]] //[[β]] given by precomposition with β1 and postcomposition

with β̄2, and using [[γ]] i // [[β]]
fα // X, it is not difficult to show that fα(γ) ∈ X̂.

Now, every object of C is exponentiable in Catf/B, i.e., p̂ satisfies WFL, since given

α′′: x //x′′ in X̂ such that pα′′ = β′β, the morphism fα′′ : [[β′β]] //X induces a factorization
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of α′′ via the diagram (*). Since the inclusion preserves products and every object of C is
exponentiable in Catf/B being a WFL, applying Lemma 5.1, we see that C is cartesian
closed.

It remains to show that Pseudo(B,Rel) is equivalent to C, i.e., the objects of C are
precisely the faithful WFL with discrete fibers. We already know that p̂ satisfies the
first two conditions, and the fibers of p̂ are discrete, since [[idb]] has one element (as the
cancellation property implies that every element corresponds to an isomorphism). Thus
it suffices to show that every faithful WFL p:X // B with discrete fibers is in C.

Suppose α:x // x′ is in X and pα = β. To show α is in X̂, we will define fα: [[β]] // X

over B such that fα(b
idb // b

β // b′) = x and fα(b
β // b′

idb′// b′) = x′. Applying Lemma 6.4, we

see that [[β]] is totally ordered. Since [[β]] is finite, it sits over b
β1 // u1

γ1 // . . .
γn−1// un

β′
n // b′

in B, and we have commutative diagrams

b ui
// ui b′//

b

b

==
idb

zzzzzzzz b

ui

βi

��

b

b′

β

!!DD
DD

DD
DD

b ui
βi //b

b′
β !!DD

DD
DD

DD ui b′
β′
i //ui

b′
β′
i��

b′

b′

==

idb′zz
zz

zz
zz

b

ui+1
βi+1 ""EE

EE
E

ui

b

<<βi

yyy
yy
ui

ui+1

γi

��

b′

ui+1

<<

β′
i+1

yyy
yy

ui

b′

β′
i

""EE
EE

ui

ui+1

Since α:x //x′ and pα = β = β′
1β1, using the fact that p is a WFL, we get a factorization

x
α0 // x1

α′
1 // x′ of α over β = β′

1β1. Similarly, since pα′
1 = β′

1 = β′
2γ1, we get a factorization

x
α0 // x1

α1 // x2

α′
2 // x′ of α over β = β′

2γ2β1. Continuing, we get x
α0 // x1

α1 // . . .
αn−1// xn

αn // x′

of α over β = β′
nγn−1 . . . γ1β1, and hence, the desired morphism fα: [[β]] // X over B.

Note that if B and B′ are any equivalent categories, one can show that Pseudo(B,Rel)
and Pseudo(B′,Rel) are equivalent as well, but the same is not the case for the corre-
sponding categories of lax functors. Thus, it turns out that to show that Pseudo(B,Rel)
is cartesian closed (but not necessarily coreflective in Lax(B,Rel)), we need only assume
that B has no non-trivial automorphisms rather than isomorphisms.

6.6. Corollary. If B satisfies IG, has no non-trivial automorphisms, and [[β]] is finite,
for all β in B, then Pseudo(B,Rel) is cartesian closed.

Proof. Since B is equivalent to a skeletal category satisfying the hypotheses of Corol-
lary 6.5, the desired result follows.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown (at) btinternet.com
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