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CONNECTIONS ON NON-ABELIAN GERBES AND THEIR
HOLONOMY

URS SCHREIBER AND KONRAD WALDORF

Abstract. We introduce an axiomatic framework for the parallel transport of con-
nections on gerbes. It incorporates parallel transport along curves and along surfaces,
and is formulated in terms of gluing axioms and smoothness conditions. The smooth-
ness conditions are imposed with respect to a strict Lie 2-group, which plays the role
of a band, or structure 2-group. Upon choosing certain examples of Lie 2-groups, our
axiomatic framework reproduces in a systematical way several known concepts of gerbes
with connection: non-abelian differential cocycles, Breen-Messing gerbes, abelian and
non-abelian bundle gerbes. These relationships convey a well-defined notion of surface
holonomy from our axiomatic framework to each of these concrete models. Till now,
holonomy was only known for abelian gerbes; our approach reproduces that known con-
cept and extends it to non-abelian gerbes. Several new features of surface holonomy are
exposed under its extension to non-abelian gerbes; for example, it carries an action of
the mapping class group of the surface.

Contents

1 Introduction 476
2 Foundations of the Transport Functor Formalism 481
3 Transport 2-Functors 488
4 Transport 2-Functors are Non-Abelian Gerbes 503
5 Surface Holonomy 526
References 538

1. Introduction

Giraud introduced gerbes in order to achieve a geometrical understanding of non-abelian
cohomology [Gir71]. However, already abelian gerbes turned out to be interesting: Brylin-
ski introduced the notion of a connection on an abelian gerbe, and showed that these
represent classes in a certain differential cohomology theory, namely Deligne cohomology
[Bry93]. Deligne cohomology in degree two has before been related to two-dimensional
conformal field theory by Gawȩdzki [Gaw88]. This relation is established by means of
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the surface holonomy of a connection on an abelian gerbe, which provides a term in the
action functional of the field theory.

Surface holonomy of connections on abelian gerbes is today well understood; see
[Wal10, FNSW08] for reviews. While definitions of connections on non-abelian gerbes
have appeared [BM05, ACJ05], it remained unclear what the surface holonomy of these
connections is supposed to be, how it is defined, and how it can be used.

In the present article we propose a general and systematic approach to connections
on non-abelian gerbes, including notions of parallel transport and surface holonomy. Our
approach is general in the sense that it works for gerbes whose band is an arbitrary Lie
2-groupoid, and whose fibres are modelled by an arbitrary 2-category. Our approach
is systematic in the sense that it is solely based on axioms for parallel transport along
surfaces, formulated in terms of gluing laws and smoothness conditions. The whole theory
of connections on non-abelian gerbes is then derived as a consequence.

In order to illustrate how this axiomatic formulation works we shall briefly review a
corresponding formulation in a more familiar setting, namely the one of connections on
fibre bundles; see [SW09]. It shows that for a Lie group G the category of principal G-
bundles with connection over a smooth manifold X is equivalent to a category consisting
of functors

F : P1(X) // G-Tor. (1)

These functors are defined on the path groupoid P1(X) of the manifold X ; its objects are
the points of X , and its morphisms are (certain classes of) paths in X . The functors (1)
take values in the category of G-torsors, i.e. smooth manifolds with a free and transitive
G-action.

The correspondence between principal G-bundles with connection and functors (1) is
established by letting the functor F assign to points the fibres of a given bundle, and to
paths the corresponding parallel transport maps. The gluing laws of parallel transport
are precisely the axioms of a functor. The smoothness conditions of parallel transport
are more involved; they can be encoded in the functors (1) by requiring smooth descend
data with respect to an open cover of X . Functors (1) with smooth descend data are
called transport functors with G-structure – they constitute an axiomatic formulation of
the parallel transport of connections in G-bundles.

In Sections 2 and 3 of the present article we generalize this axiomatic formulation to
connections on gerbes. Our formulation does not use any existing concept of a gerbe with
connection — such concepts are an output of our approach. It is based on 2-functors
defined on the path 2-groupoid P2(X) of X , with values in some “target” 2-category T ,

F : P2(X) // T . (2)

In Section 2.1 we review the path 2-groupoid: it is like the path groupoid but with
additional 2-morphisms, which are essentially fixed-end homotopies between paths.

For example, if T is the 2-category of algebras (over some fixed field), bimodules, and
intertwiners, a 2-functor (2) provides for each point x ∈ X an algebra F (x), which is
supposed to be the fibre of the gerbe at the point x. Further, it provides for each path γ
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from x to y a F (x)-F (y)-bimodule F (γ), which is supposed to be the parallel transport
of the connection on that gerbe along the curve parameterized by γ. Finally, it provides
for each homotopy Σ between paths γ and γ′ an intertwiner

F (Σ) : F (γ) // F (γ′),

which is supposed to be the parallel transport of the connection on that gerbe along
the surface parameterized by Σ. The axioms of the 2-functor (2) describe how these
parallel transport structures are compatible with the composition of paths and gluing of
homotopies. These axioms and all other 2-categorical structure we use can be looked up
in [SW, Appendix A].

Apart from the evident generalization from functors to 2-functors, more work has to
be invested into the generalization of the smoothness conditions. Imposing smoothness
conditions relies on a notion of local triviality for 2-functors defined on path 2-groupoids.
A 2-functor

F : P2(X) // T

is considered to be trivializable, if it factors through a prescribed 2-functor i : Gr // T ,
with Gr a strict Lie 2-groupoid. The Lie 2-groupoid Gr plays the role of the “typical fibre”,
and the 2-functor i indicates how the typical fibre is realized in the target 2-category T .
A local trivialization of the 2-functor F is a cover of X by open sets Uα, a collection of
locally defined “trivial” 2-functors trivα : P2(Uα) // Gr and of equivalences

tα : F |Uα

∼= // i ◦ trivα

between 2-functors defined on Uα. Local trivializations lead to descend data, generaliz-
ing the transition functions of a bundle. The descent data of a 2-functor with a local
trivialization consists of the 2-functors trivα, of transformations

gαβ : i ◦ trivα // i ◦ trivβ

between 2-functors over Uα ∩ Uβ, and of higher coherence data that we shall ignore for
the purposes of this introduction. The theory of local trivializations and descent data for
2-functors is developed in our paper [SW] and reviewed in Section 2.2.

The smoothness conditions we want to formulate are imposed with respect to descent
data; they are the content of Section 3. First of all, we require that the 2-functors trivα
are smooth. This makes sense since they take values in the Lie 2-groupoid Gr. For certain
Lie 2-groupoids, a theory developed in our paper [SW11] identifies the smooth functors
trivα with certain 2-forms Bα on Uα — the curving of the gerbe connection. In order to
treat the transformations gαβ , we apply an observation in abstract 2-category theory: the
transformations gαβ can be regarded as a collection of functors

F (gαβ) : P1(Uα ∩ Uβ) // ΛT ,

for ΛT a certain category of diagrams in T . The smoothness condition that we impose for
the transformation gαβ is that the functors F (gαβ) are transport functors. According to
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the before-mentioned correspondence between transport functors and fibre bundles with
connection, we thus obtain a smooth fibre bundle F (gαβ) with connection over two-fold
overlaps Uα ∩ Uβ — a significant feature of a gerbe.

Summarizing this overview, our axiomatic formulation of connections on gerbes con-
sists of transport 2-functors: 2-functors F : P2(X) // T that are locally trivializable
with respect to a typical fibre i : Gr // T , and have smooth descent data.

In Section 4 of this article we test our axiomatic formulation by choosing examples of
target 2-categories T and 2-functors i : Gr // T . In these examples the Lie 2-groupoids
are “deloopings” of strict Lie 2-groups, Gr = BG; these Lie 2-groups G play the same
role for gerbes as Lie groups for principal bundles. We find the following results:

(i) For a general Lie 2-group G and the identity 2-functor

i = idBG : BG // BG

we prove (Theorem 4.7) that there is a bijection

h0TransBG(X,BG) ∼= Ĥ2(X,G)

between isomorphism classes of transport 2-functors and the degree two differential
non-abelian cohomology of X with coefficients in G. These cohomology groups have
been explored in [BM05] and [BS07]; they are an extension of Giraud’s non-abelian
cohomology by differential form data. Upon setting G = BS1 it reduces to Deligne
cohomology.

(ii) The Lie 2-group BS1 has a monoidal functor BS1 // S1-Tor to the monoidal
category of S1-torsors, by sending the single objects of BS1 to S1 considered as a
torsor over itself. Delooping yields a 2-functor

i : BBS1 // B(S1-Tor).

We prove (Theorem 4.10) that there is an equivalence of 2-categories

TransBBS1(X,B(S1-Tor)) ∼=

{
S1-bundle gerbes with
connection over X

}
.

Bundle gerbes have been introduced by Murray [Mur96]. The equivalence arises by
realizing that the transport functor F (gαβ) in the descent data corresponds in the
present situation to an S1-bundle with connection.

(iii) Let H be a Lie group and let AUT(H) be the automorphism 2-group of H . It has
a monoidal functor AUT(H) // H-BiTor to the monoidal category of H-bitorsors.
Delooping yields a 2-functor

i : BAUT(H) // B(H-BiTor).
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We prove (Theorem 4.15) that there is an equivalence of 2-categories

TransBAUT(H)(X,B(H-BiTor)) ∼=
{
Non-abelian H-bundle gerbes

with connection over X

}
.

Non-abelian bundle gerbes are a generalization of S1-bundle gerbes introduced in
[ACJ05], and the above equivalence arises by proving that the transport functor
F (gαβ) corresponds in the present situation to a “principal H-bibundle with twisted
connection”.

The relations (i) to (iii) show that all these existing concepts of gerbes with connection
fit into our axiomatic formulation.

Apart from these relations to existing gerbes with connection, transport 2-functors are
able to determine systematically new concepts in cases when only the target 2-category
T and the 2-group G are given. We demonstrate this in Section 4.23 with the examples
of connections on vector 2-bundles, string 2-bundles, and principal 2-bundles.

Finally, we discuss in Section 5 the notion of parallel transport along surfaces, which
is manifestly included in the concept of a transport 2-functor. We introduce a notion
of surface holonomy for transport 2-functors, defined for closed oriented surfaces with a
marking, i.e. a certain presentation of its fundamental group. It is obtained by evaluating
the transport 2-functor on a homotopy that realizes the single relation in this presentation.

The existing notion of surface holonomy for abelian gerbes takes values in S1 [Gaw88,
Mur96], while our notion of surface holonomy takes values in the 2-morphisms of the target
2-category T . In order to compare the two notions, we propose a “reduction” procedure
which can be applied in the case that typical fibre of the transport 2-functor is of the form
i : BG // T , where G is a Lie 2-group. The first part of this procedure is the definition
of an abelian group Gred which can be formed for any Lie 2-group G (Definition 5.9).
Heuristically, it generalizes the abelianization of an ordinary Lie group. As the second
part of the reduction procedure, we show (Proposition 5.12) that the surface holonomy
of every transport 2-functor with BG-structure can consistently be reduced to a function
with values in Gred.

Our main results in Section 5 concern this reduced surface holonomy of transport
2-functors with BG-structure. We prove in Theorem 5.16 a rigidity result for reduced
surface holonomy, namely that it depends only on the isomorphism class of the transport
2-functor, and only on the equivalence class of the marking. The isomorphism invariance
allows us to transfer the reduced surface holonomy from transport 2-functors through
the equivalences (i), (ii), and (iii) described above. In particular, we equip non-abelian
G-gerbes with a well-defined notion of a Gred-valued surface holonomy; such a concept
was not known before.

Finally, we show that our new concept of reduced surface holonomy is compatible with
the existing notion of S1-valued surface holonomy of abelian gerbes. Namely, in the case
G = BS1 we find for the reduction (BS1)red = S1, so that both concepts take values in
the same set. We prove then in Proposition 5.17 that the two concepts indeed coincide.
Thus, our new notion of (reduced) surface holonomy consistently extends the existing
notion from abelian to non-abelian gerbes.
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2. Foundations of the Transport Functor Formalism

The present paper is the last part of a project carried out in a sequence of papers
[SW09, SW11, SW]. In these papers, we have prepared the foundations for transport
2-functors – our axiomatic formulation of connection on non-abelian gerbes. The purpose
of this section is to make the present paper self-contained; we collect and review the most
important definitions and results from the previous papers.

2.1. The Path 2-Groupoid of a Smooth Manifold. The basic idea of the path
2-groupoid is very simple: for a smooth manifold X , it is a strict 2-category whose
objects are the points of X , whose 1-morphisms are smooth paths in X , and whose 2-
morphisms are smooth homotopies between these paths. We recall some definitions from
[SW09, SW11].

For points x, y ∈ X , a path γ : x // y is a smooth map γ : [0, 1] // X with
γ(0) = x and γ(1) = y. Since the composition γ2 ◦ γ1 of two paths γ1 : x // y and
γ2 : y // z should again be a smooth map we require sitting instants for all paths: a
number 0 < ǫ < 1

2
with γ(t) = γ(0) for 0 ≤ t < ǫ and γ(t) = γ(1) for 1 − ǫ < t ≤ 1.

The set of these paths is denoted by PX . In order to make the composition associative
and to make paths invertible, we consider the following equivalence relation on PX : two
paths γ, γ′ : x // y are called thin homotopy equivalent if there exists a smooth map
h : [0, 1]2 // X such that

(1) h is a homotopy from γ to γ′ through paths x // y and has sitting instants at γ
and γ′.

(2) the differential of h has at most rank 1.

The set of equivalence classes is denoted by P 1X . We remark that any path γ is thin
homotopy equivalent to any orientation-preserving reparameterization of γ. The com-
position of paths induces a well-defined associative composition on P 1X for which the
constant paths idx are identities and the reversed paths γ−1 are inverses; see [SW09,
Section 2.1] for more details.

A homotopy h between two paths γ0 and γ1 like above but without condition (2) on
the rank of its differential is called a bigon in X and denoted by Σ : γ0 +3 γ1. These
bigons form the 2-morphisms of the path 2-groupoid of X . We denote the set of bigons
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in X by BX . Bigons can be composed in two natural ways. For two bigons Σ : γ1 +3 γ2
and Σ′ : γ2 +3 γ3 we have a vertical composition

Σ′ • Σ : γ1 +3 γ3.

If two bigons Σ1 : γ1 +3 γ′1 and Σ2 : γ2 +3 γ′2 are such that γ1(1) = γ2(0), we have a
horizontal composition

Σ2 ◦ Σ1 : γ2 ◦ γ1 +3 γ′2 ◦ γ
′
1.

Like in the case of paths, we consider an equivalence relation on BX in order to make
the two compositions associative and to make bigons invertible: two bigons Σ : γ0 +3 γ1
and Σ′ : γ′0

+3 γ′1 are called thin homotopy equivalent if there exists a smooth map
h : [0, 1]3 // X such that

(1) h is a homotopy from Σ to Σ′ through bigons and has sitting instants at Σ and Σ′.

(2) the induced homotopies γ0 +3 γ′0 and γ1 +3 γ′1 are thin.

(3) the differential of h has at most rank 2.

Condition (1) assures that we have defined an equivalence relation on BX , and condition
(2) asserts that two thin homotopy equivalent bigons Σ : γ0 +3 γ1 and Σ′ : γ′0 +3 γ′1
start and end on thin homotopy equivalent paths γ0 ∼ γ′0 and γ1 ∼ γ′1. We denote the
set of equivalence classes by B2X . The two compositions ◦ and • between bigons induce
a well-defined composition on B2X . The path 2-groupoid P2(X) is the 2-category whose
set of objects is X , whose set of 1-morphisms is P 1X and whose set of 2-morphisms is
B2X . The path 2-groupoid is strict and all 1-morphisms are strictly invertible. We refer
the reader to [SW11, Section 2.1] for a detailed discussion.

In this article we describe connections on gerbes by transport 2-functors – certain (not
necessarily strict) 2-functors

F : P2(X) // T ,

for some 2-category T , the target 2-category. We note that 2-functors can be pulled
back along smooth maps f : M // X : such a map induces a strict 2-functor
f∗ : P2(M) // P2(X), and we write

f ∗F := F ◦ f∗.

If we drop condition (3) from the definition of thin homotopy equivalence between
bigons we would still get a strict 2-groupoid, which we denote by Π2(X) and which
we call the fundamental 2-groupoid of X . The projection defines a strict 2-functor
P2(X) // Π2(X). We say that a 2-functor F : P2(M) // T is flat if it factors
through the 2-functor P2(M) // Π2(M). We show in Section 3.16 that this abstract
notion of flatness is equivalent to the vanishing of a certain curvature 3-form.
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2.2. Local Trivializations and Descent Data. Let T be a 2-category. A key
feature of a transport 2-functor is that it is locally trivializable. Local trivializations of a
2-functor F : P2(M) // T are defined with respect to three attributes:

1. A strict 2-groupoid Gr, the structure 2-groupoid. In Section 2.6 we will require that
Gr is a Lie 2-groupoid, and formulate smoothness conditions with respect to its
smooth structure.

2. A 2-functor i : Gr // T that indicates how the structure 2-groupoid is realized in
the target 2-category.

3. A surjective submersion π : Y // M , which serves as an “open cover” of the base
manifold M .

For a surjective submersion π : Y // M the fibre products Y [k] := Y ×M ... ×M Y
are again smooth manifolds in such a way that the projections πi1...ip : Y [k] // Y [p] (to
the indexed factors) are smooth maps. An example is an open cover U = {Uα} of M ,
for which the disjoint union of all open sets Uα together with the projection to M is a
surjective submersion. In this example, the k-fold fibre product is the disjoint union of
the k-fold intersections of the open sets Uα.

2.3. Definition. A π-local i-trivialization of a 2-functor F : P2(M) // T is a pair
(triv, t) of a strict 2-functor

triv : P2(Y ) // Gr

and a pseudonatural equivalence

P2(Y )
π∗ //

triv

��

P2(M)

tuuuuuu

uuuuuu

v~ uuuuuu

uuuuuu F

��
Gr

i
// T .

For the notion of a pseudonatural equivalence we refer to [SW, Appendix A]. Ac-
cording to the conventions we fixed there, it includes a weak inverse t̄ together with
modifications

it : t̄ ◦ t +3 idπ∗F and jt : idtrivi
+3 t ◦ t̄ (3)

satisfying the so-called zigzag identities.
In the following we use the abbreviation trivi := i ◦ triv, and we write Triv2π(i) for the

2-category of 2-functors F : P2(M) // T with π-local i-trivializations (together with all
pseudonatural transformations and all modifications). Next we come to the definition of
a 2-category Des2π(i) of descent data with respect to a surjective submersion π : Y // M
and a structure 2-groupoid i : Gr // T .
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2.4. Definition. A descent object is a quadruple (triv, g, ψ, f) consisting of a strict 2-
functor

triv : P2(Y ) // Gr,

a pseudonatural equivalence
g : π∗

1trivi
// π∗

2trivi,

and invertible, coherent modifications

ψ : idtrivi
+3 ∆∗g and f : π∗

23g ◦ π
∗
12g

+3 π∗
13g.

The coherence conditions for the modifications ψ and f can be found in [SW, Definition
2.2.1].

Let us briefly rephrase the above definition in case that Y is the union of open sets Uα:
first there are strict 2-functors trivα : P2(Uα) // Gr. To compare the difference between
trivα and trivβ on a two-fold intersection Uα ∩ Uβ there are pseudonatural equivalen-
ces gαβ : (trivα)i // (trivβ)i. If we assume for a moment that gαβ was the transition
function of some fibre bundle, one would demand that 1 = gαα on every Uα and that
gβγgαβ = gαγ on every three-fold intersection Uα∩Uβ ∩Uγ . In the present situation, how-
ever, these equalities have been replaced by modifications: the first one by a modification
ψα : id(trivα)i

+3 gαα and the second one by a modification fαβγ : gβγ ◦ gαβ +3 gαγ.
Next we describe how to extract a descend object from a local trivialization of a 2-

functor following [SW, Section 2.3]. Let F : P2(M) // T be a 2-functor with a π-local
i-trivialization (triv, t). Using the weak inverse t̄ : trivi // π∗F of t we define

g := π∗
2t ◦ π

∗
1 t̄ : π

∗
1trivi

// π∗
2trivi.

This composition is well-defined since π∗
1π

∗F = π∗
2π

∗F . Let it andjt be the modifications
(3). We obtain ∆∗g = t◦ t̄, so that the definition ψ := jt yields the invertible modification
ψ : idtrivi

+3 ∆∗g. Similarly, one defines with it the invertible modification f . The
quadruple (triv, g, ψ, f) obtained like this is a descend object in the sense of Definition
2.4; see [SW, Lemma 2.3.1].

Next suppose (triv, g, ψ, f) and (triv′, g′, ψ′, f ′) are descent objects. A descent 1-
morphism (triv, g, ψ, f) // (triv′, g′, ψ′, f ′) is a pair (h, ǫ) consisting of a pseudonatural
transformation

h : trivi // triv′i

and an invertible modification

ǫ : π∗
2h ◦ g +3 g′ ◦ π∗

1h

satisfying two natural coherence conditions; see [SW, Definition 2.2.2]. Finally, we suppose
that (h1, ǫ1) and (h2, ǫ2) are descent 1-morphisms from a descent object (triv, g, ψ, f) to
another descent object (triv′, g′, ψ′, f ′). A descent 2-morphism (h1, ǫ1) +3 (h2, ǫ2) is a
modification

E : h1 +3 h2
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satisfying another coherence condition; see [SW, Definition 2.2.3].
Descent objects, 1-morphisms and 2-morphisms form a 2-category Des2π(i), called the

descent 2-category. In concrete examples of the target 2-category T these structures have
natural interpretations in terms of smooth maps and differential forms, as we show in
Section 4. The extraction of a descent object from a local trivialization outlined above
extends to a 2-functor

Exπ : Triv2
π(i)

// Des2π(i), (4)

which we have described in [SW, Section 2.3].
In order to avoid the dependence to the fixed surjective submersion π : Y // M , we

have shown in [SW, Section 4.2] that the two 2-categories Triv2
π(i) and Des2π(i) form a

direct system for refinements of surjective submersions over M . The corresponding direct
limits are 2-categories

Triv2(i)M := lim
−→π

Triv2π(i) and Des2(i)M := lim
−→π

Des2π(i).

For instance, an object in the direct limit is a pair of a surjective submersion π and an
object in the corresponding 2-category Triv2π(i) orDes2π(i). 1-morphisms and 2-morphisms
are defined over common refinements. The 2-functor Exπ from (4) induces an equivalence

Triv2(i)M ∼= Des2(i)M

between these two direct limit 2-categories [SW, Proposition 4.2.1].
Finally, we want to get rid of the chosen trivializations that are attached to the ob-

jects of Triv2(i)M . We denote by Functi(P2(M), T ) the 2-category of locally i-trivializable
2-functors, i.e. 2-functors which admit a π-local i-trivialization, for some surjective sub-
mersion π. We have shown [SW, Theorem 4.3.1]:

2.5. Theorem. There is an equivalence

Functi(P2(M), T ) ∼= Des2(i)M

between 2-categories of locally i-trivializable 2-functors and their descend data.

In Section 3 we select a sub-2-category of Des2(i)M consisting of smooth descend data.
The corresponding sub-2-category of Functi(P2(M), T ) is the one we are aiming at – the
2-category of transport 2-functors.

2.6. Smooth 2-Functors. This section and the forthcoming Section 2.7 prepare two
tools we need in Section 3.1 in order to specify the sub-2-category of smooth descend
data. The first tool is the concept of smooth 2-functors.

The general idea behind “smooth functors” is to consider them internal to smooth
manifolds. That is, the sets of objects and morphisms of the involved categories are
smooth manifolds, and a smooth functor consists of a smooth map between the objects
and a smooth map between the morphisms. Categories internal to smooth manifolds are
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called Lie categories, internal groupoids are called Lie groupoids. The same idea applies
to 2-functors between 2 -categories.

In the context of the present paper, we want to consider smooth 2-functors defined on
the path 2-groupoid P2(X) of a smooth manifold X , respectively. However, P2(X) is not
internal to smooth manifolds, not even infinite-dimensional ones. Instead, we consider it
internal to a larger category of generalized manifolds, so-called diffeological spaces [Sou81].
Diffeological spaces and diffeological maps form a category D∞ that enlarges the category
C∞ of smooth manifolds by means of a full and faithful functor C∞ // D∞. For an
introduction to diffeological spaces we refer the reader to [BH11] or [SW09, Appendix
A.2].

Diffeological spaces admit many constructions that are not possible in the category of
smooth manifolds. We need three of them. Firstly, if X and Y are diffeological spaces, the
set D∞(X, Y ) of smooth maps from X to Y is again a diffeological space. In particular,
the set of smooth maps between smooth manifolds is a diffeological space. Secondly,
every subset of a diffeological space is a diffeological space. Thirdly, the quotient of every
diffeological space by any equivalence relation is a diffeological space. These constructions
are relevant because they show that the set P 1X of thin homotopy classes of paths in X
as well as the set B2X of thin homotopy classes of bigons in X are diffeological spaces.
We conclude that the path 2-groupoid P2(X) of a smooth manifold X is internal to
diffeological spaces, and we have a corresponding 2-category Funct∞(P2(X), S) of smooth
2-functors with values in some Lie 2-category S.

2.7. Transport Functors. The second tool we need for Section 3 is the concept of a
transport functor. Transport functors are an axiomatic formulation of connections in fibre
bundles – they are the one-dimensional analogue of transport 2-functors, the axiomatic
formulation of connections on non-abelian gerbes we are aiming at in the present article.
We have introduced and discussed transport functors in [SW09].

From a general perspective, the definition of a “transport n-functor” is supposed to
rely on a recursive principle in the sense that it uses transport (n − 1)-functors. This is
one reason to recall the definition of a transport functor. The other reason is to highlight
the analogy between the two definitions, which might be helpful to notice:

(a) Instead of the path 2-groupoid P2(X), we are looking at the path groupoid P1(X),
obtained by just taking objects and 1-morphisms of P2(X). A transport functor is a
certain functor

F : P1(X) // T ,

for some target category T : it assigns objects in T – the “fibres” – to the points of
X , and morphisms in T – the “parallel transport maps” – to paths in X .

(b) In order to say which functors are transport functors we need a Lie groupoid Gr
and a functor i : Gr // T . A local i-trivialization of F is a surjective submersion
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π : Y // X , a functor triv : P1(Y ) // Gr, and a natural equivalence

P1(Y )
π∗ //

triv
��

P1(X)

t
tttttt

u} tttt
tttt F

��
Gr

i
// T .

(c) Associated to a local trivialization is a descent object : it is a pair (triv, g) consisting
of the functor triv : P1(Y ) // Gr and of a natural equivalence

g : π∗
1trivi

// π∗
2trivi

satisfying a cocycle condition.

The final step in the definition of a transport functor is the characterization of smooth
descent data.

(d) A descent object (triv, g) is called smooth, if the functor

triv : P1(X) // Gr

is smooth, i.e. internal to diffeological spaces, and if the components map

g : Y [2] // Mor(T )

of the natural equivalence g is the composition of a smooth map g̃ : Y [2] // Mor(Gr)
with i : Gr // T .

In view of the analogy between (a) - (c) and Sections 2.1 and 2.2, (d) is the analogue of
the forthcoming Section 3.1. Summarizing, we have:

2.8. Definition. [SW09, Definition 3.6] A transport functor on X with values in T and
with Gr-structure is a locally i-trivializable functor

F : P1(X) // T

with smooth descent data.

Transport functors form a category which we denote by Trans1Gr(X, T ). The main
result of our paper [SW09] is that transport functors are an axiomatic formulation of
connection on fibre bundles.

In order to illustrate that, and since we need this result later several times, we provide
the following example. let G be a Lie group, and let Bun∇G(X) be the category of principal
G-bundles with connection over X . Further, we denote by BG the Lie groupoid with one
object and morphisms G, by G-Tor the category of G-torsors, and by i : BG // G-Tor
the functor that sends the single object of BG to G, regarded as a G-torsor over itself.
Then, we have:
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2.9. Theorem. [SW09, Theorem 5.8] Let X be a smooth manifold. The assignment

Bun∇G(X) // Trans1BG(X,G-Tor) : (P, ω)
� // FP,ω

defined by
FP,ω(x) := Px and FP,ω(γ) := τγ,

where x ∈ X, γ ∈ PX, and τγ is the parallel transport of ω along γ, establishes a
surjective equivalence of categories.

3. Transport 2-Functors

In this section we introduce the central definition of this paper: transport 2-functors.
For this purpose, we define in Section 3.1 a 2-category of smooth descent data, based
on the notions of smooth 2-functors and transport functors. In Section 3.4 we define
transport 2-functors as those 2-functors that correspond to smooth descent data under
the equivalence of Theorem 2.5. Section 3.9 describes some basic properties of transport
2-functors, and in Section 3.16 we construct an explicit example.

3.1. Smooth Descent Data. In this section we select a sub-2-category Des2π(i)
∞ of

smooth descent data in the 2-category Des2π(i) of descent data described in Section 2.2. If
(triv, g, ψ, f) is a descent object, we demand that the strict 2-functor triv : P2(Y ) // Gr
has to be smooth in the sense of Section 2.6, i.e. internal to diffeological spaces. Imposing
smoothness conditions for the pseudonatural transformation g and the modifications ψ
and f is more subtle since they do not take values in the Lie 2-category Gr but in the
2-category T which is not assumed to be a Lie 2-category.

Briefly, we proceed in the following two steps. We explain first how the pseudonatural
transformation

g : π∗
1trivi

// π∗
2trivi

can be viewed as a certain functor F (g) defined on P1(Y
[2]). Secondly, we impose the

condition that F (g) is a transport functor. A little motivation might be the observation
that F (g) corresponds then (at least in some cases, by Theorem 2.9) to a principal
bundle with connection over Y [2] – one of the well-known ingredients of a (bundle) gerbe,
see Sections 4.9 and 4.14.

Let us first explain in general how a pseudonatural transformation between two 2-
functors can be viewed as a functor. We consider 2-functors F and G between 2-categories
S and T . Since a pseudonatural transformation ρ : F // G assigns 1-morphisms in T to
objects in S and 2-morphisms in T to 1-morphisms in S, the general idea is to construct
a category S0,1 consisting of objects and 1-morphisms of S and a category ΛT consisting
of 1-morphisms and 2-morphisms of T such that ρ yields a functor

F (ρ) : S0,1
// ΛT .

We assume that S is strict, so that forgetting its 2-morphisms produces a well-defined
category S0,1. The construction of the category ΛT is more involved.
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If T is strict, the objects of ΛT are the 1-morphisms of T . A morphism between
objects f : Xf

// Yf and g : Xg
// Yg is a pair of 1-morphisms x : Xf

// Xg and
y : Yf // Yg and a 2-morphism

Xf
x //

f

��

Xg

ϕ}}}
}}}

z� }}}}}}
g

��
Yf y

// Yg.

(5)

This gives indeed a category ΛT , whose composition is defined by putting the diagrams
(5) next to each other. Clearly, any strict 2-functor f : T ′ // T induces a functor
Λf : ΛT ′ // ΛT . For a more detailed discussion of these constructions we refer the
reader to Section 4.2 of [SW11].

Now let ρ : F // G be a pseudonatural transformation between two strict 2-functors
from S to T . Sending an objectX in S to the 1-morphism ρ(X) and sending a 1-morphism
f in S to the 2-morphism ρ(X) now yields a functor

F (ρ) : S0,1
// ΛT .

It respects the composition due to axiom (T1) for ρ and the identities due to [SW,
Lemma A.7]. Moreover, a modification A : ρ1 +3 ρ2 defines a natural transformation
F (A) : F (ρ1) +3 F (ρ2), so that the result is a functor

F : Hom(F,G) // Funct(S0,1,ΛT ) (6)

between the category of pseudonatural transformations between F and G and the category
of functors from S0,1 to ΛT , for S and T strict 2-categories and F and G strict 2-functors.

In case that the 2-category T is not strict, the construction of ΛT suffers from the
fact that the composition is not longer associative. The situation becomes treatable if one
requires the objects Xf , Yf and Xg, Yg and the 1-morphisms x and y in (5) to be contained
the image of a strict 2-category T str under some 2-functor i : T str // T . The result is a
category ΛiT , in which the associativity of the composition is restored by axiom (F3) on
the compositor of the 2-functor i. We omit a more formal definition and refer the reader
to Figure 1 for an illustration. For any 2-functor f : T // T ′, a functor

ΛF : ΛiT // ΛF◦iT
′

is induced by applying f to all involved objects, 1-morphisms, and 2-morphisms. We may
now consider strict 2-functors F and G from S to T str. Then, the functor (6) generalizes
straightforwardly to a functor

F : Hom(i ◦ F, i ◦G) // Funct(S0,1,ΛiT )

between the category of pseudonatural transformations between i ◦ F and i ◦ G and the
category of functors from S0,1 to ΛiT . The following lemma follows directly from the
definitions.
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i(X)

f

��
i(Y )

,

i(Xf)
i(x) //

f

��

i(Xg)

ϕvvvv
vvvv

w� vvv
vvv g

��
i(Yf)

i(y)
// i(Yg)

and

i(Xf )

i(x′◦x)

��

c−1
x,x′

����

��
� ���

i(x) //

f

��

i(Xg)

ϕvvvv
vvvv

w� vvv
vvv g

��

i(x′) // i(Xh)

h

��
ϕ′ vvvv

vvvv

w� vvvvvv

i(Yf)

i(y′◦y)

AA

cy,y′
�
�

�
�

��
�
�

�
�

i(y)
// i(Yg)

i(y′)
// i(Yh).

Figure 1: Objects, morphisms and the composition of the category ΛiT (the diagram on
the right hand side ignores the associators and the bracketing of 1-morphisms). Here, c
is the compositor of the 2-functor i.

3.2. Lemma. The functor F has the following properties:

(i) It is natural with respect to strict 2-functors f : S ′ // S in the sense that the
diagram

Hom(i ◦ F, i ◦G)

f∗

��

F // Funct(S0,1,ΛiT )

f∗

��
Hom(i ◦ F ◦ f, i ◦G ◦ f)

F

// Funct(S ′
0,1,ΛiT )

is strictly commutative.

(ii) It preserves the composition of pseudonatural transformations in the sense that if
F,G,H : S // T str are three strict 2-functors, the diagram

Hom(i◦G, i◦H)×Hom(i◦F, i◦G)

◦

��

F ×F // Funct(S0,1,ΛiT )×Funct(S0,1,ΛiT )

⊗

��
Hom(i ◦H, i ◦ F )

F

// Funct(S0,1,ΛiT )

is commutative.

In Lemma 3.2 (ii) the symbol ⊗ has the following meaning. The composition of
morphisms in ΛiT was defined by putting the diagrams (5) next to each other as shown
in Figure 1. But one can also put the diagrams of appropriate morphisms on top of each
other, provided that the arrow on the bottom of the upper one coincides with the arrow
on the top of the lower one. This is indeed the case for the morphisms in the image of
composable pseudonatural transformations under F × F , so that the diagram in (ii)
makes sense. In a more formal context, the tensor product ⊗ can be discussed in the
formalism of weak double categories, but we will not stress this point.
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In the following discussion the strict 2-category S is the path 2-groupoid of some
smooth manifold, S = P2(X). Notice that S0,1 = P1(X) is then the path groupoid of
X . The 2-category T is the target 2-category, and the strict 2-category T str is the Lie
2-groupoid Gr.

Let (triv, g, ψ, f) be a descent object in the descent 2-category Des2π(i). The pseudo-
natural transformation g : π∗

1trivi
// π∗

2trivi induces a functor

F (g) : P1(Y
[2]) // ΛiT .

In order to impose the condition that F (g) is a transport functor, we will use the functor

Λi : ΛGr // ΛiT

as its structure Lie groupoid. Further, the modification ψ : idtrivi
// ∆∗g induces via

Lemma 3.2 (i) a natural transformation

F (ψ) : F (idtrivi)
+3 ∆∗

F (g).

Finally, the modification f induces via Lemma 3.2 (i) and (ii) a natural transformation

F (f) : π∗
23F (g) ⊗ π∗

12F (g) +3 π∗
13F (g).

3.3. Definition. A descent object (triv, g, ψ, f) is called smooth if the following condi-
tions are satisfied:

(i) the 2-functor triv : P2(Y ) // Gr is smooth.

(ii) the functor F (g) is a transport functor with ΛGr-structure.

(iii) the natural transformations F (ψ) and F (f) are morphisms between transport func-
tors.

In the same way we qualify smooth descent 1-morphisms and descent 2-morphisms.
A descent 1-morphism

(h, ǫ) : (triv, g, ψ, f) // (triv′, g′, ψ′, f ′)

is converted into a functor
F (h) : P1(Y ) // ΛiT

and a natural transformation

F (ǫ) : π∗
2F (h) ⊗ F (g) +3 F (g′) ⊗ π∗

1F (h).

We say that (h, ǫ) is smooth, if F (h) is a transport functor with ΛGr-structure and F (ǫ)
is a 1-morphism between transport functors. A descent 2-morphism E : (h, ǫ) +3 (h′, ǫ′)
is converted into a natural transformation

F (E) : F (h) +3 F (h′),

and we say that E is smooth, if F (E) is a 1-morphism between transport functors. We
claim two obvious properties of smooth descent data:
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(i) Compositions of smooth descent 1-morphisms and smooth descent 2-morphisms are
again smooth, so that smooth descent data forms a sub-2-category of Des2π(i), which
we denote by Des2π(i)

∞.

(ii) Pullbacks of smooth descend objects, 1-morphisms and 2-morphisms along refine-
ments of surjective submersions are again smooth, so that the direct limit

Des2(i)∞M := lim
−→π

Des2π(i)
∞

is a well-defined sub-2-category of Des2(i)M .

In Section 4 we show that the 2-category Des2(i)∞M of smooth descent data becomes nice
and familiar upon choosing concrete examples for the structure 2-groupoid i : Gr // T .

3.4. Transport 2-Functors. Now we come to the central definition of this paper.

3.5. Definition. Let M be a smooth manifold, Gr be a strict Lie 2-groupoid, T be a
2-category and i : Gr // T be a 2-functor. A transport 2-functor on M with values in
T and with Gr-structure is a 2-functor

tra : P2(M) // T

such that there exists a surjective submersion π : Y // M and a π-local i-trivialization
(triv, t) whose descent object Exπ(tra, triv, t) is smooth.

A 1-morphism between transport 2-functors tra and tra′ is a pseudonatural transfor-
mation A : tra // tra′ such that there exists a surjective submersion π together with
π-local i-trivializations of tra and tra′ for which the descent 1-morphism Exπ(A) is smooth.
2-morphisms are defined in the same way. Transport 2-functors tra : P2(M) // T with
Gr-structure, 1-morphisms, and 2-morphisms form a sub-2-category of the 2-category of
locally i-trivializable 2-functor Functi(P2(M), T ), and we denote this sub-2-category by
Trans2Gr(M,T ). We emphasize that being a transport 2-functor is a property, not addi-
tional structure. In particular, no surjective submersion or open cover is contained in the
structure of a transport 2-functor: they are manifestly globally defined objects.

We want to establish an equivalence between transport 2-functors and their smooth
descent data. In order to achieve this equivalence we have to make a slight assumption
on the 2-functor i. We call a 2-functor i : Gr // T full and faithful, if it induces an
equivalence on Hom-categories. In particular, i is full and faithful if it is an equivalence
of 2-categories, which is in fact true in all examples we are going to discuss.

3.6. Theorem. Let M be a smooth manifold, and let i : Gr // T be a full and faithful
2-functor. Then, the equivalence of Theorem 2.5 restricts to an equivalence

Trans2Gr(M,T ) ∼= Des2(i)∞M

between transport 2-functors and their smooth descent data.

Theorem 3.6 is proved by the following two lemmata. As an intermediate step we
introduce – for a surjective submersion π – the sub-2-category Triv2π(i)

∞ of Triv2
π(i) as

the preimage of Des2π(i)
∞ under the 2-functor Exπ.
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3.7. Lemma. The 2-functor Exπ restricts to an equivalence of 2-categories

Triv2π(i)
∞ ∼= Des2π(i)

∞.

Proof. It is clear that Exπ restricts properly. Recall from [SW, Section 3] that inverse
to Exπ is a “reconstruction” 2-functor Recπ. In order to prove that the image of the
restriction of Recπ is contained in Triv2π(i)

∞ we have to check that Exπ ◦Recπ restricts to
an endo-2-functor of Des2π(i)

∞. In the proof of [SW, Lemma 4.1.2] we have explicitly com-
puted this 2-functor, and by inspection of the corresponding expressions one recognizes
its image as smooth descent data.

The second part of the proof is to show that the components of two pseudonatural
equivalences ρ : Exπ ◦ Recπ // id and η : id // Recπ ◦ Exπ that establish the equiv-
alence of [SW, Proposition 4.1.1] are in Des2π(i)

∞ and Triv2π(i)
∞, respectively. For the

transformation ρ, this is again by inspection of the formulae in the proof of [SW, Lemma
4.1.2]. For the transformation η, we suppose F is a 2-functor with a π-local i-trivialization
(t, triv) with smooth descent data (triv, g, ψ, f). We have to prove that the descent 1-
morphism Exπ(η(F, t, triv)) is smooth. Indeed, according to the definition of η given in
the proof of [SW, Lemma 4.1.3] it is given by the pseudonatural transformation g and
a modification composed from the modifications f and ψ. The descent object is by as-
sumption smooth, and so is η(F ). The same argument shows that the component η(A)
of a pseudonatural transformation A : F // F ′ with smooth descent data is smooth.

Next we go to the direct limit

Triv2(i)∞M := lim
−→π

Triv2π(i)
∞.

The equivalence of Lemma 3.7 induces an equivalence

Ex : Triv2(i)∞M // Des2π(i)
∞

in the direct limit. Next we show that the 2-categories Triv2(i)∞M and Trans2Gr(M,T ) are
equivalent. We have an evident 2-functor

v∞ : Triv2(i)∞M
// Trans2Gr(X, T )

induced by forgetting the chosen trivialization.

3.8. Lemma. Under the assumption that the 2-functor i is full and faithful, the 2-functor
v∞ is an equivalence of 2-categories.

Proof. It is clear that an inverse functor w∞ takes a given transport 2-functor and picks
some smooth local trivialization for some surjective submersion π : Y // M . It follows
immediately that v∞ ◦ w∞ = id. It remains to construct a pseudonatural equivalence
id ∼= w∞ ◦ v∞, i.e. a 1-isomorphism

A : (tra, π, triv, t) // (tra, π′, triv′, t′)
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in Triv2(i)∞M , where the original π-local trivialization (triv, t) has been forgotten and
replaced by a new π′-local trivialization (triv′, t′). But since the 1-morphisms in Triv2(i)∞M
are just pseudonatural transformation between the 2-functors ignoring the trivializations,
we only have to prove that the identity pseudonatural transformation

A := idtra : tra // tra

of a transport 2-functor tra has smooth descent data (h, ǫ) with respect to any two
trivializations (π, triv, t) and (π′, triv′, t′).

The first step is to choose a refinement ζ : Z // Y ×M Y
′ of the common refinement of

the to surjective submersions. One can choose Z such that is has contractible connected
components. If c : Z × [0, 1] // Z is such a contraction, it defines for each point z ∈ Z
a path cz : z // zk that moves z to the distinguished point zk to which the component
of Z that contains z is contracted. It further defines for each path γ : z1 // z2 a bigon
cγ : γ +3 c−1

z2
◦ cz1 . Axiom (T2) for the pseudonatural transformation

h := t′ ◦ t̄ : trivi // triv′i

applied to the bigon cγ yields the commutative diagram

h(z2) ◦ trivi(γ)
h(γ) +3

id◦trivi(cγ)

��

triv′i(γ) ◦ h(z1)

triv′i(cγ)◦id

��
h(z2) ◦ trivi(c

−1
z2

◦ cz1)
h(c−1

z2
◦cz1)

+3 triv′i(c
−1
z2

◦ cz1) ◦ h(z1).

Notice that the 1-morphisms h(zj) : trivi(zj) // triv′i(zj) have by assumption preimages
κj : triv(zj) // triv′(zj) under i in Gr, and that the 2-morphism h(c−1

z2
◦ cz1) also has a

preimage Γ in Gr. Thus,

h(γ) = i
(
(triv′(cγ) ◦ id)

−1 • Γ • (id ◦ triv(cγ))
)
.

This is nothing but the Wilson line W
F (h),Λi
z1,z2 of the functor F (h) and it is smooth since

triv and triv′ are smooth 2-functors. Hence, by Theorem 3.12 in [SW09], F (h) is a
transport functor with ΛGr-structure.

It remains to prove that the modification ǫ : π∗
2h ◦ g +3 g′ ◦ π∗

1h induces a morphism
F (ǫ) of transport functors. This simply follows from the general fact that under the
assumption that the functor i : Gr // T is full, every natural transformation η between
transport functors with Gr-structure is a morphism of transport functors. We have not
stated that explicitly in [SW09] but it can easily be deduced from the naturality conditions
on trivializations t and t′ and on η, evaluated for paths with a fixed starting point.
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With Theorem 3.6 we have established an equivalence between globally defined trans-
port 2-functors and locally defined smooth descent data. In Section 4 we will identify
smooth descent data with various models of gerbes with connections. Under this identi-
fications, Theorem 3.6 describes the relation between these gerbes with connections and
their parallel transport.

3.9. Some Features of Transport 2-Functors. In this section we provide several
features of transport 2-functors.

Operations on Transport 2-Functors. It is straightforward to see that transport
2-functors allow a list of natural operations.

(i) Pullbacks : Let f :M // N be a smooth map. The pullback f ∗tra of any transport
2-functor on N is a transport 2-functor on M .

(ii) Tensor products : Let ⊗ : T × T // T be a monoidal structure on a 2-category T .
For transport 2-functors tra1, tra2 : P2(M) // T with Gr-structure, the pointwise
tensor product tra1 ⊗ tra2 : P2(M) // T is again a transport 2-functor with Gr-
structure, and makes the 2-category Trans2Gr(M,T ) a monoidal 2-category.

(iii) Change of the target 2-category : Let T and T ′ be two target 2-categories equipped
with 2-functors i : Gr // T and i′ : Gr // T ′, and let F : T // T ′ be a 2-functor
together with a pseudonatural equivalence

ρ : F ◦ i // i′.

If tra : P2(M) // T is a transport 2-functor with Gr-structure, F ◦ tra is also a
transport 2-functor with Gr-structure. In particular, this is the case for i′ := F ◦ i
and ρ = id.

(iv) Change of the structure 2-groupoid : Let tra : P2(M) // T be a transport 2-functor
with Gr-structure, for a 2-functor i : Gr // T which is a composition

Gr F // Gr′ i′ // T

in which F is a smooth 2-functor. Then, tra is also a transport 2-functor with
Gr′-structure, since for any local i-trivialization (triv, t) of tra we have a local i′-
trivialization (F ◦ triv, t).

Structure Lie 2-Groups. We describe some examples of Lie 2-groupoids and outline
the role of the corresponding transport 2-functors. First we recall the following general-
ization of a Lie group.
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3.10. Definition. A Lie 2-group is a strict monoidal Lie category (G,⊠, I) together with
a smooth functor inv : G // G such that

X ⊠ inv(X) = I = inv(X)⊠X and f ⊠ inv(f) = idI = inv(f)⊠ f

for all objects X and all morphisms f in G.

The strict monoidal category (G,⊠, I) defines a strict 2-category BG with a single
object [SW, Example A.2]. The additional functor inv assures that BG is a strict 2-
groupoid. All our examples in Section 4 discuss transport 2-functors with BG-structure,
for G a Lie 2-group.

Lie 2-groups can be obtained from the following structure.

3.11. Definition. A smooth crossed module is a quadruple (G,H, t, α) of Lie groups
G and H, of a Lie group homomorphism t : H // G, and of a smooth left action
α : G ×H // H by Lie group homomorphisms such that

a) t(α(g, h)) = gt(h)g−1 for all g ∈ G and h ∈ H.

b) α(t(h), x) = hxh−1 for all h, x ∈ H.

The construction of a Lie 2-group G = G(G,H, t, α) from a given smooth crossed
module (G,H, t, α) can be found in the Appendix of [SW11]. We shall explicitly describe
the corresponding Lie 2-groupoid BG. It has one object denoted ∗ . A 1-morphism
is a group element g ∈ G, the identity 1-morphism is the neutral element, and the
composition of 1-morphisms is the multiplication, g2 ◦ g1 := g2g1. The 2-morphisms are
pairs (g, h) ∈ G ×H , considered as 2-morphisms

∗

g

��

g′

BBh

��

∗

with g′ := t(h)g. The vertical composition is

∗ g′ //

g

��

g′′

EE

h

��

h′

��

∗ = ∗

g

��

g′′

BBh′h

��

∗

with g′ = t(h)g and g′′ = t(h′)g′ = t(h′h)g, and the horizontal composition is

∗

g1

��

g′1

BBh1
��

∗

g2

��

g′2

BBh2
��

∗ = ∗

g2g1

��

g′2g
′
1

@@h2α(g2, h1)

��

∗.
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Summarizing, one can go from smooth crossed modules to Lie 2-groups, and then to Lie
2-groupoids.

3.12. Example.

(i) Let A be an abelian Lie group. A smooth crossed module is defined by G = {1}
and H := A. This fixes the maps to t(a) := 1 and α(1, a) := a. Notice that
axiom b) is satisfied because A is abelian. The associated Lie 2-group is denoted by
BA. Transport 2-functors with BBA-structure play the role of abelian gerbes with
connection; see Section 4.9.

(ii) Let G be a Lie group. A smooth crossed module is defined by H := G, t = id and
α(g, h) := ghg−1. The associated Lie 2-group is denoted by EG. This notation is
devoted to the fact that the geometric realization of the nerve of the category EG
yields the universal G-bundle EG. Transport 2-functors with BEG-structure arise
as the curvature of transport functors; see Section 3.16.

(iii) Let H be a connected Lie group, so that the group of Lie group automorphisms
of H is again a Lie group G := Aut(H). The definitions t(h)(x) := hxh−1 and
α(ϕ, h) := ϕ(h) yield a smooth crossed module whose associated Lie 2-group is
denoted by AUT(H), it is called the automorphism 2-group of H . Transport 2-
functors with BAUT(H)-structure play the role non-abelian gerbes with connection;
see Section 4.14.

(iv) Let

1 // N t // H
p // G // 1

be an exact sequence of Lie groups, not necessarily central. There is a canonical
action α of H on N defined by requiring

t(α(h, n)) = ht(n)h−1.

This defines a smooth crossed module, whose associated Lie 2-group we denote byN.
Transport 2-functors with BN-structure correspond to (non-abelian) lifting gerbes.
They generalize the abelian lifting gerbes [Bry93, Mur96] for central extensions to
arbitrary short exact sequences of Lie groups.

Transgression to Loop Spaces.Transport 2-functors on a smooth manifoldM induce
interesting structure on the loop space LM . This comes from the fact that there is a
canonical smooth functor

ℓ : P1(LM) // ΛP2(M)

expressing that a point in LM is just a particular path in M , and that a path in LM is
just a particular bigon in M [SW11, Section 4.2]. If tra : P2(M) // T is a transport
2-functor, then the composition of ℓ with

Λtra : ΛP2(M) // ΛtraT
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yields a functor
Ttra := Λtra ◦ ℓ : P1(LM) // ΛtraT

that we call the transgression of tra to the loop space. In order abbreviate the discussion
of the functor Ttra we make three simplifying assumptions:

(i) We restrict our attention to the based loop space ΩM (for some fixed base point)
and identify Ttra with its pullback along the embedding ι : ΩM // LM .

(ii) We assume that there exists a surjective submersion π : Y // M for which tra ad-
mits smooth local trivializations and for which Ωπ : ΩY // ΩM is also a surjective
submersion.

(iii) We assume that the target 2-category T is strict, so that ΛT is the target category
of the functor Ttra.

3.13. Proposition. Let tra : P2(M) // T be a transport 2-functor with Gr-structure
satisfying (ii) and (iii). Then,

Ttra : P1(ΩM) // ΛT

is a transport functor with ΛGr-structure.

Proof. Let t : π∗tra // trivi be a π-local i-trivialization of tra for π a surjective
submersion satisfying (ii). A local trivialization t̃ of Ttra is given by

P1(ΩY )

ℓ
��

(Ωπ)∗ // P1(ΩM)

ℓ
��

ΛP2(Y )

Λtriv
��

π∗ // ΛP2(M)

Λt
qqqq

qqqq

t| qqqq
qqqq Λtra

��
ΛGr

Λi
// ΛT

in which the upper subdiagram is commutative on the nose. If g : π∗
1trivi

// π∗
2trivi

is the pseudonatural transformation in the smooth descent object Exπ(tra, t, triv), and
g̃ is the natural transformation in the descent object Exπ(Ttra, t̃, ℓ

∗Λtriv) associated to
the above trivialization, we find g̃ = ℓ∗Λg. Since F (g) is a transport 2-functor with
ΛGr-structure, it has smooth Wilson lines [SW09]: for a fixed point α ∈ Y [2] there exists
a smooth natural transformation g′ : π∗

1ℓ
∗Λtriv // π∗

2ℓ
∗Λtriv with g = i(g′). This shows

that g̃ factors through a smooth natural transformation ℓ∗Λg′, so that Ttra is a transport
functor.



CONNECTIONS ON NON-ABELIAN GERBES AND THEIR HOLONOMY 499

Having in mind that transport functors correspond to fibre bundles with connection,
Proposition 3.13 shows that transport 2-functors on a manifold M naturally induce fibre
bundles with connection on the loop space ΩM . In general, these are so-called groupoid
bundles [MM03, SW09], whose structure groupoid is ΛGr. However, in the abelian case,
i.e. Gr = BBA for an abelian Lie group A, we have ΛGr ∼= BA (see Lemma 4.12 below),
so that the transgression Ttra is – via Theorem 2.9 – a principal A-bundle with connection
over ΩM . This fits well into Brylinski’s picture of transgression [Bry93].

Curving and Curvature. Suppose tra : P2(M) // T is a transport 2-functor with
BG-structure, for G some Lie 2-group coming from a smooth crossed module (G,H, t, α).
Since such 2-functors are supposed to describe (non-abelian) gerbes with connection, we
want to identify a 3-form curvature. Just as for (non-abelian) principal bundles, this
curvature is only locally defined.

First we need the following fact: if g and h denote the Lie algebras of the Lie groups
G and H , respectively, there is a bijection





Smooth
2-functors

F : P2(X) → BG





∼=





Pairs
(A,B) ∈ Ω1(X, g) × Ω2(X, h)
satisfying t∗(B) = dA + [A ∧ A]



 , (7)

where t∗ : h // g is the differential of t. This bijection is the lowest level of an equivalence
of 2-categories that we will review in more detail in Section 4.1; see Theorem 4.2.

3.14. Definition. Let tra : P2(M) // T be a transport functor with BG-structure over
M , let π : Y // M be a surjective submersion, and let (t, triv) be a π-local trivialization
with smooth descent data.

(i) The differential forms A ∈ Ω1(Y, g) and B ∈ Ω2(Y, h) that correspond to the smooth
2-functor triv under the above bijection, are called the 1-curving and the 2-curving
of tra.

(ii) The 3-form
curv(tra) = dB + α∗(A ∧ B) ∈ Ω3(Y, h),

where α∗ : g × h // h is the differential of the action α : G × H // H of the
crossed module, is called the curvature of tra.

We recall that we called a 2-functor tra : P2(M) // T flat if it factors through the
projection P2(M) // Π2(M) of thin homotopy classes of bigons to homotopy classes.
The next proposition shows that this notion of flatness is equivalent to the vanishing of
the curvature.

3.15. Proposition. Suppose that the 2-functor i : BG // T is injective on 2-
morphisms. A transport 2-functor tra : P2(M) // T with BG-structure is flat if and
only if its local curvature 3-form curv(tra) ∈ Ω3(Y, h) with respect to any smooth local
trivialization vanishes.
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Proof. We proceed in two parts. (a): curv(tra) vanishes if and only if triv is a flat
2-functor, and (b): tra is flat if and only if triv is flat. The claim (a) follows from Lemma
A.11 in [SW11]. To see (b) consider two bigons Σ1 : γ +3 γ′ and Σ2 : γ +3 γ′ in Y which
are smoothly homotopic so that they define the same element in Π2(Y ). Suppose tra is
flat and let Σ := Σ−1

2 • Σ1. Axiom (T2) for the trivialization t is then

t(y) ◦ π∗tra(γ)
t(γ) +3

idt(y)◦π
∗tra(Σ)

��

trivi(γ) ◦ t(x)

trivi(Σ)◦idt(x)

��
t(y) ◦ π∗tra(γ)

t(γ)
+3 trivi(γ) ◦ t(x)

and since π∗tra(Σ) = id by assumption it follows that trivi(Σ) = id, i.e. triv is flat.
Conversely, assume that triv is flat. The latter diagram shows that tra is then flat on all
bigons in the image of π∗. This is actually enough: let h : [0, 1]3 // M be a smooth
homotopy between two bigons Σ1 and Σ2 which are not in the image of π∗. Like explained
in Appendix A.3 of [SW11] the cube [0, 1]3 can be decomposed into small cubes such that
h restricts to smooth homotopies between small bigons that bound these cubes. The
decomposition can be chosen so small that each of these bigons is contained in the image
of π∗, so that tra assigns the same value to the source and the target bigon of each small
cube. By 2-functorality of tra, this infers tra(Σ1) = tra(Σ2).

3.16. Curvature 2-Functors. In this section we provide a class of examples of trans-
port 2-functors coming from transport functors, i.e. fibre bundle with connections. If P
is a principal G-bundle with connection ω overM , one can compare the parallel transport
maps along two paths γ1, γ2 : x // y by an automorphism of Py, namely the holonomy
around the loop γ2 ◦ γ

−1
1 ,

τγ2 = Holω(γ2 ◦ γ
−1
1 ) ◦ τγ1 .

If the paths γ1 and γ2 are the source and the target of a bigon Σ : γ1 +3 γ2, this holonomy
is related to the curvature of ∇. So, a principal G-bundle with connection does not only
assign fibres Px to points x ∈ M and parallel transport maps τγ to paths, it also assigns
a curvature-related quantity to bigons Σ.

Under the equivalence between principal G-bundles with connection and transport
functors on X with BG-structure (Theorem 2.9), the principal bundle (P, ω) corresponds
to the transport functor

traP : P1(M) // G-Tor

that assigns the fibres Px to points x ∈ M and the parallel transport maps τγ to paths γ.
Adding an assignment for bigons yields a “curvature 2-functor”

K(traP ) : P2(M) // Ĝ-Tor
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where Ĝ-Tor is the category G-Tor regarded as a strict 2-category with a unique 2-
morphism between each pair of 1-morphisms. The uniqueness of the 2-morphisms ex-
presses the fact that the curvature is determined by the parallel transport.

More generally, let us start with a transport functor tra : P1(M) // T with BG-
structure for some Lie group G and some functor i : BG // T . The curvature 2-functor
of tra is the strict 2-functor

K(tra) : P2(M) // T̂

which is on objects and 1-morphisms equal to tra and on 2-morphisms determined by the
fact that T̂ has a exactly one 2-morphism between each pair of 1-morphisms. In the same
way, we obtain a strict 2-functor

K(i) : B̂G // T̂

We observe that the Lie 2-groupoids B̂G and BEG (see Section 3.9) are canonically iso-
morphic under the assignment

∗

g1

��

g2

BB∗

��

∗ � // ∗

g1

��

g2

@@
g2g

−1
1

��

∗,

so that we obtain a 2-functor BEG // B̂G // T̂ . Now we are in the position to introduce
our explicit example of a transport 2-functor.

3.17. Theorem. The curvature 2-functor K(tra) is a transport 2-functor with BEG-
structure.

Proof. We construct a local trivialization of K(tra) starting with a local trivializa-
tion (triv, t) of tra with respect to some surjective submersion π : Y // M . Let
dtriv : P2(Y ) // BEG be the derivative 2-functor associated to triv [SW11]: on objects
and 1-morphisms it is given by triv, and it sends every bigon Σ : γ1 +3 γ2 in Y to the
unique 2-morphism in BEG between the images of γ1 and γ2 under triv. A pseudonatural
equivalence

K(t) : π∗K(tra) // K(i) ◦ dtriv

is defined as follows. Its component at a point a ∈ Y is the 1-morphism

K(t)(a) := t(a) : tra(π(a)) // i(∗)

in T . Its component t(γ) at a path γ : a // b is the unique 2-morphism in T̂ . Notice
that since t is a natural transformation, we have a commutative diagram

tra(π(a))
tra(π(γ)) //

t(a)
��

tra(π(b))

t(b)
��

i(∗)
trivi(γ)

// i(∗)
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meaning that t(γ) = id. This defines the pseudonatural transformation t as required.
Now we assume that the descent data (triv, gt) associated to the local trivialization

(triv, t) is smooth, and show that then also the descent object (dtriv, gK(t), ψ, f) is smooth.
As observed in [SW11], the derivative 2-functor dtriv is smooth if and only if triv is
smooth. To extract the remaining descent data according to the procedure described in
Section 2.2. It turns out that the only non-trivial descent datum is the pseudonatural
transformation

gK(t) : π
∗
1dtrivK(i)

// π∗
2dtrivK(i).

Its component at a point α ∈ Y [2] is given by gK(t)(α) := gt(α), and its component at
some path Θ : α // α′ is the identity.

The last step is to show that

F (gK(t)) : P1(Y
[2]) // ΛK(i)T̂

is a transport functor with ΛBEG-structure. To do so we have to find a local trivialization
with smooth descent data. This is here particulary simple: the functor F (gK(t)) is globally
trivial in the sense that it factors through the functor

ΛK(i) : ΛBEG // ΛK(i)T̂ .

To see this we use the smoothness condition on the natural transformation gt, namely that
it factors through a smooth natural transformation g̃t. We obtain a smooth pseudonatural
transformation g̃K(t) : π

∗
1dtriv

// π∗
2dtriv such that gK(t) = K(i)(g̃K(t)). This finally gives

us
F (gK(t)) = ΛK(i) ◦ F (g̃K(t))

meaning that F (gK(t)) is a transport functor with ΛBEG-structure.

Since the value of the curvature 2-functor K(tra) on bigons does not depend on the
bigon itself but only on its source and target path, we have the following.

3.18. Proposition. The curvature 2-functor K(tra) of any transport functor is flat.

This proposition gains a very nice interpretation when we relate the curvature of a
connection ω in a principal G-bundle p : P // M to the curvature 2-functor K(traP )
associated to the corresponding transport functor traP . First we show:

3.19. Lemma. The curvature 2-functor K(traP ) : P2(M) // Ĝ-Tor has a canonical
smooth p-local trivialization (p, t, triv). The classical curvature curv(ω) ∈ Ω2(P, g) is the
2-curving of K(traP ) with respect to the trivialization (p, t, triv).

Proof. As described in detail in [SW09, Section 5.1], traP admits local trivializations
with respect to the surjective submersion p : P // M and with smooth descent data
(triv′, g) such that the connection 1-form ω ∈ Ω1(P, g) of the bundle P corresponds to
the smooth functor triv′ : P1(P ) // BG under the bijection of [SW09, Proposition 4.7].
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Then, by [SW11, Lemma 3.5], the 2-form B′ associated to dtriv′ under the bijection (7),
which is by Definition 3.14 (i) the 2-curving of K(traP ), is given by

B′ = dω + [ω ∧ ω].

The latter is by definition the curvature of the connection ω.

The announced interpretation of Proposition 3.18 now is as follows: using Lemma
3.19 one can calculate the curvature curv(K(traP )) of the curvature 2-functor of traP .
The calculation involves the second Bianchi identity for the connection ω on the principal
G-bundle P , and the result is

curv(K(traP )) = 0,

which is according to Proposition 3.15 an independent proof of Proposition 3.18. In other
words, Proposition 3.18 is equivalent to the second Bianchi identity for connections on
fibre bundles.

4. Transport 2-Functors are Non-Abelian Gerbes

In this section we show that transport 2-functors reproduce – systematically, by choosing
appropriate target 2-categories and structure 2-groups – four known concepts of gerbes
with connections: Deligne cocycles and Breen-Messing cocycles (Section 4.1), abelian
bundle gerbes (Section 4.9), and non-abelian bundle gerbes (Section 4.14). In Section
4.23 we establish a further relation between transport 2-functors and 2-vector bundles
with connection. Conversely, all these structures are examples of transport 2-functors.

4.1. Differential Non-Abelian Cohomology. In this section we set up a clas-
sifying theory for transport 2-functors P2(M) // T with structure Lie 2-groupoid
i : BG // T , for G a Lie 2-group coming from a smooth crossed module (G,H, t, α), T
an arbitrary 2-category, and i an equivalence of categories. The latter condition together
with Theorem 3.6 implies that we have equivalences

Trans2BG(M,T ) ∼= Des2(i)∞M
∼= Des2(idBG)

∞
M (8)

of 2-categories.
Our strategy is to translate the structure of the 2-category Des2(idBG)

∞
M into an equi-

valent 2-category of “non-abelian differential cocycles” made up of smooth functions and
differential forms, with respect to open covers of M . Isomorphism classes of non-abelian
differential cocycles form a set which we define as the non-abelian differential cohomology
of M ; it classifies transport 2-functors on M with BG-structure up to isomorphism.

Smooth Functors and Differential Forms. For the translation of the 2-category
Des2(idBG)

∞
M into smooth functions and differential forms we recall a general result about

the 2-category Funct∞(P2(X),BG) of smooth 2-functors, smooth pseudonatural trans-
formations, and smooth modifications defined on a smooth manifold X , with values in
the Lie 2-groupoid BG. Following [SW11, Section 2.2], it corresponds to the following
structure expressed in terms of smooth functions and differential forms:
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(i) A smooth 2-functor F : P2(X) // BG induces a pair of differential forms: a 1-form
A ∈ Ω1(X, g) with values in the Lie algebra of G, and a 2-form B ∈ Ω2(X, h) with
values in the Lie algebra of H , such that

dA+ [A ∧A] = t∗ ◦B. (9)

(ii) A smooth pseudonatural transformation ρ : F // F ′ gives rise to a 1-form
ϕ ∈ Ω1(X, h) and a smooth map g : X // G, such that

A′ + t∗ ◦ ϕ = Adg(A)− g∗θ̄ (10)

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗ ◦B. (11)

The identity id : F // F has ϕ = 0 and g = 1. If ρ1 and ρ2 are composable
pseudonatural transformations, the 1-form of their composition ρ2 ◦ ρ1 is (αg2)∗ ◦
ϕ1 + ϕ2, and the smooth map is g2g1 : X // G.

(iii) A smooth modification A : ρ +3 ρ′ gives rise to a smooth map a : X // H , such
that

g′ = (t ◦ a) · g and ϕ′ + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ)− a∗θ̄. (12)

The identity modification idρ has a = 1. If two modificationsA1 andA2 are vertically
composable, A2 • A1 has the map a2a1. If two modifications A1 : ρ1 +3 ρ′1 and
A2 : ρ2 +3 ρ′2 are horizontally composable, A2 ◦ A1 has the map a2α(g2, a1).

The structure (i), (ii) and (iii) forms a strict 2-category Z2
X(G)∞, which we call the

2-category of G-connections on X [SW11].

4.2. Theorem. [SW11, Theorem 2.20] The correspondences described above furnish a
strict 2-functor

Funct∞(P2(X),BG)
D // Z2

X(G)∞,

which is an isomorphism of 2-categories.

We remark that we have already used this isomorphism on the level of objects as a
bijection (7).

For a general Lie 2-group G the correspondence between a smooth 2-functor F :
P2(X) // BG and the pair (A,B) with A ∈ Ω1(X, g) and B ∈ Ω2(X, h) is established
by an iterated integration and described in detail in [SW11, Section 2.3.1]. For the Lie
2-group G = BS1 it reduces to the following relation.

4.3. Lemma. Let B ∈ Ω2(X) be a 2-form. Then, the smooth 2-functor F :
P2(X) // BBS1 that corresponds to B under the isomorphism of Theorem 4.2 is given
by

F (Σ) = exp

(
−

∫

[0,1]2
Σ∗B

)
,

for all bigons Σ ∈ BX.
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Proof. We go through the construction in [SW11, Section 2.3.1] and reduce everything
to the case G = BS1. The 1-form AΣ in [SW11, Equation 2.26] is

AΣ = −

∫

[0,1]

Σ∗B ∈ Ω1([0, 1]),

with the integration performed over the second factor of [0, 1]2. It extends (due to the
sitting instants of Σ) to a 1-form on R, and so corresponds via [SW09, Proposition 4.7] to
a smooth functor FAΣ

: P1(R) // BS1, which is just a smooth map fΣ : R ×R // S1.
The correspondence between the 1-form AΣ and the function fΣ is by [SW09, Lemma
4.1]:

fΣ(t0, t1) = exp

(∫ t1

t0

−AΣ

)
.

According to the prescription, [SW11, Equation 2.27] and [SW11, Proposition 2.17] define

F (Σ) = fΣ(0, 1)
−1 = exp

(∫ 1

0

AΣ

)
= exp

(
−

∫

[0,1]2
Σ∗B

)
.

Non-abelian Differential Cocycles. We want to translate the structure of the 2-
category Des2π(idBG)

∞ of smooth descent data with respect to a surjective submersion
π : Y // M into smooth functions and differential forms, using Theorem 4.2 as a
dictionary.

We recall that an object in Des2π(idBG)
∞ is a collection (triv, g, ψ, f) containing

a smooth 2-functor triv : P2(Y ) // BG, a pseudonatural transformation g :
π∗
1triv // π∗

2triv whose associated functor F (g0) : P1(Y
[2]) // BG is a transport

functor, and modifications ψ and f whose associated natural transformations F (ψ) and
F (f) are morphisms between transport functors.

We begin with looking at a sub-2-category U ⊆ Des2π(idBG)
∞ in which all pseudona-

tural transformations and modifications are smooth, i.e. correspond to trivial transport
functors and morphisms between trivial transport functors. An object (triv, g∞, ψ∞, f∞)
in U corresponds under Theorem 4.2 to the following structure:

(a) an object (A,B) := D(triv) in Z2
Y (G)∞, i.e. differential forms A ∈ Ω1(Y, g) and

B ∈ Ω2(Y, h) satisfying relation (9).

(b) a 1-morphism
(g, ϕ) := D(g∞) : π∗

1(A,B) // π∗
2(A,B)

in Z2
Y [2](G)∞, i.e. a smooth function g : Y [2] // G and a 1-form ϕ ∈ Ω1(Y [2], h)

satisfying the relations (10) and (11).

(c) a 2-morphism
f := D(f∞) : π∗

23(g, ϕ) ◦ π
∗
12(g, ϕ)

+3 π∗
13(g, ϕ)
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in Z2
Y [3](G)∞ and a 2-morphism

ψ := D(ψ∞) : id(A,B)
+3 ∆∗(g, ϕ)

in Z2
Y (G)∞; these are smooth functions f : Y [3] // H and ψ : Y // H satisfying

relations (12).

The coherence conditions for f∞ and ψ∞ [SW, Definition 2.2.1] imply the following equa-
tions of smooth functions, expressed as pasting diagrams:

π∗
2(A,B)

π∗
23(g,ϕ) //

OO

π∗
12(g,ϕ)

π∗
3(A,B)

π∗
34(g,ϕ)

��
π∗
1(A,B)

π∗
13(g,ϕ)yyyyyyyy

<<yyyyyyyy

π∗
123f

EEEE

�&
EEE

EEE

π∗
14(g,ϕ)

// π∗
4(A,B)��

π∗
134f

=

π∗
2(A,B)

π∗
24(g,ϕ)

EEEEEEEE

""EEEEEEEE

π∗
23(g,ϕ) //

OO

π∗
12(g,ϕ)

π∗
3(A,B)

π∗
34(g,ϕ)

��

x�
π∗
234fyyy yyy

yyyy

π∗
1(A,B)

π∗
14(g,ϕ)

//��
π∗
124f

π∗
4(A,B)

(13)

in the 2-category Z2
Y [4](G)∞ and

π∗
2(A,B)

∆∗
22(g,ϕ)

<<<<

��<<<<

idπ∗
2
(A,B)

		

π∗
2ψ

tttt

v~ tttt

π∗
1(A,B)

(g,ϕ)

@@���������

(g,ϕ)
// π∗

2(A,B)
∆∗

122f

��

= id(g,ϕ) =

π∗
1(A,B)

(g,ϕ)

��<<<<<<<<<

π∗
1(A,B)

∆∗
11(g,ϕ)����

@@����

idπ∗
1
(A,B) ..

π∗
1ψ

JJJ
JJJ

 (JJJJ

(g,ϕ)
// π∗

2(A,B)
∆∗

112f

��

(14)

in the 2-category Z2
Y [2](G)∞. We call the structure (a), (b), (c) subject to the two condi-

tions (13) and (13) a differential G-cocycle for the surjective submersion π : Y // X .
We proceed similarly with a 1-morphism (h∞, ǫ∞) between objects (triv, g∞, ψ∞, f∞)

and (triv′, g′∞, ψ
′
∞, f

′
∞) in U , and obtain:

(d) a 1-morphism (h, φ) := D(h∞) : (A,B) // (A′, B′) in Z2
Y (G)∞, i.e. a smooth

function h : Y // G and a 1-form φ ∈ Ω1(Y, h) satisfying relations (10) and (11),

(e) a 2-morphism ǫ := D(ǫ) : π∗
2(h, φ) ◦ (g, ϕ)

+3 (g′, ϕ′) ◦ π∗
1(h, φ) in Z

2
Y [2](G)∞, i.e. a

smooth function ǫ : Y [2] // H satisfying (12).

The coherence conditions of Definition [SW, Definition 2.2.2] result in the identities

(A,B)

id

��
∆∗(g,ϕ) //

ψ

��

(h,φ)

��

(A,B)

(h,φ)

��

∆∗ǫ
tttttt

tttttt

v~ ttttt
ttttt

(A′, B′)
∆∗(g′,ϕ′)

// (A′, B′)

=

(A,B)
id //

(h,φ)

��

(A,B)

(h,φ)

��

id(h,φ)
ttttt

ttttt

v~ ttttt
ttttt

(A′, B′)

∆∗(g′,ϕ′)

BB
id // (A′, B′)

ψ′

��

(15)
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in the 2-category Z2
Y (G)∞ and

π∗
2(A,B)

π∗
23(g,ϕ)

��
π∗
1(A,B)

π∗
12(g,ϕ)

::

π∗
13(g,ϕ) //

f

 
 

 
 

��
 
 

 
 

π∗
1(h,φ)

��

π∗
3(A,B)

π∗
3(h,φ)

��

π∗
13ǫ

qqqqqq
qqqqqq

t| qqqqq
qqqqq

π∗
1(A

′, B′)
π∗
13(g

′,ϕ′)
// π∗

3(A
′, B′)′

=

π∗
1(A,B)

π∗
1(h,φ)

��

π∗
12(g,ϕ)// π∗

2(A,B)

π∗
2(h,φ)

��

π∗
12ǫ

ttttt
ttttt

v~ ttttt
ttttt

π∗
23(g,ϕ)// π∗

3(A,B)

π∗
3(h,φ)

��

π∗
23ǫ

ttttt
ttttt

v~ ttttt
ttttt

π∗
1(A

′, B′)

π∗
13(g

′,ϕ′)

==

f ′

��

π∗
12(g

′,ϕ′)
// π∗

2(A
′, B′)

π∗
23(g

′,ϕ′)
// π∗

3(A
′, B′)

(16)

in the 2-category Z2
Y [3](G)∞. The structure (d), (e) subject to the conditions (15) and

(16) is called a 1-morphism between differential G-cocycles for the surjective submersion
π.

Finally, a 2-morphism induces a 2-morphism E : (h, φ) +3 (h′, φ′) in Z2
Y (G)∞, i.e. a

smooth function E : Y // H that satisfies (12), and the coherence condition of [SW,
Definition 2.2.3] infers the identity

π∗
1(A,B)

(g,ϕ) //

π∗
1(h

′,φ′)

$$

π∗
1(h,φ)

��

π∗
1E

ks

π∗
2(A,B)

ǫuuuuuu

uuuuuu

v~ uuuuuu

uuuuuu π∗
2(h,φ)

��
π∗
1(A

′, B′)
(g′,ϕ′)

// π∗
2(A

′, B′)

=

π∗
1(A,B)

(g,ϕ) //

π∗
1(h

′,φ′)

��

π∗
2(A,B)

π∗
2(h,φ)

zz

ǫ′
uuuuuu

uuuuuu

v~ uuuuu
uuuuu π∗

2h2

��

π∗
2E

ks

π∗
1(A

′, B′)
(g′,ϕ′)

// π∗
2(A

′, B′)

in the 2-category Z2
Y [2](G)∞. Such data is called a 2-morphism between differential G-

cocycles.
We have now collected, in a systematical way, objects, 1-morphisms, and 2-morphisms

of a 2-category, the 2-category of degree two differential G-cocycles, which we denote by
Z2
π(G)∞. By construction we have a 2-functor

Des2π(idBG)
∞ ⊇ U

Dπ // Z2
π(G)∞,

and Theorem 4.2 implies immediately that it is an isomorphism of 2-categories.
Next we argue that for certain surjective submersions, the sub-2-category U is in fact

equivalent to Des2π(idBG)
∞. These are submersions for which Y and Y [2] have contractible

connected components; we will call these two-contractible. Any good open cover gives rise
to a two-contractible surjective submersion; in particular, any surjective submersion can
be refined by a two-contractible one.

4.4. Proposition. Let G be a Lie 2-group and let π : Y // M be a two-contractible
surjective submersion. Then, the inverse of the 2-functor Dπ induces an equivalence of
categories:

Z2
π(G)∞ ∼= Des2π(idBG)

∞.
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Proof. By [SW09, Corollary 3.13] transport functors over contractible manifolds are
naturally equivalent to smooth functors. This applies to the transport functors F (g)
contained in a descent object (triv, g, ψ, f), and to the transport functor F (h) contained
in a descent 1-morphism (h, ǫ). Such natural equivalences induce a descent 1-morphism
(triv, g, ψ, f) ∼= (triv, g∞, ψ

′, f ′) and a descent 2-morphism (h, ǫ) ∼= (h∞, ǫ
′) with g∞ and

h∞ smooth. Since the embedding of smooth functors into transport functors is full, all
the modifications ψ′, f ′, ǫ′ are then automatically smooth. This shows that Des2π(idBG)

∞

is equivalent to its subcategory U .

Explicit Local Data. In order to make the structure of the 2-category Z2
π(G)∞ of

degree two differential G-cocycles more transparent, we shall spell out all details in case
that the surjective submersion π comes from an open cover V = {Vi} ofM . In particular,
we express the diagrammatic equations above in terms of actual equations, using the
relation between the Lie 2-groupoid BG and the crossed module (G,H, t, α) established
in Section 3.9.

Firstly, a differential G-cocycle ((A,B), (g, ϕ), ψ, f) has the following smooth functions
and differential forms:

(a) On every open set Vi,

ψi : Vi // H , Ai ∈ Ω1(Vi, g) and Bi ∈ Ω2(Vi, h).

(b) On every two-fold intersection Vi ∩ Vj,

gij : Vi ∩ Vj // G and ϕij ∈ Ω1(Vi ∩ Vj , h).

(c) On every three-fold intersection Vi ∩ Vj ∩ Vk,

fijk : Vi ∩ Vj ∩ Vk // H .

The cocycle conditions are the following:

1. Over every open set Vi,

dAi + [Ai ∧ Ai] = t∗(Bi) (17)

gii = t(ψi) (18)

ϕii = −(r−1
ψi

◦ αψi
)∗(Ai)− ψ∗

i θ̄.

2. Over every two-fold intersection Vi ∩ Vj,

Aj = Adgij(Ai)− g∗ij θ̄ − t∗(ϕij)

Bj = (αgij )∗(Bi)− α∗(Aj ∧ ϕij)− dϕij − [ϕij ∧ ϕij]

1 = fijjψj = fiij αgij(ψi). (19)
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3. Over every three-fold intersection Vi ∩ Vj ∩ Vk,

gik = t(fijk)gjkgij

Adfijk(ϕik) = (αgjk)∗(ϕij) + ϕjk + (r−1
fijk

◦ αfijk)∗(Ak) + f ∗
ijkθ̄.

4. Over every four-fold intersection Vi ∩ Vj ∩ Vk ∩ Vl,

fiklα(gkl, fijk) = fijlfjkl. (20)

Additionally, the curvature of the differential cocycle is according to Definition 3.14 given
by

Hi := dBi + α∗(Ai ∧ Bi) ∈ Ω3(Vi, h).

Secondly, a 1-morphism ((h, ǫ), φ) between differential cocycles ((A,B), (g, ϕ), ψ, f)
and ((A′, B′), (g′, ϕ′), ψ′, f ′) has the following structure:

(a) On every open set Vi,

hi : Vi // G and φi ∈ Ω1(V, h).

(b) On every two-fold intersection Vi ∩ Vj,

ǫij : Vi ∩ Vj // H .

The following conditions have to be satisfied:

1. Over every open set Vi,

B′
i = (αhi)∗(Bi)− α∗(A

′
i ∧ φi)− dφi − [φi ∧ φi] (21)

A′
i = Adhi(Ai)− t∗(φi)− h∗i θ̄ (22)

ψ′
i = ǫiiα(hi, ψi). (23)

2. Over every two-fold intersection Vi ∩ Vj,

g′ij = t(ǫij)hjgijh
−1
i (24)

ϕ′
ij = Adǫij ((αhj)∗(ϕij) + φj)− (αg′ij)∗(φi)− (r−1

ǫij
◦ αǫij )∗(A

′
j)− ǫ∗ij θ̄ (25)

3. Over every three-fold intersection Vi ∩ Vj ∩ Vk,

f ′
ijk = ǫikα(hk, fijk)α(g

′
ik, ǫ

−1
ij )ǫ

−1
jk . (26)
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Finally, a 2-morphism E between differential cocycles has, for any open set Vi, a smooth
function Ei : Vi // H such that on every open set Vi

h′i = t(Ei)hi

φ′
i = AdEi

(φi)− (r−1
Ei

◦ αEi
)∗(A

′
i)−E∗

i θ̄

and, on every 2-fold intersection Vi ∩ Vj,

ǫ′ij = α(g′ij, Ei)ǫijE
−1
j .

Concluding this discussion we note the following normalization lemma, which we need
for the discussion of surface holonomy. It can be seen as a variant of the maybe familiar
normalization result for Čech cocycles.

4.5. Lemma. Every differential G-cocycle with respect to an open cover {Vi}i∈I is 1-
isomorphic to a differential G-cocycle with

ψi = 1 , gii = 1 , fiij = fijj = 1 and fiji = y−1
ij α(xij, yij)

for all i, j ∈ I, and elements xij ∈ G and yij ∈ H. In particular, if G = BA for an
abelian Lie group A, then fiji = 1.

Proof. Suppose ((A,B), (g, ϕ), ψ, f) is a differential G-cocycle with respect to {Vi}. It
is easy to see that one can always pass to a1-isomorphic cocycle with ψi = 1, gii = 1, and
fiij = fijj = 1. In order to achieve the remaining condition for fiji, we choose a total
order on the index set I of the open cover, and look at smooth maps

ǫij :=

{
1 i ≤ j

fiji i > j

defined on Vi ∩ Vj . Then we define yet another differential G-cocycle
((A′, B′), (g′, ϕ′), ψ′, f ′) via equations (21) to (26), and it is straightforward to see that
this one has the claimed form.

Non-abelian Differential Cohomology. The 2-categories Z2
π(G)∞ of degree two

differential G-cocycles form a direct system for surjective submersions over M , and so do
the sets h0(Z

2
π(G)∞) of isomorphism classes of objects.

4.6. Definition. The direct limit

Ĥ2(M,G) := lim
−→π

h0(Z
2
π(G)∞)

is called the degree two differential non-abelian cohomology of M with values in G.

The terminology “non-abelian differential cohomology” is motivated by the following
observation. If one drops all differential forms from the local data described in Section
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4.1, and only keeps the smooth functions, the corresponding limit coincides with the non-
abelian cohomology H2(M,G), as it appears for instance in [Gir71, Bre94, Bar04, Woc11].
Thus, Definition 4.6 extends ordinary non-abelian cohomology by differential form data.

We remark that by Lemma 4.5 and the fact that every surjective submersion can be
refined by an open cover, one can define non-abelian differential cohomology by only using
cocycles that are normalized in the sense of Lemma 4.5.

Since every surjective submersion can be refined to a two-contractible one (for ex-
ample, by a good open cover), it also suffices to take the limit over the two-contractible
surjective submersions. Then, Proposition 4.4 and Theorem 3.6 imply via (8) the following
classification result.

4.7. Theorem. Let G be a Lie 2-group, and let i : BG // T be an equivalence of
2-categories. Then, there is a bijection

h0Trans
2
Gr(M,T ) ∼= Ĥ2(M,G).

In other words, transport 2-functors on M with BG-structure are classified up to isomor-
phism by the non-abelian differential cohomology of M with values in G.

Let us specify two particular examples of differential non-abelian cohomology which
have appeared before in the literature:

1. The Lie 2-group G = BS1. We leave it as an easy exercise to the reader to check that
our differential non-abelian cohomology is precisely degree two Deligne cohomology,

Ĥ2(M,BS1) = H2(M,D(2)).

Deligne cohomology [Bry93] is a well-known local description of abelian gerbes with
connection.

2. The Lie 2-group G = AUT(H) for H some ordinary Lie group H . We also leave it to
the reader to check that our differential cocycles are precisely the local description of
connections in non-abelian gerbes given by Breen and Messing [BM05] (see Remark
4.8 below). Thus, we have an equality

Ĥ2(M,AUT(H)) =





Equivalence classes of local
data

of Breen-Messing H-gerbes
with connection over M





.

Summarizing, the theory of transport 2-functors covers both Deligne cocycles and Breen-
Messing cocycles.
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4.8. Remark.We remark that condition (17) between the 1-curving A and the 2-curving
B of a differential G-cocycle is present neither in Breen-Messing gerbes [BM05] nor in
the non-abelian bundle gerbes of [ACJ05], which we discuss in Section 4.14. Breen and
Messing call the local 2-form

t∗(Bi)− dAi − [Ai ∧Ai]

which is here zero by (17), the fake curvature of the gerbe. In this terminology, transport
2-functors only cover Breen-Messing gerbes with vanishing fake curvature.

The crucial point is here that unlike transport 2-functors, neither Breen-Messing ger-
bes nor non-abelian bundle gerbes have concepts of holonomy or parallel transport. And
indeed, equation (17) comes from an important consistency condition on this parallel
transport, namely from the target-source matching condition for the transport 2-functor,
which makes it possible to decompose parallel transport into pieces. So we understand
equation (17) as an integrability condition which is necessarily for a consistent parallel
transport. In other words, vanishing fake curvature is not specifying a subclass of con-
nections, it is a necessary condition every connection has to satisfy.

4.9. Abelian Bundle Gerbes with Connection. In this section we consider the
target 2-category T = B(S1-Tor), the monoidal category of S1-torsors viewed as a 2-
category with a single object [SW, Example A.2]. Associated to this 2-category is the
2-functor

iS1 : BBS1 // B(S1-Tor)

that sends the single 1-morphism of BBS1 to the circle, viewed as an S1-torsor over itself.
The main result of this section is:

4.10. Theorem. There is an equivalence

TransBBS1(M,B(S1-Tor)) ∼= BGrb∇(M)

between the 2-category of transport 2-functors on M with values in B(S1-Tor) and with
BBS1-structure, and the 2-category of bundle gerbes with connection over M .

Let us first recall the definition of bundle gerbes following [Mur96, MS00, Ste00,
Wal07]. For a surjective submersion π : Y // M , we first define the following 2-category
BGrb∇(π):

1. An object is a tuple (B,L, ω, µ) consisting of a 2-form B ∈ Ω2(Y ), a principal
S1-bundle L with connection ω over Y [2] of curvature curv(ω) = π∗

1B − π∗
2B, and

an associative, connection-preserving bundle isomorphism

µ : π∗
23L ⊗ π∗

12L
// π∗

13L

over Y [3].
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2. A 1-morphism (B,L, ω, µ) // (B′, L′, ω′, µ′), also known as stable isomorphism, is
a principal S1-bundle A with connection ς over Y of curvature curv(ς) = B − B′

together with a connection-preserving bundle isomorphism

α : π∗
2A ⊗ L // L′ ⊗ π∗

1A

over Y [2], such that the diagram

π∗
3A ⊗ π∗

23L ⊗ π∗
12L

id⊗µ //

π∗
23α⊗id

��

π∗
3A ⊗ π∗

13L

π∗
13α

��

π∗
23L

′ ⊗ π∗
2A ⊗ L

id⊗π∗
12α

��
π∗
23L

′ ⊗ π∗
12L

′ ⊗ π∗
1A µ′⊗id

// π∗
13L

′ ⊗ π∗
1A

(27)

of bundle isomorphisms over Y [3] is commutative.

3. A 2-morphism (A, ς, α) +3 (A′, ς ′, α′) is a connection-preserving bundle isomor-
phism ϕ : A // A′ over Y , such that the diagram

π∗
2A ⊗ L

π∗
2ϕ⊗idL

��

α // L′ ⊗ π∗
1A

idL′ ⊗π∗
1ϕ

��
π∗
2A

′ ⊗ L
α′

// L′ ⊗ π∗
1A

′

(28)

of bundle isomorphisms over Y [2] is commutative.

The full 2-category of bundle gerbes with connection over M is then defined as the direct
limit

BGrb∇(M) := lim
−→π

BGrb∇(π).

The strategy to prove Theorem 4.10 is to first establish the equivalence on a local
level:

4.11. Proposition. For every surjective submersion π : Y // M there is a surjective
equivalence of 2-categories:

Des2π(iS1)∞ ∼= BGrb∇(π).

A 2-functor Des2π(iS1)∞ // BGrb∇(π) realizing the claimed equivalence is defined
in the following way. For a smooth descent object (triv, g, ψ, f), the smooth 2-functor
triv : P2(Y ) // BBS1 defines by Theorem 4.2 a 2-form B ∈ Ω2(Y ), this is the first
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ingredient of the bundle gerbe. The pseudonatural transformation g yields a transport
functor

F (g) : P1(Y
[2]) // ΛiS1B(S

1-Tor)

with ΛBBS1-structure. Despite of the heavy notation, the following lemma translates this
functor into familiar language.

4.12. Lemma. For X a smooth manifold, there is a canonical surjective equivalence of
monoidal categories

Bun∇S1(X) ∼= Trans1
ΛBBS1

(X,ΛiS1B(S
1-Tor))

between principal S1-bundles with connection and transport functors with ΛBBS1-
structure.

Proof. First of all, we have evidently ΛBBS1 = BS1. Second, there is a canonical
equivalence of categories

ΛiS1B(S
1-Tor) ∼= S1-Tor. (29)

This comes from the fact that an object is in both categories an S1-torsor. A morphism
between S1-torsors V and W in ΛiS1B(S

1-Tor) is by definition a 2-morphism

∗
S1

//

V

��

∗

W

��

f
���

���

{� ���
���

∗
S1

// ∗

in B(S1-Tor), and this is in turn an S1-equivariant map

f : W ⊗ S1 // S1 ⊗ V .

It can be identified canonically with an S1-equivariant map f−1 : V // W , i.e. a
morphism in S1-Tor. It is straightforward to see that (29) is even a monoidal equivalence.
Then, the claim is proved by Theorem 2.9.

Now, via Lemma 4.12 the transport functor F (g) is a principal S1-bundle L with
connection ω over Y [2]. This circle bundle will be the second ingredient of the bundle
gerbe.

4.13. Lemma. The curvature of the connection ∇ on the circle bundle L satisfies

curv(ω) = π∗
1B − π∗

2B.
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Proof. Let Uα be open sets covering Y [2], and let (t̃riv, t̃) be a local iS1-trivialization of

the transport functor F (g) consisting of smooth functors t̃rivα : P1(Uα) // BS1 and
natural transformations

t̃α : F (g)|Uα
// (t̃rivα)iS1 .

We observe that the functors t̃rivα and the natural transformation t̃α lie in the im-
age of the functor F , such that there exist smooth pseudonatural transformations
ρα : π∗

1triv|Uα
// π∗

2triv|Uα and modifications tα : g|Uα
+3 ρα with

t̃rivα = F (ρα) and t̃α = F (tα).

As found in [SW11] and reviewed in Section 2.6 of the present article, associated to the
smooth pseudonatural transformation ρα is a 1-form ϕα ∈ Ω1(Uα), and equation (11)
infers in the present situation

π∗
1B − π∗

2B = dϕα.

It remains to trace back the relation between ϕα and the curvature of the connection ω on
circle bundle L. Namely, if Aα is the 1-form corresponding to the smooth functor t̃rivα,
we have

Aα = ϕα and dAα = curv(ω).

This shows the claim.

In order to complete the construction of the bundle gerbe, we note that the modifica-
tion f : π∗

23g ◦ π
∗
12g

+3 π∗
13g induces an isomorphism

F (f) : π∗
23F (g) ⊗ π∗

12F (g) // π∗
13F (g)

of transport functors; again by Lemma 4.12 this defines an isomorphism

µ : π∗
12L ⊗ π∗

23L // π∗
13L

of circle bundles with connection, which is the last ingredient of the bundle gerbe. The
coherence axiom of [SW, Definition 2.2.1] implies the associativity condition on µ. This
shows that (B,L,∇, µ) is a bundle gerbe with connection. The descent datum ψ has been
forgotten by this construction.

Using Lemma 4.12 in the same way as just demonstrated it is easy to assign bundle
gerbe 1-morphisms to descent 1-morphisms and bundle gerbe 2-morphisms to descent 2-
morphisms. Here the coherence conditions of [SW, Definitions 2.2.2 and 2.2.3] translate
into the commutative diagrams (27) and (28). The composition for 1-morphisms and 2-
morphisms of bundle gerbes (which we have not carried out above) is precisely reproduced
by the composition laws of the descent 2-category Des2π(iS1)∞. This defines the 2-functor
of Proposition 4.11.

It is evident that this 2-functor is an equivalence of 2-categories, since all manipulations
we have made are equivalences according to Lemma 4.12 and Theorem 4.2. It remains
to remark that the descent datum ψ can be reproduced in a canonical way from a given
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bundle gerbe using the existence of dual circle bundles, see Lemma 1 in [Wal07]. This
finishes the proof of Proposition 4.11.

It is clear that the equivalence of Proposition 4.11 is compatible with the refinement
of surjective submersions, so that it given an equivalence in the direct limits:

Des2(iS1)∞M
∼= BGrb∇(M).

With Theorem 3.6 this proves Theorem 4.10.

4.14. Non-Abelian Bundle Gerbes with Connection. In this section we gener-
alize the equivalence of the previous section to so-called non-abelian bundle gerbes, as
defined in [ACJ05]. The difference between abelian and non-abelian bundle gerbes can
roughly be summarized as follows:

1. The Lie group S1 is replaced by some connected Lie group H .

2. Principal S1-bundles are replaced by principal H-bibundles, bundles with commut-
ing left and right principal H-action. Morphisms between H-bibundles are bi-
equivariant bundle morphisms.

3. Connections on S1-bundles are replaced by so-called twisted connections on bibun-
dles.

Non-abelian H-bundle gerbes with connection over M form a 2-category which we de-
note by H-BGrb∇(M); some details are reviewed below. There is a sub-2-category
H-BGrb∇ff (M) of fake-flat non-abelian H-bundle gerbes, related to Remark 4.8.

On the side of transport 2-functors, we write H-BiTor for the category whose ob-
jects are smooth manifolds with commuting, free and transitive, smooth left and right
H-actions, and whose morphisms are smooth bi-equivariant maps. Using the product
over H this is naturally a (non-strict) monoidal category, and we write B(H-BiTor) for
the corresponding one-object (non-strict) 2-category. Let AUT(H) be the Lie 2-group
associated to H via Example 3.12 (iii). A 2-functor

i : BAUT(H) // B(H-BiTor) (30)

is defined as follows. It sends a 1-morphism ϕ ∈ Aut(H) to the H-bitorsor ϕH which
is the group H on which an element h acts from the right by multiplication and from
the left by multiplication with ϕ(h). The compositors of i are given by the canonical
identifications

cg1,g2 : g1H ×H g2H //
g2g1H ,

and the unitor is the identity. The 2-functor i further sends a 2-morphism h : ϕ1
+3 ϕ2

to the bi-equivariant map

ϕ1H //
ϕ2H : x � // hx.

While the bi-equivariance with respect to the right action is obvious, the one with re-
spect to the left action follows from the condition ϕ2(x) = hϕ1(x)h

−1 we have for the
2-morphisms in AUT(H) for all x ∈ H .

The main result of this section is:
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4.15. Theorem. There is a canonical injective map

h0(H-BGrb∇ff (M)) // h0(Trans
2
BAUT(H)(M,B(H-BiTor)))

from isomorphism classes of fake-flat non-abelian H-bundle gerbes to transport 2-functors
with values in B(H-BiTor) and BAUT(H)-structure.

That we do not achieve a bijection or an equivalence of 2-categories is due to the fact
that the category of bibundles with twisted connections – as defined in [ACJ05] – oversees
a class of morphisms, which in principle should be allowed and arise naturally from the
theory of transport functors.

Anyway, Theorem 4.15 provides non-trivial examples of transport 2-functors. The
injective map of Theorem 4.15 is constructed as

H-BGrb∇ff (M) // Des2(i)∞M
∼= Trans2BAUT(H)(M,B(H-BiTor)),

where the first 2-functor is constructed in Proposition 4.22 and the equivalence is the one
of Theorem 3.6. We first review necessary material.

Twisted Connections on Bibundles. Let P be a principal H-bibundle over X . We
denote the left and right actions by an element h ∈ H on P by lh and rh, respectively.
Measuring the difference between the left and the right action in the sense of lh(p) =
rg(h)(p) furnishes a smooth map

g : P // Aut(H). (31)

In the following we denote by aut(H) the Lie algebra of Aut(H). Further, we denote by
t : H // Aut(H) the assignment of inner automorphisms and by α : Aut(H)×H // H
the evaluation.

4.16. Definition. [ACJ05] Let p : P // X be a principal H-bibundle, and let
A ∈ Ω1(X, aut(H)) be a 1-form on the base space. An A-twisted connection on P is
a 1-form φ ∈ Ω1(P, h) satisfying

φρh

(
d

dt
(ρh)

)
= Ad−1

h

(
φρ

(
dρ

dt

))
− (rh ◦ αh)∗ ◦ (p

∗A) + θh

(
dh

dt

)
(32)

for all smooth curves ρ : [0, 1] // P and h : [0, 1] // H. A morphism f : P // P ′

respects A-twisted connections φ on P and φ′ on P ′ if f ∗φ′ = φ.

We write Bibun∇H(X,A) for the category of principal H-bibundles with A-twisted
connection over X , and Bibun∇H(X) for the union of these categories over all 1-forms A.

4.17. Remark. For A = 0 an A-twisted connection on P is the same as an ordinary
connection on P regarded as a right principal bundle.
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4.18. Lemma. [ACJ05] Let A ∈ Ω1(X, aut(H)) be a 1-form and let p : P // X be a
principal H-bibundle. For any A-twisted connection φ on P there exists a unique 1-form
Aφ ∈ Ω1(X, aut(H)) satisfying

p∗Aφ = Adg(p
∗A)− g∗θ̄ − t∗ ◦ φ,

where g is the map from (31).

A twisted connection in a principal bibundle P gives rise to parallel transport maps

τγ : Px // Py

between the fibres of P over points x, y associated to any path γ : x // y. It is obtained
in the same way as in an ordinary principal bundle but using equation (32) instead of the
usual one. As a result of the twist, the maps τγ are not bi-equivariant; they satisfy

τγ(lFφ(γ)(h)(p)) = lh−1(τγ(p)) and τγ(rh(p)) = rF (γ)−1(h−1)τγ(p) (33)

where F, Fφ : PX // Aut(H) are the parallel transport maps associated to the 1-forms
A and Aφ; see [SW09, Proposition 4.7]. These complicated relations have a very easy
interpretation, as we will see in the next section.

Finally, an A-twisted connection φ on a principal H-bundle P has a curvature: this is
the 2-form

curv(φ) := dφ+ [φ ∧ φ] + α∗(A ∧ φ) ∈ Ω2(P, h).

For two principal H-bibundles P and P ′ over X one can fibrewise take the tensor
product of P and P ′ yielding a new principal H-bibundle P ×H P over X . If the two
bibundles are equipped with twisted connections, the bibundle P ×H P

′ inherits a twisted
connection only if the two twists satisfy an appropriate matching condition. Suppose the
principal H-bibundle P is equipped with an A-twisted connection φ, and P ′ is equipped
with an A′-twisted connection φ′, and suppose that the matching condition

A′
φ′ = A (34)

is satisfied. Then, the tensor product bibundle P ×H P
′ carries an A′-twisted connection

φtot ∈ Ω1(P ×H P, h) characterized uniquely by the condition that

pr∗φtot = (g ◦ p′)∗ ◦ p
∗φ+ p′∗φ′,

where pr : P×XP
′ // P×HP

′ is the projection to the tensor product and p and p′ are the
projections to the two factors. This tensor product, defined only between appropriate pairs
of bibundles with twisted connections, turns Bibun∇H(X) into a “monoidoidal” category.

A better point of view is to see it as a 2-category: the objects are the twists, i.e.
1-forms A ∈ Ω1(X, aut(H)), a 1-morphism A // A′ is a principal H-bibundle P with
A′-twisted connection φ such that A′

φ′ = A, and a 2-morphism (P, φ) +3 (P ′, φ′) is just a
morphism of principal H-bibundles that respects the A′-twisted connections.
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Transport Functors for Bibundles with Twisted Connections. We are now
going to relate the categoryBibun∇H(X) of principal H-bibundles with twisted connections
over X to a category of transport functors. Using the terminology of Section 3.1, we have:

4.19. Proposition. There is a surjective and faithful functor

Bibun∇H(X) // Trans1ΛBAUT(H)(X,ΛiB(H-BiTor)).

Proof. Given a principal H-bibundle P with A-twisted connection, we define the asso-
ciated transport functor by

traP : x
γ // y

� //

i(∗)

Px

��

i(F (γ)) // i(∗)

τ−1
γ

xxxxx
xxxxx

x� xxxx
xxxx

Py

��
i(∗)

i(Fφ(γ))
// i(∗).

Here F, Fφ : PX // Aut(H) are the maps defined by A and Aφ that we have already
used in the previous section. The definition contains the claim that the parallel transport
map τγ gives a bi-equivariant map

τ−1
γ : Py ×H F (γ)H //

Fφ(γ)H ×H Px;

it is indeed easy to check that this is precisely the meaning of equations (33). A mor-
phism f : P // P ′ between bibundles with A-twisted connections induces a natural
transformation ηf : traP // traP ′ between the associated functors, whose component
at a point x is the bi-equivariant map fx : Px +3 P ′

x. This is a particular morphism in
ΛiB(H-BiTor) for which the horizontal 1-morphisms are identities. Here it becomes clear
that the assignments

(P, φ) � // traP and f � // ηf

define a functor which is faithful but not full.
It remains to check that the functor traP is a transport 2-functor. We leave it as

an exercise for the reader to construct a local trivialization (t, triv) of traP with smooth
descent data. Hint: use an ordinary local trivialization of the bibundle P and follow the
proof of Proposition 5.2 in [SW09].

Both categories in Proposition 4.19 have the feature that they have tensor products
between appropriate objects. Concerning the bibundles with twisted connections, we have
described this in terms of the matching condition (34) on the twists. Concerning the cate-
gory of transport functors, this tensor product is inherited from the one on ΛiB(H-BiTor),
which has been discussed in Section 3.1.

4.20. Lemma. The matching condition (34) corresponds to the required condition for
tensor products in ΛiB(H-BiTor) under the functor of Proposition 4.19. Moreover, the
functor respects tensor products whenever they are well-defined.
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Proof. Suppose that the matching condition A′
φ′ = A holds, so that principal H-

bibundles P and P ′ with connections φ and φ have a tensor product. It follows that
the map Fφ′ which labels the horizontal 1-morphisms at the bottom of the images of traP ′

is equal to the map F which labels the ones at the top of the images of traP ; this is the
required condition for the existence of the tensor product traP ′ ⊗ traP . That the tensor
products are respected follows from the definition of the twisted connection φtot on the
tensor product bibundle.

An alternative formulation of Lemma 4.20 would be that the functor of Proposition
4.19 respects the “monoidoidal structures”, or, that it is a double functor between (weak)
double categories.

Non-Abelian Bundle Gerbes as Transport 2-Functors. Let π : Y // M be a
surjective submersion. We recall:

4.21. Definition. [ACJ05] A non-abelian H-bundle gerbe with connection with respect
to π is a 2-form B ∈ Ω2(Y, h), a 1-form A ∈ Ω1(Y, aut(H)), a principal H-bibundle
p : P // Y [2] with A-twisted connection φ such that

curv(φ) = (π1 ◦ p)
∗B − (αg)∗ ◦ (π2 ◦ p)

∗B, (35)

and an associative morphism

µ : π∗
23P ×H π∗

12P // π∗
13P

of bibundles over Y [3] that respects the twisted connections.

In (35), g is the smooth map (31) and α : Aut(H) × H // H is the evaluation.
The definitions of 1-morphisms and 2-morphisms generalize in a straightforward way the
definitions from the abelian case. This defines the 2-category H-BGrb∇(π). The 2-
category H-BGrb∇(M) of non-abelian H-bundle gerbes over M is defined as the direct
limit,

H-BGrb∇(M) := lim
−→π
H-BGrb∇(π).

We remark:

(i) A non-abelian S1-bundle gerbe is not the same as an abelian S1-bundle gerbe: for the
non-abelian bundle gerbes also the automorphisms are important, and Aut(S1) ∼=
Z2. For transport 2-functors this is even more obvious: the Lie 2-groups BS1 and
AUT(S1) are not equivalent.

(ii) The non-abelian bundle gerbes of Definition 4.21 are a priori not “fake-flat”, i.e. the
relation

t∗(B) = dA + [A ∧ A]

may not be satisfied, see Remark 4.8. We denote the sub-2-categories of fake-flat
non-abelian H-bundle gerbes by H-BGrb∇ff (−).
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4.22. Proposition. For every surjective submersion π : Y // M , there is a 2-functor

H-BGrb∇ff (π) // Des2π(i)
∞.

which is surjective and faithful on Hom-categories. In particular, it induces an injective
map on isomorphism classes of objects.

Proof. All relations concerning the bimodules are analogous to those in the abelian case,
upon generalizing Lemma 4.12 to Proposition 4.19 and Lemma 4.20. Relation (35) for the
2-form B can be proved in the same way as Lemma 4.13, but now using the full version
of equation (11). The comments concerning the descent datum ψ also remain valid.

In the direct limit, the 2-functors of Proposition 4.22 induce a 2-functor

H-BGrb∇ff (M) // Des2(i)∞M . (36)

Since the direct limit respects the operation of forming isomorphism classes of objects,
and on the level of sets a direct limit of injective maps is injective, the 2-functor (36)
induces an injective map on isomorphism classes of objects. This completes the proof of
Theorem 4.15.

4.23. 2-Bundles with Connections. Apart from the equivalence between transport
functors and principal G-bundles with connection (Theorem 2.9), our paper [SW09] also
contains an analogous equivalence for vector bundles with connection. It has an immediate
generalization to 2-vector bundles with many applications, on which we shall give a brief
outlook.

Suppose 2Vect is some 2-category of 2-vector spaces. Given a 2-group G, a represen-
tation of G on such a 2-vector space is a 2-functor

ρ : BG // 2Vect.

A 2-vector bundle with connection and structure 2-group G is nothing but a transport
2-functor tra : P2(X) // 2Vect with BG-structure. Important classes of 2-vector bundles
are line 2-bundles and string bundles.

Models for 2-Vector Spaces. Depending on the precise application there is some
flexibility in what one may want to understand under a 2-vector space. Usually 2-vector
spaces are abelian module categories over a given monoidal category. For k a field, two
important classes of examples are the following. First, let k̂ be the discrete monoidal
category over k. Then, 2Vect is 2-category of module categories over k̂. This is equivalent
to the 2-category of categories internal to k-vector spaces. These Baez-Crans 2-vector
spaces [BC04] are appropriate for the discussion of Lie 2-algebras.

The second model for 2Vect is the 2-category of module categories over the monoidal
category Vect(k) of k-vector spaces,

2Vect := Vect(k)-Mod.
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In its totality this is rather unwieldy, but it contains two important sub-2-categories:
the 2-category KV(k) of Kapranov-Voevodsky 2-vector spaces [KV94] and the 2-category
Bimod(k), whose objects are k-algebras, whose 1-morphisms are bimodules over these
algebras and whose 2-morphisms are bimodule homomorphisms [Shu08]. Indeed, there is
an inclusion 2-functor

ι : Bimod(k) �
� // Vect(k)-Mod

that sends a k-algebra A to the category A-Mod of ordinary (say, right) A-modules. This
is a module category over Vect(k) by tensoring a right module from the left by a vector
space. A 1-morphism, an A-B-bimodule N , is sent to the functor that tensores a right
A-module from the right by N , yielding a right B-module. A bimodule morphism induces
evidently a natural transformation of these functors.

If one restricts the 2-functor ι to the full sub-2-category formed by those algebras that
are direct sums A = k⊕n of the ground field algebra, the 2-vector spaces in the image of
ι are of the form Vect(k)n, i.e. tuples of vector spaces. The 1-morphisms in the image
are (m × n)-matrices whose entries are k-vector spaces. These form the 2-category of
Kapranov-Voevodsky 2-vector spaces [KV94].

The canonical Representation of a 2-Group. Every automorphism 2-group
AUT(H) of a Lie group H has a canonical representation on 2-vector spaces, namely

BAUT(H)
A // Bimod(k)

ι // Vect(k)-Mod, (37)

where the 2-functor A is defined similar as the one we have used for the non-abelian
bundle gerbes in (30). It sends the single object to k regarded as a k-algebra, it sends a
1-morphism ϕ ∈ Aut(H) to the bimodule ϕk in the notation of Section 4.14, and it sends
a 2-morphism (ϕ, h) : ϕ +3 ch ◦ ϕ to the multiplication with h from the left.

Now let G be any smooth Lie 2-group corresponding to a smooth crossed module
(G,H, t, α). We have a canonical 2-functor

BG // BAUT(H) : ∗

g

��

g′

BBh

��

∗ � // ∗

αg

��

αg′

BBh

��

∗ (38)

whose composition with (37) gives a representation of G, that we call the canonical k-
representation.

4.24. Example. A very simple but useful example is the canonical C-representation of
BC×. In this case the composition (37) is the 2-functor

ρ : BBC× // Vect(C)-Mod : ∗

id

��

id

BBz

��

∗ � // Vect(C)

−⊗C

%%

−⊗C

99
−·z

��

Vect(C)



CONNECTIONS ON NON-ABELIAN GERBES AND THEIR HOLONOMY 523

for all z ∈ C×. Notice that Vect(C) is the canonical 1-dimensional 2-vector space over
C in the same sense in that C is the canonical 1-dimensional complex 1-vector space.
Therefore, transport 2-functors

tra : P2(M) // Vect(C)-Mod

with BBC×-structure deserve to be addressed as line 2-bundles with connection. Two
remarks:

1. Going through the discussion of abelian bundle gerbes with connection in Section
4.9 it is easy to see that line 2-bundles with connection are equivalent to bundle
gerbes with connection defined via line bundles instead of circle bundles.

2. The fibre tra(x) of a line 2-bundle tra at a point x is an algebra which is Morita
equivalent to the ground field C. These are exactly the finite rank operators on a
separable Hilbert space. Thus, line 2-bundles with connection are a form of bundles
of finite rank operators with connection, this is the point of view taken in [BCM+02].

The 2-functor A : BAUT(H) // Bimod(k) we have used above can be deformed to
a 2-functor Aρ using an ordinary representation ρ : BH // Vect(k) of H . It sends the
object of BAUT(H) to the algebra Aρ(∗) which is the vector space generated from all the
linear maps ρ(h). A 1-morphism ϕ ∈ Aut(H) is again sent to the bimodule ϕA

ρ(∗), and
the 2-morphisms as before to left multiplications. The original 2-functor is reproduced by
A = Atrivk from the trivial representation of H on k.

4.25. Example. For G a compact simple and simply-connected Lie group, we consider
the level k central extension Hk := Ω̂kG of the group of based loops in G. For a positive
energy representation ρ : BΩ̂kG // Vect(k) the algebra Aρ(∗) turns out to be a von
Neumann-algebra while the bimodules ϕA

ρ(∗) are Hilbert bimodules. In this infinite-
dimensional case we have to make the composition of 1-morphisms more precise: here we
take not the algebraic tensor product of these Hilbert bimodules but the Connes fusion
tensor product [ST04]. Connes fusion product still respects the composition: for A a von
Neumann algebra and ϕA the bimodule structure on it induced from twisting the left
action by an algebra automorphism ϕ, we have

ϕA ⊗ ϕ′A ≃ ϕ′◦ϕA

under the Connes fusion tensor product. Now let G = Stringk(G) be the string 2-group
defined from the crossed module Ω̂kG // P0G of Fréchet Lie groups [BCSS07]. Together
with the projection 2-functor (38) we obtain an induced representation

i : BStringk(G) // BimodCF(k)

The fibres of a transport 2-functor

tra : P2(M) // BimodCF(k) (39)
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with BStringk(G)-structure are hence von Neumann algebras, and its parallel transport
along a path is a Hilbert bimodule for these fibres. In conjunction with the result [BS09,
BBK12] that Stringk(G)-2-bundles have the same classification as ordinary fibre bundles
whose structure group is the topological String group, this says that transport 2-functors
(39) have to be addressed as String 2-bundles with connection, see [ST04].

Twisted Vector Bundles. Vector bundles over M twisted by a class ξ ∈ H3(M,Z)
are the same thing as gerbe modules for a bundle gerbe G whose Dixmier-Douady class is ξ
[BCM+02]. These modules are in turn nothing else but certain (generalized) 1-morphisms
in the 2-category of bundle gerbes BGrb(M) [Wal07]. The same is true for connections
on twisted vector bundles. More precisely, a twisted vector bundle with connection is the
same as a 1-morphism

E : G // Iρ

from the bundle gerbe G with connection to the trivial bundle gerbe I equipped with the
connection 2-form ρ ∈ Ω2(M).

Now let
tra : P2(M) // Vect(C)-Mod

be a transport 2-functor which plays the role of the bundle gerbe G, but we allow an
arbitrary structure 2-group G and any representation ρ : BG // Vect(C)-Mod. Let
tra∞ : P2(M) // BG be a smooth 2-functor which plays the role of the trivial bundle
gerbe. We shall now consider transport transformations

A : tra // tra∞ρ .

Let π : Y // M be a surjective submersion for which tra admits a local trivializa-
tion with smooth descent data (triv, g, ψ, f). The descent data of tra∞ is of course
(π∗tra∞, id, id, id). Now the transport transformation A has the following descent data:
the first part is a pseudonatural transformation h : triv // π∗tra∞ whose associated
functor F (h) : P1(Y ) // Λρ(Vect(C)-Mod) is a transport functor with ΛBG-structure.
The second part is a modification ǫ : π∗

2h ◦ g
+3 id ◦ π∗

1h whose associated natural trans-
formation

F (ǫ) : π∗
2F (h) ⊗ F (g) // π∗

1F (h)

is a morphism of transport functors over Y [2]. According to the coherence conditions on
descent 1-morphisms, it fits into the commutative diagram

π∗
3F (h) ⊗ π∗

23F (g) ⊗ π∗
12F (g)

π∗
23F (ǫ)⊗id

//

id⊗F (f)
��

π∗
2F (h) ⊗ π∗

12F (g)

π∗
12F (ǫ)

��
π∗
3F (h) ⊗ π∗

13F (g)
π∗
13F (ǫ)

// π∗
1F (h)

(40)

of morphisms of transport functors over Y [3] and satisfies ∆∗F (ǫ) ◦ F (ψ) = id. The
transport functor

F (h) : P1(Y ) // Λρ(Vect(C)-Mod)
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together with the natural transformation F (ǫ) is the general version of a vector bundle
with connection twisted by a transport 2-functor tra. According to Sections 4.1 and
4.14, the twists can thus be Breen-Messing gerbes or non-abelian bundle gerbes with
connection.

Depending on the choice of the representation ρ, our twisted vector bundles can be
translated into more familiar language. Let us demonstrate this in the case of Example
4.24, in which the twist is a line 2-bundle with connection, i.e. a transport 2-functor

tra : P2(M) // Vect(C)-Mod

with BBC×-structure. In order to obtain the usual twisted vector bundles, we restrict the
target 2-category to BVect(C), the monoidal category of complex vector spaces considered
as a 2-category. The following Lie category Gl is appropriate: its objects are the natural
numbers N, and it has only morphisms between equal numbers, namely all matrices
Gln(C). The composition is the product of matrices. The Lie category Gl is strictly
monoidal: the tensor product of two objects m,n ∈ N is the product nm ∈ N, and
the one of two matrices A ∈ Gl(m) and B ∈ Gl(n) is the ordinary tensor product
A⊗B ∈ Gl(m×n). In fact, Gl carries a second monoidal structure coming from the sum
of natural numbers and the direct sum of matrices, so that Gl is actually a bipermutative
category, see Example 3.1 of [BDR04].

Notice that we have a canonical inclusion functor ι : BC× �

� // Gl, which induces
another inclusion

ι∗ : Trans
2
BBC×(M,BVect(C)) // Trans2BGl(M,BVect(C))

of line 2-bundles with connection into more general vector 2-bundles with connection.
Here we have used the representation

ρ : BGl // BVect

obtained as a generalization of Example 4.24 from C× = Gl1(C) to Gln(C) for all n ∈ N.
The composition ρ ◦ ι reproduces the representation of Example 4.24.

Using the above inclusion, the given transport 2-functor tra induces a transport 2-
functor ι∗ ◦ tra : P2(M) // BVect(C) with BGl-structure, and one can study transport
transformations

A : tra // tra∞ρ

in that greater 2-category Trans2BGl(M,BVect(C)). Along the lines of the general proce-
dure described above, we have transport functors F (g) and F (h) coming from the descent
data of tra and A, respectively. In the present particular situation, the first one takes
values in the category Λρ◦ιBVect1(C) whose objects are one-dimensional complex vector
spaces and whose morphisms from V toW are invertible linear maps f :W⊗C // C⊗V .
Similar to Lemma 4.12, this category is equivalent to the category Vect1(C) of one dimen-
sional complex vector spaces itself. Thus, the transport functor F (g) with BC×-structure
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is a complex line bundle L with connection over Y [2]. The second transport functor, F (h),
takes values in the category Λρ◦ιBVect(C). This category is equivalent to the category
Vect(C) itself. It has ΛιBGl-structure, which is equivalent to Gl. Thus, F (h) is a trans-
port functor with values in Vect(C) and Gl-structure. It thus corresponds to a finite rank
vector bundle E over Y with connection.

Since all identifications we have made so far a functorial, the morphisms F (f) and
F (ǫ) of transport functors induce morphisms of vector bundles that preserve the connec-
tions, namely an associative morphism

µ : π∗
23L ⊗ π∗

12L // π∗
13L

of line bundles over Y [2], and a morphism

̺ : π∗
2E ⊗ L // π∗

1E

of vector bundles over Y which satisfies a compatibility condition corresponding to (40).
This reproduces the definition of a twisted vector bundle with connection [BCM+02]. We
remark that the 2-form ρ that corresponds to the smooth 2-functor tra∞ρ which was the
target of the transport transformation A we have considered, is related to the curvature
of the connection on the vector bundle E: it requires that

curv(E) = In · (curv(L)− π∗ρ),

where In is the identity matrix and n is the rank of E. This condition can be derived
similar to Lemma 4.13.

5. Surface Holonomy

From the viewpoint of a transport 2-functor, parallel transport and holonomy are basically
evaluation on paths or bigons. Let tra : P2(M) // T be a transport 2-functor with BG-
structure on M . Its fibres over points x, y ∈ M are objects tra(x) and tra(y) in T , and
we say that its parallel transport along a path γ : x // y is given by the 1-morphism

tra(γ) : tra(x) // tra(y)

in T , and its parallel transport along a bigon Σ : γ +3 γ′ is given by the 2-morphism

tra(Σ) : tra(γ) +3 tra(γ′)

in T . The rules how parallel transport behaves under the composition of paths and
bigons are precisely the axioms of the 2-functor tra; see [SW, Definition A.5]. We give
some examples. If γ1 : x // y and γ2 : y // z are composable paths, the separate
parallel transports along the two paths are related to the one along their composition by
the compositor

cγ1,γ2 : tra(γ2) ◦ tra(γ1) +3 tra(γ2 ◦ γ1)
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of the 2-functor tra. If idx is the constant path at x, the parallel transport along idx is
related to the identity at the fibre tra(x) by the unitor

ux : tra(idx) +3 idtra(x).

The parallel transports along vertically composable bigons Σ : γ1 +3 γ2 and Σ′ : γ2 +3 γ3
obey

tra(Σ′ • Σ) = tra(Σ′) • tra(Σ).

In the following we focus on certain bigons that parameterize surfaces; the parallel trans-
port along these bigons will be called the holonomy of the transport 2-functor tra.

5.1. Markings and Fundamental Bigons. Surface holonomy of gerbes has so far
only be studied in the abelian case, i.e. for gerbes with structure 2-group G = BS1; see
e.g. [Mur96]. It is understood that an abelian gerbe with connection over M provides
an S1-valued surface holonomy for smooth maps φ : S // M defined on closed oriented
surfaces S. Various extensions have been studied for oriented surfaces with boundary
[CJM02, GR02], closed unoriented (in particular unorientable) surfaces [SSW07], and
unoriented surfaces with boundary [GSW11].

Let us try to explain why the step from abelian to non-abelian surface holonomy is
so difficult, by looking at the analogous but easier situation of ordinary holonomy of a
connection on a principal bundle P over M . In the abelian case, say with structure
group S1, holonomy is defined for closed oriented curves in M . Passing to a non-abelian
structure group G, we have two possibilities. The first is to choose additional structure
on the closed oriented curve, namely a point x ∈ M , in which case the holonomy is
a well-defined automorphism of the fibre Px of the bundle P over the point x. The
second possibility is to project the value of the holonomy into an appropriate quotient,
for example along the map Aut(Px) // Gred into the set Gred of conjugacy classes of G.
This quotient is designed such that a different choice of x yields the same element in Gred,
and so P has a well-defined Gred-valued holonomy for closed oriented curves.

Choosing a point in a closed oriented curve means to represent it as a path (up to
thin homotopy). The objective of this section is to describe how to represent a closed
oriented surface φ : S // M as a bigon inM . It will be convenient to adapt the following
standard terminology from the theory of Riemann surfaces to our setting. Suppose S is
a closed oriented surface of genus g. A marking of S is a point x ∈ S together with a set
M = {αi, βi}

g

i=1 of paths αi : x // x and βi : x // x such that the homotopy classes
[αi] and [βi] of the paths form a presentation of the fundamental group of S based at x
with the relation that [τM] = 1, where

τM := β−1
g ◦ α−1

g ◦ βg ◦ αg ◦ . . . ◦ β
−1
1 ◦ α−1

1 ◦ β1 ◦ α1.

In other words,
π1(S, x) = 〈[αi], [βi] | [τM] = 1〉 .

Next we formulate — in the language of bigons — the statement that the path τM can
be collapsed to the point x in such a way that the collapsing homotopy parameterizes the
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surface S. The challenge is that such a homotopy cannot simultaneously be a bigon and
a good parameterization. We propose the following notion.

5.2. Definition. A fundamental bigon with respect to the marking (x,M) is a bigon
Σ : τM +3 idx such that there exist:

(a) a polygon P ⊆ R2 and a surjective smooth map π : P // S that is an embedding
when restricted to the interior of P and preserves the orientations.

(b) a surjective continuous map k : [0, 1]2 // P that restricts to a diffeomorphism be-
tween the interiors and preserves the orientations, such that there exists a vertex v0
of P with v0 = k(s, 0) = k(s, 1) = k(1, t) for all 0 ≤ s, t ≤ 1.

(c) a smooth map h : [0, 1] × P // S with h0 = π and h1 ◦ k = Σ, such that for each
edge e of P the restriction h|[0,1]×e has rank one, and h(−, v) = x for each vertex v.

In this definition the polygon P serves as the standard parameter domain of the sur-
face, and the map π : P // S is such a parameterization. The map k : [0, 1]2 // P
is responsible for the transition between the standard parameter domain P and the pa-
rameter domain [0, 1]2 for bigons. The map h ensures that the fundamental bigon Σ is
homotopic to the “bigonized” standard parameterization, π◦k. The various conditions on
k and h ensure that the homotopy h ◦ k is constantly equal to x over the boundary parts
of [0, 1]2 that are parameterized by (s, 0), (s, 1), and (1, t), and ensure that it restricts to
a thin homotopy between the path (π ◦k)(0,−) and τM over the remaining boundary part
(0, t).

A marking will be called good, if it admits a fundamental bigon. The following three
lemmata elaborate some properties of good markings and fundamental bigons.

5.3. Lemma. Every closed oriented surface S has a good marking.

Proof. It is well-known that every surface S of positive genus g > 0 has a “fundamental
polygon” P ⊆ C with 4g edges, together with a map π : P // S that has all required
properties. It can be arranged such that all vertices go to a single point x ∈ S, and — if
the 4g edges are parameterized by A1, B1, A

′
1, B

′
1, A2, ... : [0, 1] // P in counter-clockwise

order starting at a vertex v0 — then

π(Ai(1− t)) = π(A′
i(t)) and π(Bi(1− t)) = π(B′

i(t)). (41)

Let D ⊆ C denote the disc centered at −1 ∈ C. It is obvious that P and D are home-
omorphic. The homeomorphism can be arranged such that (i) it preserves orientations,
(ii) it is a smooth embedding when restricted to the complement of the vertices of P, and
(iii) the vertices map to points equidistantly distributed over the boundary of D, with v0
at 0 ∈ C. We define

k′ : [0, 1]2 // D : (s, t) � // (1− s)(e2πit − 1).
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Under the homeomorphism between P and D, this gives the map k with all required
properties.

The map h : [0, 1] × P // S is chosen such that h1 : P // S is constantly equal to
x in neighborhoods of all vertices, and such that (41) remains true with h1 instead of π.
Then we define

Σ := h1 ◦ k

This is smooth because h1 is locally constant at all points where k is not smooth. We
consider for 0 ≤ k ≤ 4g − 1 the map pk : [0, 1] // [0, 1] : t � // k+t

4g
that squeezes the

interval into the k-th of 4g many pieces. Then, we define for i = 1, .., g

αi := π ◦ Σ(0,−) ◦ p4i−4 and βi := π ◦ Σ(0,−) ◦ p4i−3,

which give smooth maps with sitting instants, each going from x to x, Thus, (x,M) with
M := {αi, βi} is a marking, and (41) imply that Σ is a bigon Σ : τM +3 idx.

The case of genus g = 0 can be treated in a similar way using the disc D1 with one
marked point; this is left as an exercise.

The main idea behind the definition of a fundamental bigon is that the integral of a
2-form ω ∈ Ω2(S) over S can be computed over a fundamental bigon.

5.4. Lemma. Suppose S is a closed oriented surface with a good marking (x,M). Let Σ
be a fundamental bigon with respect to (x,M). Then,

∫

S

ω =

∫

[0,1]2
Σ∗ω

for all 2-forms ω ∈ Ω2(S).

Proof. We choose the structure (P, k, π, h) of Definition 5.2. Then,

∫

S

ω =

∫

P

π∗ω =

∫

P

h∗1ω =

∫

int(P)

h∗1ω =

∫

(0,1)2
Σ∗ω =

∫

[0,1]2
Σ∗ω.

The second equality holds because the homotopy h between h0 = π and h1 has rank one
on the boundary. The other equalities hold immediately due to the assumptions on all
the involved maps.

Finally, we show that the choice of a fundamental bigon is essentially unique.

5.5. Lemma. Let S be a closed oriented surface and (x,M) be a marking. Suppose
Σ : τM +3 idx and Σ′ : τM +3 idx are two fundamental bigons with respect to the marking
(x,M). Then, Σ and Σ′ are thin homotopy equivalent in the sense of Section 2.1.
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Proof. We choose for both fundamental bigons the structures (P, k, π, h) and
(P ′, k′, π′, h′) of Definition 5.2. We can assume that P = P ′, since any two polygons
are diffeomorphic, and such diffeomorphism can be absorbed into π′ and k′. We can as-
sume that P is convex; in that case it is easy to see that k and k′ are homotopic, with
the homotopy fixing the three boundary components that map to v0, and restricting to a
homotopy with values in ∂P over the forth boundary component. The homotopies h and
h′ restrict on the boundary to thin homotopies π|∂P ≃ τM and π′|∂P ≃ τM. By a version
of Alexander’s trick, we obtain a smooth homotopy π ≃ π′ that fixes all vertices and has
rank one over the edges. Then we have chains of homotopies

Σ ≃ h1 ◦ k ≃ h0 ◦ k ≃ π ◦ k ≃ π ◦ k′ ≃ π′ ◦ k′ ≃ h′0 ◦ k
′ ≃ h′1 ◦ k

′ ≃ Σ′

which are all smooth and have rank one restricted over the boundary. By dimensional
reasons, this homotopy can at most have rank two everywhere. This means that it is a
thin homotopy between Σ and Σ′.

Next we come to the definition of surface holonomy. Since the generic transport 2-
functor is not strict, we have to deal with the difference between the 1-morphism tra(φ∗τM)
and the 1-morphism

traφ,M :=

g∏

i=1

tra(αi) ◦ tra(βi) ◦ tra(α
−1
i ) ◦ tra(β−1

i ),

for which we may agree for an arbitrary convention how to put parentheses in case T
has a non-trivial associator. The relation between these two 1-morphisms is given by a
2-morphism

cφ,tra : traφ,M +3 tra(φ∗τM)

made up from the compositors of tra in a unique way, due to the coherence axiom for
compositors (this is axiom (F3) in [SW, Appendix A]).

5.6. Definition. Let tra : P2(M) // T be a transport 2-functor. Suppose S is a closed
oriented surface equipped with a good marking (x,M) and a smooth map φ : S // M .
Let Σ be a fundamental bigon for (x,M). The 2-morphism

Holtra(φ, x,M) := tra(φ∗Σ) • c
φ,tra : traφ,M +3 tra(idφ(x))

in T is called the surface holonomy of tra.

Note that the surface holonomy is independent of the choice of the fundamental bigon
due to Lemma 5.5. On the other hand, the surface holonomy does depend on the choice of
the marking (x,M). Even worse, it is not invariant under isomorphisms between transport
2-functors. It is the purpose of the following discussion to improve these dependence issues.
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5.7. Reduced Surface Holonomy. We consider a Lie 2-group G defined from a
smooth crossed module (G,H, t, α), and restrict our attention to transport 2-functors

tra : P2(M) // T

with BG-structure. Our goal is to replace the 2-functor tra by another 2-functor which
takes values in a certain quotient of G where surface holonomy becomes more rigid. In
order to construct this quotient, we write [G,H ] ⊆ H for the subgroup of H that is
generated by all elements of the form h−1α(g, h), for h ∈ H and g ∈ G. The following
lemma follows from the axioms of a crossed module; see Definition 3.11).

5.8. Lemma. The subgroup [G,H ] is normal in H and contains the commutator subgroup,

[H,H ] � [G,H ] � H.

We come to the following important definition.

5.9. Definition. Let G be a Lie 2-group. Then, the group Gred := H/[G,H ] is called the
reduction of G.

By Lemma 5.8, the reduction Gred is a subgroup of the abelianization H/[H,H ] and
hence abelian. Note that the projection to the quotient yields a strict 2-functor

Red : BG // BBGred.

5.10. Example. Let us look at examples for Lie 2-groups G:

(a) In the case of the 2-group BA for A an ordinary abelian Lie group, [1, A] is the trivial
group, and (BA)red = A.

(b) Let G be a Lie group and let EG the associated 2-group of inner automorphisms, see
Section 3. Since α here is the conjugation action of G on itself, [G,G] is indeed the
commutator subgroup. Thus (EG)red is an abelian Lie group, the abelianization of G.

(c) Let H be a connected Lie group and let AUT(H) be its automorphism 2-group, with
G = Aut(H). In this case [H,H ] = [G,H ] if and only if all automorphisms of H are
inner. For H = S1 with Aut(S1) = Z2 we get [Z2, S

1] = S1, so that AUT(S1)red = 1.

Let tra : P2(M) // T be a transport 2-functor with BG-structure. The following
definition introduces the replacement for tra that we want to consider.

5.11. Definition. A reduction of tra is a transport 2-functor trared : P2(M) // BG
with BG-structure such that the following two conditions are satisfied:

(i) There exists a pseudonatural equivalence i ◦ trared ∼= tra.

(ii) The 2-functor Red ◦ trared is normalized in the sense of [SW, Appendix A].

In the following proposition we prove an existence and uniqueness result for reductions.
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5.12. Proposition. If i : BG // T is an equivalence of categories, then every trans-
port 2-functor with i-structure admits a reduction. Moreover, two reductions of the same
transport 2-functor are pseudonaturally equivalent.

Proof. Since i : BG // T is an equivalence of 2-categories we can choose an inverse
2-functor j : T // BG, so that tra′ := j ◦ tra : P2(M) // BG is a transport 2-functor
with BG-structure; see Section 3.9. Since j is inverse to i it is clear that i ◦ tra′ ∼= tra.
The 2-functor tra′ is the first approximation of the reduction whose existence we want to
prove.

We consider for any surjective submersion π : Y // M the following strictly commu-
tative diagram of 2-categories and 2-functors:

Z2
π(G)∞

P // Des2π(idBG)
∞

Rec
��

Red◦− // Des2π(Red)
∞

Rec
��

Trans2BG(M,BG)
Red◦−

// Trans2BG(M,BBGred).

By Theorem 4.7 the surjective submersion π : Y // M can be chosen such that Rec ◦ P
is essentially surjective, i.e. we can chose a degree two differential G-cocycle ξ′ ∈ Z2

π(G)∞

such that Rec(P(ξ)) ∼= tra′. After a refinement of the surjective submersion to an open
cover, Lemma 4.5 allows us to assume that ξ′ is isomorphic to another cocycle ξ′′ =
((A,B), (g, ϕ), ψ, f) with ψi = 1, gii = 1, fiij = fijj = 1 and fiji = y−1

ij α(xij, yij) for all
i ∈ I and elements xij ∈ G, yij ∈ H . Let tra′′ := Rec(P(ξ′′)); we will prove that this is
the reduction we a looking for.

Condition (i) for reductions is satisfied because tra′′ = Rec(P(ξ′′)) ∼= Rec(P(ξ′)) ∼=
tra′. In order to show that the second condition is satisfied, we claim that the object Red◦
P(ξ′′) in Des2π(Red)

∞ is normalized in the sense of [SW, Definition 2.2.1]. Then, by [SW,
Lemma 3.3.4], the reconstructed transport 2-functor is normalized. By commutativity of
the diagram, this 2-functor is Red ◦ tra′′.

In order to prove that claim, we first remark that (triv, g, ψ, f) := P(ξ′′) is “almost”
normalized. Indeed, the conditions gii = 1 and ψi = 1 imply under the 2-functor P
that idtrivi = ∆∗g and ψ = id∆∗g. The remaining conditions g ◦ ∆∗

21g = idπ∗
1trivi

and
∆∗

121f = id∆∗
11g

are not satisfied. However, since fiji = y−1
ij α(xij , yij), after composing

with Red we do have Red(fiji) = 1; and hence satisfy the remaining conditions for a
normalized descent object.

Finally, the claim that the reduction is unique up to pseudonatural equivalence follows
immediately from the assumption that i is an equivalence.

In the following we will always replace a given transport 2-functor tra : P2(M) // T
with BG-structure by a reduction trared : P2(M) // BG, and consider the reduced surface
holonomy

RHoltra(φ, x,M) := HolRed◦trared(φ, x,M) ∈ Gred.

The following lemma shows that the reduced surface holonomy is well-defined.
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5.13. Lemma. The reduced surface holonomy is independent of the choice of the reduction
trared.

Proof. Suppose we have two choices, whose compositions with Red we denote by
t1, t2 : P2(M) // BBGred. Since t1 and t2 are normalized we have RHolti(φ, x,M) =
ti(φ∗Σ) • c

φ,ti for i = 1, 2.
By Lemma 5.12 t1 and t2 are related by a pseudonatural equivalence η : t1 // t2.

In the following we use that the target 2-category BBGred of t1 and t2 is strict, and both
horizontal and vertical composition of 2-morphisms is just multiplication in the group
Gred. Since this group is abelian, it follows that an arbitrary composition of 2-morphisms
is just the product of their values, in any order.

Under these preliminaries, axiom (T2) for η applied to the 2-morphism φ∗Σ becomes
the identity

η(φ∗τM) · t2(φ∗Σ) = t1(φ∗Σ) · η(idφ(x)). (42)

Axiom (T1) for η applied to the 1-morphism φ∗τM becomes

η(φ∗τM) · c
φ,t1 = cφ,t2 ·

g∏

i=1

η(αi)η(βi)η(α
−1
i )η(β−1

i ). (43)

We are allowed to permute the factors on the right hand side. Since t1 and t2 are nor-
malized, we have by [SW, Lemma A.7 (ii)] that η(idφ(x)) = 1 and η(αi)η(α

−1
i ) = 1. Now

combining (42) with (43) yields t1(φ∗Σ) • c
φ,t1 = t2(φ∗Σ) • c

φ,t2 , which is the equality
between the surface holonomies.

5.14. Properties of Reduced Surface Holonomy. The reduced surface holonomy
has nice properties that we will reveal in the following. First we treat the dependence of
the reduced surface holonomy on the marking.

We arrange the set of markings of S into equivalence classes, as it is common in
the theory of Riemann surfaces. Two markings (x,M) and (x′,M′), with M = {αi, βi}
and M

′ = {α′
i, β

′
i}, are called equivalent, if there exists a path γ : x // x′ and bigons

∆i : αi +3 γ ◦ α′
i ◦ γ

−1 and ∆′
i : βi

+3 γ ◦ β ′
i ◦ γ

−1.

5.15. Lemma. Let (x,M) and (x′,M′) be equivalent good markings. Then,

RHoltra(φ, x,M) = RHoltra(φ, x
′,M′).

Proof. Each equivalence between markings splits into a sequence of steps, in which a
step is either conjugation of all paths in the marking by a path γ : x // y, or changing
one of the paths via a bigon. Thus it suffices to prove the invariance of the reduced surface
holonomy under each of these steps. Let trared : P2(M) // BG be a reduction of tra,
and let t := Red ◦ trared.

In the first part of the proof we look at a conjugation. Let Σ : τM +3 idx be a
fundamental bigon for a marking (x,M). Denote by (x′,Mγ) the marking obtained by
conjugating all paths with γ. We have τMγ = γ ◦ τM ◦ γ−1, and Σγ := idγ ◦ Σ ◦ idγ−1 is a
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fundamental bigon for (x′,Mγ). We have the two paths tφ,M and tφ,Mγ and the compositors
cφ,t : tφ,M +3 t(τM) and c

φ,t
γ : tφ,Mγ

+3 t(τMγ ), so that

Holt(φ, x,M) = t(Σ) · cφ,t and Holt(φ, x
′,M′) = t(Σγ) · cφ,tγ .

Here, and in the following we will suppress writing φ∗ when we apply t to paths or bigons
in S.

There is a unique compositor 2-morphism c : tφ,Mγ
+3 t(γ)◦tφ,M◦t(γ)−1, and another

unique compositor 2-morphism c′ : t(τMγ ) +3 t(γ) ◦ t(τM) ◦ t(γ)
−1. We claim that the

diagram

tφ,Mγ

c

��

c
φ,t
γ +3 t(τMγ )

c′

��

t(Σγ ) +3 idt(φ(x))

id
��

t(γ) ◦ tφ,M ◦ t(γ)−1

id◦cφ,t◦id
+3 t(γ) ◦ t(τM) ◦ t(γ)

−1

id◦t(Σ)◦id
+3 t(γ) ◦ id ◦ t(γ)−1

is commutative. The subdiagram on the left commutes because of the coherence of com-
positors enforced by axiom (F3). In order to see that the subdiagram on the right com-
mutes we note that c′ = cτMγ ◦γ

−1,γ · cγ−1,τMγ
. Axiom (F2) applied to the 2-morphisms

id, Σγ and id gives the commutativity with cγ−1,γ · cγ−1,id on the right hand side of the
diagram. But the latter expression is equal to 1 for the normalized 2-functor t.

Next we compute c. We note the compositor between t(γ ◦ α ◦ γ−1) and t(γ) ◦ t(α) ◦
t(γ−1) is cα◦γ−1,γ · cγ−1,α, while the one between t(γ ◦ α−1 ◦ γ−1) and t(γ) ◦ t(α−1) ◦ t(γ−1)
is cα−1◦γ−1,γ · cγ−1,α−1 . These two compositors are actually inverse to each other; this
follows from axiom (F3) for compositors and the fact that t is normalized. Also note that
t(γ) ◦ t(γ−1) = id; again since t is normalized. Thus, we see that c = 1. All together, we
see that Holt(φ, x,M) = Holt(φ, x

′,M′).
In the second part of the proof we look at a change of one of the paths via a bigon.

If M = {αi, βi}
g
i=1 is a marking, we look at another marking M

′ consisting of the same
paths except for an index i0 where a different path α′

i0
is present, related to αi0 by a

bigon ∆ : α′
i0

+3 αi0. Let ∆# : α′−1
i0

+3 α−1
i0

be the “horizontally inverted” bigon given
by ∆#(s, t) := ∆(s, 1− t). We consider the 2-morphism

∆̃ := id ◦ (∆ ◦ idβi0 ◦∆
# ◦ idβ−1

i0

) ◦ id : τM′
+3 τM,

with the outer identities meant for all factors with indices not equal to i0. We also consider
the 2-morphism

t∆ := id ◦ (t(∆) ◦ id ◦ t(∆#) ◦ id) ◦ id : tφ,M′
+3 tφ,M.

If Σ : τM +3 idx is a fundamental bigon for M, then Σ′ := Σ • ∆̃ is a fundamental bigon
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for M′. We claim that the diagram

tφ,M′
c′ φ,t +3

t∆

��

t(τM′)
t(Σ′)

#+OOOOOOOOOO

OOOOOOOOOO

t(∆̃)

��

id

tφ,M
cφ,t

+3 t(τM)
Σ

3;oooooooooo

oooooooooo

is commutative. Indeed, the rectangular part commutes due to axiom (F2) for the 2-
functor t, and the triangular part commutes by definition of Σ′. It remains to notice that
t∆ = 1 ∈ Gred, since the contributions of ∆ and ∆# cancel. Then, the diagram implies
the coincidence of the surface holonomies.

We summarize our results about the surface holonomy of non-abelian gerbes in the
following theorem, which constitutes the main result of this section.

5.16. Theorem. Let G be a Lie 2-group, T be a 2-category, and i : BG // T be
an equivalence of 2-categories. Let tra : P2(M) // T be a transport 2-functor with
BG-structure. Let S be a closed oriented surface with a good marking (x,M), and let
φ : S // M be a smooth map. Then, the reduced surface holonomy

RHoltra(φ, x,M) ∈ Gred

depends only on the equivalence class of the marking, and only on the isomorphism class
of tra.

Proof. After Lemma 5.15 it only remains to prove that the reduced surface holonomy
only depends on the isomorphism class of tra. Indeed, if tra ∼= tra′ is an isomorphism we
can choose the same reduction for both.

In Section 4 we have collected various equivalences between transport 2-functors and
concrete models of gerbes with connections. These equivalences were mostly established
by zigzags of canonically defined 2-functors. On the level of isomorphism classes, such
zigzags give a well-defined bijection. Since the reduced surface holonomy is invariant
under isomorphisms, these bijections convey the concept of reduced surface holonomy to
a well-defined, isomorphism-invariant concept for each of these concrete models:

(i) The bijection
Ĥ2(M,G) ∼= h0Trans

2
Gr(M,T )

of Theorem 4.7 between the non-abelian differential cohomology and transport 2-
functors equips non-abelian cohomology with a well-defined, isomorphism-invariant
concept of surface holonomy. In particular, it equips degree two Deligne cocycles
and (fake-flat) Breen-Messing cocycles with a well-defined, isomorphism-invariant
concept of surface holonomy. We show below in Proposition 5.17 in the case of
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Deligne cocycles it reproduces the existing concept of surface holonomy. In the case
of Breen-Messing cocycles such a concept was previously unknown; its is one of the
main results of this article.

(ii) The equivalence of Theorem 4.10 induces a canonical bijection

h0BGrb∇(M) ∼= h0TransBBS1(M,B(S1-Tor))

of between isomorphism classes of bundle gerbes with connections and isomorphism
classes of transport 2-functors, and so equips bundle gerbes with connection with
a well-defined, isomorphism-invariant concept of surface holonomy. We show below
in Proposition 5.17 that it reproduces the existing concept of surface holonomy for
abelian gerbes.

(iii) The injective map

h0(H-BGrb∇ff (M)) // h0(Trans
2
BAUT(H)(M,B(H-BiTor)))

of Theorem 4.15 between isomorphism classes of fake-flat non-abelian H-bundle
gerbes with connection and transport 2-functors, equips fake-flat non-abelian H-
bundle gerbes with connection with a well-defined, isomorphism-invariant concept
of surface holonomy. Such a concept was previously unknown; it is one of the main
results of this article.

Now we prove that the reduced surface holonomy of Theorem 5.16 reduces in the case
G = BS1 to the established notion of surface holonomy for connections on BS1-gerbes.
Let us first recall that established notion.

It can be given for an element ξ ∈ Ĥ2(M,BS1) of the (abelian) differential coho-
mology group which classifies BS1-gerbes. It is solely based on the fact that differential
cohomology sits in an exact sequence

1 // Ω2
cl,Z(M) // Ω2(M) I // Ĥ2(M,BS1) // H3(M,Z) // 0 ,

in which Ω2
cl,Z(M) denotes the closed 2-forms with integral periods [Bry93]. If φ : S // M

is a smooth map from a closed oriented surface S to M , then φ∗ξ ∈ Ĥ2(S,BS1) projects
to zero in 0 ∈ H3(S,Z) for dimensional reasons, and so is the image of a 2-form B ∈ Ω2(S)
under the map I in the sequence. The abelian surface holonomy of ξ around φ is then
defined as

AbHolξ(φ) := exp

(
−

∫

S

B

)
∈ S1.

Since the difference between two choices of 2-forms is a closed 2-form with integral periods,
this integral is independent of the choice of B.
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5.17. Proposition. Let tra : P2(M) // T be a transport 2-functor with BBS1-
structure. Let ξ ∈ Ĥ2(M,BS1) be the associated class under the bijection of Theorem 4.7.
Then,

RHoltra(φ, x,M) = AbHolξ(φ),

i.e. the reduces surface holonomy of tra coincides with the established notion of surface
holonomy for abelian gerbes. In particular, it is independent of the marking.

Proof. For any smooth manifold X , we have an equality between Ω2(X) and the
objects of the 2-category Z2

X(BS
1)∞. The latter is isomorphic to the 2-category

Funct∞(P2(X),BS1) of smooth 2-functors via Theorem 4.2, and we have computed in
Lemma 4.3 that

F (Σ) = exp

(
−

∫

Σ

B

)
(44)

for any bigon Σ ∈ BX . By construction we have a commutative diagram

Ω2(X)
I //

��

Ĥ2(X,BS1)

��
Funct∞(P2(X),BS1) // h0Trans

2
BBS1(X,BBS1),

in which the map on the bottom is the inclusion of smooth 2-functors in transport 2-
functors.

Note that Gred = S1 with Example 5.10 (a) andRed = idBBS1. Let trared be a reduction
of the given transport 2-functor, corresponding to the class ξ under the vertical map on
the right hand side of the diagram. After pullback along φ : S // M we obtain the
2-form B ∈ Ω2(S) such that I(B) = ξ. Let F : P2(S) // BS1 be the smooth 2-functor
that corresponds to B. By commutativity of the diagram, we find an isomorphism

F ∼= φ∗trared (45)

between transport 2-functors.
If now Σ is a fundamental bigon for the marking (x,M), then we have on one side

AbHolξ(φ) := exp

(
−

∫

S

B

)
Lemma 5.4

= exp

(
−

∫

Σ

B

)
(44)
= F (Σ) = HolF (id, x,M),

where the last equality is Definition 5.6 combined with the fact that F is a strict 2-functor
(with trivial compositors). Lemma 5.13 applied to the equivalence (45) shows that

HolF (id, x,M) = Holφ∗trared(id, x,M).

We have on the other side

Holφ∗trared(id, x,M) = Holtrared(φ, x,M) = RHoltra(φ, x,M),

this shows the claimed coincidence.
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Finally, let us comment on the dependence of the reduced surface holonomy on the
equivalence class of a marking. Let S be a closed oriented surface, and let (x,M) and
(x′,M′) two markings. A standard result from the theory of Riemann surfaces is:

(i) There exists an orientation-preserving diffeomorphism f : S // S such that
(x′,M′) = f(x,M),

(ii) The diffeomorphism f is homotopic to the identity map idS if and only if (x,M) and
(x′,M′) are equivalent.

The quotient of the group of orientation-preserving diffeomorphisms modulo those homo-
topic to the identity is the mapping class group of S, denoted M(S). Thus, M(S) acts
on the reduced surface holonomies of a surface φ : S // M . Currently we do not know
what this action is; in particular, we do not know if it is trivial or not.
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[Bry93] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, volume 107 of
Progr. Math. Birkhäuser, 1993.
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