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WEAKLY MAL’TSEV CATEGORIES AND STRONG RELATIONS

ZURAB JANELIDZE AND NELSON MARTINS-FERREIRA

Abstract. We define a strong relation in a category C to be a span which is “orthog-
onal” to the class of jointly epimorphic pairs of morphisms. Under the presence of finite
limits, a strong relation is simply a strong monomorphism R → X × Y . We show that
a category C with pullbacks and equalizers is a weakly Mal’tsev category if and only if
every reflexive strong relation in C is an equivalence relation. In fact, we obtain a more
general result which includes, as its another particular instance, a similar well-known
characterization of Mal’tsev categories.

1. Introduction

In [15], the notion of a weakly Mal’tsev category was introduced as a generalization of
the notion of a Mal’tsev category [4, 5], where one retains the description of internal
categories as multiplicative reflexive graphs (originally obtained for Mal’tsev varieties in
[8] and extended to Mal’tsev categories in [5]).

The category of distributive lattices is an example of a weakly Mal’tsev category which
is not a Mal’tsev category (see [16] where it is shown that a variety of lattices is a weakly
Mal’tsev variety if and only if it is a variety of distributive lattices).

The definition of a weakly Mal’tsev category is based on a particular reformulation of
the classical Mal’tsev property (that every reflexive relation is an equivalence relation),
due to D. Bourn [2]. In the present paper we show that among categories with pullbacks
and equalizers, the weakly Mal’tsev categories are those where certain reflexive relations,
called strong relations, are equivalence relations. In particular, when finite limits exist,
strong relations are those which are given by strong monomorphisms R→ X×Y . We also
show that, as in the classical Mal’tsev case, here all such reflexive relations are equivalence
relations if and only if all such relations are difunctional.

We obtain these new characterizations of weakly Mal’tsev categories as an application
of a more general result (see Theorem 3.10 below) which unifies these characterizations
with the corresponding known characterizations of Mal’tsev categories (see [5] and the
references there).
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2. The definition of a weakly Mal’tsev category

Recall from [2] that a finitely complete category C is a Mal’tsev category [4, 5] if and only
if for every object C in C, the pointed category

Pt(C) = ((C, 1C) ↓ (C ↓ C))

is unital, i.e. product injections

A
e1=(1,0) // A×B B

e2=(0,1)oo

are jointly strongly epimorphic in Pt(C). Product injections in Pt(C) arise as sections of
pullback projections

A×C B
p1

�������������
p2

��???????????

B

e2

YY

f2
�������������

A

e1

FF

f1
��???????????

C

g1

ff
g2

99

in C, where f1 and f2 are split epimorphisms with right inverses g1 and g2, respectively,
while e1 and e2 are the canonical morphisms into the pullback defined by the equalities
p1e1 = 1A, p2e1 = g2f1, and, p2e2 = 1B, p1e2 = g1f2, respectively. A pullback diagram
of this form will be called a local product in C, and the pair of morphisms e1, e2 will be
called a local product injection pair in C. We say that C has local products if all such
pullbacks exists (i.e. pullbacks of split epimorphisms along split epimorphisms exist).

Under the presence of pullbacks, a pair of morphisms in Pt(C) is jointly strongly
epimorphic in Pt(C) if and only if it is jointly strongly epimorphic in C (this can be
proved straightforwardly, using the fact that the presence of pullbacks guarantees that a
morphism in Pt(C) is a monomorphism in Pt(C) if and only if it is a monomorphism in
C, which itself follows from the fact that a morphism is a monomorphism if and only if
its kernel pair has equal components). Thus, the above mentioned result of [2] can be
reformulated as follows:

2.1. Theorem. In a finitely complete category C all reflexive relations are equivalence
relations (i.e. C is a Mal’tsev category) if and only if every local product injection pair in
C is jointly strongly epimorphic.

Now, in this new terminology, the definition of a weakly Mal’tsev category given in
[15] states:

2.2. Definition. A category C is said to be a weakly Mal’tsev category when C has local
products and every local product injection pair in C is jointly epimorphic.

One of our aims in the present paper is to present a unified proof of Theorem 2.1
above and the following new result:
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2.3. Theorem. In a finitely complete category C all reflexive relations given by strong
monomorphisms R → X ×X are equivalence relations if and only if every local product
injection pair in C is jointly epimorphic (i.e. C is a weakly Mal’tsev category).

2.4. Remark. Our usage of the term “local product” is the same as in [10], where local
product projections were studied. In particular, in [10] a syntactical characterization of
algebraic categories where local product projections are “normal” (i.e. product projections
in Pt(C) are normal epimorphisms, for every object C) was obtained (see also [9]). The
condition that local product injection pairs are jointly epimorphic implies normality of
local product projections (in other words, every weakly Mal’tsev category has normal local
projections). This follows from an observation that if a product (in a pointed category)
has jointly epimorphic pair of product injections, then the product projections are normal
epimorphisms, which is due to G. M. Kelly (who noted this during a talk by the first
author at the Australian Category Seminar in 2003, when he was illustrating the proof of
the fact that every unital category has normal product projections). Pointed categories
where product injections are jointly epimorphic were called “weakly unital” in [14].

3. Formulating the main result

A prefactorization system in the sense of P. Freyd and G. M. Kelly [6] consists of a pair
(E ,M) of classes of morphisms in a category C, such that E is the class of all morphisms
which are “orthogonal” to M, and vice versa; here by a morphism e being orthogonal to
a morphism m, written as in [6] as e ↓ m, is meant that for any commutative diagram

A
e //

a

��

E

x

��
d

~~
M m

// X

of solid arrows, there exists a unique dotted arrow such that the new diagram of the
dotted and the solid arrows is still commutative. The relation of orthogonality can be
naturally extended to the case when e is a cospan, i.e. a family of morphisms having
common codomain, and m is a span, i.e. a family of morphisms having common domain:

e = (ei : Ai → E)i∈I , m = (mj : M → Xj)j∈J .

Then e ↓ m means that for any two similar families

a = (ai : Ai →M)i∈I , x = (xj : E → Xj)j∈J

such that xjei = mjai for all i ∈ I and j ∈ J , there exists a unique morphism d : E →M
such that for all i ∈ I and j ∈ J the diagram

Ai
ei //

ai

��

E

xj

��
d

}}}}

~~}}}}

M mj

// Xj
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commutes (for examples of the use of such generalized orthogonality see e.g. [7] and also
[1]). In the case when the coproduct

∐
i∈I Ai and the product

∏
j∈J Xj exist, e ↓ m if

and only if we have orthogonality of the canonical morphisms [ei]i∈I :
∐

i∈I Ai → E and
〈mj〉j∈J : M →

∏
j∈J Xj.

The relation of orthogonality gives rise to a Galois connection between classes of
cospans and classes of spans: for a class E of cospans, by E↓ we denote the corresponding
Galois closed class of all spans m such that e ↓ m for all e ∈ E ; for a classM of spans, by
↓M we denote the corresponding Galois closed class of all cospans e such that e ↓ m for all
m ∈ M. Now, for given classes κ and σ of families of morphisms, this Galois connection
restricts to a Galois connection between cospan subclasses of κ and span subclasses of σ,

E↓σ = E↓ ∩ σ, κ↓M = κ ∩ ↓M.

In particular, when κ = σ = 1 is the class of families over a fixed singleton index set,
we can identify corresponding classes of cospans and spans with classes of morphisms
of the category, and then the Galois connection becomes the one considered in [6]. A
prefactorization system in the sense of [6] is thus the same as a prefactorization system
of type 1/1 in the following sense:

3.1. Definition. A pair of Galois closed classes

E = κ↓M, M = E↓σ,

is called a prefactorization system of type κ/σ.

By ∆ we denote the class of all families of identical isomorphisms (i.e. those families
of isomorphisms where any two members are equal). Then

∆1 = ∆ ∩ 1

is the class of isomorphisms, and we have:

� (∆1)↓ = (∅)↓ is the class of all spans;

�
↓(∆1) = ↓(∅) is the class of all cospans.

Now let 2 denote the class of all pairs of morphisms of the category (i.e. families over a
fixed index set {1, 2}), and define

∆2 = ∆ ∩ 2.

Then:

3.2. Lemma. In any category C, we have:

(a) (∆2)↓ is the class of all jointly monomorphic spans. Further, (∆2)↓ = ∆↓.

(b) ↓(∆2) is the class of all jointly epimorphic cospans. Further, ↓(∆2) = ↓∆.

Recall that a span (mj : M → Xj)j∈J is said to be jointly monomorphic when for any
two morphisms u, v : L→ M we have: if mju = mjv for all j ∈ J , then u = v. A jointly
epimorphic cospan is defined dually.
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Proof of Lemma 3.2 It suffices to prove (a), since (b) is dual to (a). Let (mj :
M → Xj)j∈J be a span from (∆2)↓. Take any two morphisms a1, a2 : A → M such
that mja1 = mja2 for all j ∈ J . The fact that (mj : M → Xj)j∈J is orthogonal to
the cospan (1A, 1A) implies a1 = a2. This proves that the span (mj : M → Xj)j∈J is
jointly monomorphic. Since ∆↓ ⊆ (∆2)↓, it remains to observe that any cospan from ∆
is orthogonal to any jointly monomorphic span.

3.3. Definition. A prefactorization system (E ,M) (of any given type κ/σ) is said to
be proper, when any cospan in E is jointly epimorphic and any span in M is jointly
monomorphic.

In particular, for the type 1/1 this becomes the usual notion of a proper prefactoriza-
tion system [6]. For this type of prefactorization systems we always have

∆1 = E ∩M.

For the purposes of the present paper, we are interested in prefactorization systems of
type 2/2. For such prefactorization systems, the inclusion

∆2 ⊆ E ∩M (1)

alone characterizes the proper prefactorization systems (see also Example 3.7). More
generally, we have:

3.4. Theorem. In any category C, the following conditions on a type 2/2 prefactoriza-
tion system (E ,M) are equivalent:

(a) The inclusion (1) holds.

(b) (E ,M) is a proper prefactorization system.

(c) The inclusions (2↓(∆2))↓2 ⊆M and 2↓((∆2)↓2) ⊆ E hold.

(d) The inclusions (2↓(∆2))↓2 ⊆M ⊆ (∆2)↓2 hold.

(e) The inclusions ∆2 ⊆M ⊆ (∆2)↓2 hold.

Proof. The inclusion (1) implies, via the Galois connection, the inclusions

E ⊆ 2↓(∆2) and M⊆ (∆2)↓2.

By Lemma 3.2, these inclusions state precisely that the prefactorization system (E ,M)
is proper. Thus, (a)⇒(b). Moreover, another application of Galois connection allows
to deduce the inclusions in (c) from the ones above, and so (b)⇒(c). The remaining
implications (c)⇒(d)⇒(e)⇒(a) follow in a similar manner.
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3.5. Proposition. Let (E ,M) be a proper type 2/2 prefactorization system. Consider
a cospan

A1
e1 // E A1

e2oo

The conditions below are related by the implications (a)⇒(b)⇒(c).

(a) (e1, e2) ∈ E.

(b) (e1, e2) is orthogonal to all m (regarded as a singleton family) such that (m,m) ∈M.

(c) (e1, e2) = (ma1,ma2) and (m,m) ∈M implies m is an isomorphism.

Moreover, under the presence of pushouts and coequalizers we have (b)⇒(a), while under
the presence of pullbacks and equalizers we have (c)⇒(a).

Proof. (a)⇒(b) is straightforward.
(b)⇒(c): Suppose (e1, e2) = (ma1,ma2), as exhibited by commutativity of the follow-

ing diagram of solid arrows:

E
1E

vvnnnnnnnnnnnnnnnn

d

��

1E

((PPPPPPPPPPPPPPPP

E A1

e1

>>||||||||

a1

  BBBBBBBB A2

e2

``BBBBBBBB

a2

~~||||||||
E

M

m

hhPPPPPPPPPPPPPPP
m

66nnnnnnnnnnnnnnn

If (m,m) ∈ M then, by (b), there exists a morphism d indicated by the dotted arrow
above, such that md = 1E. Since (E ,M) is proper, (m,m) ∈ M implies that (m,m)
is jointly monomorphic, and hence m is a monomorphism. This and md = 1E together
imply that m is an isomorphism.

(b)⇒(a) under the presence of pushouts and coequalizers: We prove the dual formu-
lation of this fact, which states that under the presence of pullbacks and equalizers, if
e ↓ (m1,m2) for all e such that (e, e) ∈ E , then (m1,m2) ∈ M. Assume that we have
e ↓ (m1,m2) for all e such that (e, e) ∈ E . To show (m1,m2) ∈M we must show that for
any commutative diagram of solid arrows

E
x1

vvmmmmmmmmmmmmmmmm

d

��

x2

((QQQQQQQQQQQQQQQQ

X1 A1

e1

>>||||||||

a1

  BBBBBBBB A2

e2

``BBBBBBBB

a2

~~||||||||
X2

M

m1

hhQQQQQQQQQQQQQQQ
m2

66mmmmmmmmmmmmmmm

(2)

with (e1, e2) ∈ E , there exists unique dotted arrow d such that the entire diagram com-
mutes. Since (E ,M) is proper, the uniqueness of d follows from the existence. To show
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the existence of d, we complete the above diagram with a limiting cone over the outer
diamond (which can be obtained using a pullback and an equalizer), and the induced
morphisms as indicated by the dotted arrows in the following diagram:

E

x1

vvnnnnnnnnnnnnnnnnnnnnnnn

x2

((PPPPPPPPPPPPPPPPPPPPPPP

X1 A1

e1

>>}}}}}}}}}}}}
b1 //

a1

  AAAAAAAAAAAA L

e

OO

k

��

A2b2oo

e2

``AAAAAAAAAAAA

a2

~~}}}}}}}}}}}}
X2

M

m1

hhPPPPPPPPPPPPPPPPPPPPPP

m2

66nnnnnnnnnnnnnnnnnnnnnn

(3)

If we can show (e, e) ∈ E , then by the assumption on (m1,m2) we will get a morphism
d : E → M such that de = k and the two outer triangles in (3), which are the same
as those in (2), commute. Commutativity of the two inner triangles in (2) will then
follow from commutativity of the four inner triangles in (3) and the equality de = k,
and so this d will be the desired one. We now show that indeed (e, e) ∈ E , by showing
that (e, e) ↓ (m′1,m

′
2) for any span (m′1,m

′
2) ∈ M. For this, we must show that for any

commutative diagram of solid arrows

E

x′1

uu
d′

��

x′2

))
X ′1 A1 b1__ //__

e1

77oooooooooooo
L

e

??~~~~~~~~~~~~~~

a′1

��@@@@@@@@@@@@@@ L

e

__@@@@@@@@@@@@@@

a′2

��~~~~~~~~~~~~~~
A2b2_ _oo_ _

e2

ggO O O O O O O O O O O O
X ′2

M ′

m′
1

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

m′
2

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(4)

(with (m′1,m
′
2) ∈M), there exists unique dotted arrow d′ such that the diagram of dotted

and solid arrows commutes (ignore the dashed arrows for now). Again, since (E ,M) is
proper, it suffices to show only the existence of d′. For this, we extend the diagram (4)
with the dashed arrows. Since (e1, e2) ∈ E and (m′1,m

′
2) ∈ M, we get the dotted arrow

d′ making the two outer triangles in (4) commute (as well as satisfying the equalities
d′e1 = a′1b1 and d′e2 = a′2b2, but we will not use these equalities). To show that this d′

is the desired one, it remains to show a′1 = d′e = a′2. This follows from the fact that
(m′1,m

′
2) is jointly monomorphic, and that the diagram of solid arrows in (4) commutes.

(c)⇒(a) under the presence of pullbacks and equalizers: To show (e1, e2) ∈ E , we
consider a diagram of solid arrows (2) with (m1,m2) ∈ M and show that there exists
unique dotted arrow d making the entire diagram (2) commute. Again, uniqueness will
follow from the fact that (m1,m2) is jointly monomorphic (as (E ,M) is proper). To
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show the existence of d, we consider the same construction as above, where we complete
the diagram (2) with the limiting cone of the outer diamond and the induced dotted
morphisms, as displayed in (3). To get the d in (2) it suffices to show that e is an
isomorphism, since then we can set d = ke−1. We have (e1, e2) = (eb1, eb2) and so, by (c),
to show that e is an isomorphism it suffices to show (e, e) ∈ M. For this, we show that
for any commutative diagram of solid arrows

E ′

x′1

wwnnnnnnnnnnnnnnnnnnnnnnn

d′

��

x′2

''PPPPPPPPPPPPPPPPPPPPPPP

E

x1

���
�
�
�
� A′1

e′1

>>}}}}}}}}}}}}

a′1

  @@@@@@@@@@@@
A′2

e′2

``AAAAAAAAAAAA

a′2

~~~~~~~~~~~~~~
E

x2

���
�
�
�
�

X2 L

e

ggPPPPPPPPPPPPPPPPPPPPPPPP

e

77nnnnnnnnnnnnnnnnnnnnnnnn

k

�
�

���
�

X1

M

m1

hhP P P P P P P P P P P

m2

66nnnnnnnnnnn

(5)

where (e′1, e
′
2) ∈ E , there exists a unique dotted arrow d′ such that the diagram of dotted

and solid arrows commutes. Extending the diagram with the dashed arrows (taken from
diagram (3)), we note that since (m1,m2) ∈ M, there exists a unique morphism d′′ :
E ′ →M making the following diagram commutative:

E ′

x1x′1

wwnnnnnnnnnnnnnnnnnnnnnnn

d′′

��

x2x′2

''PPPPPPPPPPPPPPPPPPPPPPP

X2 A′1

e′1

>>}}}}}}}}}}}}

ka′1

  AAAAAAAAAAAA
A′2

e′2

``AAAAAAAAAAAA

ka′2

~~}}}}}}}}}}}}
X1

M

m1

ggPPPPPPPPPPPPPPPPPPPPPP

m2

77nnnnnnnnnnnnnnnnnnnnnn

To show that d′′ lifts to d′ in (5), it suffices to show x′1 = x′2. Since (e′1, e
′
2) ∈ E and (E ,M)

is proper, the pair (e′1, e
′
2) is jointly epimorphic. This, together with commutativity of the

diagram of solid arrows in (5) gives x′1 = x′2.

Prefactorization systems (E ,M) can be ordered as follows: (E ,M) 6 (E ′,M′) when
E ′ ⊆ E and M ⊆ M′. Below we consider some prefactorization systems which can be
characterized via this order:

3.6. Examples. Theorem 3.4 shows that the pair

(2↓((∆2)↓2), (∆2)↓2)
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is the largest proper prefactorization system of type 2/2, while the pair

(2↓(∆2), (2↓(∆2))↓2)

is the smallest such. We make few observations and introduce special terminology:

(a) By Lemma 3.2(a), (∆2)↓2 is the class of jointly monomorphic spans (m1,m2) —
henceforth we call them (binary) relations. It follows from Proposition 3.5 that in
the case when the category has pullbacks and equalizers, the corresponding class
2↓((∆2)↓2) coincides with the class of jointly strongly epimorphic pairs, which are
also the same as jointly extremal epimorphic pairs. We remind the reader that a
cospan (e1, e2) is said to be a jointly strongly epimorphic pair when it is orthogonal
to any singleton span consisting of a monomorphism, and it is said to be a jointly ex-
tremal epimorphic pair when any monomorphism m which arises in a decomposition
(e1, e2) = (me′1,me

′
2) is necessarily an isomorphism.

(b) By Lemma 3.2(b), 2↓(∆2) is the class of jointly epimorphic cospans (e1, e2). Spans
in the corresponding class (2↓(∆2))↓2 will be called (binary) strong relations. In
particular, it is easy to verify that all pullback projection pairs are strong relations.
It follows from Lemma 3.2(a) that every strong relation is a relation. By the dual
of Proposition 3.5, when the category has pullbacks and equalizers, strong relations
are precisely the jointly strongly monomorphic pairs.

3.7. Example. In a category with pullbacks and equalizers, the smallest prefactorization
system of type 2/2 is the pair (E ,M) where E consists of all cospans (e1, e2), and M is
the class of precisely those spans

X1 M
m1oo m2 // X2

which are product diagrams. This shows that there are prefactorization systems of type
2/2 where we have neither ∆2 ⊆ E ∩M nor E ∩M ⊆ ∆2.

3.8. Remark. All observations on type 2/2 prefactorization systems above can be also
extended to prefactorization systems of other types. In particular, Proposition 3.5 can
be seen as a direct adaptation of well-known observations for prefactorization systems of
type 1/1, and also extends to prefactorization systems of higher types. At the same time,
while Theorem 3.4 is somewhat unexpected from the point of view of prefactorization
systems of type 1/1, it can also be extended to prefactorization systems of higher types.

3.9. Definition. A class M of binary relations is said to be proper if it is part of a
proper prefactorization system (E ,M) of type 2/2.

We are now ready to formulate the main result of the paper:
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3.10. Theorem. Let C be a category with pullbacks and equalizers. For any proper class
M of binary relations, the following conditions are equivalent:

(a) The corresponding class E of cospans contains local product injection pairs.

(b) Any reflexive relation in M is symmetric.

(c) Any reflexive relation in M is transitive.

(d) Any reflexive relation in M is an equivalence relation.

(e) Any relation in M is difunctional.

Before proving the theorem, which is carried out in the subsequent section, we remind
the reader that a binary relation R is said to be difunctional if it satisfies the deduction
rule

a R d
c R d
c R b
a R b

Via the Yoneda embedding, the same condition can be repeated for an internal relation

X1 R
r1oo r2 // X2

in a category. Then, a, c above become generalized elements of X1, and b, d those of X2,
all being morphisms having the same domain. For a span

X1 C
xoo y // X2

consisting of such generalized elements, the meaning of xRy is understood as the exis-
tence of a morphism f : C → R such that (r1f, r2f) = (x, y). Reflexivity, symmetry
and transitivity of an internal relation is defined in a similar way using the language of
generalized elements.

4. Proof of Theorem 3.10

(a)⇒(e): From a relation

X1 M
m1oo m2 // X2
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construct a diagram

E

p1

�������������
p2

��???????????

A2

e2

YY

f2
�������������

a2

��???????????

M

m1

�������������

A1

a1

�������������

e1

EE

f1
��???????????

M

g1

dd
g2

::

m2

�������������

m1

��???????????

X1

M

m2

��???????????

X2

(6)

by taking the downward directed diamonds to be pullbacks, the top diamond to be a local
product, and g1, g2 to be defined by the equalities

a1g1 = f1g1 = 1M = f2g2 = a2g2.

The relation (m1,m2) is difunctional if and only if there exists a morphism d : E → M
such that the diagram

E
m1a1p1

vvmmmmmmmmmmmmmmmm

d

��

m2a2p2

((QQQQQQQQQQQQQQQQ

X1 A1

e1

>>||||||||

a1

  BBBBBBBB A2

e2

``BBBBBBBB

a2

~~||||||||
X2

M

m1

hhQQQQQQQQQQQQQQQ
m2

66mmmmmmmmmmmmmmm

commutes (see [5]). This is evidently the case when (e1, e2) ↓ (m1,m2).

(e)⇒(d) since a reflexive relation is an equivalence relation if and only if it is difunctional.

(d)⇒(c) and (d)⇒(b) are trivial.

For (b)⇒(e) and (c)⇒(e) we repeat the classical argument from [5]: In the construc-
tion (6) the span m′ = (a1p1, a2p2) is a reflexive relation which is symmetric/transitive
if and only if the relation m = (m1,m2) is difunctional. It remains to verify that
m′ = (a1p1, a2p2) ∈ M. Given any commutative diagram of solid arrows (ignore the
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dotted/dashed arrows for now)

E ′

x1

wwnnnnnnnnnnnnnnnnnnnnnnn

d

��

x2

''PPPPPPPPPPPPPPPPPPPPPPP

M

m2

���
�
�
�
� A′1

e′1

>>}}}}}}}}}}}}

a′1

  @@@@@@@@@@@@
A′2

e′2

``AAAAAAAAAAAA

a′2

~~~~~~~~~~~~~~
M

m1

���
�
�
�
�

X2 E

a1p1

ggPPPPPPPPPPPPPPPPPPPPPPP

a2p2

77nnnnnnnnnnnnnnnnnnnnnnn

f1p1=f2p2

�
�

���
�

X1

M

m2

hhP P P P P P P P P P P

m1

66nnnnnnnnnnn

(7)

with (e′1, e
′
2) ∈ E = 2↓M, we have to show the existence of a unique dotted arrow d such

that the entire diagram commutes. For this, we extend the diagram with the dashed
arrows. Since (m1,m2) ∈M, we get d′ : E ′ →M making the diagram

E ′

m2x1

wwnnnnnnnnnnnnnnnnnnnnnnnnnnn

d′

��

m1x2

''PPPPPPPPPPPPPPPPPPPPPPPPPPP

X2 A′1

e′1

>>~~~~~~~~~~~~~~~

f1p1a′1

  @@@@@@@@@@@@@@@
A′2

e′2

``@@@@@@@@@@@@@@@

f2p2a′2

~~~~~~~~~~~~~~~~~
X1

M

m2

ggPPPPPPPPPPPPPPPPPPPPPPPPPPP

m1

77nnnnnnnnnnnnnnnnnnnnnnnnnnn

commute. The morphism d′ induces the morphism d in (7) since the cone coming out of
the object E in (7) is a limiting cone over the diagram of dashed arrows. Uniqueness of
d follows from the fact that (e′1, e

′
2) is jointly epimorphic.

(e)⇒(a): Consider a local product

E

p1

�������������
p2

��???????????

A2

e2

YY

f2
�������������

A1

e1

EE

f1
��???????????

C

g1

dd
g2

::
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By Proposition 3.5, to show (e1, e2) ∈ E it suffices to show that whenever (e1, e2) =
(me′1,me

′
2) and (m,m) ∈ M, the morphism m is an isomorphism. For this, consider the

composites m1 = p1m and m2 = p2m:

M

m

��

m1

���������������������������

m2

��?????????????????????????

A2

�����������

�����������

e′2

YY

E

p1

�������������
p2

��???????????

A2

e2

YY

f2
�������������

A1

???????????

???????????

e′1

EE

A1

e1

EE

f1
��???????????

C

g1

dd
g2

::

Since (p1, p2) is a strong relation, it belongs to M (see Theorem 3.4(d) and Exam-
ple 3.6(b)). It can be straightforwardly shown that if further (m,m) ∈ M then also
(m1,m2) = (p1m, p2m) ∈ M. By (e), the relation (m1,m2) is difunctional. This implies
that m is an isomorphism. Indeed, m is a monomorphism and for any generalized element
(a, b) ∈ E = A1 ×C A2 we have:

a M g2f1a
g1f2b M g2f1a
g1f2b M b

a M b

The proof of Theorem 3.10 is now complete.

5. Conclusion

The equivalence of the conditions (b-e) in Theorem 3.10, with M being the class of all
relations, was proved for finitely complete categories in [5], where they are used to define
Mal’tsev categories (whereas in [4] only regular Mal’tsev categories were considered). As
already explained in Section 2, characterization of Mal’tsev categories via the condition
(a) of Theorem 3.10 is a simple reformulation of a result due to D. Bourn [2]. The fact
that the equivalence of the conditions (a-e) in Theorem 3.10 can be established by using
only pullbacks and equalizers (but avoiding products) allows to slightly expand the class
of categories where these conditions have been looked at, including in it, for instance, the
category of fields.
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Taking M in Theorem 3.10 to be the class of strong relations (see Example 3.6(b)),
we obtain the following new result:

5.1. Corollary. Let C be a category having pullbacks and equalizers. Then the following
conditions are equivalent:

(a) C is a weakly Mal’tsev category.

(b) Any reflexive strong relation is symmetric.

(c) Any reflexive strong relation is transitive.

(d) Any reflexive strong relation is an equivalence relation.

(e) Any strong relation is difunctional.

5.2. Remark. As we can see from Example 3.7, the conditions (a-e) in Theorem 3.10
are still equivalent to each other whenM is the class of product projection pairs (indeed,
in this case all conditions are always satisfied), even though suchM is not a proper class
of relations. This suggests that perhaps it is possible to further generalize Theorem 3.10.

5.3. Remark. The connection between difunctionality, as well as symmetry and tran-
sitivity of reflexive relations, and the classical universal-algebraic condition asserting the
existence of a Mal’tsev term (i.e. a term p satisfying p(x, y, y) = x = p(y, y, x), see [13, 17])
has a long history, briefly exhibited in the Introduction of [3]. See also [11, 12] which gives
a general method for producing such relational properties. In [3], Mal’tsev categories were
characterized by suitable “categorical Mal’tsev terms”. These results can be directly ex-
tended to the more general context proposed in the present paper, and in particular, as
suggested by Corollary 5.1 above, they can be adopted for weakly Mal’tsev categories, by
simply replacing relations with strong relations.
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