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DIAGONAL MODEL STRUCTURES

J.F. JARDINE

Abstract. The category of bisimplicial presheaves carries a model structure for which
the weak equivalences are defined by the diagonal functor and the cofibrations are
monomorphisms. This model structure has the most cofibrations of a large family of
model structures with weak equivalences defined by the diagonal. The diagonal struc-
ture for bisimplicial presheaves specializes to a diagonal model structure for bisimplicial
sets, for which the fibrations are the Kan fibrations.

Introduction

The original purpose of this paper was to display a model structure for the category
s2Set of bisimplicial sets whose cofibrations are the monomorphisms and whose weak
equivalences are the diagonal weak equivalences, and then show that this model structure
is cofibrantly generated in a very precise way. The project grew to include analogous
model structures on categories of bisimplicial presheaves. These are the diagonal model
structures of the title.

The results of this paper have been collected here in anticipation of concrete appli-
cations. In particular, they are used in the analysis of homotopy types of diagrams and
dynamical systems which appears in [9].

It is relatively painless to show that the diagonal model structures exist for all cat-
egories s2 Pre(C) of bisimplicial presheaves — this result is Theorem 1.4. The proof
is essentially a localization argument, since it involves a bounded cofibration statement
which appears in Lemma 1.1.

Theorem 1.4 specializes immediately to the existence of a diagonal model structure
for bisimplicial sets. The result for bisimplicial sets has already been displayed by other
authors [2], [11].

It is also straightforward to show that the diagonal functor and its left adjoint d∗

define a Quillen equivalence

d∗ : sPre(C) � s2 Pre(C) : d

between the injective model structure on simplicial presheaves and the diagonal structure
for bisimplicial presheaves; this equivalence appears here as Proposition 1.5. A Quillen
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equivalence
d∗ : sSet � s2Set : d

between the standard model structure on simplicial sets and the diagonal model structure
on bisimplicial sets is an immediate consequence.

The Moerdijk model structure for bisimplicial sets [10], [4] is induced from the standard
model structure for simplicial sets by the diagonal functor — this was the first published
example of a model structure for bisimplicial sets whose weak equivalences are defined
by the diagonal functor. We show that there is a plethora of such model structures
intermediate between an analog of the Moerdijk structure for bisimplicial presheaves and
the diagonal structure — the precise statement is Theorem 1.9. The proof of this result
is a translation of the intermediate model structures story for simplicial presheaves of [8].

The Kan fibrations for bisimplicial sets are defined by a lifting property with respect
to the bisimplicial analogues of inclusions of horns in simplices. A horn can be viewed as
the part of boundary ∂∆p,q of a bisimplex ∆p,q that results from removing a single cell of
maximal total degree. The inclusions of the horns in their corresponding bisimplices are
simple examples of anodyne extensions of bisimplicial sets.

The problem of showing that the fibrations of the diagonal model structure for bisim-
plicial sets are precisely the Kan fibrations is technically interesting, and is the subject of
the second section of this paper, culminating in Theorem 2.14.

This theorem is the analogue of well known results for simplicial sets and cubical
sets [1], [7]. It has been known in some form since 2003, at least to Cisinski and Joyal-
Tierney, but was never published. The proof which is given here is direct, and does not
use Cisinski’s localization techniques, though some of his ideas are certainly involved.

I would like to thank the referee for a collection of helpful comments and suggestions.

1. Bisimplicial presheaves

Recall that a bisimplicial set X is a functor

X : ∆op ×∆op → Set,

and a morphism of bisimplicial sets is a natural transformation of such functors. Write
Xp,q = X(p,q) for ordinal numbers p and q. Let s2Set denote the category of bisimplicial
sets.

The bisimplicial set hom( , (p,q)) which is represented by the pair of ordinal numbers
(p,q) is denoted by ∆p,q, and is called a standard bisimplex. The bisimplices are the cells
for the category of bisimplicial sets.

As usual, the diagonal simplicial set d(X) is defined by

d(X)p = Xp,p.

This construction defines the diagonal functor

d : s2Set→ sSet.
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The diagonal functor has both a left adjoint d∗ and a right adjoint d∗. The left adjoint d∗

is defined by extending the assignment

d∗∆n = ∆n,n

in a canonical way, while the right adjoint d∗ is defined by

d∗(Y )p,q = hom(∆p ×∆q, Y ),

All functorial constructions on bisimplicial sets extend to presheaves of bisimplicial
sets. Let C be a small Grothendieck site, and let s2 Pre(C) denote the category of functors
X : Cop → s2Set and all natural transformations between them — this is the category of
bisimplicial presheaves, or presheaves of bisimplicial sets on the site C.

Say that a map f : X → Y of bisimplicial presheaves is a diagonal weak equivalence if
the induced simplicial presheaf map d(X)→ d(Y ) is a local weak equivalence in the usual
sense [5], [6]. A monomorphism of bisimplicial presheaves is a cofibration. An injective
fibration of bisimplicial presheaves is a morphism which has the right lifting property with
respect to trivial cofibrations.

Suppose that β is a cardinal number. A bisimplicial presheaf A is said to be β-bounded
if |Ap,q(U)| < β for all p, q ≥ 0 and all objects U in C.

Suppose that α is an infinite cardinal which is an upper bound for the site C in the sense
that α > |Mor(C|. We have the following “bounded cofibration lemma” for bisimplicial
presheaves:

1.1. Lemma. Suppose that i : X → Y is a trivial cofibration of bisimplicial presheaves,
and that A is an α-bounded subobject of Y . Then Y has an α-bounded subobject B such
that A ⊂ B and the cofibration B ∩X → B is a diagonal weak equivalence.

Proof. There is an induced diagram

d(X)
i∗��

d(A) // d(Y )

where i∗ is a trivial cofibration of simplicial presheaves and d(A) is an α-bounded subob-
ject of d(Y ). The bounded cofibration lemma for simplicial presheaves (this result first
appeared as Lemma 12 of [6]) implies that there is an α-bounded subobject D1 of d(Y )
such that d(A) ⊂ D1 and D1 ∩ d(X) → D1 is a local weak equivalence. Since D1 is
α-bounded there is an α-bounded subobject A1 of the bisimplicial presheaf Y such that
A ⊂ A1 and D1 ⊂ d(A1). Repeat this construction inductively to find an ascending
families of α-bounded subobjects

A ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Y

and
d(A) ⊂ D1 ⊂ D2 ⊂ · · · ⊂ d(Y )
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such that Di ⊂ d(Ai+1) and the map Di ∩ d(X) → Di is a local weak equivalence for all
i. Set B = ∪iAi. Then the map B ∩X → B of bisimplicial presheaves is a diagonal weak
equivalence.

1.2. Corollary. A map p : X → Y is an injective fibration of bisimplicial presheaves if
and only if it has the right lifting property with respect to all α-bounded trivial cofibrations.

The proof of this corollary is a standard Zorn’s lemma argument.
Recall that every simplicial set K can be identified with a horizontally constant bisim-

plicial set having the same name in a standard way, with Kp,q = Kq.
I also use the same notation for a bisimplicial set B and its associated constant sim-

plicial presheaf, so that B(U) = B for all objects U of C.

1.3. Lemma. A map q : Z → Y is an injective fibration and a diagonal weak equivalence
if and only if it has the right lifting property with respect to all α-bounded cofibrations.

Proof. If q has the right lifting property with respect to all α-bounded cofibrations, then
it has the right lifting property with respect to all cofibrations, by the usual Zorn’s lemma
argument. In this case, q has a section σ : Y → Z, and the lifting exists in the diagram

Z t Z (σq,1) //

��

Z

q

��
Z ×∆1

pr
//

66

Z q
// Y

It follows that the induced map d(q) is a simplicial homotopy equivalence, and hence a
local weak equivalence.

Suppose that q is an injective fibration and a diagonal weak equivalence. Then q has
a factorization

Z i //

q   

X

p
��
Y

such that p has the right lifting property with respect to all α-bounded cofibrations and i
is a cofibration. Then p is a diagonal weak equivalence, so the cofibration i is a diagonal
weak equivalence, and the lift exists in the diagram

Z
1 //

i
��

Z

q
��

X p
//

>>

Y

The map q is therefore a retract of the map p, and has the right lifting property with
respect to all α-bounded cofibrations.
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The function complex hom(X, Y ) for bisimplicial sets X and Y is the simplicial set
whose n-simplices are the bisimplicial set maps X ×∆n → Y .

1.4. Theorem. Suppose that C is a small Grothendieck site. Then, with the definitions
of cofibration, injective fibration and diagonal weak equivalence given above, the category
s2 Pre(C) of bisimplicial sets has the structure of a cofibrantly generated closed simplicial
model category.

Properness for the model structure of Theorem 1.4 is proved in Corollary 1.7 below.

Proof. The axioms CM1, CM2 and CM3 are easy to verify: in particular, CM2 and
CM3 are straightforward consequences of the corresponding statements for the injective
model structure on simplicial presheaves. Similarly, trivial cofibrations are closed under
pushout, so that Corollary 1.2 and Lemma 1.3 imply the factorization axiom CM5. The
lifting axiom CM4 also follows from Lemma 1.3. The cofibrant generation follows from
Corollary 1.2 and Lemma 1.3.

For the simplicial structure, we show that if i : A→ B is a cofibration of bisimplicial
presheaves and j : K → L is a cofibration of simplicial sets, then the cofibration

(B ×K) ∪ (A× L)→ B × L

is trivial if either i or j is trivial, but this is a consequence of the corresponding statement
for simplicial presheaves.

The model structure of Theorem 1.4 is the diagonal structure on the category of
bisimplicial presheaves. This result specializes to give diagonal model structures for all
categories s2SetI of small diagrams of simplicial sets and to the category s2Set.

In particular, a cofibration for the diagonal structure on bisimplicial sets is a monomor-
phism, a weak equivalences is a bisimplicial set map X → Y such that the induced map
d(X)→ d(Y ) is a weak equivalence of simplicial sets, and injective fibrations are defined
by a right lifting property with respect to trivial cofibrations.

The left adjoint
d∗ : sSet→ s2Set

of the diagonal functor d preserves cofibrations and takes trivial cofibrations to diagonally
trivial cofibrations [4, IV.3.12]. It follows that the functors d∗ and d define a Quillen
adjunction between the standard model structure on simplicial sets and the diagonal
structure on bisimplicial sets.

The adjunction map η : ∆n → dd∗(∆n) can be identified up to isomorphism with the
diagonal map ∆n → ∆n × ∆n, which map is a weak equivalence. The functors d and
d∗ both preserve colimits, cofibrations and trivial cofibrations, so an induction on skeleta
shows that the adjunction map η : X → dd∗(X) is a weak equivalence for all simplicial
sets X. A triangle identity argument then shows that the natural map ε : d∗d(Y )→ Y is
a diagonal equivalence for all bisimplicial sets Y .

The corresponding simplicial presheaf map η : X → dd∗(X) is a sectionwise weak
equivalence for all X, and it follows that the functor d∗ : sPre(C)→ s2 Pre(C) takes local
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weak equivalences to diagonal weak equivalences for simplicial presheaves on a Grothen-
dieck site C. The functors d∗ and d therefore determine a Quillen adjunction between the
injective model structure for simplicial presheaves and the diagonal model structure for
bisimplicial presheaves. The adjunction map ε : d∗d(Y ) → Y is also a sectionwise weak
equivalence for all bisimplicial presheaves Y , and we have the following result:

1.5. Proposition. Suppose that C is a small Grothendieck site. Then the adjoint func-
tors

d∗ : sPre(C) � s2 Pre(C) : d

define a Quillen equivalence between the injective model structure on simplicial presheaves
and the diagonal structure on bisimplicial presheaves on the site C.

1.6. Corollary. The adjoint functors

d∗ : sSet � s2Set : d

define a Quillen equivalence between the standard model structure on simplicial sets and
the diagonal structure on bisimplicial sets.

1.7. Corollary. The diagonal model structure on the category s2 Pre(C) is proper.

Proof. All bisimplicial presheaves are cofibrant, so that pushouts of diagonal weak equiv-
alences along cofibrations are diagonal weak equivalences [4, II.8.5].

The functor d preserves fibrations and pullbacks, and so right properness for the
diagonal model structure on bisimplicial presheaves follows from right properness for the
injective structure on simplicial presheaves.

1.8. Corollary. The diagonal model structure on the category s2Set of bisimplicial sets
is proper.

The Moerdijk model structure is another well known example of a model structure on
the category s2Set of bisimplicial sets for which the weak equivalences are the diagonal
weak equivalences — see [10], and Section IV.3.3 of [4]. The Moerdijk structure is induced
from the standard model structure on simplicial sets, in the sense that a bisimplicial set
map X → Y is a fibration (respectively weak equivalence) if and only if the induced map
d(X) → d(Y ) is a Kan fibration (respectively weak equivalence) of simplicial sets. The
Moerdijk structure is Quillen equivalent to the standard model structure on simplicial
sets, via the diagonal functor d and its left adjoint d∗.

Suppose that S is a set of cofibrations of bisimplicial presheaves which contains the
set S0 of all maps d∗A → d∗B which are induced by α-bounded cofibrations A → B of
simplicial presheaves. Suppose that S further satisfies the closure property that if the
map C → D is in S, then so is the induced cofibration

(D × ∂∆n) ∪ (C ×∆n)→ D ×∆n,

for all n ≥ 0. (Here, X×K, for a bisimplicial set X and a simplicial set K is the product
of X with the horizontally constant bisimplicial set associated to K.) Let CS be the
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saturation of the set S in the class of all cofibrations (monomorphisms) of the bisimplicial
set category. I say that CS is the class of S-cofibrations.

Say that a bisimplicial presheaf map p : X → Y is an S-fibration if it has the right
lifting property with respect to all S-cofibrations which are diagonal weak equivalences.

The proof of the following result follows the outline established in [8]:

1.9. Theorem. The category s2 Pre(C) of bisimplicial presheaves, together with the S-
cofibrations, diagonal weak equivalences and S-fibrations satisfies the axioms for a proper
closed simplicial model category. This model structure is cofibrantly generated.

Proof. Every map f : X → Y has a factorization

X
j //

f   

Z

q
��
Y

where j is a member of CS and q has the right lifting property with respect to all members
of CS. Then q∗ : d(Z) → d(Y ) is a trivial injective fibration of simplicial presheaves, so
that q is a diagonal weak equivalence. The map q is an S-fibration.

The map f : X → Y also has a factorization

X
i //

f   

W

p
��
Y

where i is a trivial cofibration and p is a fibration for the diagonal model structure of
Theorem 1.4. The map p is an S-fibration. The cofibration i has a factorization i = q · j
as above, where j is an S-cofibration and q is an S-fibration and a diagonal equivalence.
The map j is a diagonal equivalence, so that f has a factorization f = (p · q) · j such that
pq̇ is an S-fibration and j is an S-cofibration and a diagonal equivalence.

We have verified the model category axiom CM5. If p : X → Y is an S-fibration and
a diagonal equivalence, then it is a retract of a map which has the right lifting property
with respect to all S-cofibrations, giving CM4. The rest of the model category axioms
are easily verified.

The simplicial model axiom SM7 is a consequence of the construction of the class CS
and the instance of this axiom for the injective model structure on simplicial presheaves.
The left properness of this structure is an easy consequence of left properness for the
diagonal structure on s2 Pre(C), while right properness follows from right properness for
the injective structure on sPre(C).

The cofibrant generation is proved with what is now a familiar trick. Every α-bounded
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trivial cofibration β : A→ B has a factorization

A

β   

jβ // Zβ

qβ
��
B

as in the first paragraph, where jβ is an S-cofibration and qβ has the right lifting property
with respect to all S-cofibrations. Then both jβ and qβ are diagonal equivalences. One
shows that if i : C → D is an α-bounded S-cofibration and there is a commutative
diagram

C //

i
��

X

f
��

D // Y

where f is a diagonal equivalence, then the diagram has a factorization

C //

i
��

A

jβ
��

// X

f
��

D // Zβ // Y

for some β.
Finally, if j : E → F is an S-cofibration and a diagonal equivalence, then j has a

factorization
E

i //

j   

V

p
��
F

where p has the right lifting property with respect to all jβ and i is in the saturation of
the set of all maps jβ. But then j and p are diagonal equivalences, and the construction of
the last paragraph shows that p has the right lifting property with respect to all members
of CS, so that i is a retract of j. This means that the set of all maps jβ generates the
class of trivial cofibrations in the model structure defined by the set of cofibrations S.

Say that the model structure of Theorem 1.9 is the S-model structure on the category
of bisimplicial presheaves.

The S0-model structure on bisimplicial sets (for whatever infinite cardinal α) is the
Moerdijk structure, and the S0-model structure for bisimplicial presheaves is a locally
defined analogue of the Moerdijk structure. An obvious comparison with the various in-
termediate model structures for simplicial presheaves [8] says that the S0-model structure
for bisimplicial presheaves is a “projective” model structure, while the diagonal model
structure of Theorem 1.4 is an “injective” model structure, and all S-model structures
have classes of cofibrations lying between these two extremes.
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2. Bisimplicial sets

Suppose that K and L are simplicial sets, and let K×̃L be the bisimplicial set which is
defined by

(K×̃L)p,q = Kp × Lq.
The bisimplicial set K×̃L is the external product of K and L.

Examples: 1) The standard bisimplex ∆p,q has the form

∆p,q = ∆p×̃∆q.

2) Set
∂∆p,q = (∂∆p×̃∆q) ∪ (∆p×̃∂∆q) ⊂ ∆p×̃∆q = ∆p,q.

Then the boundary ∂∆p,q of the bisimplex ∆p,q is generated as a subcomplex by the images
of the maps (di, 1) : ∆p−1,q → ∆p,q and (1, dj) : ∆p,q−1 → ∆p,q.

The following statement about simplicial sets is well known — it is sometimes called
the Eilenberg-Zilber Lemma (see [3, (8.3)]) and is used, however silently [4, I.2.3], in all
discussions of the standard skeletal decomposition of a simplicial set. The proof is usually
left as an exercise.

2.1. Lemma. Suppose that x, y are non-degenerate simplices of a simplicial set X, and
suppose that s, t are ordinal number epimorphisms such that s∗(x) = t∗(y). Then x = y
and s = t.

Suppose that X is a bisimplicial set and that x ∈ Xp,q. The number p+ q is the total
degree of x.

Suppose that A is a subcomplex of a bisimplicial set X and that x ∈ Xp,q is a bisimplex
of X − A of minimal total degree. Write x : ∆p,q → X for the classifying map of the
bisimplex x. The bisimplices (di, 1)(x) and (1, dj)(x) have smaller total degree than x and
are therefore in A, and it follows that there is a pullback diagram

∂∆p,q α //

��

A

i
��

∆p,q
x
// X

of bisimplicial set maps.

2.2. Lemma. Suppose that A is a subcomplex of a bisimplicial set X and that x ∈ Xp,q

is a bisimplex of X − A of minimal total degree. Form the pushout

∂∆p,q α //

��

A

i
��

∆p,q
x
// B

Then the induced bisimplicial set map B → X is a monomorphism.
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Proof. If x = s(y) for some degeneracy s (vertical or horizontal), then y has smaller
total degree, and so y ∈ A and x ∈ A. It follows that x is vertically and horizontally
non-degenerate.

There is a decomposition

Br,s = Ar,s t {u× v : r× s→ p× q, u, v epi}.

in all bidegrees.
If a ∈ Ar,s and u× v have the same image in X, then a = (u× v)∗(x) is in A so that

x ∈ A by applying a suitable section of u × v, which can’t happen. The restriction of
Br,s → Xr,s to Ar,s is the monomorphism i : Ar,s → Xr,s. Finally, if the epis u×v, u′×v′ :
r× s→ p× q have the same image in X, then (u× v)∗(x) = (u′ × v′)∗(x) in X.

The bisimplex (1× v)∗(x) is horizontally non-degenerate. Otherwise,

(1× v)∗(x) = (s× 1)∗(y)

for some y and non-trivial ordinal number epi s, and if d is a section of v then

x = (1× d)∗(1× v)∗(x) = (1× d)∗(s× 1)∗(y) = (s× 1)∗(1× d)∗(y)

so that x is horizontally degenerate. Similarly, (1×v′)∗(x) is horizontally non-degenerate,
and so Lemma 2.1 and the relations

(u× 1)∗(1× v)∗(x) = (u′ × 1)∗(1× v′)∗(x)

together imply that u = u′ and (1× v)∗(x) = (1× v′)∗(x), so that v = v′

2.3. Corollary. The set of inclusions ∂∆p,q ⊂ ∆p,q generates the class of cofibrations
of s2Set.

The class A of anodyne extensions of s2Set is the saturation of the set of bisimplicial
set maps S, which consists of all morphisms

(Λr
k×̃∆s) ∪ (∆r×̃∂∆s) ⊂ ∆r×̃∆s = ∆r,s

as well as all morphisms

(∂∆r×̃∆s) ∪ (∆r×̃Λs
j) ⊂ ∆r×̃∆s = ∆r,s

The class A contains the set of all cofibrations

(A×̃D) ∪ (B×̃C) ⊂ B×̃D

induced by cofibrations A → B and C → D, where one of the two maps is a trivial
cofibration of simplicial sets. The diagonal of such a map is the trivial cofibration

(A×D) ∪ (B × C) ⊂ B ×D.

in simplicial sets.
In particular, we have the following:
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2.4. Lemma. Every anodyne extension of bisimplicial sets is a diagonal weak equivalence.

Say that a map p : X → Y of bisimplicial sets is a Kan fibration if it has the right
lifting property with respect to all anodyne extensions.

Every injective fibration is a Kan fibration. The purpose of the remainder of this
section is to prove the converse assertion, so that the injective fibrations of bisimplicial
sets are precisely the Kan fibrations. This statement appears as Theorem 2.14 below.

Suppose that X is a bisimplicial set and that K is a simplicial set. The bisimplicial
set X ×K has bisimplices defined by the assignment

(X ×K)p,q = Xp,q ×Kq.

There is a natural isomorphism

d(X ×K) ∼= d(X)×K.

The construction (X,K) 7→ X ×K preserves diagonal weak equivalences in bisimplicial
sets X and weak equivalences in simplicial sets K.

2.5. Lemma. Suppose that i : A → B is a cofibration of bisimplicial sets and that j :
K → L is a cofibration of simplicial sets. Then the induced map

(i, j)∗ : (B ×K) ∪ (A× L)→ B × L

is a cofibration which is an anodyne extension if either i or j is a trivial cofibration of
simplicial sets.

Proof. The map
(∆r,s ×K) ∪ (∂∆r,s × L)→ ∆r,s × L

can be identified with the map

(∂∆r×̃(∆s × L)) ∪ (∆r×̃((∂∆s × L) ∪ (∆s ×K)))→ ∆r×̃(∆s × L),

which is a cofibration.
The simplicial set map

(∂∆s × L) ∪ (∆s ×K)→ ∆s × L

is a trivial cofibration if j is a trivial cofibration, so that the bisimplicial set map (i, j)∗
is an anodyne extension in general if j is a trivial cofibration.

The remaining assertion, that (i, j)∗ is an anodyne extension if i is an anodyne exten-
sion, has a similar proof.
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Suppose that X and Y are bisimplicial sets. The collection of bisimplicial set maps

X ×∆n → Y

is the set of n-simplices of the simplicial set hom(X, Y ). If p : X → Y is a Kan fibration
and A is a bisimplicial set, then the induced map p∗ : hom(A,X) → hom(A, Y ) is a
fibration of simplicial sets since all maps A × Λn

k → A × ∆n are anodyne extensions by
Lemma 2.5.

If f : A → Y is a map of bisimplicial sets, then f is a vertex of the simplicial set
hom(A, Y ), and we can form the pullback diagram

homf (A,X) //

��

hom(A,X)

p∗
��

∗
f

// hom(A, Y )

The simplicial set homf (A,X) is the space of liftings of the map f . It is a Kan complex
since the bisimplicial set map p is a Kan fibration.

The n-simplices of homf (A,X) are commutative diagrams of the form

A×∆n //

pr

��

X

p

��
A

f
// Y

The functor s2Set/Y → sSet which takes an object f : A → Y to the simplicial set
homf (A,X) has a left adjoint which takes a simplicial set K to the object

A×K pr−→ A
f−→ Y.

A map

A
α //

f ��

B

g
��

Y

of bisimplicial sets over Y is said to be an anodyne equivalence over Y if the simplicial set
maps

homg(B,X)
α∗−→ homf (A,X)

are weak equivalences for all Kan fibrations p : X → Y .

2.6. Lemma. Suppose that the map A
α−→ B

g−→ Y of bisimplicial sets over Y is defined by
a cofibration α, and let f = g · α. Suppose that p : X → Y is a Kan fibration. Then the
induced map

α∗ : homg(B,X)→ homf (A,X)

is a Kan fibration. If α is an anodyne extension, then α∗ is a trivial Kan fibration.



262 J.F. JARDINE

Proof. Use Lemma 2.5 to see that the lifting exists in all diagrams

(B × Λn
k) ∪ (A×∆n) //

��

X

p

��
B ×∆n

pr
//

44

B g
// Y

Similarly, if α : A→ B is an anodyne extension, then the lifting exists in all diagrams

(B × ∂∆n) ∪ (A×∆n) //

��

X

p

��
B ×∆n

pr
//

44

B g
// Y

so that α∗ is a trivial fibration.

2.7. Corollary. Suppose that α : A → B is an anodyne extension. Then any map
A

α−→ B → Y is an anodyne equivalence of bisimplicial sets over Y .

2.8. Lemma. If α : K → K ′ and β : L → L′ are weak equivalences of simplicial sets,
then any map

α×̃β : K×̃L→ K ′×̃L′ → Y

is an anodyne equivalence of bisimplicial sets over Y .

Proof. We show that the map

α× 1 : K×̃L→ K ′×̃L→ Y

is an anodyne weak equivalence.
This is true if α is a trivial cofibration by Corollary 2.7, and is therefore true in general

since all simplicial sets are cofibrant.

If X is a bisimplicial set, then the simplicial set maps

∆n ×Xn,m → X∗,m

induce bisimplicial set maps
γn : ∆n×̃Xn → X.

The bisimplicial set X has a filtration sknX by (horizontal) skeleta, and there are natural
pushout diagrams

s[r]Xn−1
sr+1 //

��

s[r]Xn

��
Xn sr+1

// s[r+1]Xn

(1)
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of simplicial sets and pushout diagrams

(∆n+1×̃s[n]Xn) ∪ (∂∆n+1×̃Xn+1) //

��

sknX

��
∆n+1×̃Xn+1

// skn+1X

(2)

of bisimplicial sets, in which the vertical maps are cofibrations. The subobject

s[r]Xn := ∪i≤r si(Xn−1)

is a union of images of horizontal degeneracies. See also [4, IV.1.7].

2.9. Lemma. Suppose that A
α−→ B

g−→ Y is a map of bisimplicial sets over Y such that
the map α : An → Bn is a weak equivalence of simplicial sets in each horizontal degree n.
Then α is an anodyne equivalence over Y .

Proof. Write f = g · α. Suppose that p : X → Y is a Kan fibration of bisimplicial sets.
The functor which takes f : A→ Y to homf (A,X) takes cofibrations to Kan fibrations

by Lemma 2.6. It follows that anodyne weak equivalences satisfy a patching property
for pushouts along cofibrations. One can then show inductively that the induced maps
s[r]A→ s[r]B → Y and sknA→ sknB → Y are anodyne equivalences over Y .

The vertical maps in the diagram

sk0A //

��

sk1A //

��

sk2A //

��

. . .

sk0B // sk1B // sk2B // . . .

are anodyne weak equivalences, and the horizontal maps are cofibrations. It follows that
the induced map

homg(B,X) ∼= lim←−
n

homg(sknB,X)→ lim←−
n

homf (sknA,X) = homf (A,X)

is a weak equivalence.

2.10. Lemma. Suppose that the map Z
π−→ W

g−→ Y of bisimplicial sets over Y is defined
by a map π which is a fibration and a diagonal weak equivalence. Then the map π is an
anodyne equivalence of bisimplicial sets over Y .

Proof. Write f = g · π.
The composite

Z ×∆1 pr−→ Z
f−→ X

is a cylinder for f in s2Set/Y .
The map π is a trivial fibration of s2Set/Y , and all objects of this category are

cofibrant. It follows that the map π : f → g is a fibre homotopy equivalence, for the
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choice of cylinder above. If the maps α, β : Z → W → X are fibre homotopic, then they
induce the same maps

α∗, β∗ : homg(W,X)→ homf (Z,X)

in the homotopy category for simplicial sets, for all Kan fibrations p : X → Y . It follows
that the map

π∗ : homg(W,X)→ homf (Z,X)

induces an isomorphism in the homotopy category, and is therefore a weak equivalence of
simplicial sets for all Kan fibrations p : X → Y .

2.11. Lemma. Suppose that every diagonal weak equivalence α : f → g over a bisimplicial
set Y is an anodyne equivalence over Y . Then every Kan fibration p : X → Y is a diagonal
fibration.

Proof. Every Kan fibration p : X → Y has the right lifting property with respect to

all cofibrations j : A → B which define anodyne equivalences A
j−→ B

β−→ Y . In effect,
the corresponding simplicial set maps homβ(B,X)→ homβ·j(A,X) are trivial fibrations
and are therefore surjective in degree 0.

Thus, if every diagonal weak equivalence over Y is an anodyne equivalence over Y ,
then every Kan fibration p : X → Y has the right lifting property with respect to all
cofibrations which are diagonal equivalences.

2.12. Lemma. Suppose that in the diagram

X

π ��

f // Y

π′��
∆p,q

the map f is a diagonal weak equivalence of bisimplicial sets. Then the map f defines an
anodyne equivalence over ∆p,q.

Proof. We can suppose that the maps π and π′ are Kan fibrations.
If the map

π : X → ∆p,q = ∆p×̃∆q

is a Kan fibration, then all maps

Xn →
⊔
n→p

∆q

are fibrations of simplicial sets, and all diagrams

Xn
θ∗ //

��

Xm

��⊔
n→p ∆q

θ∗
//
⊔

m→p ∆q

(3)
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are homotopy cartesian.
The claim that the diagram (3) is homotopy cartesian is proved by forming the pullback

diagram
v∗X //

��

X

��
∆p,0

1×̃v
// ∆p,q

corresponding to a vertex v : ∆0 → ∆q. Then the diagram

v∗Xn
θ∗ //

��

v∗Xm

��⊔
n→p ∆0

θ∗
//
⊔

m→p ∆0

(4)

is weakly equivalent to the diagram (3), and so one can assume that q = 0.
In horizontal degree n, Xn = tσ:n→p Xσ, where Xσ is the fibre over σ for the map

Xn → ∆p
n. It is enough to show that every ordinal number monomorphism d : m → n

induces trivial fibrations Xσ → Xd∗σ. The solution of the lifting problem

∂∆r //

��

Xσ

��
∆r //

;;

Xd∗σ

is equivalent to a solution of the corresponding lifting problem

(∆n×̃∂∆r) ∪ (∆m×̃∆r) //

��

X

∆n×̃∆n

66

in bisimplicial sets. The dotted arrow extension exists in the diagram

(∆n×̃∂∆r) ∪ (∆m×̃∆r) //

��

X

��
∆n×̃∆r // ∆p×̃∆0

and so the desired lifting problem is solved since the map

X → ∆p,0 = ∆p×̃∆0

is a Kan fibration.
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In particular, given a Kan fibration X → ∆p,q, the bisimplicial set X is determined
by simplicial sets Xσ, one for each σ : n → p, and weak equivalences Xσ → Xθ∗σ which
are functorial in maps between simplices of ∆p.

Let 1 : p → p be the generating simplex for ∆p. The weak equivalences X1 → Xσ

define a map

∆p×̃X1
//

  

X

��
∆p,q

which is a levelwise equivalence, hence an anodyne equivalence over ∆p,q.
The induced map

1×̃f∗ : ∆p×̃X1 → ∆p×̃Y1
is a diagonal equivalence, and it follows that the map f∗ : X1 → Y1 is a weak equivalence of
simplicial sets. The map 1×̃f∗ is therefore a levelwise equivalence, and hence an anodyne
equivalence over ∆p,q. The original map f is therefore an anodyne equivalence.

We then have the following consequence of Lemma 2.11 and Lemma 2.12:

2.13. Corollary. Every Kan fibration p : X → ∆p,q is a diagonal fibration.

We close with the main result of this section.

2.14. Theorem. The map p : X → Y is a diagonal fibration if and only if it is a Kan
fibration.

Proof. We show that every Kan fibration which is a diagonal weak equivalence has the
right lifting property with respect to all cofibrations.

Suppose that this is so, and let i : A → B be a cofibration which is a diagonal weak
equivalence. Find a factorization

A
j //

i ��

Z

p
��
B

such that j is anodyne and p is a Kan fibration. Then, subject to the claim of the first
paragraph, the map p is a diagonal weak equivalence and the lifting exists in the diagram

A
j //

i
��

Z

p
��

B
1
//

>>

B

Then the map i is a retract of j, and is therefore an anodyne extension. Thus, the classes
of diagonal trivial cofibrations and anodyne extensions coincide, so the classes of diagonal
fibrations and Kan fibrations coincide.
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Suppose that p : X → Y is a Kan fibration and a diagonal equivalence. Form the
pullback diagrams

p−1(σ) //

p∗
��

X

p

��
∆p,q

σ
// Y

(5)

for all bisimplices σ. If
∆r,s //

τ ��

∆p,q

σ��
Y

is a map of simplices, then the maps p∗ in the pullback diagram

p−1(τ) //

p∗
��

p−1(σ)

p∗
��

∆r,s // ∆p,q

are diagonal fibrations by Corollary 2.13, so that the map p−1(τ)→ p−1(σ) is a diagonal
equivalence since the diagonal model structure is proper. It follows from Quillen’s The-
orem B [4, IV.5.7] that all diagrams (3) are homotopy cartesian for the diagonal model
structure.

In particular, the maps p∗ are diagonal equivalences, so that the lifts exist in all
diagrams

∂∆p,q //

��

p−1(σ)

p∗
��

∆p,q
1
//

::

∆p,q

The map p : X → Y is therefore a trivial diagonal fibration.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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