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BOUNDED ARCHIMEDEAN `-ALGEBRAS AND
GELFAND-NEUMARK-STONE DUALITY

GURAM BEZHANISHVILI, PATRICK J. MORANDI, BRUCE OLBERDING

Abstract. By Gelfand-Neumark duality, the category C∗Alg of commutative C∗-
algebras is dually equivalent to the category of compact Hausdorff spaces, which by
Stone duality, is also dually equivalent to the category uba` of uniformly complete
bounded Archimedean `-algebras. Consequently, C∗Alg is equivalent to uba`, and this
equivalence can be described through complexification.

In this article we study uba` within the larger category ba` of bounded Archimedean
`-algebras. We show that uba` is the smallest nontrivial reflective subcategory of ba`,
and that uba` consists of exactly those objects in ba` that are epicomplete, a fact
that includes a categorical formulation of the Stone-Weierstrass theorem for ba`. It
follows that uba` is the unique nontrivial reflective epicomplete subcategory of ba`. We
also show that each nontrivial reflective subcategory of ba` is both monoreflective and
epireflective, and exhibit two other interesting reflective subcategories of ba` involving
Gelfand rings and square closed rings.

Dually, we show that Specker R-algebras are precisely the co-epicomplete objects in
ba`. We prove that the category spec of Specker R-algebras is a mono-coreflective
subcategory of ba` that is co-epireflective in a mono-coreflective subcategory of ba`
consisting of what we term `-clean rings, a version of clean rings adapted to the order-
theoretic setting of ba`.

We conclude the article by discussing the import of our results in the setting of complex
∗-algebras through complexification.

1. Introduction

Gelfand-Neumark duality [16] between the categories of commutative C∗-algebras and
compact Hausdorff spaces gives a representation of a commutative C∗-algebra as the ring
C(X,C) of continuous complex-valued functions on a compact Hausdorff space X. As
a consequence of this duality, C(X,C) can be characterized by algebraic properties (in-
volving rings with involution) along with analytic properties (involving Banach spaces).
Independently, Stone [45] axiomatized the commutative rings C(X,R) of continuous real-
valued functions on compact Hausdorff spaces. In contemporary terminology, these rings
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are precisely the lattice-ordered commutative R-algebras that are bounded, Archimedean,
and uniformly complete (all these terms are defined in Section 2). Following Banaschewski
[10], we call such a ring a Stone ring. Stone rings are thus described by algebraic (R-
algebras), order-theoretic (lattice-ordered, bounded, Archimedean), and analytic (uni-
formly complete) properties. Though the axiomatizations of commutative C∗-algebras
and Stone rings are quite different, it is not hard to see that the complexification func-
tor provides an equivalence between the categories of Stone rings and commutative C∗-
algebras (see Section 7 for details). Thus, either of the dualities, that of Gelfand-Neumark
or of Stone, can be deduced from the other.

Our focus in this article is on Stone’s duality rather than that of Gelfand and
Neumark—that is, we focus on R-algebras rather than C-algebras—although in Sec-
tion 7 we discuss how our results apply to the complex case. We term this duality by the
collective name of Gelfand-Neumark-Stone duality, as it is often done in the literature,
and note that a similar duality for the category of uniformly complete Archimedean
vector lattices with strong order unit was obtained independently by Krein–Krein [31],
Kakutani [28, 29], and Yosida [48].

In addition to intrinsic interest in the real case, one of our motivations is the tradition
in general topology of studying properties of a topological space X via the ring C(X,R),
as exemplified by Gillman and Jerison in [17], where many topological properties of X are
shown to correspond to algebraic and order-theoretic features of C(X,R). This emphasis
on algebra and order is in particular what motivates our point of view. In fact, the presence
of a natural lattice order on C(X,R) is one feature that distinguishes the real case from
the complex case, and many of our main results rely heavily on order-theoretic properties
of lattice-ordered algebras. We study a category, which we denote ba`, that abstracts
the essential algebraic and order-theoretic features of C(X,R); namely, the objects in
ba` are bounded Archimedean `-algebras (that is, lattice-ordered algebras over R) and
the morphisms in the category are `-algebra homomorphisms (that is, lattice-ordered
R-algebra homomorphisms).

The Stone rings are the uniformly complete rings in ba`, and a study of ba` is use-
ful to individuate what is special about the analytic aspect of Stone rings, i.e., uniform
completeness. To this end, we study not only the algebraic and order-theoretic proper-
ties of the rings in ba`, but also the categorical properties of ba`. For example, in ba`
monomorphisms are simply 1-1 morphisms, while epimorphisms are not in general surjec-
tive. In fact, the Stone-Weierstrass theorem implies that a morphism α : A → B in ba`
is an epimorphism iff α(A) is uniformly dense in B. This leads to the observation that
uniform completion is a reflector, and we show that the full subcategory of ba` consisting
of the Stone rings is the smallest nontrivial reflective subcategory of ba`, and that it is
the unique nontrivial epicomplete reflective subcategory of ba`. Thus, categorical notions
encode the analytic features of uniform completion. Moreover, the category ba` has other
strong features, such as the fact that every nontrivial reflective subcategory of ba` is both
monoreflective and epireflective. We exhibit two other natural reflective subcategories of
ba` related to square closure and closure with respect to bounded inversion.
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The category ba` also has an important mono-coreflective subcategory: the category
of those R-algebras that are generated by their idempotents. (Unlike nontrivial reflective
subcategories of ba`, coreflective subcategories need not be mono-coreflective.) In anal-
ogy with Conrad’s usage [14] of the term Specker `-group, we term these algebras Specker
R-algebras. We show that A is a Specker R-algebra iff A is a co-epicomplete object in
ba`, which happens iff A is a von Neumann regular ring in ba`. The algebraic features
of these rings are so strong that they determine a unique order on the ring. Moreover,
each R-algebra homomorphism between Specker R-algebras is automatically an `-algebra
homomorphism, and thus the category spec of Specker R-algebras and R-algebra homo-
morphisms is a subcategory of ba`.

In unraveling the algebraic, order-theoretic, and analytic properties of Stone rings, it is
of interest to determine which Stone rings in ba` are the uniform completions of Specker R-
algebras, for such Stone rings are structurally determined by these basic algebraic objects.
These rings turn out to be precisely the clean Stone rings, and correspond dually to Stone
spaces (zero-dimensional compact Hausdorff spaces). This leads us to introduce the class
of `-clean rings, an `-ring analogue of a clean ring, and to consider the category cba` of
`-clean rings. This is shown to be a mono-coreflective subcategory of ba` which contains
spec as a bi-coreflective subcategory. Moreover, spec forms the smallest epi-coreflective
subcategory, as well as the unique epi-coreflective co-epicomplete subcategory of cba`.
As with reflective subcategories of ba`, a full description of co-reflective subcategories of
ba` remains an interesting open problem. In particular, we do not know whether there is
a co-reflective subcategory of ba` that plays a role in ba` similar to the role of spec in
cba` (see Question 7.7(2)).

Thus, ba` has a rich categorical structure. Reflection serves to distinguish the “rich-
est” objects in the category — the Stone rings, which have important algebraic, order-
theoretic, and analytic features. Coreflection, on the other hand, distinguishes within
the subcategory cba` the “simplest” algebraic objects in the category — the Specker
R-algebras. The Specker R-algebras are defined only in terms of algebra, the order is
implicit.

If, instead of compact Hausdorff spaces one works with the larger category of com-
pletely regular spaces, then C(X,R) is no longer bounded, and the boundedness condition
should be dropped from the definition of ba`. This results in a natural generalization of
ba`, first developed by Henriksen, Isbell, and Johnson [24, 25] under the name of Φ-
algebras. Other natural generalizations include the categories of Archimedean vector
lattices with weak order unit (see, for example, Luxemburg–Zaanen [34] and Semadini
[42]) and Archimedean `-groups with weak order unit, as developed by Conrad, Hager,
Ball, Madden, and others (see [5, 6, 7, 8, 14, 21, 34] and the references therein). There
is a large body of results for these categories characterizing epimorphisms, as well as epi-
complete objects and epicompletions, and to a lesser degree, of co-epicomplete objects
and co-epicompletions. In contrast, less attention has been devoted in this direction to
the category of Φ-algebras, and more particularly ba`, and the early foundational papers
[24, 25] appear to provide the most direct and in-depth treatment of this category (but see
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also the survey article [22] and its references). Another aim of this article is to partially
fill in this gap by adding to the knowledge of the category ba` of bounded Archimedean
`-algebras.

Not surprisingly, the Stone-Weierstrass theorem plays a crucial role in formulating our
results, as it does in Gelfand-Neumark-Stone duality. Recall that the (real version of)
Stone-Weierstrass theorem asserts that if X is a compact Hausdorff space and A is an R-
subalgebra of C(X,R) that separates points of X, then A is uniformly dense in C(X,R).
For our purposes we require only a weak version of the Stone-Weierstrass theorem, namely,
that when A is an `-subalgebra of C(X,R) (rather than an R-subalgebra) that separates
points of X, then A is uniformly dense in C(X,R). The proof of this weak version requires
only an elementary application of compactness. Moreover, separation of points can be
reformulated to state that A is an `-subalgebra of C(X,R) that separates points of X
iff the inclusion mapping A → C(X,R) is an epimorphism. This leads to a convenient
version of the Stone-Weierstrass theorem that does not require reference to the category
of compact Hausdorff spaces: If A,B ∈ ba` and α : A→ B is monic and epic in ba`, then
α(A) is uniformly dense in B. We show how to deduce Gelfand-Neumark-Stone duality
from this version of the Stone-Weierstrass theorem.

In the last section of the article we translate our results to the setting of complex
∗-algebras through complexification of R-algebras. It is not difficult to see that the
complexification and self-adjoint functors yield an equivalence between the categories
of commutative R-algebras and commutative complex ∗-algebras, and that under this
equivalence, the image of ba` is exactly the category of commutative complex ∗-algebras
whose self-adjoint part is closed under the absolute value. Furthermore, each subcate-
gory of ba` is then equivalent to an appropriate subcategory of complex ∗-algebras. We
describe this equivalence for several of the subcategories of ba` we study in this article,
including an equivalence between Stone rings and commutative C∗-algebras, and between
Specker R-algebras and what we call ∗-Specker C-algebras.

2. Bounded Archimedean `-algebras

All rings we will consider are assumed to be commutative with 1, and all homomorphisms
are assumed to be unital; that is, preserve 1. We start with the following standard
definition; see, e.g., Birkhoff [13, Ch. XIII-XVII].

2.1. Definition.

1. Let A be a ring with a partial order ≤. Then A is a lattice-ordered ring, or an `-ring
for short, if (i) (A,≤) is a lattice, (ii) a ≤ b implies a + c ≤ b + c for each c, and
(iii) 0 ≤ a, b implies 0 ≤ ab.

2. An `-ring A is Archimedean if for each a, b ∈ A, whenever na ≤ b for each n ∈ N,
then a ≤ 0.
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3. An `-ring A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1 (that is,
1 is a strong order unit).

4. An `-ring A is an f-ring if for each a, b, c ∈ A with a ∧ b = 0 and c ≥ 0, we have
ac ∧ b = 0.

5. An `-ring A has bounded inversion if each a ∈ A with 1 ≤ a is invertible in A.

6. An `-ring A is an `-algebra if it is an R-algebra and for each 0 ≤ a ∈ A and
0 ≤ λ ∈ R we have λa ≥ 0.

2.2. Remark. We list below several well-known facts that we will use throughout without
explicit mention. They can, for example, be found in [13, Ch. XIII-XVII].

1. In each `-ring A we have a+ b = (a∨ b) + (a∧ b) and (a∨ b) + c = (a+ c)∨ (b+ c).

2. For each a ∈ A, set a+ = a ∨ 0 and a− = (−a) ∨ 0 = −(a ∧ 0). Then a+, a− ≥ 0,
a+ ∧ a− = 0, and a = a+ − a−.

3. For each a ∈ A, define the absolute value of a by |a| = a∨(−a). Then |a| = a++a−.

4. Each bounded `-ring A is an f -ring, so a2 ≥ 0 and |ab| = |a||b| for each a, b ∈ A.

5. Each bounded Archimedean `-ring is commutative.

6. If A is a nonzero `-algebra, then we view R as an `-subalgebra of A.

For `-algebras A and B, a map α : A → B is an `-algebra homomorphism if α is an
R-algebra homomorphism and a lattice homomorphism. It follows that α(|a|) = |α(a)|
for each a ∈ A.

2.3. Notation. Let ba` denote the category of bounded Archimedean `-algebras and
`-algebra homomorphisms.

2.4. Remark. The zero ring trivially belongs to ba`, and it is easy to see that it is the
terminal object in ba`. On the other hand, since morphisms in ba` are unital, R is the
initial object in ba`. Since most of the results presented in this article hold easily for the
zero ring, in the proofs we will often skip the easy verification for the zero ring and will
mostly concentrate on the nonzero objects in ba`.

We discuss some natural examples of bounded Archimedean `-algebras.
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2.5. Example.

1. Probably the most natural examples are the C(X,R) for X compact Hausdorff. It
is well known that C(X,R) is a commutative ring with 1, and if we equip C(X,R)
with componentwise order ≤, then C(X,R) is a bounded Archimedean `-algebra.
Note that each C(X,R) has bounded inversion. In addition, C(X,R) is uniformly
complete, meaning that C(X,R) is complete with respect to the uniform norm on
C(X,R) given by

‖f‖ = sup{|f(x)| : x ∈ X}.

2. For an example of a bounded Archimedean `-algebra without bounded inversion, let
X = [0, 1]. We recall that f ∈ C(X,R) is a piecewise polynomial function if there
are closed intervals F1, . . . , Fn of X and polynomials g1, . . . , gn ∈ R[x] such that
X =

⋃
Fi and f = gi on Fi. Let PP (X,R) be the set of all piecewise polynomial

functions on X. Then it is not hard to verify that PP (X,R) is an `-subalgebra of
C(X,R), and so PP (X,R) ∈ ba`. Let

f(x) =

{
1 : x ∈ [0, 1

2
]

x+ 1
2

: x ∈ [1
2
, 1].

Clearly f ∈ PP (X,R) and f ≥ 1. If there exists g ∈ PP (X,R) such that fg = 1,
then fg − 1 = 0 on [1

2
, 1]. As g ∈ PP (X,R), it is easy to see that g and hence

fg is a polynomial function on an infinite closed interval [a, b] of [1
2
, 1]. But fg − 1

can only have finitely many zeros on [a, b]. The obtained contradiction proves that
PP (X,R) does not have bounded inversion.

3. Let X be compact Hausdorff. We call f ∈ C(X,R) piecewise constant if there
exists a clopen partition {P1, . . . , Pn} of X and λi ∈ R such that f(x) = λi for
each x ∈ Pi. Let PC(X,R) be the set of all piecewise constant functions on X.
It is straightforward to see that PC(X,R) is an `-subalgebra of C(X,R), and so
PC(X,R) ∈ ba`. In fact, PC(X,R) is the R-subalgebra of C(X,R) generated by
the idempotents of C(X,R), which are the characteristic functions of clopen subsets
of X. If X is not a Stone space, PC(X,R) may be rather small. For example,
PC([0, 1],R) is isomorphic to R.

Let A ∈ ba`. We recall that an ideal I of A is an `-ideal if for all a, b ∈ A, whenever
|a| ≤ |b| and b ∈ I, then a ∈ I. In other words, `-ideals of A are exactly the ideals of A
that are convex. It follows that if x, y ∈ I, then x∨y ∈ I. Note that `-ideals are the kernels
of `-algebra homomorphisms. Moreover, if I is an `-ideal of A, then A/I is a bounded
`-algebra, but A/I may fail to be Archimedean. In fact, A/I is Archimedean iff I is an
intersection of maximal `-ideals of A. For, if I =

⋂
Mi, where Mi are maximal `-ideals

of A, then A/I embeds into
∏
A/Mi. By [25, Cor. 2.7], each A/Mi is isomorphic to R.

Therefore,
∏
A/Mi and hence A/I is Archimedean. Conversely, if A/I is Archimedean,

then the intersection of all maximal `-ideals of A/I is 0 [26, Thm. II.2.11]. But maximal `-
ideals of A/I correspond to maximal `-ideals of A containing I. Thus, I is the intersection
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of all maximal `-ideals of A containing I. Consequently, if A,B ∈ ba` and α : A→ B is
a morphism in ba`, then the kernel of α is an intersection of maximal `-ideals.

2.6. Example. Given a nonzero A ∈ ba` and an `-ideal I of A, this example shows that
R + I is also in ba`. This will be used in Lemma 6.1 and Theorem 6.2. It is sufficient
to show that R + I is an `-subalgebra of A. It is straightforward to see that R + I is an
R-subalgebra of A. From the relations between ∨,∧ and + in an `-algebra, it suffices to
show R + I is closed under ∨. To see this, let a = λ+ x and b = µ+ y with λ, µ ∈ R and
x, y ∈ I. Without loss of generality, we may assume that λ ≤ µ. Then

a ∨ b = (λ+ x) ∨ (µ+ y) = µ+ [(λ− µ+ x) ∨ y].

Furthermore, since λ ≤ µ, we see that y ≤ (λ − µ + x) ∨ y ≤ x ∨ y. Since x, y ∈ I and
I is an `-ideal, x ∨ y ∈ I, and so (λ − µ + x) ∨ y ∈ I. Thus, a ∨ b ∈ R + I, and hence
R + I ∈ ba`.

2.7. Notation. For A ∈ ba`, let Max(A) denote the set of maximal ideals of A, and let
XA denote the set of maximal `-ideals of A.

Let A ∈ ba`. Since each maximal `-ideal of A has real residue field ([25, Cor. 2.7]),
each maximal `-ideal is a maximal ideal of A, so XA ⊆ Max(A). It is well known that
Max(A) can be given the topology, where the closed sets are the sets of the form Z(I) =
{M ∈ Max(A) : I ⊆M} for some ideal I of A, and that Max(A) is a subspace of Spec(A),
where Spec(A) denotes the prime spectrum of A with the Zariski topology. We recall that
Max(A) is a compact T1-space, but it may not be Hausdorff in general. We view XA as
a subspace of Max(A); that is, closed sets of XA are the sets

Z`(I) := Z(I) ∩XA = {M ∈ XA : I ⊆M},

where I is an ideal of A. As follows from [25, Thm. 2.3(i)], XA is compact Hausdorff.
Since each maximal `-ideal of A has real residue field, to each element a ∈ A, we

may associate a real-valued function fa : XA → R by fa(M) = a + M . Moreover, since
f−1a (λ, µ) = Z`((a − λ)+)c ∩ Z`((µ − a)+)c for any λ < µ in R, where (−)c denotes set-
theoretic complement, it follows that fa ∈ C(XA,R). Therefore, if we define φA : A →
C(XA,R) by φA(a) = fa, then φA is an `-algebra homomorphism. As

⋂
XA = 0 ([26,

Thm. II.2.11]), the mapping φA is 1-1. Collecting together these observations, we arrive at
the following well-known theorem (see [25], especially p. 81, and the references therein),
which is fundamental in what follows. (The last assertion of the theorem is clear since
any `-subalgebra of an object in ba` is in ba`.)

2.8. Theorem. If A ∈ ba`, then XA is a compact Hausdorff space and φA : A →
C(XA,R) is a 1-1 morphism in ba`. Conversely, if A is isomorphic to an `-subalgebra of
C(X,R), for X compact Hausdorff, then A ∈ ba`. Thus, an `-algebra A is in ba` iff A
is isomorphic to an `-subalgebra of C(X,R) for some compact Hausdorff space X.

Let A,B ∈ ba` and let α : A → B be a morphism in ba`. Then α is monic iff α is
1-1. This follows from a more general fact concerning bounded Archimedean `-groups [5,
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Thm. 2.2(a)], but can also be seen directly. If A is the zero ring, then it is easily checked
that α is monic iff α is 1-1. So suppose that A is nonzero. Let α : A→ B be monic and
I = ker(α). By Example 2.6, R + I is an `-subalgebra of A. Let β : R + I → A be the
identity map and let γ : R + I → A be given by γ(λ + b) = λ for λ ∈ R and b ∈ I. A
short calculation shows that β, γ are morphisms in ba`, and that α ◦ β = α ◦ γ. As α is
monic, we obtain β = γ. Thus, I = 0, and so α is 1-1. On the other hand, epimorphisms
in ba` may not be onto, and so there exist bimorphisms (monic and epic morphisms) in
ba` that are not isomorphisms.

Define α∗ : Spec(B) → Spec(A) by α∗(P ) = α−1(P ) for each P ∈ Spec(B). It is well
known that α∗ is continuous. In fact, α∗ restricts to a continuous mapping from XB to
XA. To see this, note that when B is the zero ring, the claim is clear, so suppose that
B is nonzero. If N ∈ XB, then N has real residue field, so B = R + N , and it follows
that A = R + α−1(N). Thus, α−1(N) is a maximal ideal of A. Moreover, since α is an `-
algebra homomorphism, α−1(N) is an `-ideal. This shows that α−1(N) ∈ XA. Therefore,
the restriction of α∗ : Spec(B)→ Spec(A) is a continuous map α∗ : XB → XA.

2.9. Lemma. Let α : A→ B be a morphism in ba`.

1. α : A→ B is monic iff α∗ : XB → XA is onto.

2. α : A→ B is epic iff α∗ : XB → XA is 1-1.

3. α : A→ B is a bimorphism iff α∗ : XB → XA is a homeomorphism.

Proof. (1) Let α be monic and M ∈ XA. Let J = {b ∈ B : |b| ≤ α(m) for some m ∈M}.
We show that J is an `-ideal of B. If a, b ∈ J , then there are m,n ∈ M with |a| ≤ α(m)
and |b| ≤ α(n). So |a + b| ≤ α(m + n). Thus, a + b ∈ J . Furthermore, if a ∈ J and
c ∈ B, then since B is bounded, there is λ ∈ N with |c| ≤ λ. Therefore, if |a| ≤ α(m) for
some m ∈ M , then |ac| ≤ α(λm), and λm ∈ M . Thus, ac ∈ J , and so J is an ideal of
B. The definition of J shows that it is an `-ideal containing α(M), so M ⊆ α−1(J). We
show that J is proper. If not, then 1 ∈ J , so 1 ≤ α(m) for some m ∈ M . As α is monic,
this implies 1 ≤ m. Since M is an `-ideal, this forces 1 ∈M , a contradiction to M being
proper. Therefore, J is a proper `-ideal of B and hence is contained in a maximal `-ideal
N of B. Thus, M ⊆ α−1(N), so M = α−1(N), and so α∗ is onto. Conversely, let α∗ be
onto. If α is not monic, then there exists a ∈ A such that a 6= 0 but α(a) = 0. Since⋂
XA = 0, there exists a maximal `-ideal M of A such that a /∈ M . As α∗ is onto, there

exists N ∈ XB such that M = α−1(N). But then 0 = α(a) /∈ N , a contradiction to N
being an ideal. Thus, α is monic.

(2) Let α be epic and let N1 and N2 be distinct maximal `-ideals of B. We let
β1 : B → R and β2 : B → R denote the canonical morphisms in ba` which have kernels
N1 and N2, respectively. Then β1 6= β2. As α is epic, there exists a ∈ A such that
β1(α(a)) 6= β2(α(a)). Let Mi = ker(βi ◦α). Then since Mi ∈ XA, we have A = R+Mi, so
that a = λ1 + m1 for some λ1 ∈ R and m1 ∈ M1. Thus, 0 = β1(α(m1)) = β1(α(a))− λ1.
But if m1 ∈ M2, then 0 = β2(α(m2)) = β2(α(a))− λ1, which forces β1(α(a)) = β2(α(a)),
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which is false. Thus, M1 6= M2, so α∗(N1) 6= α∗(N2). Therefore, m1 6∈ M2, and hence
α(m1) ∈ N1 but α(m1) /∈ N2. Thus, α−1(N1) 6= α−1(N2), and so α∗ is 1-1.

Conversely, let α∗ be 1-1. To see that α is epic, let β1, β2 : B → C be morphisms in ba`
such that β1◦α = β2◦α. If there is b ∈ B such that β1(b) 6= β2(b), then there is a maximal
`-ideal N of C such that β1(b)− β2(b) /∈ N . Let π : C → C/N be the canonical map, and
define Ni = ker(π ◦ βi). Then N1, N2 ∈ XB. If b ∈ N1 ∩ N2, then π(β1(b) − β2(b)) = 0,
a contradiction. Thus, N1 and N2 are distinct maximal ideals of B. As α∗ is 1-1, there
exists a ∈ A such that α(a) ∈ N1 \ N2. But then 0 = π(β1(α(a))) = π(β2(α(a))), a
contradiction to α(a) 6∈ N2. Therefore, β1 = β2.

(3) Apply (1) and (2).

Let A ∈ ba` and let φA : A → C(XA,R) be the mapping defined in Theorem 2.8.
It follows from [25, Cor. 2.6] that φA

∗ : XC(XA,R) → XA is a homeomorphism. As an
immediate consequence of Lemma 2.9, we then obtain:

2.10. Proposition. φA : A→ C(XA,R) is a bimorphism.

2.11. Remark. Lemma 2.9 and Proposition 2.10 can be viewed as consequences of a more
general result concerning commutative bounded Archimedean `-groups [5, Thm. 2.2]. This
is becauseXA coincides with the notion of the Yosida space of a commutative Archimedean
`-group with weak order unit. To see this, we recall (see, e.g., [13, Ch. XIII]) that an
`-group is a group G which is a lattice and in which every group translation is order-
preserving. An element e > 0 of G is a weak order unit if e ∧ |a| = 0 implies a = 0, and
the Yosida space of an Archimedean `-group G with weak order unit e is the space (with
the hull-kernel topology) of `-subgroups that are maximal with respect to not containing
e (see, e.g., [5, Sec. 1]). If we view A ∈ ba` as an Archimedean `-group, then as A is
bounded, 1 is a strong order unit of A (cf. Definition 2.1(3)), hence a weak order unit.
To see then that XA is the Yosida space of A, let M be an `-subgroup of A maximal
with respect to not containing 1, and let J = {a ∈ A : |a| ≤ m for some m ∈ M}. By
an argument similar to that in the proof of Lemma 2.9(1), we see that J is an `-ideal
of A. If 1 ∈ J , then 1 ≤ m for some m ∈ M . Since M is convex, this yields 1 ∈ M ,
a contradiction. Thus, J is a proper `-ideal of A, and hence is contained in a maximal
`-ideal N of A. Since 1 6∈ N , this forces M = N . Consequently, each `-subgroup of A
maximal with respect to not containing 1 is a maximal `-ideal, and it follows that XA is
the Yosida space of A.

3. Epicompletion as a reflector in ba`

Let A ∈ ba`. We define the uniform norm on A by

‖a‖ = inf{λ ∈ R : |a| ≤ λ}.

This is well-defined because A is bounded, and as A is Archimedean, it follows that ‖ · ‖
is a norm on A. Thus, we have the norm topology on A, and it is easy to see that A is a
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topological `-ring with respect to this topology. Furthermore, if α : A→ B is an `-algebra
homomorphism, then it is immediate that ‖α(a)‖ ≤ ‖a‖ for each a ∈ A. Consequently, α
is continuous with respect to the norm topologies.

3.1. Definition. Let A ∈ ba`. We call A uniformly complete if the uniform norm on A
is complete. Let uba` be the full subcategory of ba` consisting uniformly complete objects
in ba`. We call objects in uba` Stone rings.

3.2. Remark. Johnstone [27, p. 155] calls Stone rings C∗-algebras. To avoid confusion,
we follow Banaschewski [10] in naming uniformly complete objects in ba` Stone rings.

The following proposition, which plays a crucial role throughout the remainder of
the article, can be viewed as a categorical reformulation of a weak version of the Stone-
Weierstrass theorem, upon which the proof depends.

3.3. Proposition. The following are equivalent for a monomorphism α : A→ B in ba`.

1. α is a bimorphism.

2. α∗ : XB → XA is a homeomorphism.

3. There is a bimorphism β : B → C(XA,R) such that β ◦ α = φA.

4. α(A) separates points of XB.

5. α(A) is uniformly dense in B.

Proof. (1) ⇔ (2): This is Lemma 2.9(3).
(2) ⇒ (3): The mapping α∗ induces an isomorphism α̃∗ : C(XA,R) → C(XB,R) in

ba`, given by α̃∗(f) = f ◦ α∗. We thus have the commutative diagram

A α //

φA
��

B

φB
��

C(XA,R)
α̃∗
// C(XB,R).

Define β : B → C(XA,R) by β = α̃∗
−1 ◦ φB. By Proposition 2.10, φB is a bimorphism.

Also, since α̃∗
−1

is an isomorphism, it is a bimorphism. Therefore, β, as a composition of

bimorphisms, is a bimorphism. Moreover, β ◦ α = α̃∗
−1 ◦ φB ◦ α = α̃∗

−1 ◦ α̃∗ ◦ φA = φA.
(3) ⇒ (2): Since β ◦ α = φA, we have α∗ ◦ β∗ = φA

∗. By Proposition 2.10, φA is a
bimorphism, and by assumption β is a bimorphism. Therefore, by Lemma 2.9, both β∗

and φA
∗ are homeomorphisms. Thus, so is α∗.

A
α //

φA
��

B

βzz
C(XA,R)

XA XB
α∗oo

XC(XA,R)

φA
∗

OO

β∗

::
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(2) ⇒ (4): If M and N are distinct maximal ideals in XB, then by (2), α∗(M) =
α−1(M) and α∗(N) = α−1(N) are distinct maximal ideals in XA, and hence there exists
a ∈ A such that α(a) ∈M \N .

(4) ⇒ (5): Since A separates points of XA, the Stone-Weierstrass theorem yields (5).
(5) ⇒ (1): It suffices to show that α is epic. Suppose that β1, β2 : B → C are

morphisms in ba` with β1 ◦α = β2 ◦α. Then since β1 and β2 are continuous with respect
to the norm topology on B and α(A) is uniformly dense in B, it follows that β1 = β2.

Using Proposition 3.3, we characterize now Stone rings in several ways. Motivated by
the terminology in [5, 6, 7, 8], we call A ∈ ba` epicomplete if each epimorphism α : A→ B
in ba` is onto.

3.4. Corollary. The following are equivalent for A ∈ ba`.

1. A is a Stone ring.

2. Each bimorphism α : A→ B in ba` is an isomorphism.

3. A is isomorphic to C(X,R) for some compact Hausdorff space X.

4. A is epicomplete in ba`.

Proof. (1) ⇒ (2): Let α : A → B be a bimorphism. By Proposition 2.10, φB : B →
C(XB,R) is a bimorphism. Therefore, φB ◦ α : A → C(XB,R) is a bimorphism. Thus,
by Proposition 3.3, A is isomorphic to a uniformly dense `-subalgebra of C(XB,R). But
as A is a Stone ring, A is uniformly complete. This yields that φB ◦α is an isomorphism,
and hence α is an isomorphism.

(2) ⇒ (3): By Proposition 2.10, the canonical map φA : A → C(XA,R) is a bimor-
phism, and hence by (2), an isomorphism.

(3) ⇒ (1): Since C(X,R) is uniformly complete, (1) follows.
(1) ⇒ (4): Let A be a Stone ring, let α : A → B be an epimorphism in ba`, and let

I be the kernel of α. Then I is an intersection of maximal ideals in XA, and hence is a
uniformly closed subset of A. As such, A/I is uniformly complete [34, Thm. 60.4]. Thus,
A/I is a Stone ring, and the induced map A/I → B is a bimorphism. Since we have
established already the equivalence of (1) and (2), we conclude that this mapping is an
isomorphism, and hence α is onto.

A //

!!

B

A/I

==

(4) ⇒ (2): This is clear.
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As we see below, Gelfand-Neumark-Stone duality follows quickly from Corollary 3.4.
To formulate the duality, we let KHaus denote the category of compact Hausdorff spaces
and continuous maps. The notations for this category vary in the literature. Different
authors denote it by Comp2, CompHaus, and HComp. We follow Johnstone’s notation
KHausSp [27], but abbreviate it to KHaus. The reader is cautioned not to confuse
KHaus with the category of Hausdorff k-spaces.

We define X : ba` → KHaus as follows. If A ∈ ba`, then X (A) = XA and if
α : A → B is a morphism in ba`, then X (α) = α∗. It is elementary to see that X is a
contravariant functor. On the other hand, associating C(X,R) with each X ∈ KHaus,
and η̃ : C(Y,R) → C(X,R) with each morphism η : X → Y in KHaus, where η̃(f) =
f ◦ η, produces a contravariant functor C : KHaus → ba`. Moreover, for A ∈ ba` and
X ∈ KHaus, we have homba`(A,C(X,R)) ' homKHaus(X,XA). Therefore, X and C
define a contravariant adjunction.

3.5. Corollary. [Gelfand-Neumark-Stone duality] The functor X : ba` → KHaus,
restricted to uba`, and the functor C : KHaus → ba` yield a dual equivalence between
uba` and KHaus.

Proof. The contravariant adjunction X : ba` → KHaus and C : KHaus → ba`
restricts to a contravariant adjunction between uba` and KHaus. By Corollary 3.4, the
unit of the contravariant adjunction is an isomorphism. On the other hand, it is easy to
see that for each X ∈ KHaus, we have X is homeomorphic to XC(X,R). Indeed, that
x 7→ Mx = {f ∈ C(X,R) : f(x) = 0} is a bijection can be found in [25, Cor. 2.6], and
that this map is continuous is straightforward. Therefore, the counit of the contravariant
adjunction is also an isomorphism. Thus, the contravariant adjunction restricts to a dual
equivalence between uba` and KHaus.

Let A ∈ ba`. In analogy with [5, 6, 7, 8], we call B ∈ ba` the epicompletion of
A if B is epicomplete and there is a bimorphism α : A → B. It is well known that
the uniform completion of A is the completion of the metric space A with respect to
the uniform topology. From Corollary 3.4 it follows that C(XA,R) is isomorphic to
both the epicompletion and the uniform completion of A. Thus, we have a categorical
characterization of uniform completion in ba`:

3.6. Proposition. For each A ∈ ba`, the epicompletion of A is isomorphic to the uni-
form completion of A.

We turn next to a characterization of the full subcategory uba` in ba`. We recall
that a subcategory R of ba` is a reflective subcategory of ba` if the inclusion functor
R → ba` has a left adjoint. In general, R may be neither full nor replete (closed under
isomorphisms) in ba`. We will be interested in reflective full replete subcategories of ba`.
In order to avoid adding the adjective “full replete” to our discussion, we will assume that
all reflective subcategories of ba` are full replete.

As we saw, X : ba` → KHaus and C : KHaus → ba` define a contravariant
adjunction, with C being full and faithful. Consequently, since Stone rings are, up to
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isomorphism, the algebras C(X,R), for X compact Hausdorff (Corollary 3.4), C ◦ X is a
left adjoint to the inclusion functor uba`→ ba`. Thus, uba` is a reflective subcategory of
ba`. Note that the reflector is exactly the mapping φA : A→ C(XA,R) for each A ∈ ba`.
Since by Proposition 2.10, φA is a bimorphism, uba` is actually a bireflective subcategory
of ba`.

We call a subcategory of ba` trivial if it consists of the zero ring and its isomorphic
copies. If a subcategory of ba` is not trivial, then we call it nontrivial. Clearly the trivial
subcategory is the least reflective subcategory of ba`.

3.7. Lemma. Every nontrivial reflective subcategory of ba` is bireflective.

Proof. Let R be a nontrivial reflective subcategory of ba`. Let r : ba` → R be the
reflector. Then, for each A ∈ ba`, there is a morphism rA : A → r(A) in ba` such that
for each B ∈ R and each morphism α : A → B in ba`, there is a unique morphism
β : r(A)→ B for which β ◦ rA = α.

A
rA //

α
!!

r(A)

β
��
B

Consider R := r(R) ∈ R. Since R is the initial object in ba` and reflectors preserve
colimits, R is the initial object in R. Since R is nontrivial and there is no morphism in ba`
from the zero ring to a nonzero object in ba`, we see that R is nonzero. As homR(R,R) is
a singleton and R is a full subcategory of ba`, we also see that homba`(R,R) is a singleton.
If M ∈ XR, then we have the canonical map πM : R → R with kernel M . Therefore,
rR ◦πM ∈ homba`(R,R), and its kernel is M . If XR has two points, then we get two maps
from R to R in this way, and these maps are different since their kernels are not equal.
Thus, XR is a singleton. Therefore, C(XR,R) ∼= R, and since R embeds in C(XR,R) and
both of these algebras have the same R-vector space dimension, we see that R ∼= R.

We now prove R is monoreflective. Let A ∈ ba`. If A is zero, then r(A) is zero,
so rA is trivially monic. Suppose A is nonzero. Then for each M ∈ XA, there is an
onto morphism αM : A → R with kernel M , and hence since R is reflective, there is
a morphism βM : r(A) → R with αM = βM ◦ rA. Let N = Ker(βM), and note that
N ∈ Xr(A). Also, βM(rA(M)) = αM(M) = 0, so that M ⊆ r−1A (N). Since M is maximal,
M = r−1A (N). It follows that r∗A : Xr(A) → XA is onto. Therefore, by Lemma 2.9(1), rA
is monic. Consequently, R is monoreflective. Now since a monoreflective subcategory is
necessarily bireflective [1, Prop. 16.3] (our convention that reflective subcategories are full
is being used implicitly here), it follows that R is bireflective.

3.8. Theorem. uba` is the smallest nontrivial reflective subcategory of ba`.

Proof. As discussed above, uba` is a bireflective subcategory of ba`. Let B be a non-
trivial reflective subcategory of ba`. We claim that uba` ⊆ B. Let C be a Stone ring. By
Lemma 3.7, B is a bireflective subcategory of ba`. Therefore, there exists a bimorphism
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C → B for some B ∈ B. By Corollary 3.4, this bimorphism must be an isomorphism.
Since B is full replete, we have C ∈ B, which proves the theorem.

Theorem 3.8 distinguishes uba` as the smallest nontrivial reflective subcategory of
ba`. Restricting to epicomplete subcategories (that is, subcategories whose objects are
epicomplete), we obtain uniqueness:

3.9. Corollary. uba` is the unique nontrivial reflective epicomplete subcategory of ba`.

Proof. That uba` is epicomplete and reflective follows from Corollary 3.4 and Theo-
rem 3.8. If A is an epicomplete subcategory of ba`, then by Corollary 3.4, A ⊆ uba`,
and if also A is nontrivial and reflective, then by Theorem 3.8, uba` ⊆ A.

4. Some other reflectors in ba`

Our purpose in this section is to exhibit two reflectors arising in a natural way in ba`
involving Gelfand rings and square closure. It remains an open problem to characterize
all reflective subcategories of ba`; see Question 7.7(1).

We recall that a commutative ring A with 1 is a Gelfand ring if for each a, b ∈ A,
whenever a + b = 1, there exist r, s ∈ A such that (1 + ar)(1 + bs) = 0. It is well known
(see, e.g., [37, Prop. 1.3] and the references therein) that the following conditions are
equivalent:

1. A is a Gelfand ring;

2. each prime ideal of A is contained in a unique maximal ideal of A (that is, A is a
pm-ring);

3. for each distinct M,N ∈ Max(A) there exist a /∈M and b /∈ N such that ab = 0;

4. Spec(A) is a normal space.

In particular, it follows that if A is a Gelfand ring, then Max(A) is Hausdorff, but the
converse is not true in general. However, if the Jacobson radical of A is 0, then the
converse is also true [15, Prop. 1.2], where we recall that the Jacobson radical of a ring
A is J(A) =

⋂
Max(A). Since Max(A) is always compact, it follows that if J(A) = 0,

then A is a Gelfand ring iff Max(A) is compact Hausdorff. Note that if A ∈ ba`, then
J(A) =

⋂
XA = 0.

4.1. Proposition. The following are equivalent for A ∈ ba`.

1. A has bounded inversion.

2. Max(A) = XA.

3. A is a Gelfand ring.

4. Max(A) is a Hausdorff space.
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Proof. The equivalence of (1) and (2) can be found in [24, Lem. 1.1]. To see (2) implies
(3), let Max(A) = XA. Then Max(A) is Hausdorff. Moreover, since for each A ∈ ba` we
have J(A) = 0, as discussed above, A is a Gelfand ring. That (3) implies (4) also follows
from this same discussion. Finally, to see (4) implies (2), let Max(A) be Hausdorff. Then,
as XA is a compact subset of Max(A), it is closed. Therefore, XA = Z(

⋂
XA) = Z(0) =

Max(A).

Let gba` be the full subcategory of ba` consisting of Gelfand rings in ba`. For each
A ∈ ba`, define g(A) = AS, where AS is the localization of A at the multiplicatively
closed subset S = {s ∈ A : 1 ≤ s}. Then, as we show in the next proposition, g defines a
reflector from ba` to gba`; in particular, g(A) ∈ gba` for each A ∈ ba`.

4.2. Proposition. gba` is a reflective subcategory of ba` properly containing uba`.

Proof. To see that uba` is a proper subcategory of gba`, note that if A ∈ uba`, then
by Gelfand-Neumark-Stone duality, A is isomorphic to C(X,R) for some compact Haus-
dorff space X. Since each C(X,R) has bounded inversion, we conclude that A ∈ gba`,
hence uba` ⊆ gba`. On the other hand, if X is the one-point compactification of N and
PC(X,R) is defined as in Example 2.5(3), then it has bounded inversion, so by Propo-
sition 4.1, it is a Gelfand ring. It is easy to see that the sequence (fn) in PC(X,R),
where

fn(m) =

{
1/(m+ 1) if m ≤ n
0 if m > n or m =∞

converges in C(X,R) to the function f given by

f(m) =

{
1/(m+ 1) if m ∈ N
0 if m =∞.

Since f /∈ PC(X,R), we see that (fn) is Cauchy but does not have a limit in PC(X,R).
Therefore, PC(X,R) is not uniformly complete, hence is not a Stone ring. Thus, uba` is
a proper subcategory of gba`.

To see that gba` is a reflective subcategory of ba`, let A ∈ ba`. First we claim that
AS ∈ ba`. If A = 0, then clearly AS = 0 ∈ ba`. Thus, assume A is nonzero. Note that
no element of S is a zero divisor, for if a ∈ A, s ∈ S, and as = 0, then 0 = |as| = |a|s.
Since 1 ≤ s, we have 0 ≤ |a| ≤ |a|s = 0, which forces |a| = 0, so a = 0. As a consequence,
if a ∈ A, s ∈ S, and as ≥ 0, then a ≥ 0; to see this, (|a| − a)s = |a|s − as = 0, so
a = |a| ≥ 0. Thus, since S consists of nonzerodivisors of A, the ring AS can be viewed as
a subring of the complete ring of quotients of A [33, Prop. 6]. Also, since A is an f -ring
that is reduced (i.e., has no nonzero nilpotent elements), the ordering on A extends to
an ordering on the complete ring of quotients of A [36, Thm. 2.1]. The ring AS inherits
this ordering, which is given by a/s ≤ b/t if at ≤ bs, and the lattice operations are given
by (a/s) ∨ (b/t) = (at ∨ bs)/st and (a/s) ∧ (b/t) = (at ∧ bs)/st. That AS ∈ ba` is then
straightforward. Moreover, AS has bounded inversion since if 1 ≤ a/s, then s ≤ a. This
forces a ≥ 1, so a ∈ S. Therefore, a/s is a unit in AS, and hence by Proposition 4.1, AS
is a Gelfand ring.
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Next we claim that g : ba`→ gba` is a reflector. Let A ∈ ba` and let ι : A→ AS be
the canonical mapping. Suppose that α : A → B is a morphism in ba` with B ∈ gba`.
For each s ∈ S, since 1 ≤ s, we have 1 ≤ α(s). Therefore, as B has bounded inversion
(Proposition 4.1), α(s) is a unit in B. Thus, we define β : AS → B by β(a/s) = α(a)α(s)−1

for all a ∈ A and s ∈ S.

A �
� i //

α ��

AS

β~~
B

Since it is clear that β ◦ ι = α, it follows that gba` is a reflective subcategory of ba`.

4.3. Remark. Proposition 4.2 is an analogue for ba` of a general result due to Schwartz
and Madden: The reduced partially ordered rings with bounded inversion form a monore-
flective subcategory of the category of reduced partially ordered rings [41, pp. 41–42].

4.4. Remark. Proposition 4.1 and a localization argument show that when A ∈ ba`,
then XAS

= Max(AS) ∼= XA. As a result, we obtain that up to isomorphism A is an `-
subalgebra of AS and AS is an `-subalgebra of C(XA,R), and that up to homeomorphism,
all three `-algebras A, AS, and C(XA,R) have XA as the space of maximal `-ideals. More
generally, if A is a reflective subcategory of ba`, then by Lemma 3.7, A is bireflective.
Thus, if r denotes the reflector, then there is a bimorphism A→ r(A). By Proposition 3.3,
there is a bimorphism r(A) → C(XA,R), and so, up to homeomorphism, A, r(A), and
C(XA,R) all have XA as the space of maximal `-ideals.

As we saw, not every A ∈ ba` is a Gelfand ring, and hence not every A ∈ ba` is a
pm-ring. We show that Proposition 4.2 implies a weaker property holds for each A ∈ ba`:

4.5. Corollary. If A ∈ ba`, then each prime ideal of A is contained in at most one
maximal `-ideal.

Proof. Let S = {a ∈ A : 1 ≤ a}. By Proposition 4.2, AS ∈ gba`. Let P be a
prime ideal of A that is contained in M,N ∈ XA. Since M and N are `-ideals, M and
N extend to maximal ideals MAS and NAS of AS, both of which contain the prime
ideal PAS. Moreover, they are `-ideals. To see that MAS is an `-ideal, suppose that
|a/s| ≤ |b/t| ∈MAS with b/t ∈MAS. Then b ∈M , so sb ∈M . Furthermore, |ta| ≤ |sb|.
Therefore, ta ∈ M . Thus, a/s = (ta)/(st) ∈ MAS, which proves that MAS is an `-ideal.
Since AS is a Gelfand ring, hence a pm-ring, because the maximal `-ideals MAS and NAS
both contain PAS, we must have MAS = NAS, which in turn implies that M = N .

So far we have worked with two reflective subcategories of ba`, namely uba` and gba`.
There are many more such subcategories; we refer to the book [41], which introduces many
reflective subcategories of the larger category of partially ordered rings. Next we produce
one more reflective subcategory of ba`, which was motivated by the example of real closed
rings in [41], which satisfy, among other things, that each positive element is a square.
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Recall that if C ∈ uba`, then for each f ∈ C with f ≥ 0, there is a unique 0 ≤ g ∈ C
with f = g2. Let scba` (square root closed) be the full subcategory of ba` whose objects
C satisfy

{a ∈ C : a ≥ 0} = {b2 : b ∈ C}. (1)

4.6. Proposition. scba` is a reflective subcategory of ba` that properly contains uba`
and is incomparable with gba`.

Proof. For each A ∈ ba` we set sc(A) to be the intersection of all `-subalgebras of
C(XA,R) containing φA(A) which satisfy Equation (1). Because each positive element
of C(XA,R) has a unique positive square root, it follows that sc(A) ∈ scba`. We first
claim that sc(A) can be constructed as follows. For each `-subalgebra B of C(XA,R), let
B′ be the `-subalgebra of C(XA,R) generated by B ∪ {

√
b : b ∈ B, b ≥ 0}. It is clear

that B′ ∈ ba`, that B ⊆ B′ ⊆ C(XA,R), and that each b ∈ B with b ≥ 0 has a positive
square root in B′. We then claim sc(A) =

⋃∞
n=0An, where A0 = φA(A) and An+1 = A′n

for each n ≥ 0. Let C be this union. Then φA(A) ⊆ C, and it is clear that C ∈ ba`.
Moreover, if c ∈ C, then c ∈ An for some n. Therefore,

√
c ∈ An+1 ⊆ C. Thus, C satisfies

Equation (1). Consequently, sc(A) ⊆ C. However, since φA(A) ⊆ sc(A), it follows that
A1 = φA(A)′ ⊆ sc(A). By induction, we see that C ⊆ sc(A). Thus, C = sc(A).

To see that sc : ba`→ scba` is a functor, let α : A→ B be a morphism in ba`. Then
there is an induced morphism α̃∗ : C(XA,R) → C(XB,R). For notational convenience,
we will write α′ = α̃∗.

A
α //

��

B

��
C(XA,R) α′ // C(XB,R)

We claim that α′ sends sc(A) into sc(B). Let 0 ≤ x = φA(a) ∈ φA(A). Then α′(x) =
φB(α(a)) ≥ 0 in φB(B). Thus,

√
α′(x) ∈ sc(B). Now, if y is the (positive) square root

of x in C(XA,R), then y ∈ sc(A), and α′(y)2 = α′(x). Furthermore, as
√
α′(x) = α′(y)

is the unique positive element of C(XB,R) whose square is α(a), we see that α′(
√
x) =√

α′(x) ∈ sc(B). Consequently, α′ sends y =
√
x into sc(B). Since this is true for

all nonnegative elements of φA(A), this implies α′ sends A1 into sc(B). An inductive
argument then yields α′(sc(A)) ⊆ sc(B). We thus define sc(α) = α′|sc(A), and conclude
that sc is a functor.

We now show that scba` is a reflective subcategory of ba`. We let iA be the map
φA : A → sc(A) viewed as a map into sc(A). Suppose that C ∈ scba` and α : A → C
is a morphism in ba`. We need to show there is a unique morphism β : sc(A) → C
in ba` with β ◦ iA = α. Now, we have sc(α) : sc(A) → sc(C) is a morphism in ba`.
Clearly, sc(C) = φC(C), since sc(C) is the intersection of all square closed `-subalgebras
of C(XC ,R) containing φC(C), and C is square closed. Set β = i−1C ◦ sc(α). Then
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β : sc(A)→ C is a morphism in ba`.

A
iA //

α

��

sc(A)

sc(α)

��

β

xx
C

iC
// sc(C)

We need to show β ◦ iA = α and that β is unique with respect to this property. First, by
the definition of α′, we have α′ ◦φA = φC ◦α. Thus, β ◦ iA = α, as desired. Now, suppose
that γ : sc(A) → C also satisfies γ ◦ iA = α. This implies β|A0 = γ|A0 . Let 0 ≤ a ∈ A.
Then

√
a ∈ sc(A), and γ(

√
a) = β(

√
a) since both are positive elements whose squares

are equal to α(a). Therefore, γ and β agree on A1. An inductive argument then shows
γ = β. Thus, scba` is a reflective subcategory of ba`.

We next show that gba` is not a subcategory of scba`, nor is scba` a subcategory of
gba`. For the first statement, let A = PP ([0, 1],R). To see that the reflection g(A) of A
in gba` is not in scba`, consider the nonnegative function f(x) = x. If it is the square
of an element of g(A), which is a localization of A, then f would be represented on an
infinite closed subinterval of [0, 1] as a square of a rational function. Since this is false,
g(A) is not square closed. Thus, gba` is not a subcategory of scba`. To see that scba`
is not a subcategory of gba`, we need the following claim.

4.7. Claim. For every A ∈ ba`, the reflection sc(A) is an integral extension of φA(A).

Proof of claim. By transitivity of integrality and the construction of sc(A), it is enough to
prove, for each `-subalgebra B of C(XA,R), that B′ is integral over B, where, as above,
B′ is the `-subalgebra of C(XA,R) generated by B and all square roots of nonnegative
elements of B. Now, let D be the R-subalgebra of C(XA,R) generated by B ∪ {

√
b : 0 ≤

b ∈ B}. Then D is integral over B, and B′ is the sublattice of C(XA,R) generated by
D ([23, Thm. 3.3]). Thus, all we need to show is if a, b ∈ D, then a ∨ b is integral over
B. We first point out that if a is integral over B, then so is a2 = |a|2, and so |a| is also
integral over B. Next, as a ∨ b = 1

2
(a+ b) + 1

2
|a+ b|, if a, b are integral over B, then so is

a ∨ b. This completes the proof of the claim.

Now we produce an example of C ∈ scba` which does not have bounded inversion.
With A = PP ([0, 1],R) as above, and C = sc(A), it follows from Claim 4.7 that sc(A)
is an integral extension of φA(A). We identify C([0, 1],R) and C(XA,R), and thus work
with the inclusions PP ([0, 1],R) ⊆ C ⊆ C([0, 1],R). Consider 1 + x ∈ C and suppose
that 1 + x is a unit in C. Since C is integral over A, this implies that 1 + x is a unit
in A, and so (1 + x)−1 is a piecewise polynomial function on [0, 1]. Therefore, (1 + x)−1

is a polynomial function on an infinite closed subinterval of [0, 1]. This is false since the
ring of polynomial functions on such an interval is integrally closed in its quotient field.
Thus, since 1 ≤ 1 + x, we see that sc(A) does not have bounded inversion. Consequently,
scba` is not a subcategory of gba`. That uba` is a proper subcategory of scba` is now
obvious; the proof of the proposition is complete.
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4.8. Remark. The subcategory of ba` of real closed rings (cf. [41, p. 135]) is not the
same as scba`, since, by [41, Prop. 12.4], any such algebra has bounded inversion. We
chose to work with scba` in this proposition since the defining condition is simpler than
that for real closed rings.

4.9. Remark. The reflectors g : ba`→ gba` and sc : ba`→ scba` can be used to define
reflective subcategories C and D of ba` such that C ⊆ gba` ∩ scba` ⊆ gba` ∪ scba` ⊆
D. In fact, our discussion here is a special instance of a more general framework for
infima and suprema of reflectors, which is due to Schwartz and Madden [41, Ch. 9]. Let
C = gba` ∩ scba`, and let r : ba` → gba` ∩ scba` be defined by r(A) = g(sc(A))
for all A ∈ ba`. Then r is well-defined; i.e., its image consists of Gelfand, square root
closed rings in ba`. Also, since g and sc are reflectors, it follows easily that r is a
reflector. Next, let D be the full subcategory of ba` consisting of objects A ∈ ba` such
that φA(A) = B ∩ C, where B and C are `-subalgebras of C(XA,R) with B ∈ gba`
and C ∈ scba`. Define a functor t : ba` → D by t(A) = sc(A) ∩ g(φA(A)) for all
A ∈ ba`. It is straightforward, using the fact that φA(A) is uniformly dense in C(XA,R),
to verify that t is a reflector. Thus, we have constructed subcategories C and D such that
C = gba` ∩ scba` ⊆ gba` ∪ scba` ⊆ D. Note also that uba` is a proper subcategory of
gba`∩ scba`, since g(sc(A)), where A = PP ([0, 1],R), is not a Stone ring. (For example,
it does not contain the restriction of the exponential function to [0, 1].)

5. Specker R-algebras, `-clean rings, and Baer rings

We have established that A ∈ ba` is a Stone ring iff A is epicomplete, that uba` is
the unique reflective epicomplete subcategory of ba`, and described several other natural
reflective subcategories of ba`. Our next goal is to investigate the dual concepts of epi-
cocomplete objects and coreflective subcategories of ba`. For this purpose, we study
Specker R-algebras, `-clean rings, and Baer rings in ba`.

Specker `-groups were first introduced and studied by Conrad [14]. Here we introduce
an analogous concept of Specker R-algebra, which is particularly suited for ba`. A more
general concept, encompassing both Specker `-groups and Specker R-algebras, is that
of Specker R-algebra, where R is a commutative ring. It is studied in detail in [12].
Before defining Specker R-algebras, we emphasize again that all rings are assumed to be
commutative with 1.

5.1. Definition. Let A be an R-algebra. We call A a Specker R-algebra if it is generated
as an R-algebra by its idempotents.

5.2. Example. Let X be a Stone space. As we pointed out in Example 2.5(3), PC(X,R)
is an R-subalgebra of C(X,R) generated by the idempotents of C(X,R). It follows that
PC(X,R) is a Specker R-algebra. In Theorem 6.2 we will see that each Specker R-algebra
is isomorphic to PC(X,R) for some Stone space X.
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If e1, . . . , en are nonzero idempotents in A such that eiej = 0 when i 6= j, then
we call {e1, . . . , en} an orthogonal set of idempotents. The next two lemmas are routine
observations about decompositions in Specker algebras. For lack of a reference, we include
their proofs.

5.3. Lemma. Let A be an R-algebra. Suppose that {e1, . . . , ek} and {f1, . . . , fn} are or-
thogonal sets of idempotents in A such that λ1e1 + · · · + λkek = µ1f1 + · · · + µnfn for
nonzero distinct real numbers λ1, . . . , λk and µ1, . . . , µn. Then {e1, . . . , ek} = {f1, . . . , fn}
and for each i, j we have λi = µj iff ei = fj.

Proof. Multiplying by λ−11 e1, we have e1 =
∑n

i=1 λ
−1
1 µie1fi. Squaring both sides and

using the fact that e1 is idempotent and {f1, . . . , fn} is an orthogonal set of idempotents
yields

∑n
i=1 λ

−1
1 µie1fi = e1 =

∑n
i=1(λ

−1
1 µi)

2e1fi. Using again that fi’s are orthogonal,
we conclude that for each i, either e1fi = 0 or λ−11 µi = (λ−11 µi)

2. If e1fi 6= 0, then
since µi 6= 0, it follows that µi = λ1. But the µi are all distinct, so there exists exactly
one i such that e1fi 6= 0. After relabeling we assume e1f1 6= 0, and so, from above, we
get e1 = e1f1 and λ1 = µ1. A symmetrical argument shows that f1 = eif1 for some i.
Thus, e1 = e1f1 = e1eif1, so that necessarily i = 1, and hence e1 = e1f1 = f1. Having
established that e1 = f1 and λ1 = µ1, we have then that

∑k
i=2 λiei =

∑n
i=2 µifi, and by

repeating the argument we obtain the lemma.

Motivated by the lemma, we say that an element a ∈ A has a canonical decomposition
if there exist orthogonal idempotents e1, . . . , en ∈ A and distinct nonzero real numbers
λ1, . . . , λn such that a = λ1e1 + · · · + λnen. By Lemma 5.3, the λi and ei are unique in
such a decomposition.

5.4. Lemma. If A is a Specker R-algebra, then each nonzero element of A has a canonical
decomposition.

Proof. Since A is generated as an R-algebra by idempotents, each element of A can
be written as an R-linear combination of idempotents. We prove, by induction on n,
that any nonzero linear combination of n idempotents has a canonical decomposition. If
n = 1, then any such linear combination has the form λe with 0 6= λ ∈ R and e ∈ A an
idempotent. The element λe clearly has a canonical decomposition. Now, suppose the
result holds for n − 1, and let x =

∑n
i=1 µifi be a linear combination of n idempotents.

Set y =
∑n−1

i=1 µifi. By induction, y has a canonical decomposition y =
∑m

i=1 λiei. Then
x = (

∑m
i=1 λiei) + µnfn. Since {e1, . . . , em} is an orthogonal set of idempotents,

∑m
i=1 ei

is an idempotent, and so

x =
m∑
i=1

λiei(1− fn) +
m∑
i=1

λieifn + µnfn

m∑
i=1

ei + µnfn

(
1−

m∑
i=1

ei

)

=
m∑
i=1

λiei(1− fn) +
m∑
i=1

(λi + µn)eifn + µnfn

(
1−

m∑
i=1

ei

)
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is a linear combination of orthogonal idempotents. We then obtain a canonical decompo-
sition of x by combining terms with the same coefficient. Thus, by induction, the result
follows.

We recall that a ring A is von Neumann regular if for each x ∈ A there is y ∈ A with
xyx = x. It is well known (see, e.g., [19, Thm. 1.16]) that for a commutative ring A the
following conditions are equivalent:

1. A is von Neumann regular;

2. A is reduced and each prime ideal of A is maximal;

3. the localization AM at M is a field for each maximal ideal M of A.

We also recall that a ring A is clean if each element of A is the sum of an idempotent
and a unit. It is known (see, e.g., [37, Thm. 1.7] and the references therein) that for a
commutative ring A the following conditions are equivalent:

1. A is a clean ring;

2. for each distinct M,N ∈ Max(A) there exists an idempotent e ∈ A such that e ∈M
and e /∈ N ;

3. A is a Gelfand ring and Max(A) is a zero-dimensional space.

In particular, each clean ring is a Gelfand ring, and if J(A) = 0, then A is a clean ring iff
Max(A) is a Stone space. Note that each von Neumann regular ring A is clean. To see
this, let M,N be distinct maximal ideals of A. Then there is x ∈ M\N . Because A is
von Neumann regular, there is y ∈ A with xyx = x. If e = xy, then e is an idempotent,
and e ∈M since x ∈M . Moreover, e /∈ N since otherwise x = xe ∈ N . Thus, e ∈M\N ,
and hence A is clean.

5.5. Proposition. Every Specker R-algebra A is a bounded Archimedean `-algebra with
bounded inversion, and every R-algebra homomorphism between Specker R-algebras is an
`-algebra homomorphism. Furthermore, A is von Neumann regular, hence clean.

Proof. Let A be a Specker R-algebra. As noted in [9, p. 115], it is straightforward to
verify that A ∈ ba`. Indeed, by Lemma 5.4, we may write each x ∈ A uniquely in the
following canonical form x =

∑
i λiei with λi ∈ R nonzero and {e1, . . . , en} an orthogonal

set of idempotents. We then can define ≤ on A by 0 ≤ x if each λi ≥ 0. That an R-algebra
homomorphism between Specker R-algebras is an `-algebra homomorphism follows from
[12, Cor. 5.3]. To see that A is a von Neumann regular ring, let x ∈ A, and write
x =

∑
i λiei as above. For each i set µi = λ−1i . Setting y =

∑
i µixi, we see immediately

that xyx = x. Thus, A is von Neumann regular. It follows that A is a clean ring. Finally,
to see that A has bounded inversion, let x ∈ A with 1 ≤ x. Then x =

∑
i λiei with 1 ≤ λi

for each i. Thus,
∑

i λ
−1
i ei is the multiplicative inverse of x in A.
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By the proposition, every Specker R-algebra is a von Neumann regular ring in ba`.
In Theorem 6.2 we show that the converse is also true, and give a number of other
characterizations of Specker R-algebras.

Let A ∈ ba` be a clean ring. Then, as follows from the discussion above, A is a Gelfand
ring and Max(A) is a Stone space, and Proposition 4.1 gives us that XA is a Stone space.
However, there exist A ∈ ba` such that XA is a Stone space, but A is not a clean ring, as
we see in the next example.

5.6. Example. We modify Example 2.5(2). Let X be the Cantor space and let A be
the set of all piecewise polynomial functions on [0, 1] restricted to X. Then A ∈ ba`.
Since A separates points of X, it follows that XA is homeomorphic to X (see Section 3
for details). On the other hand, the same argument as in Example 2.5(2) shows that A
does not have bounded inversion. Therefore, by Proposition 4.1, A is not a Gelfand ring,
hence not a clean ring.

In order to characterize those A ∈ ba` for which XA is a Stone space, we will weaken
the concept of a clean ring. Let A be a ring and let X be a subspace of Max(A). We say
that A is X-clean if each a ∈ A can be written in the form e + v with e an idempotent
and v /∈

⋃
X. Since

⋃
Max(A) is the set of units of A, we see that A is clean iff it is

Max(A)-clean.

5.7. Definition. We call A ∈ ba` `-clean if A is XA-clean. Let cba` be the full subcat-
egory of ba` consisting of `-clean rings.

Note that if A ∈ ba` is a clean ring, then A is `-clean. However, Example 5.6 and
Theorem 5.9 below show the converse is not true in general. In order to characterize
the objects in cba`, we need the following lemma whose analogue for commutative rings
with trivial Jacobson radical is well-known (see, e.g., [40, Lem. 2.1]). We omit the proof
because it is nearly identical to that for commutative rings. The only difference is to note
that for two `-ideals J and K, the ideal J +K, as a sum of two `-ideals, is an `-ideal, and
hence, if proper, is contained in a maximal `-ideal.

5.8. Lemma. Let A ∈ ba` and let I be an ideal of A. Then Z`(I) is clopen in XA iff I is
generated by an idempotent e ∈ A. In particular, if e ∈ A is an idempotent, then Z`(e) is
clopen in XA; and if U is clopen in XA, then there exists an idempotent e ∈ A such that
U = Z`(e).

5.9. Theorem. The following conditions are equivalent for nonzero A ∈ ba`.

1. A is `-clean.

2. Each element a ∈ A can be written as a = e+v, where e is an idempotent and there
exists ε ∈ R such that 0 < ε < |v|.

3. If M,N ∈ XA are distinct, then there is an idempotent e ∈ A with e ∈M\N .

4. XA is a Stone space.
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Proof. (1) ⇒ (2): Let A be `-clean and let a ∈ A. Then a = e+ v for some idempotent
e and v /∈

⋃
XA. It is elementary to see that the `-ideal I of A generated by v is

{b ∈ A : |b| ≤ n|v| for some n ∈ N}. Since v is not contained in any maximal `-ideal,
I = A, so 1 ≤ n|v| for some natural number n. Then 1/n ≤ |v|, so (2) holds.

(2) ⇒ (3): Let M,N ∈ XA be distinct. Then there is a ∈ A with a ∈M\N . Since N
is a maximal ideal, there is x ∈ A with ax−1 ∈ N . By (2), we may write ax = e+ v with
e an idempotent and λ < |v| for some positive λ ∈ R. Note that v /∈ M,N since, say, if
v ∈ M , then as M is an `-ideal, |v| ∈ M , so λ ∈ M , and hence 1 ∈ M . Because ax ∈ M
and v /∈M , we have e /∈M . Now, ax− 1 = (e− 1) + v. Since v /∈ N but ax− 1 ∈ N , we
have 1− e /∈ N , so e ∈ N . Thus, e ∈ N\M .

(3) ⇒ (4): By Lemma 5.8, each clopen of XA has the form Z`(e) for some idempo-
tent e ∈ A. By (3), the family {Z`(e) : e an idempotent in A} separates points of XA.
Therefore, since XA is compact, XA is a Stone space (see, e.g., [27, Thm. II.4.2]).

(4) ⇒ (1): Let a ∈ A. It is clear that Z`(1 − a) ⊆ Z`(a)c. Therefore, as XA is a
Stone space, there is a clopen set U with Z`(1− a) ⊆ U ⊆ Z`(a)c. By Lemma 5.8, there
is an idempotent e ∈ A with U = Z`(e). Thus, Z`(1 − a) ⊆ Z`(e) ⊆ Z`(a)c. We show
that this implies a − e /∈

⋃
XA. For, suppose a − e ∈ M for some M ∈ XA. If e ∈ M ,

then a ∈ M , which is false since Z`(e) ∩ Z`(a) = ∅. If e /∈ M , then 1 − e ∈ M . So,
(a− e)− (1− e) = a− 1 ∈ M . But, this violates Z`(a− 1) ⊆ Z`(e). Consequently, A is
`-clean.

5.10. Corollary. Let A ∈ ba`. Then A is a clean ring iff A is `-clean and has bounded
inversion.

Proof. Since the statement is clear for the zero ring, we assume that A is nonzero. If
A has bounded inversion, then any element v satisfying 0 < ε < |v| is a unit, since
1 ≤ ε−1|v|, so ε−1|v| is a unit. Therefore, |v| is a unit, so there is w ∈ A with |v|w = 1.
Squaring gives 1 = |v|2w2 = v2w2, so v is a unit. Thus, if A is `-clean and has bounded
inversion, then it is clean. Conversely, if A is clean, then A is `-clean, and A has bounded
inversion by Proposition 4.1.

From Theorem 5.9 and Corollary 5.10 we deduce Azarpanah’s characterization of clean
rings of continuous real-valued functions.

5.11. Corollary. ([3, Thm. 2.5]) Let X be a compact Hausdorff space. Then C(X,R)
is a clean ring iff X is a Stone space.

Proof. Let A = C(X,R). If X is a Stone space, then since XA is homeomorphic to X,
Theorem 5.9 implies that A is `-clean. As A has bounded inversion, by Corollary 5.10, A
is a clean ring. Conversely, if A is a clean ring, then by Corollary 5.10, A is `-clean, hence
by Theorem 5.9, XA is a Stone space. Since X and XA are homeomorphic, it follows that
X is a Stone space.
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Next we show that in cba` bimorphisms are determined entirely by their behavior on
idempotents. Let A ∈ ba` and let Id(A) be the set of idempotents of A. It is well known
(see, e.g., [27, p. 181]) that Id(A) is a Boolean algebra under the operations

e ∨ f = e+ f − ef
e ∧ f = ef

¬e = 1− e

5.12. Proposition. Let A,B ∈ ba` and let α : A → B be a monomorphism in ba`.
Consider the two statements:

1. α is a bimorphism.

2. α induces an isomorphism of Boolean algebras Id(A)→ Id(B).

Then (1) ⇒ (2). Furthermore, if B is `-clean, then (2) ⇒ (1).

Proof. (1) ⇒ (2): Suppose that α : A → B is a bimorphism. It suffices to show that
Id(B) = α(Id(A)). Since α is a bimorphism, by Lemma 2.9(3), α∗ : XB → XA is a
homeomorphism. Take e ∈ Id(B). By Lemma 5.8, Z`(e) is clopen in XB. Consequently,
α∗(Z`(e)) is clopen in XA, so there is f ∈ Id(A) with Z`(f) = α∗(Z`(e)). If e 6= α(f),
then there is M ∈ XB with e− α(f) 6∈M . But, the equality Z`(f) = α∗(Z`(e)) says that
e ∈M iff f ∈ α−1(M), which happens iff α(f) ∈M . This is a contradiction, so e = α(f).
Therefore, Id(B) = α(Id(A)).

Next, we prove that if B is `-clean, then (2) ⇒ (1). Suppose that α(Id(A)) = Id(B).
Since α : A → B is monic, by Lemma 2.9(1), α∗ : XB → XA is onto. We show that α∗

is also 1-1. As B is an `-clean ring, for distinct M,N ∈ XB, there exists an idempotent
in B contained in one but not in the other. This idempotent is in α(A), which yields
α−1(M) 6= α−1(N). Therefore, α∗ is 1-1, so α∗ is a homeomorphism, and hence by
Lemma 2.9(3), α is a bimorphism.

In Example 2.5(3), for a compact Hausdorff space X, we saw that PC(X,R) ∈ ba`
and that PC(X,R) is the R-subalgebra of C(X,R) generated by its idempotents.

5.13. Corollary. Let A ∈ ba`. Then PC(XA,R) is isomorphic to the R-subalgebra of
A generated by the idempotents of A.

Proof. The canonical map φA : A → C(XA,R) is a bimorphism by Proposition 2.10.
Consequently, by Proposition 5.12, C(XA,R) and φA(A) have the same idempotents.
Thus, the R-subalgebra of C(XA,R) generated by its idempotents is the same as the
R-subalgebra of φA(A) generated by its idempotents. Since the former R-subalgebra is
isomorphic to PC(XA,R), the result follows.
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We recall that an ideal I of a ring A is an annihilator ideal if there exists an ideal
J of A such that I = ann(J) := {a ∈ A : aJ = 0}, and that A is a Baer ring if each
annihilator ideal of A is a principal ideal generated by an idempotent. If J(A) = 0, then
A is a Baer ring iff Max(A) is an extremally disconnected space [39, Thm. 2.7], where
we recall that a space is extremally disconnected if the closure of each open set is open.
It follows that if A is a Gelfand ring and J(A) = 0, then A is a Baer ring iff Max(A) is
an extremally disconnected compact Hausdorff space. In particular, if A is Baer Gelfand
with J(A) = 0, then A is clean.

In Proposition 5.14 we give one more equivalent characterization of a Baer ring A
in terms of the Boolean algebra Id(A) of idempotents of A. If A is a Baer ring, then
Id(A) is a complete Boolean algebra [32, p. 271]. The converse is false; for example, let
A = C(X,R), where X = [0, 1]. Then A has no nontrivial idempotents, so Id(A) is the
two-element Boolean algebra, hence Id(A) is complete. But A is not a Baer ring. Note
that A is not clean. We show that if A is a clean ring and J(A) = 0, then A is a Baer
ring iff Id(A) is a complete Boolean algebra.

We recall [43] that if B is a Boolean algebra, then the space Max(B) of maximal ideals
of B is a Stone space, where the closed sets are the sets of the form {M ∈ Max(B) : I ⊆
M} with I an arbitrary ideal of B.

5.14. Proposition. Let A be a clean ring and J(A) = 0. Then the following conditions
are equivalent:

1. A is a Baer ring.

2. Max(A) is an extremally disconnected compact Hausdorff space.

3. Id(A) is a complete Boolean algebra.

Proof. That (1) is equivalent to (2) follows from the fact that each clean ring is Gelfand,
and when J(A) = 0, then, as discussed above, A is a Gelfand ring iff Max(A) is Hausdorff,
and A is a Baer ring iff Max(A) is an extremally disconnected space. To see that (2) is
equivalent to (3), observe that the mapping Max(A)→ Max(Id(A)) : M 7→M ∩ Id(A) is
continuous and onto [2, Sec. 2]. Moreover, since idempotents in a clean ring A separate
maximal ideals in A, it follows that this mapping is a homeomorphism. It is well known
that Max(Id(A)) is an extremally disconnected compact Hausdorff space iff Id(A) is a
complete Boolean algebra [44, Thm. 4.7]. Thus, (2) is equivalent to (3).

As a corollary, we recover a result of Azarpanah and Karamzadeh:

5.15. Corollary. ([4, Thm. 3.5]) A compact Hausdorff space X is extremally discon-
nected iff C(X,R) is a Baer ring.

Proof. Let A = C(X,R). Then since Max(A) is homeomorphic to X, Proposition 5.14
implies that A is a Baer ring iff X is an extremally disconnected space.
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Let A ∈ ba`. We show that unlike the case when A is a clean ring, whether A is a
Baer ring is determined entirely by XA. For a topological space X we denote the closure
and interior of S ⊆ X by S and int(S), respectively. For lack of a reference, we include
the proof of the following standard observations.

5.16. Lemma. Let A ∈ ba` and let I be a proper `-ideal of A.

1. ann(I) =
⋂
Z`(I)c.

2. int(Z`(I)) = Z`(ann(ann(I))).

3. I is an annihilator ideal of A iff I is an intersection of maximal `-ideals and Z`(I)
is regular closed in XA.

Proof. (1) Set K =
⋂
Z`(I)c =

⋂
{M ∈ XA : I 6⊆ M}. Since I ann(I) = 0, for each

M ∈ XA, either I ⊆ M or ann(I) ⊆ M . Consequently, ann(I) ⊆ K. Conversely, let
M ∈ XA. Then I ⊆ M or K ⊆ M . Therefore, IK ⊆ M . Thus, IK =

⋂
XA = 0. This

implies K ⊆ ann(I), and so ann(I) = K.
(2) Recall that if S ⊆ XA, then S = Z`(

⋂
S). Therefore, (1) implies Z`(I)c =

Z`(ann(I)), so int(Z`(I)) = Z`(ann(I))c. Thus,

int(Z`(I)) = Z`(ann(I))c

= Z`(
⋂
Z` (ann(I))c) (by S = Z`(

⋂
S))

= Z`(ann(ann(I))) (by (1)).

Consequently, int(Z`(I)) = Z`(ann(ann(I))).
(3) If I is an annihilator ideal, then by (1), I is an intersection of maximal `-ideals.

Moreover, since I = ann(ann(I)), we have int(Z`(I)) = Z`(I), and so Z`(I) is reg-
ular closed. Conversely, suppose that Z`(I) is regular closed. By (2), int(Z`(I)) =
Z`(ann(ann(I))), so Z`(I) = Z`(ann(ann(I))). Thus, since I and ann(ann(I)) are in-
tersections of maximal `-ideals, we have I = ann(ann(I)).

5.17. Theorem. If A ∈ ba`, then A is a Baer ring iff XA is extremally disconnected.

Proof. Suppose that XA is extremally disconnected. We identify A with its image in
C = C(XA,R). Let I be an ideal of A. Since by Proposition 5.14, C is a Baer ring, there
exists an idempotent e ∈ C such that annC(I) = eC. Therefore, annA(I) = A∩annC(I) =
A ∩ eC. It follows then from Corollary 5.13 that PC(XA,R) ⊆ A, and in particular, A
contains every idempotent of C(XA,R). Thus, eA ⊆ A ∩ eC. For the reverse inclusion,
if a ∈ A ∩ eC, then we may write a = ec for some c ∈ C. Therefore, ea = e2c = ec = a.
Consequently, a ∈ eA. Thus, annA(I) = eA. This proves that A is Baer.

Conversely, let A ∈ ba` be a Baer ring. By Lemma 5.16, a subset F of XA is regular
closed in XA iff F = Z`(I) for some annihilator ideal I. Since A is a Baer ring, I = eA
for some idempotent e. Therefore, F = Z`(e), which is clopen. Thus, XA is extremally
disconnected.
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5.18. Corollary. If A ∈ ba` is a Baer ring, then A is `-clean.

Proof. If A ∈ ba` is a Baer ring, then by Theorem 5.17, XA is an extremally disconnected
compact Hausdorff space. Therefore, XA is a Stone space, and so by Theorem 5.9, A is
`-clean.

Let bba` be the full subcategory of ba` consisting of Baer rings. By Corollary 5.18,
bba` is a full subcategory of cba`. To see that bba` is properly contained in cba`, we
utilize Gleason covers of compact Hausdorff spaces. We recall that the Gleason cover
of a compact Hausdorff space X is a pair (Y, π), where Y is an extremely disconnected
compact Hausdorff space and π : Y → X is an irreducible map (a continuous map is
irreducible if it is onto and the image of a proper closed set is not the entire space). By
[18, Thms. 2.5, 3.2], the pair (Y, π) is unique up to homeomorphism and is the projective
cover of X in KHaus. Gleason constructs Y as the Stone space of the (complete) Boolean
algebra of regular open subsets of X.

5.19. Example. We give an example of A ∈ bba` which does not have bounded inversion
and is not square closed. Let X be the Cantor space and let π : Y → X be its Gleason
cover. Then Y is an extremally disconnected compact Hausdorff space. Recall from Ex-
ample 5.6 the `-algebra PP (X,R) of piecewise polynomial functions on X, which we saw
does not have bounded inversion. We may view C(X,R) ⊆ C(Y,R) via the identification
h 7→ h ◦ π. Set

A =

{
n∑
i=1

aiei : ai ∈ PP (X,R), ei ∈ Id(C(Y,R))

}
.

We claim that A is an `-subalgebra of C(Y,R) which contains Id(C(Y,R)) and does not
have bounded inversion. Given these claims, since then PC(Y,R) ⊆ A ⊆ C(Y,R), we
conclude, by the argument in the proof of Theorem 5.17, that A is Baer. Since it does
not have bounded inversion, it cannot be clean.

The definition of S implies that PC(Y,R) ⊆ A and PP (X,R) ⊆ A. It also follows from
the definition that A is closed under addition, multiplication, and scalar multiplication,
since the same is true for PP (X,R). Each element of A can be written in the form∑n

i=1 aiei where {e1, . . . , en} is an orthogonal set of idempotents. To see that A is closed
under ∨, let a, b ∈ A. Write a =

∑
i aiei and b =

∑
j bjfj with ai, bj ∈ PP (X,R) and

{e1, . . . , en} and {f1, . . . , fm} each an orthogonal set of idempotents. We may assume the
sum of each set is 1 since, if not, we may adjoin 1−

∑
i ei or 1−

∑
j fj to the set. We can

then write a =
∑

i,j aieifj and b =
∑

i,j bjeifj. Therefore, a ∨ b =
∑

i,j(ai ∨ bj)eifj ∈ A.
Thus, A is an `-subalgebra of C(Y,R).

Let a ∈ PP (X,R) with a ≥ 1 but for which 1/a does not exist in PP (X,R); such
a exists since PP (X,R) does not have bounded inversion. If A has bounded inversion,
then 1/a ∈ A, so we may write a−1 =

∑n
i=1 biei with bi ∈ PP (X,R) and {e1, . . . , en} an

orthogonal set. Multiplying both sides by aej yields abjej = ej. Consequently, abj = 1
on Z`(1 − ej), which is a clopen set in Y . By [18], Y is the Stone space of the Boolean
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algebra of regular open subsets of X. Therefore, there is a regular open set Uj ⊆ X with
Z`(1 − ej) = π−1(Uj). Then abj = 1 on π−1(Uj), so abj = 1 on Uj. Now, since

∑n
i=1 biei

is a unit, it has no zeros, so it must be the case that the π−1(Uj) cover Y . Consequently,
the Uj cover X. Therefore, at least one, say Uk, is infinite. Then abk = 1 on an infinite
subset of X, which would imply that we have polynomial equation ab = 1 on an infinite
subset of X. Since this cannot happen, A does not have bounded inversion.

We now show A is not square closed. Consider a ∈ PP (X,R), defined by a(x) = x
for all x ∈ X. It is clear that a is not a square in PP (X,R). Suppose a = b2 for some
b ∈ A. We may write b =

∑n
i=1 biei for some bi ∈ PP (X,R) with the ei forming a

set of orthogonal idempotents in C(Y,R). By the argument above, we may assume that∑
i ei = 1. Then a = b2 =

∑n
i=1 b

2
i ei. Let Ci = {y ∈ Y : ei(y) = 1}. The Ci form a

clopen partition of Y , so the closed sets π(Ci) cover X. Thus, there is i for which π(Ci)
is infinite. Moreover, a and b2i agree on Ci. Consequently, a and b2i agree on an infinite
subset of X. Since they are polynomial functions, a = b2i on X. This is false since a is
not a square in PP (X,R). This proves that A is not square closed.

Let cuba` be the full subcategory of uba` consisting of clean Stone rings and let buba`
be the full subcategory of uba` consisting of Baer Stone rings. Since each A ∈ uba` has
bounded inversion, buba` is a full subcategory of cuba`. Let also Stone and ED be
the full subcategories of KHaus consisting of Stone spaces and extremally disconnected
spaces, respectively. Then ED is a full subcategory of Stone. We conclude this section by
pointing out that, by the results of Azarpanah and Karamzadeh stated in Corollaries 5.11
and 5.15, Gelfand-Neumark-Stone duality restricts to a dual equivalence between cuba`
and Stone, which further restricts to a dual equivalence between buba` and ED:

5.20. Proposition.

1. The functors X and C, restricted to cuba` and Stone, respectively, yield a dual
equivalence between cuba` and Stone.

2. The functors X and C, restricted to buba` and ED, respectively, yield a dual equiv-
alence between buba` and ED.

6. Epi-cocomplete objects and coreflective subcategories of ba`

In this section we give several characterizations of Specker R-algebras, including that they
are epi-cocomplete objects A in ba`, meaning that each epimorphism α : B → A in ba` is
onto. We show that the category of Specker R-algebras is a mono-coreflective subcategory
of ba`, and that it is the smallest epi-coreflective subcategory of cba`, which in turn is a
mono-coreflective subcategory of ba`. We start with the following auxiliary lemma.

6.1. Lemma. If A ∈ ba` and P is a minimal prime ideal of A, then R + P ∈ ba` and
the inclusion mapping R + P → A is a bimorphism.
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Proof. By [46, p. 196], each minimal prime ideal of A is an `-ideal. Thus, by Example 2.6,
R + P is an `-subalgebra of A. We prove that the inclusion mapping R + P ⊆ A is a
bimorphism. By Proposition 3.3, it suffices to show that the elements of R + P separate
points of XA. Let N1, N2 ∈ XA be distinct. By Corollary 4.5, P cannot be contained in
both N1 and N2. We assume without loss of generality that P 6⊆ N2. Then P ∩N1 6⊆ N2

since N1 6⊆ N2 and N2 is prime. Therefore, (P ∩ N1) + N2 = A, so that n1 + n2 = 1 for
some n1 ∈ P ∩ N1 and n2 ∈ N2. Thus, n1, n2 = 1 − n1 ∈ R + P with n1 ∈ N1\N2 and
n2 ∈ N2\N1. This shows that R + P separates points of XA.

6.2. Theorem. The following are equivalent for A ∈ ba`.

1. A is a Specker R-algebra.

2. A is a von Neumann regular ring.

3. A is epi-cocomplete.

4. Each bimorphism α : B → A in ba` is an isomorphism.

5. No proper `-subalgebra of A is uniformly dense in A.

6. A is isomorphic to PC(X,R) for some Stone space X.

7. A/I ∈ ba` for each `-ideal I of A.

Proof. Since the theorem is trivially true when A = 0, we assume throughout the proof
that A is nonzero.

(1) ⇒ (2): Apply Proposition 5.5.
(2) ⇒ (1): Since A is von Neumann regular, it is clean, hence Gelfand, and so by

Proposition 4.1, A has bounded inversion. Let B be the R-subalgebra of A generated
by Id(A). Then by Proposition 5.5, B ∈ ba`. We verify that B separates points of XA.
Let N1, N2 ∈ XA be distinct. Since A is clean, XA has a basis of clopens. Therefore,
there exists a clopen set U ⊆ XA such that N1 ∈ U and N2 /∈ U . By Lemma 5.8, there
is an idempotent e ∈ A such that U = Z`(e). Thus, e ∈ N1\N2, which proves that B
separates points of A. By Proposition 3.3, the inclusion B ⊆ A is then a bimorphism,
and so the induced mapping XB → XA is a homeomorphism. To prove that B = A, let
a ∈ A, and let I = {b ∈ B : ba ∈ B}. We show that a ∈ B by proving that I = B.
If not, then there is a maximal ideal M of B containing I. By Proposition 5.5, B has
bounded inversion, and by the above argument, so does A. Therefore, by Proposition 4.1,
Max(B) = XB and Max(A) = XA. Since, as noted above, the induced mapping XB → XA

is a homeomorphism, there exists a unique maximal ideal N of A such that M = N ∩B.
Let S = B\M . Then S is a multiplicatively closed subset of B. It follows immediately
from the definition that AS is von Neumann regular. Since N is the unique maximal ideal
of A with N ∩B = M , we see that NAS is the unique maximal ideal of AS. But, since AS
is von Neumann regular, AS = (AS)NAS

is a field. Thus, NAS = 0. Now, since N ∈ XA,
we have A = R + N . Therefore, writing a = λ + n, with λ ∈ R and n ∈ N , there exists
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b ∈ S = B\M such that bn = 0, so that ba = bλ+ bn = bλ ∈ B. Therefore, b ∈ I. Thus,
since b 6∈ M , we see that I 6⊆ M . This proves that I is not contained in any maximal
ideal of B, so I = B. Therefore, a ∈ B. Since this is true for each a ∈ A, we conclude
that B = A.

(1)⇒ (3): Let A be a Specker R-algebra and let α : B → A be an epimorphism in ba`.
Then α : B/Ker(α)→ A is a bimorphism, and the `-algebra B/Ker(α) is in ba` since it is
isomorphic to a subalgebra of A ∈ ba`. By Proposition 5.12, Id(A) = α(Id(B/Ker(α))).
Since A is generated over R by its idempotents, this implies that α is onto.

B α //

$$

A

B/Ker(α)
α

::

(3) ⇒ (4): This is clear.
(4)⇒ (2): Let P be prime ideal of A. By Lemma 6.1, the inclusion mapping R+P ⊆ A

is a bimorphism. Thus, by (4), R + P = A, so P is a maximal ideal of A. Therefore, as
A is reduced and each prime ideal of A is maximal, A is von Neumann regular.

(1) ⇒ (6): Let A be a Specker R-algebra. By Proposition 5.5 and Theorem 5.9, XA

is a Stone space, and by Proposition 5.12, Id(φA(A)) = Id(C(XA,R)). By Corollary 5.13,
PC(XA,R) is the R-subalgebra of C(XA,R) generated by Id(C(XA,R)). Now, as each el-
ement of A is a linear combination of idempotents, the equality Id(φA(A)) = Id(C(XA,R))
shows that φA(A) = PC(XA,R). Thus, φA is an isomorphism between A and PC(XA,R).

(6) ⇒ (1): Apply Example 5.2.
(4) ⇔ (5): Apply Proposition 3.3.
(2) ⇒ (7): Let A ∈ ba` be von Neumann regular and let I be an `-ideal of A. Then

A is a Specker R-algebra by (2) ⇒ (1). Thus, A/I is also a Specker R-algebra, because
each element is an R-linear combination of cosets e + I for e ∈ Id(A), and each of these
elements is idempotent in A/I. By Proposition 5.5, A/I ∈ ba` with respect to the partial
order described in the proof of the proposition. We claim this is the same partial order
as that inherited from A. To see this, let a ∈ A. Then a + I ≥ 0 for the inherited order
if there is b ∈ A with b ≥ 0 and a + I = b + I. On the other hand, a + I ≥ 0 for the
order in the proof of the proposition if a + I is a linear combination of idempotents of
A/I with all positive coefficients. But, b ≥ 0 implies b =

∑
i λiei for some idempotents ei

and λi ≥ 0. Thus, the two partial orders are the same.
(7) ⇒ (2): Let P be a minimal prime ideal of A. We recall that by [46, p. 196],

each minimal prime ideal of A is an `-ideal, so A/P ∈ ba`, and so P is an intersection
of maximal `-ideals. However, by Corollary 4.5, each prime ideal of A is contained in at
most one maximal `-ideal. This forces P to be maximal. Thus, as A is reduced, it is von
Neumann regular.

6.3. Remark. In the literature on `-groups and vector lattices, the Archimedean objects
whose images in the category are Archimedean are known as hyperarchimedean or epi-
archimedean. Statement (7) of the theorem shows that Specker R-algebras are precisely



BOUNDED ARCHIMEDEAN `-ALGEBRAS 465

the hyperarchimedean objects in ba`. Conrad in [14, Cor. I to Prop. 1.2] shows that
a hyperarchimedean vector lattice A with strong order unit is isomorphic to PC(X,R),
where X is the Yosida space of A. Statement (6) of Theorem 6.2 is the corresponding
statement in the category ba`. For a corresponding version of the equivalence of (1) and
(2) for vector lattices see [35, Lem. 7] and its references.

We remark that the R-subalgebra of A generated by Id(A) is the largest Specker
R-subalgebra of A. The next result gives alternative characterizations of this subalgebra.

6.4. Proposition. Let A ∈ ba` be nonzero and let B be the R-subalgebra of A generated
by Id(A). Then B =

⋂
P (R + P ), where P ranges over the minimal prime ideals of A,

and B is also the intersection of all uniformly dense `-subalgebras of A.

Proof. Let B′ :=
⋂
P (R + P ), where P ranges over the minimal prime ideals of A. We

show that B′ is a Specker R-algebra. To prove this it is enough by Theorem 6.2 to show
that B′ is a von Neumann regular ring. Since B′ is reduced and each prime ideal of a
commutative ring contains a minimal prime [30, p. 6, Thm. 10], this amounts to showing
that each minimal prime ideal of B′ is a maximal ideal of B′. Let Q be a minimal prime
ideal of B′, and let S = B′\Q. Since each ideal of AS is extended from an ideal of A,
there exists a minimal prime ideal P of A such that PAS 6= AS. Thus, it must be that
P ∩B′ ⊆ Q, and since Q is a minimal prime ideal of B′, we have in fact that Q = P ∩B′.
Now Q ⊆ B′ ⊆ R+P ⊆ A, and P is the intersection of R+P with any maximal ideal of
A containing P . Since each `-ideal is contained in a maximal `-ideal, there is a maximal
`-ideal M of A containing P . Then M ∩B′ = B′∩P = Q, and so Q is a maximal ideal of
B′ since, by Lemma 2.9, maximal `-ideals of A contract to maximal `-ideals of B′. This
proves that each minimal prime ideal of B′ is a maximal ideal, and hence that B′ is a von
Neumann regular ring. Therefore, by Theorem 6.2, B′ is a Specker R-algebra. Moreover,
Id(A) ⊆ B′. For, if e is an idempotent in A, then e(e−1) = 0, so that each minimal prime
ideal of A contains either e or e − 1, and hence e ∈ B′. Thus, Id(A) ⊆ B′, and since B′

is generated by its idempotents and B′ ⊆ A, it follows that B′ is the Specker R-algebra
generated by Id(A).

Finally, to complete the proof of the proposition, we show that B′ is equal to the
intersection of all the uniformly dense `-subalgebras of A. By Proposition 5.12, each
uniformly dense `-subalgebra of A contains Id(A), so contains B′. Thus, B′ is contained
in the intersection of all uniformly dense `-subalgebras of A. But, by Proposition 3.3
and Lemma 6.1, this intersection is contained in B′. Thus, B′ is the intersection of all
uniformly dense `-subalgebras of A.

Proposition 6.4 allows us to add two more equivalent conditions to Theorem 5.9.

6.5. Theorem. Let A ∈ ba` be nonzero. The following conditions are equivalent to the
four equivalent conditions of Theorem 5.9.

(5) PC(XA,R) is uniformly dense in C(XA,R).

(6) The intersection of any collection of uniformly dense `-subalgebras of A is uniformly
dense in A.
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Proof. (3) ⇒ (5): From (3) it is clear that PC(XA,R) separates points in XA. Thus,
by Proposition 3.3, (5) holds.

(5) ⇒ (6): This follows immediately from Corollary 5.13 and Proposition 6.4.
(6) ⇒ (4): Let B be the Specker R-subalgebra of A generated by the idempotents

of A. By Proposition 6.4, B is uniformly dense in A. Thus, by Proposition 3.3, XB is
homeomorphic to XA. However, by Theorem 6.2, XB is a Stone space, so XA is a Stone
space.

Let spec be the category of Specker R-algebras and R-algebra homomorphisms. It
follows from Proposition 5.5 that spec is a full subcategory of ba`. We show that spec
and cba` are mono-coreflective subcategories of ba`. For each A ∈ ba`, let s(A) denote
the largest Specker R-subalgebra of A; that is, s(A) is the R-subalgebra of A generated
by the idempotents of A. Let s : s(A)→ A be the identity map. For each A ∈ ba`, define
s(A) to be the closure of s(A) in A with respect to the uniform topology. Alternatively,
with φs(A) : s(A) → C(Xs(A),R) and s̃∗ : C(Xs(A),R) → C(XA,R), we have s(A) =

φ−1A (s̃∗(φs(A)(s(A))).

s(A) s //

φs(A)

��

A

φA
��

C(Xs(A),R) s̃∗ // C(XA,R)

6.6. Theorem. spec and cba` are mono-coreflective subcategories of ba`.

Proof. To see that spec is a mono-coreflective subcategory of ba`, let A ∈ ba`, B ∈
spec, and α : B → A be a morphism in ba`. Then α(Id(B)) ⊆ Id(A) ⊆ s(A). As B is
a Specker R-algebra, each b ∈ B is a linear combination of idempotents in B. Therefore,
α(B) ⊆ s(A), so α : B → A factors through the inclusion mapping s(A)→ A, and hence
spec is a mono-coreflective subcategory of ba`.

s(A) //

!!

A

B

α

??

To see that cba` is a mono-coreflective subcategory of ba`, let A ∈ ba`. We claim
first that s(A) is `-clean. If A is zero, then so is s(A); hence, we may assume that A is
nonzero. Let x ∈ s(A). Then φA(x) = s̃∗(f) for some f ∈ C(Xs(A),R). Since XC(Xs(A),R)
is homeomorphic to Xs(A), by Corollary 5.11, C(Xs(A),R) is clean, so there exists an
idempotent e and a unit v in C(Xs(A),R) such that f = e + v. By Proposition 5.12,

e = φs(A)(e
′) for some idempotent e′ ∈ s(A) ⊆ A. Therefore, s̃∗(e) = φA(e′), which

implies that s̃∗(v) = φA(u) for some u ∈ A. Because v is a unit in C(Xs(A),R) and
Xs(A) is compact, |v| is bounded away from 0. Thus, there is ε > 0 with 0 < ε ≤ |v|.
Applying s̃∗ gives 0 < ε ≤ |u|. Since x = e′+u with e′ ∈ A an idempotent, and u satisfies
0 < ε < |u|, Theorem 5.9 yields that s(A) is `-clean.



BOUNDED ARCHIMEDEAN `-ALGEBRAS 467

Now suppose that B ∈ cba` and α : B → A is a morphism in ba`. Since B is `-
clean, it follows from Theorem 5.9(2) that B′ := Im α is also `-clean. Then since s(B′) is
generated by idempotents in A, we have s(B′) ⊆ s(A), and hence the uniform closure of
s(B′) in A is contained in s(A). But since B′ is `-clean, s(B′) is uniformly dense in B′ by
Proposition 3.3 and Proposition 5.12. Consequently, α : B → A must factor through the
inclusion mapping s(A) → A, which shows that cba` is a mono-coreflective subcategory
of ba`.

Neither spec nor cba`, with the above coreflectors, is an epi-coreflective subcategory
of ba`. For example, if A = C([0, 1],R), then s(A) = s(A) = R, and clearly the morphism
R → C([0, 1],R) is not epic. Note also that spec is not the smallest mono-coreflective
subcategory of ba` (it properly contains the trivial subcategory consisting of copies of R),
nor is it the largest (it is properly contained in cba`). As with reflective subcategories,
we assume that coreflective subcategories are full replete.

This shows inherent nonsymmetry between uba` and spec as uba` is both epireflective
and monoreflective in ba`, and it is the smallest nontrivial reflective subcategory of ba`.
We show that the symmetry is restored if we restrict our attention to the subcategory
cba` of ba`.

6.7. Corollary. spec is the smallest epi-coreflective subcategory of cba`, and the
unique epi-coreflective epi-cocomplete subcategory of cba`.

Proof. We know that spec is a subcategory of cba` and, for each A ∈ cba`, the inclusion
morphism s(A) → s(A) = A is a bimorphism by Proposition 3.3. Thus, spec is an epi-
coreflective subcategory of cba`. To see that it is the smallest such subcategory, suppose C
is an epi-coreflective subcategory of cba`, and let c : cba`→ C be the coreflector. Let A ∈
cba`. By the statement dual to [1, Prop. 16.3], C is a bi-coreflecive subcategory of cba`.
Therefore, c(A) → A is a bimorphism, so by Proposition 5.12, Id(A) = Id(c(A)). Thus,
s(A) ⊆ c(A). In particular, if B ∈ spec, then B = s(B) ⊆ c(B) ⊆ B. Consequently,
B = c(B), so spec ⊆ C. This proves that spec is the smallest epi-coreflective subcategory
of cba`.

For the second statement, by Theorem 6.2, spec is an epi-cocomplete subcategory of
cba`. To prove uniqueness, suppose that C is an epi-coreflective epi-cocomplete subcate-
gory of cba` with coreflector c : cba`→ C. By the argument of the previous paragraph,
s(A) ⊆ c(A), and Id(s(A)) = Id(c(A)). Since c(A) is `-clean, Proposition 5.12 shows that
the inclusion s(A) → c(A) is a bimorphism. Because C is epi-cocomplete, we conclude
that c(A) = s(A). Consequently, C = spec.

The results we have obtained easily yield a duality between spec and Stone, and
between the full subcategory bspec of spec consisting of Baer rings and ED.

6.8. Theorem.

1. spec is dually equivalent to Stone.

2. bspec is dually equivalent to ED.
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Proof. (1) By Proposition 5.5, each Specker R-algebra is a clean ring. Thus, by Propo-
sition 5.20, the restriction of X to spec is a contravariant functor X : spec → Stone.
It is also clear that PC : Stone → spec, associating PC(X,R) with each X ∈ Stone
and η̃|PC(Y,R) with each η ∈ homStone(X, Y ), is a contravariant functor. Thus, the theo-
rem comes down to verifying that there are natural isomorphisms A ∼= PC(XA,R) and
X ∼= XPC(X,R). The first isomorphism follows from Corollary 5.13. For the second, ob-
serve that XPC(X,R) = Max(PC(X,R)), which as noted in the proof of Proposition 5.14
is homeomorphic to Max(Id(PC(X,R)), and this by Stone duality for Boolean algebras
[43] is homeomorphic to X.

(2) First observe that A ∈ spec is a Baer ring iff Id(A) is a complete Boolean algebra.
Indeed, by Proposition 5.5, A ∈ ba` and has bounded inversion. Hence, J(A) = 0, and it
is sufficient to apply Proposition 5.14. Now apply (1).

6.9. Remark. While the proof of Theorem 6.8 uses the Stone-Weierstrass theorem, the
result can be proved without using Stone-Weierstrass. Indeed, in [12, Thm. 3.8], we prove
that spec is equivalent to the category BA of Boolean algebras. By Stone duality for
Boolean algebras, BA is dually equivalent to Stone. Combining these two results yields
a proof of Theorem 6.8 that does not use Stone-Weierstrass.

By Proposition 5.20 and Theorem 6.8, spec is equivalent to cuba` and bspec is equiv-
alent to buba`. An explicit construction of the functors establishing these equivalences
is as follows. The functor spec → cuba` (resp. bspec → buba`) associates with each
A ∈ spec the epicompletion (equivalently, the uniform completion) of A, and the functor
cuba`→ spec (resp. buba`→ bspec) associates with each A ∈ cuba` the `-subalgebra
of A generated by Id(A). Thus, Theorem 6.8 can be thought of as an “economic” version
of Gelfand-Neumark-Stone duality for clean and Baer cases.

We point out that cuba` = cba` ∩ uba`, and that the missing symmetry between
spec and uba` is restored between spec and cuba`.

We conclude this section with the following diagram which lists the categories we have
studied in this article. The line segments without arrows represent category inclusions,
and the arrows represent category equivalences or dual equivalences when the arrow has a
d superscript. Most of the inclusions (and non-inclusions) are clear; we point out the ones
which are not. Each A ∈ spec is also in scba`; for, take a ∈ A positive. We may write

a =
∑

i λiei with the λi > 0 in R and the ei ∈ Id(A) orthogonal. Then a =
(∑

i

√
λiei

)2
.

Thus, A is square closed. We also pointed out in Proposition 5.5 that Specker algebras
have bounded inversion, hence are Gelfand. As follows from the proof of Proposition 4.2,
Specker algebras are not always uniformly complete. To see that bspec is not contained
in uba`, observe that PC(β(N),R) is not uniformly complete since it is a dense proper
`-subalgebra of C(β(N),R). Since β(N) ∈ ED, this shows bspec is not contained in
uba`. Finally, Example 5.19 shows that bba` is contained in neither gba` nor scba`, and
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Proposition 4.6 shows that scba` and gba` are incomparable.

ba`

scba` gba`

KHaus oo d // uba`

cba`

Stone oo d // cuba` oo // spec

bba`

ED oo d // buba` oo // bspec

7. The Complexification of ba`

In this section we discuss briefly complexification of the category ba` in order to indicate
how our results give a context for some questions regarding complex ∗-algebras. We
continue to assume all rings are commutative with 1.

7.1. There is a category equivalence between the category of R-algebras with R-algebra
homomorphisms and the category of complex ∗-algebras with ∗-algebra homomorphisms,
and hence for each subcategory of R-algebras, complexification yields an equivalent subcat-
egory of complex ∗-algebras. Recall (see, e.g., [38, Def. 9.1.1]) that a complex ∗-algebra
is a C-algebra B with an involution ∗ satisfying (λb)∗ = λb∗ for each λ ∈ C and b ∈ B.
If A is an R-algebra, then we can form the complexification B := A ⊗R C, which is a
C-algebra. Each tensor a ⊗ (λ + µi) of B has the form (λa ⊗ 1) + (µa ⊗ i). Thus, each
element of B can be written in the form (a⊗ 1) + (b⊗ i) for some a, b ∈ A. By identifying
a ∈ A with a ⊗ 1 ∈ B and 1 ⊗ i with i, we then view B = {a + bi : a, b ∈ A}. There
is an involution ∗ on B given by (a + bi)∗ = a− bi, which then makes B into a complex
∗-algebra. If α : A→ A′ is an R-algebra homomorphism, then α⊗IdC : A⊗RC→ A′⊗RC
is a ∗-homomorphism (i.e., a C-algebra homomorphism compatible with the involution).
We thus have a functor from the category of R-algebras and R-algebra homomorphisms
to the category of complex ∗-algebras with ∗-algebra homomorphisms.

Going backwards, if B is a complex ∗-algebra, we associate to B the R-algebra of
self-adjoint elements of B, and to a ∗-algebra homomorphism β : B → B′ its restriction
to the self-adjoint part of B. To see that these functors yield an equivalence between the
categories of R-algebras and complex ∗-algebras, if A is an R-algebra and B = A⊗R C is
its complexification, then the self-adjoint subalgebra of B is {a+ bi : (a+ bi)∗ = a+ bi},
which is equal to A under our identification of A as an R-subalgebra of B. Conversely,
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if B is a complex ∗-algebra and A is its self-adjoint subalgebra, then for each x ∈ B, we
have

x =

(
x+ x∗

2

)
+

(
x− x∗

2i

)
i,

which represents x in the form a + bi with a, b ∈ A. Thus, B is isomorphic to the
complexification of A.

7.2. The complexification of ba` is the category of complex ∗-algebras B whose self-
adjoint subalgebra is closed under absolute value. Let B be the complexification of ba`.
Thus, a complex ∗-algebra B is in B iff its self-adjoint subalgebra A is in ba`. Any B ∈ B
is then a ∗-subalgebra of C(X,C) for some X ∈ KHaus. We claim that a ∗-subalgebra
B of C(X,C) is the complexification of some A ∈ ba` iff B is closed under the operation
x 7→ |x + x∗|. If x = a + bi, then |x + x∗| = |2a|, so B is closed under this operation
iff its self-adjoint subalgebra A is closed under the absolute value of C(X,C). Since
a ∨ b = 1

2
(a + b + |b − a|), a ∧ b = 1

2
(a + b − |b − a|), and |a| = a ∨ (−a), it follows that

A ∈ ba` iff A is closed under absolute value. So, a complex ∗-algebra B is in B iff B
is closed under the operation x 7→ |x + x∗|, iff the self-adjoint subalgebra of B is closed
under absolute value.

7.3. The complexification of uba` is the category C∗Alg of commutative C∗-algebras.
We show, by restricting the equivalence between ba` and B, that uba` is equivalent to
C∗Alg. First, let A ∈ uba`. If we define a norm on the complexification B of A by
‖a + bi‖ =

√
‖a2 + b2‖, then a routine argument shows that B is complete and that for

all x ∈ B, ‖xx∗‖ = ‖x‖2. Thus, B is a commutative C∗-algebra. Conversely, if B is a
commutative C∗-algebra, then its self-adjoint subalgebra is complete, since the involution
is continuous in the norm topology, and so is in uba`. This pointfree equivalence between
uba` and C∗Alg implies, as was pointed out in the introduction, that Stone duality
follows from Gelfand-Neumark duality and vice-versa.

7.4. The complexification of the category of uniformly complete Baer rings in ba` is
the category of commutative AW ∗-algebras. Recall (see, e.g., [11, Def. 4.1]) that a ∗-
ring B is said to be a Baer ∗-ring if each annihilator in B is generated by a self-adjoint
idempotent (i.e., a projection; see, e.g., [11, Def. 1.2]). An AW ∗-algebra is a C∗-algebra
which is a Baer ∗-ring ([11, Def. 4.2]). If X ∈ KHaus, then C(X,C) is a ∗-Baer ring iff
X ∈ ED ([11, Thm. 7.1]), and C(X,R) is Baer iff X ∈ ED (Corollary 5.15). Therefore,
complexification yields an equivalence between buba` and the category of commutative
AW ∗-algebras.

7.5. The complexification of spec is the category of complex ∗-algebras generated as C-
algebras by projections. If A ∈ spec, then each element of A is an R-linear combination of
idempotents. Let B be the complexification of A. Then idempotents of A are projections
in B. As each element of B has the form a+ bi with a, b ∈ A, we see that each element is
a C-linear combination of projections. Conversely, suppose that B is a ∗-algebra in which
each element is a linear combination of projections. Let x ∈ B with x∗ = x. Since there is a
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unique representation x =
∑

i λiei, where the ei form a set of pairwise disjoint projections
and the λi are distinct, x = x∗ =

∑
i λiei. Because this representation is unique, we see

that λi = λi for each i, so each λi ∈ R. Therefore, the self-adjoint subalgebra A of B is
generated over R by idempotents, so A ∈ spec. Thus, the complexification of spec is the
category of ∗-Specker C-algebras; that is, the complex ∗-algebras generated as C-algebras
by projections.

7.6. Define A ∈ ba` to be Pythagorean if for each a, b ∈ A, there is c ∈ A with a2 + b2 =
c2. The complexification of the subcategory pba` of ba` consisting of Pythagorean objects
in ba` is the subcategory of B consisting of those objects in B that are closed under the
absolute value. Recall from 7.2 that, since B is the complexification of ba`, each B ∈ B
is a subalgebra of C(X,C) for some X ∈ KHaus. We consider those B which are closed
under the absolute value of C(X,C). If h ∈ C(X,C) and we write h = f + gi with
f, g ∈ C(X,R), then |h| =

√
f 2 + g2. Therefore, if A is the self-adjoint subalgebra of B

and B is closed under the absolute value, then
√
f 2 + g2 ∈ A for each f, g ∈ A. It follows

that the complexification of pba` is the subcategory of B consisting of those objects in B
that are closed under the absolute value. It is easy to see that scba` is a subcategory of
pba`. Furthermore, a small modification of Proposition 4.6 shows that pba` is a reflective
subcategory of ba`.

We conclude by mentioning several interesting open problems.

7.7. Question.

1. Describe all reflective subcategories of ba`. By Theorem 3.8, uba` is the smallest
nontrivial reflective subcategory of ba`. Does there exist a largest proper such
subcategory? In [20], Hager describes all the monoreflective subcategories of W that
are closed under homomorphic images, where W is the category of Archimedean
`-groups with weak order unit. Hager parameterizes the set (a fortiori it is a set)
of all such subcategories by the subsets of C(Rω,R) [20, pp. 166-169]. Can Hager’s
method be adapted to parameterize all the reflective subcategories of ba`? (Recall
that by Lemma 3.7, nontrivial reflective subcategories of ba` are monoreflective.)

2. Is scba` a proper subcategory of pba`? We conjecture that the Pythagorean reflec-
tion of PP ([0, 1],R) is not square closed, which would give an affirmative answer to
the question.

3. What is the complexification of gba`? In particular, is there a suitable notion of
∗-Gelfand algebra such that the complexification of gba` is the category consisting
of those subalgebras of commutative C∗-algebras that are ∗-Gelfand?

4. We recall that a ∗-algebra B is ∗-clean if each element of B is the sum of a unit and
a projection (see, e.g., [47, Def. 1]). It is not hard to show that A ∈ ba` is clean
iff the complexification of A is ∗-clean. What is the complex analogue of A ∈ ba`
being `-clean?
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5. Describe all coreflective subcategories of ba`. In particular, does there exist a proper
bi-coreflective subcategory of ba`? This question is motivated by the goal of finding
a canonical choice of uniformly dense `-subalgebra B of each A ∈ ba`. Corollary 6.7
shows that in cba`, Specker R-algebras play this role. On the other hand, the
piecewise polynomials in C([0, 1]) serve as a canonical choice of uniformly dense
`-subalgebra for a specific ring not in cba`. Both of these examples are “free”
constructions, and it would be interesting to determine whether a similar free con-
struction can be given for any ring in ba`. Determining whether there exists a
proper bi-coreflector for ba` would be a step in this direction.

6. In Theorem 6.6, it is shown that cba` is a mono-coreflective subcategory of ba` that
contains spec. Is cba` the largest proper mono-coreflective subcategory of ba`? If
so, then it follows that Question (5) has a negative answer. For if as in (5), there
exists a proper bi-coreflective subcategory C of ba`, and cba` is the largest proper
mono-coreflective subcategory of ba`, then every object of C is an `-clean ring, and
the bi-coreflectivity of C forces then every A ∈ ba` to be `-clean, a contradiction.

7. By Lemma 3.7, each nontrivial reflective subcategory of ba` is bireflective. On the
other hand, not every nontrivial coreflective subcategory of ba` is bi-coreflective. Is
each nontrivial coreflective subcategory of cba` bi-coreflective?

Acknowledgments

We are very grateful to the referee who has provided us with many helpful comments,
which have improved considerably both the content and exposition of the article. In
particular, Section 7 is based on the suggestions of the referee. We are also thankful to
Tony Hager and Warren McGovern for suggestions and pointers to the recent literature
on vector lattices and `-groups.

References
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braic structures (Curaçao, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 1–26.

[23] M. Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J.
Math. 12 (1962), 533–565.

[24] M. Henriksen, J. R. Isbell, and D. G. Johnson, Residue class fields of lattice-ordered
algebras, Fund. Math. 50 (1961/1962), 107–117.

[25] M. Henriksen and D. G. Johnson, On the structure of a class of Archimedean lattice-
ordered algebras, Fund. Math. 50 (1961/1962), 73–94.

[26] D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math.
104 (1960), 163–215.

[27] P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, vol. 3,
Cambridge University Press, Cambridge, 1982.

[28] S. Kakutani, Weak topology, bicompact set and the principle of duality, Proc. Imp.
Acad. Tokyo 16 (1940), 63–67.

[29] , Concrete representation of abstract (M)-spaces. (A characterization of the
space of continuous functions.), Ann. of Math. (2) 42 (1941), 994–1024.

[30] I. Kaplansky, Topics in commutative ring theory, Department of Mathematics, Uni-
versity of Chicago, Chicago, Ill., 1974.

[31] M. Krein and S. Krein, On an inner characteristic of the set of all continuous func-
tions defined on a bicompact Hausdorff space, C. R. (Doklady) Acad. Sci. URSS
(N.S.) 27 (1940), 427–430.

[32] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189,
Springer-Verlag, New York, 1999.

[33] J. Lambek, Lectures on rings and modules, second ed., Chelsea Publishing Co., New
York, 1976.

[34] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Publish-
ing Co., Amsterdam, 1971, North-Holland Mathematical Library.

[35] M. Marinacci and L. Montrucchio, On concavity and supermodularity, J. Math. Anal.
Appl. 344 (2008), no. 2, 642–654.

[36] J. Martinez, The maximal ring of quotient f -ring, Algebra Universalis 33 (1995),
no. 3, 355–369.



BOUNDED ARCHIMEDEAN `-ALGEBRAS 475

[37] W. W. McGovern, Neat rings, J. Pure Appl. Algebra 205 (2006), no. 2, 243–265.

[38] T. W. Palmer, Banach algebras and the general theory of ∗-algebras. Vol. 2, Ency-
clopedia of Mathematics and its Applications, vol. 79, Cambridge University Press,
Cambridge, 2001.

[39] R. Safakish, On commutative reduced Baer rings, J. Sci. Islam. Repub. Iran 15 (2004),
no. 4, 347–349.

[40] K. Samei, Clean elements in commutative reduced rings, Comm. Algebra 32 (2004),
no. 9, 3479–3486.

[41] N. Schwartz and J. J. Madden, Semi-algebraic function rings and reflectors of par-
tially ordered rings, Lecture Notes in Mathematics, vol. 1712, Springer-Verlag, Berlin,
1999.

[42] Z. Semadeni, Banach spaces of continuous functions. Vol. I, PWN—Polish Scientific
Publishers, Warsaw, 1971.

[43] M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math.
Soc. 40 (1936), no. 1, 37–111.

[44] , Algebraic characterizations of special Boolean rings, Fund. Math. 29 (1937),
223–302.

[45] , A general theory of spectra. I, Proc. Nat. Acad. Sci. U. S. A. 26 (1940),
280–283.

[46] H. Subramanian, l-prime ideals in f -rings, Bull. Soc. Math. France 95 (1967), 193–
203.
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