#
Bimonadicity and the explicit basis property

##
Matias Menni

Let ${L\dashv R:\cal X \rightarrow\cal Y}$ be an adjunction with $R$
monadic and $L$ comonadic. Denote the induced monad on $\cal Y$ by
$M$ and the induced comonad on $\calX$ by $C$. We
characterize those $C$ such that $M$ satisfies the
Explicit Basis property. We also discuss some new examples and
results motivated by this characterization.

Keywords:
(co)monads, projective objects, descent, modular categories, Peano
algebras

2010 MSC:
18C20, 18E05, 08B20, 08B30

*Theory and Applications of Categories,*
Vol. 26, 2012,
No. 22, pp 554-581.

Published 2012-10-18.

http://www.tac.mta.ca/tac/volumes/26/22/26-22.dvi

http://www.tac.mta.ca/tac/volumes/26/22/26-22.ps

http://www.tac.mta.ca/tac/volumes/26/22/26-22.pdf

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/26/22/26-22.dvi

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/26/22/26-22.ps

TAC Home