LAX PRESHEAVES AND EXPONENTIABILITY

SUSAN NIEFIELD

Abstract

The category of Set-valued presheaves on a small category B is a topos. Replacing Set by a bicategory \mathbf{S} whose objects are sets and morphisms are spans, relations, or partial maps, we consider a category $\operatorname{Lax}(B, \mathbf{S})$ of \mathbf{S}-valued lax functors on B. When $\mathbf{S}=$ Span, the resulting category is equivalent to Cat $/ B$, and hence, is rarely even cartesian closed. Restricting this equivalence gives rise to exponentiability characterizations for $\operatorname{Lax}(B, \operatorname{Rel})$ in [9] and for $\operatorname{Lax}(B, \mathrm{Par})$ in this paper. Along the way, we obtain a characterization of those B for which the category UFL $/ B$ is a coreflective subcategory of Cat/ B, and hence, a topos.

1. Introduction

If B is a small category, then the category Set^{B} of functors $B \rightarrow$ Set and natural transformations is a topos (c.f., [6]). But, what happens if we replace Set by the bicategories Rel, Par, and Span, whose objects are sets and morphisms are relations, partial maps, and spans, respectively? Given a bicategory \mathbf{S}, we consider the categories $\operatorname{Lax}(B, \mathbf{S})$ and Pseudo (B, \mathbf{S}) whose objects are lax functors and pseudo functors $B \rightarrow \mathbf{S}$, respectively, and morphisms are function-valued op-lax transformation. We will see that $\operatorname{Lax}(B, \mathbf{S})$ is rarely cartesian closed, when \mathbf{S} is Rel, Par, and Span, whereas Pseudo(B, Span) is often a topos, but rarely in the other two cases.

Although it appears that exponentiability in $\operatorname{Lax}(B, \mathbf{S p a n})$ has not explicitly been considered, $\operatorname{Lax}(B, \mathbf{S p a n})$ is known to be equivalent to the slice category Cat $/ B$, and exponentiable objects in Cat/ B were characterized independently by Giraud [5] and Conduché [4] as those functors satisfying a factorization lifting property, sometimes called the Giraud-Conduché condition. More recently, using the equivalence with Cat/ B with category $\operatorname{Lax}(B$, Prof $)$ of normal lax functors $B \rightarrow$ Prof and map-valued op-lax transformations, Street [11] showed that $X \rightarrow B$ is exponentiable in Cat if and only if the corresponding lax functor is a pseudo functor. Inspired by Street's note and a preprint of Stell [10] using lax functors $B \rightarrow$ Rel to model data varying over time, we established an equivalence between $\operatorname{Lax}(B, \mathbf{R e l})$ and the full subcategory $\mathbf{C a t}_{f} / B$ of $\mathbf{C a t} / B$ consisting of faithful functors. Using this, we showed that a faithful functor $p: X \rightarrow B$ is exponentiable if and only if the corresponding lax functor $B \rightarrow$ Rel preserves composition up to isomorphism if and only if p satisfies a weak factorization lifting condition WFL [9].

[^0]We begin this paper, in Section 2, describing Lax (B, Par) as a category of variable sets, and then, in Section 3, obtain an equivalence with a full subcategory of Cat/ B, by restricting that of $\operatorname{Lax}(B, \mathbf{R e l})$ and $\mathbf{C a t}_{f} / B$. Necessary and sufficient conditions for exponentiability in $\operatorname{Lax}(B, \operatorname{Par})$ are presented in Section 4. In Section 5, we give a short and simple proof that Pseudo(B, Span) is a topos, whenever it is a coreflective subcategory of $\operatorname{Lax}(B, \mathbf{S p a n})$, and then show that this occurs precisely when B satisfies the interval glueing property IG defined in [3]. We conclude, in Section 6, by showing that $\operatorname{Pseudo}(B, \mathbf{R e l})$ is rarely a topos, and present conditions under which it is a cartesian closed coreflective subcategory of $\operatorname{Lax}(B, \mathbf{R e l})$. We do not consider the analogous question for $\operatorname{Pseudo}(B, \operatorname{Par})$ since, in this case, there are pseudo functors which are not exponentiable in $\operatorname{Lax}(B, \mathbf{P a r})$.

Our interest in Pseudo(B, Span) began when Robin Cockett mentioned its equivalence to the full subcategory UFL $/ B$ of Cat/ B consisting of functors satisfying the unique factorization lifting condition. In a 1996 talk [8], Lamarche had conjectured that UFL/ B is a topos. Subsequently, Bunge and Niefield [3] showed that if B satisfies IG, then UFL $/ B$ is coreflective in Cat $/ B$, and used this to show that UFL/ B is a topos. Then Johnstone [7] showed that it is not a topos when B is a commutative square, and used sheaves to show that UFL/ B is a topos when B satisfies certain cancellation and fill-in properties (CFI). Shortly thereafter, Bunge and Fiore gave an alternate sheaf-theoretic proof, using IG, and also showed that the conditions IG and CFI are, in fact, equivalent. Our theorem (see 5.5) shows that these conditions hold whenever UFL/B is coreflective in Cat/ B, thus providing a converse to the Bunge and Niefield result from [3].

2. Lax functors as variable sets

In this section, we describe $\operatorname{Lax}(B, \mathbf{P a r})$ as a category of relational variable sets on a small category B (in the sense of [9]).

Recall that a relational variable set or Rel-set is a lax functor $X: B \rightarrow \mathbf{R e l}$. Thus, a Rel-set X consists of a set X_{b}, for every object b, and a relation $X_{\beta}: X_{b} \rightarrow X_{b^{\prime}}$, for every morphism $\beta: b \rightarrow b^{\prime}$, satisfying $\Delta_{X_{b}} \subseteq X_{i d_{b}}$, for every object b, and $X_{\beta^{\prime}} \circ X_{\beta} \subseteq X_{\beta^{\prime} \beta}$, for every composable pair. Writing $x \rightarrow_{\beta} x^{\prime}$ for $\left(x, x^{\prime}\right) \in X_{\beta}$, these conditions become
(R1) $x \rightarrow_{i d_{b}} x$, for all $x \in X_{b}$.
(R2) $x \rightarrow_{\beta} x^{\prime}, x^{\prime} \rightarrow_{\beta^{\prime}} x^{\prime \prime} \Longrightarrow x \rightarrow_{\beta^{\prime} \beta} x^{\prime \prime}$.
A morphism $f: X \rightarrow Y$ of Rel-sets consists of a function $f_{b}: X_{b} \rightarrow Y_{b}$, for every object b such that

$$
\begin{aligned}
& X_{b} \xrightarrow{f_{b}} Y_{b} \\
& X_{\beta} \nsubseteq \subseteq \quad \vdash_{Y_{\beta}} \\
& X_{b^{\prime}} \xrightarrow[f_{b^{\prime}}]{ } Y_{b^{\prime}}
\end{aligned}
$$

for every morphism $\beta: b \rightarrow b^{\prime}$, or equivalently, $x \rightarrow_{\beta} x^{\prime}$ implies $f_{b} x \rightarrow_{\beta} f_{b^{\prime}} x^{\prime}$. Then $\operatorname{Lax}(B, \operatorname{Rel})$ denotes the category of Rel-sets and morphisms.

A lax functor $X: B \rightarrow$ Par consists of a set X_{b}, for every object b, and a partial map $X_{\beta}: X_{b} \rightharpoonup X_{b^{\prime}}$, for every morphism $\beta: b \rightarrow b^{\prime}$, such that $i d_{X_{b}} \leq X_{i d_{b}}$, for object b, and $X_{\beta^{\prime}} \circ X_{\beta} \leq X_{\beta^{\prime} \beta}$, for every composable pair. Since a relation $X_{\beta}: X_{b} \rightarrow X_{b^{\prime}}$ is a partial map if and only if $X_{\beta} \circ X_{\beta}^{\circ} \subseteq \Delta_{X_{b^{\prime}}}$, it follows that a Rel-set X is a lax functor $X: B \rightarrow$ Par if and only if it satisfies
(P3) $x \rightarrow_{\beta} x_{1}^{\prime}, x \rightarrow_{\beta} x_{2}^{\prime} \Longrightarrow x_{1}^{\prime}=x_{2}^{\prime}$
Thus, $\operatorname{Lax}(B, \operatorname{Par})$ is the full subcategory of $\operatorname{Lax}(B, \mathbf{R e l})$ consisting of those Rel-sets which satisfy (P3).

3. Lax Functors and Subcategories of Cat/B

In [9], we showed that the well-known equivalence between $\operatorname{Lax}(B, \operatorname{Span})$ and Cat / B restricts to one between $\operatorname{Lax}(B, \operatorname{Rel})$ and the full subcategory $\mathbf{C a t}_{f} / B$ of $\mathbf{C a t} / B$ consisting of faithful functors over B. In particular, a faithful functor $p: X \rightarrow B$ corresponds to a Rel-set, also denoted by X, and defined as follows. For each object b, X_{b} is the fiber of X over b, i.e., the set of objects x such that $p x=b$. Given $\beta: b \rightarrow b^{\prime}$, the relation X_{β} is defined by $x \rightarrow_{\beta} x^{\prime}$, if there is a morphism $\alpha: x \rightarrow x^{\prime}$ such that $p \alpha=\beta$. Moreover, the product of X and Y in Lax $(B$, Rel $)$ is given by $(X \times Y)_{b}=X_{b} \times Y_{b}$ and

$$
(x, y) \rightarrow_{\beta}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x \rightarrow_{\beta} y \text { and } x^{\prime} \rightarrow_{\beta} y^{\prime}
$$

Identifying Par with the subcategory of Rel consisting of morphisms R : $X \longrightarrow Y$ with $R \circ R^{\circ} \subseteq \Delta_{Y}$, it is not difficult to show that $\operatorname{Lax}(B, \mathrm{Par})$ is equivalent to the full subcategory $\mathbf{C a t}_{p f} / B$ of $\mathbf{C a t} / B$ consisting of faithful functors $p: X \rightarrow B$ such that given

if $p\left(\alpha_{1}\right)=p\left(\alpha_{2}\right)=\beta$, then $\alpha_{1}=\alpha_{2}$, and $\operatorname{Lax}(B, \mathbf{P a r})$ has finite products which agree with those of $\operatorname{Lax}(B$, Rel $)$.

4. Exponentiability in Categories of Lax Functors

A Rel-set X is exponentiable in $\operatorname{Lax}(B, \mathbf{R e l})$ if and only if X preserves composition, i.e., for every composable pair, the containment $X_{\beta^{\prime}} \circ X_{\beta} \subseteq X_{\beta^{\prime} \beta}$ is an equality if and only if
the corresponding faithful functor $p: X \rightarrow B$ has the weak factorization lifting condition (WFL)

i.e., given $\alpha^{\prime \prime}$ and a factorization $p \alpha^{\prime \prime}=\beta^{\prime} \beta$, there exists a factorization $\alpha^{\prime \prime}=\alpha^{\prime} \alpha$ such that $p \alpha=\beta$ and $p \alpha^{\prime}=\beta^{\prime}[9]$. Moreover, $X: B \rightarrow \mathbf{S p a n}$ is exponentiable in Lax $(B, \mathbf{S p a n})$ if and only if the corresponding functor $p: X \rightarrow B$ satisfies the Giraud-Conduché condition, i.e., WFL plus a connectivity condition on the objects over b^{\prime} through which $\alpha^{\prime \prime}$ factors [5, 4].

To establish a characterization of exponentiable objects in $\operatorname{Lax}(B, \mathrm{Par})$, we use its equivalence with $\operatorname{Cat}_{p f} / B$ as well as the description, given in 2.1, of $X: B \rightarrow \operatorname{Par}$ as a Rel-set satisfying (P3).

A functor $p: X \rightarrow B$ will be called a partial fibration if it satisfies the lifting condition

i.e, given x^{\prime} and β, there exists α such that $p \alpha=\beta$. It is easy to show that a faithful functor is a partial fibration if and only if the associated lax functor $X: B \rightarrow \operatorname{Rel}$ satisfies $\Delta_{X_{b^{\prime}}} \subseteq X_{\beta} \circ X_{\beta}^{\circ}$, i.e., X_{β} is onto.
4.1. Theorem. The following are equivalent for a lax functor $X: B \rightarrow \mathbf{P a r}$ with corresponding functor $p: X \rightarrow B$.
(a) X is exponentiable in $\operatorname{Lax}(B, P a r)$.
(b) X is a functor and $X_{\beta}: X_{b} \rightharpoonup X_{b^{\prime}}$ is onto, for all $\beta: b \rightarrow b^{\prime}$.
(c) p is exponentiable in $\mathbf{C a t}_{p f} / B$.
(d) p is a partial fibration satisfying the weak factorization lifting condition WFL.

Proof. We know (a) and (c) are equivalent, since $\operatorname{Lax}(B, \operatorname{Par}) \simeq \operatorname{Cat}_{p f} / B$. The equivalence of (b) and (d) follows from the remarks above, the definition of WFL, and the fact that $X_{i d_{b}}=i d_{X_{b}}$ in $\operatorname{Lax}(B, \mathrm{Par})$, for all b, since $x_{1} \rightarrow_{i d_{b}} x_{2}$ implies $x_{1}=x_{2}$ by (P3). Thus, it suffices to show that $(\mathrm{b}) \Rightarrow(\mathrm{a})$ and $(\mathrm{c}) \Rightarrow(\mathrm{d})$.

For $(\mathrm{b}) \Rightarrow(\mathrm{a})$, suppose X is a functor and X_{β} is onto, for all $\beta: b \rightarrow b^{\prime}$. Then X is exponentiable in $\operatorname{Lax}(B$, Rel $)$. Thus, given $Y: B \rightarrow$ Par, it suffices to show that the
exponential Rel-set Y^{X} is an object of $\operatorname{Lax}\left(B\right.$, Par), i.e., satisfies (P3), where Y^{X} is defined as follows [9]. Let $\left(Y^{X}\right)_{b}$ denote the set of functions $\sigma: X_{b} \rightarrow Y_{b}$, and define $\sigma \rightarrow_{\beta} \sigma^{\prime}$ if $\sigma x \rightarrow_{\beta} \sigma^{\prime} x^{\prime}$, for all $x \rightarrow_{\beta} x^{\prime}$ in X.

To see that Y^{X} satisfies (P3), suppose $\sigma \rightarrow_{\beta} \sigma_{1}^{\prime}, \sigma \rightarrow_{\beta} \sigma_{2}^{\prime}$, and $x^{\prime} \in X_{b^{\prime}}$. Then $x \rightarrow_{\beta} x^{\prime}$, for some $x \in X_{b}$, since X_{β} is onto, and so $\sigma x \rightarrow_{\beta} \sigma_{1}^{\prime} x^{\prime}$ and $\sigma x \rightarrow_{\beta} \sigma_{2}^{\prime} x^{\prime}$. Thus, $\sigma_{1}^{\prime} x^{\prime}=\sigma_{2}^{\prime} x^{\prime}$, since Y satisfies (P3), and it follows that $\sigma_{1}^{\prime}=\sigma_{2}^{\prime}$. Therefore, X is exponentiable in $\operatorname{Lax}(B, \mathrm{Par})$.

For $(\mathrm{c}) \Rightarrow(\mathrm{d})$, suppose p is exponentiable in $\mathbf{C a t}_{p f} / B$. Then the elements σ of the fiber $\left(Y^{X}\right)_{b}$ can be identified with the functions $X_{b} \rightarrow Y_{b}$, since

Moreover, every morphism $\sigma \rightarrow \sigma^{\prime}$ over β satisfies $\sigma x \rightarrow \sigma^{\prime} x^{\prime}$, for all $x \rightarrow x^{\prime}$ over β, since the counit is the evaluation functor $\varepsilon: Y^{X} \times_{B} X \rightarrow Y$, under this identification.

To see that p satisfies WFL, suppose $\alpha^{\prime \prime}: x \rightarrow x^{\prime \prime}$ in X and $p \alpha^{\prime \prime}=\beta^{\prime} \beta$, where $\beta: p x \rightarrow b^{\prime}$ and $\beta^{\prime}: b^{\prime} \rightarrow p x^{\prime \prime}$. Then the composite $\beta^{\prime} \beta$ gives rise to a pushout in $C a t_{p f} / B$ of the form

where $\mathbf{2}$ and $\mathbf{3}$ are the categories $0 \rightarrow 1$ and $0 \rightarrow 1 \rightarrow 2$, respectively. Since $-\times p$ preserves pushouts (as it has a right adjoint), it follows that the corresponding diagram

is a pushout in $C a t_{p f} / B$. The pushout $P \rightarrow B$ of this diagram can be constructed as follows. Let X_{β} and $X_{\beta^{\prime}}$ denote the subcategories of X obtained by identifying $p \times \beta$ and $p \times \beta^{\prime}$ with their images in X. Then the objects of P are the union of those of X_{β} and $X_{\beta^{\prime}}$, and the morphisms are those of X_{β} and $X_{\beta^{\prime}}$ together with pairs $\left(\alpha, \alpha^{\prime}\right): x \rightarrow x^{\prime \prime}$ such that $\alpha: x \rightarrow x^{\prime}$ in X_{β} and $\alpha^{\prime}: x^{\prime} \rightarrow x^{\prime \prime}$ in $X_{\beta^{\prime}}$, subject to an appropriate equivalence relation. Since $\alpha^{\prime \prime}: x \rightarrow x^{\prime \prime}$ corresponds to a morphism of $\mathbf{3} \times_{B} X$, and hence one of P over $\beta^{\prime} \beta$, the desired factorization of $\alpha^{\prime \prime}$ follows.

It remains to show that p is a partial fibration. Suppose x^{\prime} is in X and $\beta: b \rightarrow p x^{\prime}$ in B. Let Y denote the category

$$
\begin{array}{r}
y_{2}^{\prime} \\
y_{1} \xrightarrow{\gamma} y_{1}^{\prime}
\end{array}
$$

with $q: Y \rightarrow B$ given by $q \gamma=\beta$ and $q y_{2}^{\prime}=p x^{\prime}$. Let $\sigma \in\left(Y^{X}\right)_{b}$ denote the constant y_{1}-valued map, $\sigma_{1}^{\prime} \in\left(Y^{X}\right)_{p x^{\prime}}$ the constant y_{1}^{\prime}-valued map, and $\sigma_{2}^{\prime} \in\left(Y^{X}\right)_{p x^{\prime}}$ the function

$$
\sigma_{2}^{\prime} \hat{x}^{\prime}= \begin{cases}y_{1}^{\prime} & \text { if } \hat{x}^{\prime} \in \operatorname{Image}\left(X_{\beta}\right) \\ y_{2}^{\prime} & \text { otherwise }\end{cases}
$$

Thus, for $i=1,2$, we have $\hat{x} \underset{\beta}{\rightarrow} \hat{x}^{\prime}$ implies $\sigma \hat{x} \underset{\beta}{ } \sigma_{i}^{\prime} \hat{x}^{\prime}$, and so $\sigma \underset{\beta}{ } \sigma_{i}^{\prime}$, and we get a diagram

Since $Y^{X} \rightarrow B$ satisfies (P3), it follows that $\sigma_{1}=\sigma_{2}$. Thus, $X_{b^{\prime}}=\operatorname{Image}\left(X_{\beta}\right)$, and so there exists $\alpha: x \rightarrow x^{\prime}$ such that $p \alpha=\beta$, to complete the proof.
4.2. Corollary. The inclusion $\operatorname{Lax}(B, \mathbf{P a r}) \rightarrow \operatorname{Lax}(\mathbf{B}, \mathbf{R e l})$ preserves exponentiability and exponentials.
Proof. Since the exponentials Y^{X} defined in the proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$ agree with those of $\operatorname{Lax}(B, \mathbf{R e l})$ given in [9] when X satisfies WFL, the desired result follows.

5. Pseudo(B, Span) and UFL/ B

Since every pseudo functor $X: B \rightarrow \mathbf{S p a n}$ is exponentiable in $\operatorname{Lax}(B, \mathbf{S p a n})$, one might conjecture that $\operatorname{Pseudo}(B, \mathbf{S p a n})$ is cartesian closed. As noted in the introduction, this is not the case when B is a commutative square [7] since

$$
\operatorname{Pseudo}(B, \mathbf{S p a n}) \simeq \mathbf{U F L} / B
$$

where the latter is the full subcategory of Cat/ B consisting of functors satisfying the unique factorization lifting property UFL, i.e., the condition WFL given in Section 4 plus uniqueness of the lifted factorization. However, UFL/ B is a topos which is coreflective in Cat $/ B$, if B satisfies a condition called the interval glueing condition (IG) in [3]. The proof in [3] makes extensive use of (IG), and one in [7] exhibits UFL/ B as a topos of sheaves, using a condition equivalent to (IG). In the following, we show that UFL/ B is a topos, assuming only that it is coreflective in Cat/ B. Although this appears to be a more general theorem than that of [3] and [7], we will see that coreflectivity of UFL/ B in Cat/ B is, in fact, equivalent to (IG), thus proving the converse of the result in [3].
5.1. Lemma. Suppose \mathbf{Y} is a category with finite products and $\mathbf{X} \rightarrow \mathbf{Y}$ is a product preserving inclusion of a coreflective subcategory. If X is an object of \mathbf{X} which is exponentiable in \mathbf{Y}, then X is exponentiable in \mathbf{X}.
Proof. Given $Y \in \mathbf{X}$, then $\widehat{Y^{X}}$ is the exponential in \mathbf{X}, where ${ }^{\wedge}$ denotes the coreflection, since $\mathbf{X}(W \times X, Y) \cong \mathbf{Y}(W \times X, Y) \cong \mathbf{Y}\left(W, Y^{X}\right) \cong \mathbf{X}\left(W, \widehat{Y^{X}}\right)$.
5.2. Theorem. If UFL/B is a coreflective subcategory of Cat/ B, then $\mathbf{U F L} / B$ is a topos.

Proof. A straightforward calculation shows that the inclusion UFL/ $B \rightarrow \mathbf{C a t} / B$ preserves products, and so UFL/ B is cartesian closed by Lemma 5.1. To see that it is a topos, let Ω denote the UFL subobject classifier in Cat [3]

and consider $\Omega \times B \rightarrow B$ via the projection. Then $\operatorname{Sub}_{\mathbf{U F L} / B}(X) \cong \operatorname{Sub}_{\mathbf{U F L}}(X) \cong$ $\operatorname{Cat}(X, \Omega) \cong \mathbf{C a t} / B(X, \Omega \times B) \cong \mathbf{U F L} / B(X, \widehat{\Omega \times B})$, for all $X \rightarrow B$ in UFL $/ B$.
5.3. Corollary. If $\operatorname{Pseudo}(B, \mathbf{S p a n})$ is a coreflective subcategory of $\operatorname{Lax}(B$, Span $)$, then $\operatorname{Pseudo}(B, \mathbf{S p a n})$ is a topos.

Proof. Since $\operatorname{Pseudo}(B, \operatorname{Span}) \simeq \mathbf{U F L} / B$, the desired result follows.
Given $\beta: b \rightarrow b^{\prime}$ in B, consider the category $\llbracket \beta \rrbracket$ over B whose objects are factorizations

morphisms are commutative diagrams

and projection to B takes the factorization $\beta=\beta_{2} \beta_{1}$ to the codomain of β_{1}, or equivalently, the domain of β_{2}. Then we say B satisfies IG if the induced diagram

is a pushout in Cat, for all $b \xrightarrow{\beta} b^{\prime} \xrightarrow{\beta^{\prime}} b^{\prime \prime}$.
5.4. Lemma. The diagram (*) is a pushout in UFL/B, for all $b \xrightarrow{\beta} b^{\prime} \xrightarrow{\beta^{\prime}} b^{\prime \prime}$.

Proof. Suppose $p: X \rightarrow B$ is a UFL and we are given a commutative diagram

over B. Applying f and f^{\prime} to the diagrams

gives morphisms α and α^{\prime} of X over β and β^{\prime}, respectively, and these morphisms are composable by the commutativity of the diagram. Thus, we get a morphism $\alpha^{\prime} \alpha$ over $\beta^{\prime} \beta$

To define $g: \llbracket \beta^{\prime} \beta \rrbracket \rightarrow X$ over B, suppose $\beta^{\prime} \beta=\beta_{2} \beta_{1}$ is an object of $\llbracket \beta^{\prime} \beta \rrbracket$, and take $g\left(\beta_{2} \beta_{1}\right)$ to be the codomain of α_{1}, where $\alpha^{\prime} \alpha=\alpha_{2} \alpha_{1}$ is the unique lifting of the factorization $\beta^{\prime} \beta=\beta_{2} \beta_{1}$. Given a morphism

of $\llbracket \beta^{\prime} \beta \rrbracket$, let $\alpha^{\prime} \alpha=\bar{\alpha}_{2} \bar{\alpha}_{1}$ be the unique lifting of $\beta^{\prime} \beta=\bar{\beta}_{2} \bar{\beta}_{1}$ and $\bar{\alpha}_{1}=\gamma_{2} \gamma_{1}$ be the unique lifting of $\bar{\beta}_{1}=\delta \beta_{1}$. Thus, we get a diagram

Then $\alpha_{1}=\gamma_{1}$ and $\alpha_{2}=\bar{\alpha}_{2} \gamma_{2}$, by uniqueness of the factorization $\alpha^{\prime} \alpha=\alpha_{2} \alpha_{1}$, and we can take γ_{2} to be the morphism $g(\delta): g\left(\beta_{2} \beta_{1}\right) \rightarrow g\left(\bar{\beta}_{2} \bar{\beta}_{1}\right)$. To establish the uniqueness of g, one shows that for any other such morphism \bar{g} the commutativity of the triangles implies that $\bar{g}\left(\beta^{\prime} \beta\right)=\alpha^{\prime} \alpha$, and so $g=\bar{g}$, by uniqueness of factorizations of $\alpha^{\prime} \alpha$ over $\beta^{\prime} \beta$.

5.5. Theorem. UFL/B is coreflective in Cat/B if and only if B satisfies $I G$.

Proof. Suppose UFL/ B is coreflective in Cat $/ B$ and $b \xrightarrow{\beta} b^{\prime} \xrightarrow{\beta^{\prime}} b^{\prime \prime}$. Then $(*)$ is a pushout in UFL/ B by Lemma 5.4, and hence, in Cat/ B, since the inclusion preserves pushouts being a left adjoint. Thus, $\left(^{*}\right)$ is a pushout in Cat, and it follows that B satisfies IG, as desired. The converse holds by Proposition 3.2 and (the proof of) Lemma 4.3 of [3].

Applying the equivalence $\operatorname{Pseudo}(B, \mathbf{S p a n}) \simeq \mathbf{U F L} / B$, gives:
5.6. Corollary. Pseudo($B, \mathbf{S p a n}$) is coreflective in $\operatorname{Lax}(B$, Span) if and only if B satisfies $I G$.

Although IG works well in the proof of Theorem 5.5, the equivalent condition, called CFI in [2], is a good source of examples. This condition consists of two parts, namely, cancellation: given a diagram

$$
\cdot \xrightarrow{f} \cdot \xrightarrow[h]{g} \cdot \xrightarrow{k} .
$$

in B such that $g f=h f$ and $k g=k h$, then $g=h$, and fill in: given a commutative square

in B, there exists a morphism $b \rightarrow c$ or $c \rightarrow b$ making the diagram commute. Thus, Theorem 5.5 does not apply to the following two simple examples. A commutative square B does not satisfy the fill-in property, and cancellation fails in the category B with one object and a single non-identity idempotent morphism. Johnstone [7] showed that UFL/ B (and hence, Pseudo($B, \mathbf{S p a n})$) is not cartesian closed in the former case and the following example does so in the latter.
5.7. Example. Let B denote the category

with one non-identity idempotent morphism β. Then the discrete category $X=\{0\}$ over B is not exponentiable, since the following shows that Y^{X} does not exist when
$Y=\left\{y_{1}, y_{2}\right\}$ is the discrete category with two objects. One can show that $Y^{X}=\left\{\sigma_{1}, \sigma_{2}\right\}$, where σ_{i} is the constant y_{i}-valued map, and there is a (unique) morphism $\sigma_{i} \rightarrow \sigma_{j}$ over β, for all i, j, since 0 has no endomorphisms over β. Thus, we have a diagram

over β, contradicting the uniqueness of the lifting of the factorization $\beta=\beta^{2}$. Thus, UFL $/ B$, and hence, $\operatorname{Pseudo}(B, \mathbf{S p a n})$, is not cartesian closed.

6. Pseudo (B, Rel $)$

As in the case of Span, every object of $\operatorname{Pseudo}(B, \mathbf{R e l})$ is exponentiable in $\operatorname{Lax}(B$, Rel $)$, and so one might conjecture that $\operatorname{Pseudo}(B, \mathbf{R e l})$ is cartesian closed. However, we will see that, unlike Pseudo($B, \operatorname{Span})$, it is not often a topos, since every topos is balanced, i.e., every morphism which is both a monomorphism and an epimorphism is necessarily an isomorphism [6].
6.1. Example. Let B be any category with no non-trivial retractions. If $|B|$ denotes the discrete category with the same objects as B, then the Rel-set corresponding to the inclusion $i:|B| \rightarrow B$ is a pseudo functor. Consider the diagram

Now, i is an epimorphism, since $f i=g i$ implies $f=g$, whenever p is faithful. Since i is clearly a monomorphism which is not an isomorphism in Cat_{f} / B, it follows that Pseudo $(B$, Rel $)$ is not a topos.
6.2. Theorem. If $\operatorname{Pseudo}(B, \mathbf{R e l})$ is a coreflective subcategory of $\operatorname{Lax}(B, \mathbf{R e l})$, then Pseudo(B, Rel) is cartesian closed.
Proof. Since the inclusion $\operatorname{Pseudo}(B, \mathbf{R e l}) \rightarrow \operatorname{Lax}(B$, Rel $)$ preserves products, we can apply Lemma 5.1 to obtain the desired result.

Unfortunately, it is not possible to show that coreflectivity is equivalent to B satisfying condition IG, as it is in the case of Span, though we will see that IG is sufficient for a certain class of categories. In fact, IG is not necessary as only one of the non-cartesian closed examples carries over from Section 5. In particular, since every subobject of 1 in Pseudo($B, \mathbf{R e l}$) corresponds to a UFL subobject in Cat/ B, Johnstone's example [7] applies, and so $\operatorname{Pseudo}(B$, Rel $)$ is not cartesian closed when B is a commutative square. However, the following corollary shows this is not the case for Example 5.7.
6.3. Corollary. If B is the category

with one non-identity idempotent morphism β, then $\operatorname{Pseudo}(B, \mathbf{R e l})$ is coreflective in $\operatorname{Lax}(B, \mathbf{R e l})$, and hence, is cartesian closed.
Proof. Let $I_{b}=\left\{\left.\frac{a}{2^{n}} \right\rvert\, n \geq 1,0 \leq a \leq 2^{n}\right\}$ with

$$
\frac{a}{2^{n}} \rightarrow_{\beta} \frac{a^{\prime}}{2^{n^{\prime}}} \Longleftrightarrow \frac{a}{2^{n}}<\frac{a^{\prime}}{2^{n^{\prime}}}
$$

and let M denote the pseudo functor corresponding to the category over B with morphisms over β given by

Then, given a pseudo functor $X: B \rightarrow \mathbf{R e l}$, one can show that $x \rightarrow_{\beta} x^{\prime}$ in X if and only if there is a morphism $f: I \rightarrow X$ or $f: M \rightarrow X$ such that $f(0)=x$ and $f(1)=x^{\prime}$. If X is a lax functor, we call this property of an arrow $x \rightarrow_{\beta} x^{\prime}$, the pseudo functor property. Note that this property is hereditary, in the sense that, if $x \rightarrow_{\beta} x^{\prime}$ satisfies the property, then so do the other morphisms in the image of corresponding f.

Given a lax functor $X: B \rightarrow \mathbf{R e l}$, let \widehat{X} denote the Rel-set with the same elements as X and the following relations. Let $\widehat{X}_{i d_{b}}=\Delta_{\widehat{X}_{b}}$ and \widehat{X}_{β} denote the set of $\left(x, x^{\prime}\right) \in X_{\beta}$ satisfying the pseudo functor property. Then it is not difficult to show that

$$
\operatorname{Lax}(B, \text { Rel }) \xrightarrow{\rightrightarrows} \operatorname{Pseudo}(B, \text { Rel })
$$

is right adjoint to the inclusion, giving the necessary coreflection to apply Theorem 6.2, and it follows that $\operatorname{Pseudo}(B, \operatorname{Rel})$ is cartesian closed.

To apply Theorem 6.2 when B satisfies IG, we first construct a cartesian closed subcategory $\mathbf{C a t}_{f} / B$, and then establish conditions on B making this category equivalent to Pseudo($B, \mathbf{R e l}$), using the following lemma.
6.4. Lemma. Suppose B is a category satisfying $I G$ and the only isomorphisms are the identity morphisms. Then $\llbracket \beta \rrbracket$ is a totally ordered set, for every morphism $\beta: b \rightarrow b^{\prime}$.
Proof. Suppose

are objects of $\llbracket \beta \rrbracket$. Then, since B satisfies the fill-in property, there is a morphism $u \rightarrow \bar{u}$ or $\bar{u} \rightarrow u$ of the corresponding factorizations in $\llbracket \beta \rrbracket$, and not more than one, since B has no non-identity isomorphisms and satisfies the cancellation property. Thus, $\llbracket \beta \rrbracket$ is totally ordered.
6.5. Corollary. Suppose B satisfies IG, has no non-identity isomorphisms, and $\llbracket \beta \rrbracket$ is finite, for all β in B. Then $\operatorname{Pseudo}(B, \mathbf{R e l})$ is a coreflective cartesian closed subcategory of $\operatorname{Lax}(B$, Rel $)$.
Proof. We will show that $\operatorname{Pseudo}(B, \mathbf{R e l})$ is equivalent to a cartesian closed coreflective subcategory \mathcal{C} of $\mathbf{C a t}_{f} / B$.

Given a faithful functor $p: X \rightarrow B$, let \widehat{X} denote the subcategory of X with the same objects and those morphisms $\alpha: x \rightarrow x^{\prime}$ over β for which there is a commutative diagram

such that $f_{\alpha}\left(b \xrightarrow{i d_{b}} b \xrightarrow{\beta} b^{\prime}\right)=x$ and $f_{\alpha}\left(b \xrightarrow{\beta} b^{\prime} \xrightarrow{i d_{b^{\prime}}} b^{\prime}\right)=x^{\prime}$. Note that \widehat{X} is closed under composition, since IG says that

is a pushout in Cat, for every composable pair. Thus, we get a commutative diagram

in $\operatorname{Cat}_{f} / B$. Let \mathcal{C} denotes the full subcategory of $\mathbf{C a t}_{f} / B$ consisting of $p: X \rightarrow B$ such that $\widehat{X}=X$.

To see that \mathcal{C} is coreflective in $\mathbf{C a t}_{f} / B$, it suffices to show that $\widehat{\widehat{X}}=\widehat{X}$, for all $p: X \rightarrow B$ in $\operatorname{Cat}_{f} / B$. To do so we will show that every $\alpha: x \rightarrow x^{\prime}$ of \widehat{X} is in $\widehat{\widehat{X}}$ by showing that the image of $f_{\alpha}: \llbracket \beta \rrbracket \rightarrow X$ over β is contained in \widehat{X}. Given a morphism

of $\llbracket \beta \rrbracket$, there is a functor $i: \llbracket \gamma \rrbracket \rightarrow \llbracket \beta \rrbracket$ given by precomposition with β_{1} and postcomposition with $\bar{\beta}_{2}$, and using $\llbracket \gamma \rrbracket \xrightarrow{i} \llbracket \beta \rrbracket \xrightarrow{f_{\alpha}} X$, it is not difficult to show that $f_{\alpha}(\gamma) \in \widehat{X}$.

Now, every object of \mathcal{C} is exponentiable in $\mathbf{C a t}_{f} / B$, i.e., \hat{p} satisfies WFL, since given $\alpha^{\prime \prime}: x \rightarrow x^{\prime \prime}$ in \widehat{X} such that $p \alpha^{\prime \prime}=\beta^{\prime} \beta$, the morphism $f_{\alpha^{\prime \prime}}: \llbracket \beta^{\prime} \beta \rrbracket \rightarrow X$ induces a factorization
of $\alpha^{\prime \prime}$ via the diagram $\left(^{*}\right)$. Since the inclusion preserves products and every object of \mathcal{C} is exponentiable in $\operatorname{Cat}_{f} / B$ being a WFL, applying Lemma 5.1, we see that \mathcal{C} is cartesian closed.

It remains to show that $\operatorname{Pseudo}(B, \mathbf{R e l})$ is equivalent to \mathcal{C}, i.e., the objects of \mathcal{C} are precisely the faithful WFL with discrete fibers. We already know that \hat{p} satisfies the first two conditions, and the fibers of \hat{p} are discrete, since $\llbracket i d_{b} \rrbracket$ has one element (as the cancellation property implies that every element corresponds to an isomorphism). Thus it suffices to show that every faithful WFL $p: X \rightarrow B$ with discrete fibers is in \mathcal{C}.

Suppose $\alpha: x \rightarrow x^{\prime}$ is in X and $p \alpha=\beta$. To show α is in \widehat{X}, we will define $f_{\alpha}: \llbracket \beta \rrbracket \rightarrow X$ over B such that $f_{\alpha}\left(b \xrightarrow{i d_{b}} b \xrightarrow{\beta} b^{\prime}\right)=x$ and $f_{\alpha}\left(b \xrightarrow{\beta} b^{\prime} \xrightarrow{i d_{b^{\prime}}} b^{\prime}\right)=x^{\prime}$. Applying Lemma 6.4, we see that $\llbracket \beta \rrbracket$ is totally ordered. Since $\llbracket \beta \rrbracket$ is finite, it sits over $b \xrightarrow{\beta_{1}} u_{1} \xrightarrow{\gamma_{1}} \ldots \xrightarrow{\gamma_{n-1}} u_{n} \xrightarrow{\beta_{n}^{\prime}} b^{\prime}$ in B, and we have commutative diagrams

Since $\alpha: x \rightarrow x^{\prime}$ and $p \alpha=\beta=\beta_{1}^{\prime} \beta_{1}$, using the fact that p is a WFL, we get a factorization $x \xrightarrow{\alpha_{0}} x_{1} \xrightarrow{\alpha_{1}^{\prime}} x^{\prime}$ of α over $\beta=\beta_{1}^{\prime} \beta_{1}$. Similarly, since $p \alpha_{1}^{\prime}=\beta_{1}^{\prime}=\beta_{2}^{\prime} \gamma_{1}$, we get a factorization $x \xrightarrow{\alpha_{0}} x_{1} \xrightarrow{\alpha_{1}} x_{2} \xrightarrow{\alpha_{2}^{\prime}} x^{\prime}$ of α over $\beta=\beta_{2}^{\prime} \gamma_{2} \beta_{1}$. Continuing, we get $x \xrightarrow{\alpha_{0}} x_{1} \xrightarrow{\alpha_{1}} \ldots \xrightarrow{\alpha_{n-1}} x_{n} \xrightarrow{\alpha_{n}} x^{\prime}$ of α over $\beta=\beta_{n}^{\prime} \gamma_{n-1} \ldots \gamma_{1} \beta_{1}$, and hence, the desired morphism $f_{\alpha}: \llbracket \beta \rrbracket \rightarrow X$ over B.

Note that if B and B^{\prime} are any equivalent categories, one can show that $\operatorname{Pseudo}(B, \mathbf{R e l})$ and Pseudo $\left(B^{\prime}, \operatorname{Rel}\right)$ are equivalent as well, but the same is not the case for the corresponding categories of lax functors. Thus, it turns out that to show that Pseudo($B, \mathbf{R e l}$) is cartesian closed (but not necessarily coreflective in $\operatorname{Lax}(B, \operatorname{Rel})$), we need only assume that B has no non-trivial automorphisms rather than isomorphisms.
6.6. Corollary. If B satisfies $I G$, has no non-trivial automorphisms, and $\llbracket \beta \rrbracket$ is finite, for all β in B, then $\operatorname{Pseudo}(B, \mathbf{R e l})$ is cartesian closed.

Proof. Since B is equivalent to a skeletal category satisfying the hypotheses of Corollary 6.5, the desired result follows.

References

[1] J. Benabou, Introduction to bicategories, Springer Lecture Notes in Math. 47 (1967), 1-77.
[2] M. C. Bunge and M. P. Fiore, Unique factorization lifting and categories of processes, Math. Str. Comp. Sci. 10 (2000) 137-163.
[3] M. C. Bunge and S. B. Niefield, Exponentiability and single universes, J. Pure Appl. Alg. 148 (2000), 217-250.
[4] F. Conduché, Au sujet de l'existence d'adjoints à droite aux foncteurs "image réciproque" dans la catégorie des catégories, C. R. Acad. Sci. Paris 275 (1972), A891-894.
[5] J. Giraud, Méthode de la déscente, Bull. Math. Soc. France, Mem. 2 (1964).
[6] P. T. Johnstone, Topos Theory, Academic Press, 1977.
[7] P. T. Johnstone, A note on discrete Conduché fibrations, Theory Appl. Categ. 5 (1999), 1-11.
[8] F. Lamarche, A new kind of fibration, talk at Peripatetic Seminar on Sheaves and Logic, Utrecht, October 1996.
[9] S. B. Niefield, Change of base for relational variable sets, Theory Appl. Categ. 12 (2004), 248-261.
[10] J. G. Stell, Granularity in change over time, in: Duckham, M., Goodchild, M., and Worboys, M. Foundations of Geographic Information Science, Taylor and Francis (2003) 95-115.
[11] R. Street, Powerful functors, expository note (2001).

Union College

Department of Mathematics
Schenectady, NY 12308
Email: niefiels@union.edu
This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at ftp://ftp.tac.mta.ca/pub/tac/html/volumes/24/12/24-12.\{dvi,ps,pdf \}

THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that significantly advance the study of categorical algebra or methods, or that make significant new contributions to mathematical science using categorical methods. The scope of the journal includes: all areas of pure category theory, including higher dimensional categories; applications of category theory to algebra, geometry and topology and other areas of mathematics; applications of category theory to computer science, physics and other mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal's server at http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.
SUBSCRIPTION INFORMATION. Individual subscribers receive abstracts of articles by e-mail as they are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.
Information for authors. The typesetting language of the journal is $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, and $\mathrm{AT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.
MANAGING EDITOR. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: barr@math.mcgill.ca
Assistant $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ Editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne: gavin_seal@fastmail.fm

Transmitting editors.

Clemens Berger, Université de Nice-Sophia Antipolis, cberger@math.unice.fr
Richard Blute, Université d' Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown (at) btinternet.com
Aurelio Carboni, Università dell Insubria: aurelio.carboni@uninsubria.it
Valeria de Paiva, Cuill Inc.: valeria@cuill.com
Ezra Getzler, Northwestern University: getzler (at)northwestern(dot)edu
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
P. T. Johnstone, University of Cambridge: ptj@dpmms.cam.ac.uk

Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, University of Western Sydney: s.lack@uws.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@acsu.buffalo.edu

Tom Leinster, University of Glasgow, T.Leinster@maths.gla.ac.uk
Jean-Louis Loday, Université de Strasbourg: loday@math.u-strasbg.fr
Ieke Moerdijk, University of Utrecht: moerdijk@math.uu.nl
Susan Niefield, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca

[^0]: Received by the editors 2008-09-09 and, in revised form, 2010-07-06.
 Transmitted by Walter Tholen. Published on 2010-07-19.
 2000 Mathematics Subject Classification: 18A22, 18A25, 18A40, 18B10, 18B25, 18D05, 18F20.
 Key words and phrases: span, relation, partial map, topos, cartesian closed, exponentiable, presheaf. © Susan Niefield, 2010. Permission to copy for private use granted.

