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THE ALGEBRA OF THE NERVES OF OMEGA-CATEGORIES

RICHARD STEINER

Abstract. We show that the nerve of a strict omega-category can be described al-
gebraically as a simplicial set with additional operations subject to certain identities.
The resulting structures are called sets with complicial identities. We also construct an
equivalence between the categories of strict omega-categories and of sets with complical
identities.

1. Introduction

This paper is concerned with the simplicial nerves of strict ω-categories, as constructed
by Street [6]. The nerves are simplicial sets with additional structure, and the problem
is to characterise the additional structure which can occur. One characterisation, due to
Verity [7], says that the nerves are complicial sets; that is to say, they have distinguished
classes of thin elements satisfying certain axioms. The object of this paper is to give a
more concrete algebraic characterisation: the nerves are simplicial sets with additional
operations satisfying certain identities. The result is a set with complicial identities as
defined in [5]. The resultant characterisation is like the characterisation of cubical nerves
given by Al-Agl, Brown and Steiner [1].

The method involves a comparison of the theories of ω-categories and of sets with
complicial identities in the technical sense of universal algebra. It turns out that both
theories can be expressed in terms of chain complexes and chain maps. The theory of ω-
categories is represented by simple chain complexes [4]; the theory of sets with complicial
identities is represented by the chain complexes of simplexes and by certain colimits of
these chain complexes. The proof is based on relationships between the various chain
complexes involved.

The paper is structured as follows. In Section 2 we describe ω-categories and show
that their theory is represented by the class of simple ω-categories (see [2]). In Section 3
we describe sets with complicial identities. In Section 4 we describe a category of chain
complexes with additional structure called augmented directed complexes and a functor ν
from this category to the category of ω-categories. In Section 5 we show that simple ω-
categories are the images under ν of simple chain complexes; it follows that the theory of ω-
categories can be described in terms of simple chain complexes. In Section 6 we construct
a functor λ from augmented directed complexes to sets with complicial identities, and in
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Section 7 we use this functor to express the theory of sets with complicial identities in
terms of the chain complexes of simplexes. We have now described the categories of ω-
categories and of sets with complicial identities in terms of augmented directed complexes,
and can therefore compare the two categories. The comparison occupies Sections 8–13.

The idea behind the comparison is as follows. Let X be a set with complicial identities;
then there is a contravariant functor from simple chain complexes to sets given by

S 7→ Hom[λS,X].

This functor will yield an ω-category provided that it takes certain colimit diagrams to
limit diagrams; we therefore need information about the sets Hom[λS,X]. We obtain
this information by showing that S is a retract of the chain complex of a simplex. We
begin in Section 8 by showing that S is a quotient of the chain complex of a simplex. We
then show that S is a retract by constructing an idempotent endomorphism of the chain
complex of the simplex with the appropriate kernel. This endomorphism represents an
operation in sets with complicial identities. We construct the operation in Section 9 and
give some computations concerning the induced endomorphism in Section 10; we prove
that the corresponding endomorphism is idempotent with the correct kernel in Section 11;
we show that the required diagrams are limit diagrams in Section 12. In Section 13 we
deduce the main result (Theorem 13.3): ω-categories are equivalent to sets with complicial
identities.

2. The theory of ω-categories

In this paper all ω-categories are strict ω-categories. We will use an algebraic definition
with infinitely many sorts, as follows.

2.1. Definition. An ω-category C is a sequence of sets C0, C1, . . . together with the
following structure.

(1) If x ∈ Cp then there are identity elements

inpx ∈ Cn (p < n),

sources
d−q x ∈ Cq (q < p),

and targets
d+q x ∈ Cq (q < p).

(2) If x, y ∈ Cp and d+q x = d−q y for some q < p then there is a composite

x#q y ∈ Cp.
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(3) If x ∈ Cp then

inmi
m
p x = inpx (p < m < n),

d−p i
n
px = d+p i

n
px = x (p < n),

ipmd
−
mx#m x = x#m i

p
md

+
mx = x (m < p),

d−md
−
nx = d−md

+
nx = d−mx (m < n < p),

d+md
−
nx = d+md

+
nx = d+mx (m < n < p).

(4) If x, y ∈ Cp and d+q x = d−q y for some q < p then

inp (x#q y) = inpx#q i
n
py (p < n),

d−m(x#q y) = d−mx#q d
−
my (q < m < p),

d+m(x#q y) = d+mx#q d
+
my (q < m < p),

d−q (x#q y) = d−q x,

d+q (x#q y) = d+q y.

(5) If x, y, z ∈ Cp and d+q x = d−q y, d+q y = d−q z for some q < p then

(x#q y) #q z = x#q(y#q z).

(6) If x, y, z, w ∈ Cp and d+q x = d−q y, d+my = d−mz, d+q z = d−q w with m < q < p then

(x#q y) #m(z#q w) = (x#m z) #q(y#mw).

A morphism of ω-categories f : C → D is a sequence of functions f : Cp → Dp com-
muting with the identity, source, target and composition operations.

2.2. Remark. In an ω-category the identity element functions inp must be injective. It is
therefore possible to require them to be inclusions, yielding a one-sorted description with
operations d−q , d

+
q ,#q.

2.3. Remark. In axiom (6) the hypotheses d+q x = d−q y, d+q z = d−q w imply that

d+mx = d+md
+
q x = d+md

−
q y = d+my, d−mz = d−md

+
q z = d−md

−
q w = d−mw.

One could therefore replace the single equality d+my = d−mz by the two equalities d+mx =
d−mz, d+my = d−mw. This produces the more usual form of the hypotheses.

The domains for the axioms can be naturally indexed by sequences of nonnegative
integers as follows: for (1) and (3) use the one-term sequence (p); for (2) and (4) use
(p, q, p) with p > q; for (5) use (p, q, p, q, p) with p > q; for (6) use (p, q, p,m, p, q, p) with
p > q > m. All of these sequences are up-down vectors in the sense of the following
definition (taken from [2], 2.3).
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2.4. Definition. An up-down vector is a non-empty finite sequence of nonnegative in-
tegers

(p0, q1, p1, . . . , pk−1, qk, pk)

such that pi−1 > qi and qi < pi for 1 ≤ i ≤ k.

The corresponding ω-categories are also taken from [2] and may be defined as follows.

2.5. Definition. Let s be an up-down vector given by

s = (p0, q1, p1, . . . , pk−1, qk, pk).

Then an s-simple ω-category is an ω-category with a presentation of the following form:
the generators form an ordered list g0, . . . , gk with dim gi = pi; the relations are given by

d+qigi−1 = d−qigi (1 ≤ i ≤ k).

We will usually treat simple ω-categories as iterated push-outs, using induction on the
numbers of terms in up-down vectors. An up-down vector s with more than one term will
therefore be written in the form

s = (s′, q, p),

so that s′ is a shorter up-down vector with last term greater than q and so that p is an
integer greater than q. The corresponding push-outs are as follows.

2.6. Definition. Let s be an up-down vector with more than one term given by s =
(s′, q, p); then an s-simple square of ω-categories is a push-out square

C0

π
��

ρ // C ′′

τ
��

C ′ σ
// C

such that C ′, C0 and C ′′ are s′-simple, (q)-simple and (p)-simple with final generators g′,
g0 and g′′ and such that

πg0 = d+q g
′, ρg0 = d−q g

′′.

Obviously we have the following result.

2.7. Proposition. If τ : C ′′ → C is the right hand vertical morphism in an s-simple
square of ω-categories and if C ′′ has final generator g′′ then C is an s-simple ω-category
with final generator τg′′.

In the axioms for ω-categories the domains are free ω-categories on single generators
and pull-backs corresponding to simple squares. We therefore get the following result.

2.8. Proposition. Let ω-cat be the category of ω-categories, let Θ be the full-subcategory
of simple ω-categories, and let Θ̂ be the category of contravariant functors from Θ to sets
which take simple squares to pull-back squares. Then there is an equivalence of categories

C 7→ Hom(−, C) : ω-cat→ Θ̂.
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3. Sets with complicial identities

In this section we recall the definition of sets with complicial identities from [5]. A set
with complicial identities is a simplicial set X0, X1, . . . together with additional partial
binary wedge operations ∧i. These operations raise dimension by 1; they correspond
to the projection of an (m + 1)-simplex onto the union of the m-faces opposite vertices
i and i + 2. The identities are stated here without comment, but there are illustrations
in Section 7.

3.1. Definition. A set with complicial identities X is a sequence of sets

X0, X1, . . .

together with the following structure.
(1) If x ∈ Xm then there are faces

∂ix ∈ Xm−1 (m > 0, 0 ≤ i ≤ m)

and degeneracies
εix ∈ Xm+1 (0 ≤ i ≤ m).

(2) If x, y ∈ Xm and if ∂ix = ∂i+1y for some i with 0 ≤ i ≤ m − 1 then there is a
wedge

x ∧i y ∈ Xm+1.

(3) If x ∈ Xm then

∂i∂jx = ∂j−1∂ix (m ≥ 2, 0 ≤ i < j ≤ m),

∂iεjx = εj−1∂ix (0 ≤ i < j ≤ m),

∂jεjx = ∂j+1εjx = x,

∂iεjx = εj∂i−1x (j + 2 ≤ i ≤ m+ 1),

εiεjx = εj+1εix (0 ≤ i ≤ j ≤ m),

εix = εi∂i+1x ∧i x (0 ≤ i < m),

εi+1x = x ∧i εi∂ix (0 ≤ i < m).

(4) If x, y ∈ Xm and if ∂ix = ∂i+1y with 0 ≤ i < m then

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (0 ≤ j ≤ i− 1),

∂i(x ∧i y) = y,

∂i+2(x ∧i y) = x,

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (i+ 3 ≤ j ≤ m+ 1).

(5) If b ∈ Xm+1 and y, z ∈ Xm, if ∂iy = ∂i+1z and ∂ib = ∂i+1(y ∧i z) with 0 ≤ i < m,
and if A = b ∧i (y ∧i z), then

A = (∂i+2b ∧i y) ∧i+1 ∂i+1A.
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(6) If x, y ∈ Xm and c ∈ Xm+1, if ∂ix = ∂i+1y and ∂i+1(x∧iy) = ∂i+2c with 0 ≤ i < m,
and if A = (x ∧i y) ∧i+1 c, then

A = ∂i+2A ∧i (y ∧i ∂ic).

(7) If x, y, z ∈ Xm and if ∂ix = ∂i+1y, ∂iy = ∂i+1z with 0 ≤ i < m then

[x ∧i ∂i+1(y ∧i z)] ∧i (y ∧i z) = (x ∧i y) ∧i+1 [∂i+1(x ∧i y) ∧i z].

(8) If x, y, z, w ∈ Xm, if ∂i+1x = ∂i+2y, ∂iy = ∂i+1z, ∂i+1w = ∂i+1(∂ix ∧i ∂i+2z) with
0 ≤ i ≤ m− 2, and if A = ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)], then

A ∧i (w ∧i+1 ∂iA) = (∂i+3A ∧i w) ∧i+2 A.

(9) If x, y, z, w ∈ Xm and ∂ix = ∂i+1y, ∂iz = ∂i+1w, ∂j−1x = ∂jz, ∂j−1y = ∂jw with
0 ≤ i ≤ j − 3 ≤ m− 3 then

(x ∧i y) ∧j (z ∧i w) = (x ∧j−1 z) ∧i (y ∧j−1 w).

A morphism of sets with complicial identities f : X → Y is a sequence of functions
f : Xm → Ym commuting with the face, degeneracy and wedge operations.

4. Augmented directed complexes

In this section we give some definitions and results based on [3].

4.1. Definition. An augmented directed complex is an augmented chain complex of
abelian groups

. . . ∂ // K1
∂ // K0

ε // Z,

together with a prescribed submonoid for each chain group Kq. A morphism of augmented
directed complexes is an augmentation-preserving chain map which takes prescribed sub-
monoids into prescribed submonoids. A free augmented directed complex is an augmented
directed complex such that each chain group is a free abelian group with a prescribed basis
and such that each prescribed submonoid is generated as a monoid by the prescribed basis
elements.

Let K be a free augmented directed complex. We note that the prescribed basis
elements are uniquely determined as the indecomposable elements in the prescribed sub-
monoids. We regard the union of the prescribed bases for the individual chain groups Kq

as a prescribed graded basis for the entire chain complex K. Given a chain c in K, we
write ∂+c and ∂−c for the positive and negative parts of the boundary ∂c; in other words,
∂+c and ∂−c are the sums of basis elements without common terms such that

∂c = ∂+c− ∂−c.
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4.2. Definition. A totally ordered directed complex is a free augmented chain complex
together with a total ordering of the basis such that each basis element a satisfies the
following conditions.

(1) In the ordered basis, a appears after the terms of ∂−a and before the terms of ∂+a.
(2) If the dimension of a is p, then

ε(∂−)pa = ε(∂+)pa = 1.

Given an augmented directed complex K, we define an ω-category νK as follows. The
set (νK)p of p-dimensional elements consists of the double sequences

(x−0 , x
+
0 | x−1 , x+1 | . . . )

such that x−i and x+i are i-dimensional members of the prescribed submonoids, such that

x−i = x+i = 0

for i > p, such that
εx−0 = εx+0 = 1,

and such that
x+i − x−i = ∂x−i+1 = ∂x+i+1

for i ≥ 0. For n > p the identity element function inp : (νK)p → (νK)n is the inclusion.
For q < p, if x = (x−0 , x

+
0 | . . . ) as above, then

dαq x = (x−0 , x
+
0 | . . . | x−q−1, x+q−1 | xαq , xαq | 0, 0 | . . . ).

If x and y are p-dimensional and if d+q x = d−q y = z with q < p then

x#q y = x− ipqz + y.

In particular let K be a totally ordered directed complex and let a be a p-dimensional
basis element for K; then there is a p-dimensional element 〈a〉 of νK, called an atom,
which is given by

〈a〉 =
(

(∂−)pa, (∂+)pa | . . . | ∂−a, ∂+a | a, a | 0, 0 | . . .
)
.

The main results ([3], Theorems 5.11 and 6.1) can be stated as follows.

4.3. Theorem. The functor ν is a fully faithful functor from the category of totally
ordered directed complexes to the category of ω-categories.

4.4. Theorem. Let K be a totally ordered directed complex. Then the ω-category νK has
a presentation as follows. The generators are the atoms, such that 〈a〉 is a p-dimensional
member of νK if a is a p-dimensional basis element. For each basis element a of positive
dimension p there are relations

d−p−1〈a〉 = w−(a), d+p−1〈a〉 = w+(a),

where w−(a) and w+(a) are arbitrarily chosen expressions for d−p−1〈a〉 and d+p−1〈a〉 as
iterated composites of atoms of dimension less than p.
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5. Simple chain complexes

We will now describe a class of chain complexes corresponding to simple ω-categories.
The class was defined in [4]. For present purposes it is convenient to proceed inductively.

5.1. Definition. Let s be a one-term up-down vector given by s = (p). Then an s-
simple chain complex with (final) generator a is a free augmented directed complex with
a p-dimensional basis element a such that the basis elements can be listed as

(∂−)pa, (∂−)p−1a, . . . , ∂−a, a, ∂+a, . . . , (∂+)p−1a, (∂+)pa

and such that ε(∂−)pa = ε(∂+)pa = 1.

5.2. Definition. Let s be an up-down vector with more than one term given by s =
(s′, q, p), and let p′ be the last term in s′. Then an s-simple chain complex with final
generator a is an augmented directed complex K if there are s′-simple, (q)-simple and
(p)-simple subcomplexes K ′, K0 and K ′′ with final generators a′, a0 and a such that

K = K ′ +K ′′,

K ′ ∩K ′′ = K0,

(∂+)p
′−qa′ = a0 = (∂−)p−qa,

and the distinguished submonoid of K is the sum of the distinguished submonoids of
K ′ and K ′′.

5.3. Proposition. Let s be an up-down vector with last term p and let K be an s-simple
chain complex with final generator a. Then K is a totally ordered directed complex whose
ordered basis finishes with the elements

a, ∂+a, . . . , (∂+)pa.

Proof. The proof is by induction on the number of terms in s. In the case s = (p) the
result is obvious. From now on, let s = (s′, q, p), let K ′, K0 and K ′′ be the subcomplexes
as in the definition, and let a0 = (∂−)p−qa. It follows from the inductive hypothesis that
K ′ is a totally ordered directed complex whose ordered basis finishes with the terms

a0, ∂+a0, . . . , (∂+)qa0.

We observe that K ′′ is obtained from K0 by adjoining the elements

(∂−)p−q−1a, . . . , ∂−a, a, ∂+a, . . . , (∂+)p−qa.

It follows that K is a totally ordered directed complex; the ordered basis is obtained from
that of K ′ by inserting the additional elements (∂−)p−q−1a, . . . , (∂+)p−qa immediately
after a0. For r > 0 we have (∂+)ra0 = (∂+)p−q+ra; the ordered basis for K therefore
finishes with the elements

a, . . . , (∂+)p−qa, (∂+)p−q+1a, . . . , (∂+)pa.

This completes the proof.
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5.4. Proposition. Let s be an up-down vector with last term p and let K be an s-
simple chain complex with final generator a. Then νK is an s-simple ω-category with
final generator 〈a〉.

Proof. The proof is by induction on the number of terms in s.
Suppose that s = (p). According to Theorem 4.4, νK has a presentation generators

〈(∂−)pa〉, . . . , 〈∂−a〉, 〈a〉, 〈∂+a〉, . . . , 〈(∂+)pa〉

and with relations

d−i−1〈(∂−)p−ia〉 = d−i−1〈(∂+)p−ia〉 = 〈(∂−)p−i+1a〉 (0 < i ≤ p),

d+i−1〈(∂−)p−ia〉 = d+i−1〈(∂+)p−ia〉 = 〈(∂+)p−i+1a〉 (0 < i ≤ p).

Because of the axioms

d−i−1d
−
i = d−i−1d

+
i = d−i−1, d+i−1d

−
i = d+i−1d

+
i = d+i−1,

this collapses to a presentation with a single p-dimensional generator 〈a〉 and with no
relations. Therefore νK is an s-simple ω-category with final generator 〈a〉.

Now let s = (s′, q, p). Let K ′, K0 and K ′′ be the s′-simple, (q)-simple and (p)-simple
subcomplexes with final generators a′, a0 and a as in Definition 5.2. Using the presentation
of Theorem 4.4 and the inductive hypothesis, we see that νK is generated by νK ′ and
νK ′′ subject to the relation d+q 〈a′〉 = d−q 〈a〉. This gives the result.

We also have simple squares of chain complexes, corresponding to simple squares of
ω-categories.

5.5. Definition. Let s be an up-down vector with more than one term given by s =
(s′, q, p) and let p′ be the last term in s′; then an s-simple square of chain complexes is a
square of augmented directed complexes

K0

π
��

ρ // K ′′

τ
��

K ′ σ
// K

with the following properties: the complexes K ′, K0 and K ′′ are s′-simple, (q)-simple and
(p)-simple with final generators a′, a0 and a′′; the morphisms π and ρ are given by

π(∂+)q−ra0 = (∂+)p
′−ra′, ρ(∂−)q−ra0 = (∂−)p−ra′′ (0 ≤ r ≤ q);

the square is a push-out as a square of abelian groups; the prescribed submonoid of K is
the sum of the images of the prescribed submonoids of K ′ and K ′′.

Obviously we have the following result.
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5.6. Proposition. If τ : K ′′ → K is the right hand vertical morphism in an s-simple
square of chain complexes and if K ′′ has final generator a′′ then K is an s-simple chain
complex with final generator a such that

τ(∂+)p−ra′′ = (∂+)p−ra (0 ≤ r ≤ p).

Using Definition 2.6 and Proposition 2.8 we obtain the following results.

5.7. Proposition. The image under ν of an s-simple square of chain complexes is an
s-simple square of ω-categories.

5.8. Proposition. Let ω-cat be the category of ω-categories, let Σ be the category of
simple chain complexes and morphisms of augmented directed complexes, and let Σ̂ be the
category of contravariant functors from Σ to sets which take simple squares to pull-back
squares. Then there is an equivalence of categories

C 7→ Hom[ν(−), C] : ω-cat→ Σ̂.

6. The chain complexes of simplexes

In this section we discuss the chain complexes of simplexes, which will simply be called
simplexes. They correspond to the theory of sets with complicial identities (Section 3).
The material is mostly taken from [5].

6.1. Definition. For m = 0, 1, 2, . . . the m-simplex ∆(m) is the free augmented directed
complex constructed as follows. The basis elements correspond to the sequences of integers

a0, . . . , aq

with 0 ≤ q ≤ m and 0 ≤ a0 < a1 < . . . < aq ≤ m. The basis element corresponding
to a0, . . . , aq is written [a0, . . . , aq] and has dimension q. If q > 0 then the boundary of
[a0, . . . , aq] is the alternating sum

[a1, . . . , aq]− [a0, a2, . . . , aq] + . . .+ (−1)q[a0, . . . , aq−1].

The augmentation is given by ε[a0] = 1.

We will now show that the simplexes are totally ordered directed complexes by ex-
pressing them as joins.

6.2. Definition. Let K and L be augmented directed complexes. Then the join K ∗L is
the direct sum of abelian groups

K ∗ L = K ⊕ (K × L)⊕ L

with the following structure. The grading is given by

(K ∗ L)q = Kq ⊕

[ ⊕
i+j=q−1

(Ki ⊗ Lj)

]
⊕ Lq.
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The inclusions of K and L in K ∗ L commute with the boundary and augmentation ho-
momorphisms. The boundary on Ki ⊗ Lj is given by

∂(x⊗ y) =


(εx)y − (εy)x (i = j = 0),

(εx)y − x⊗ ∂y (i = 0, j > 0),

∂x⊗ y − (−1)i(εy)x (i > 0, j = 0),

∂x⊗ y − (−1)ix⊗ ∂y (i, j > 0).

The prescribed submonoid of K ∗ L is generated by the elements of the prescribed sub-
monoids of K and L and by the tensor products of these elements.

6.3. Example. The m-simplex ∆(m) is the join of m+ 1 copies of ∆(0).

6.4. Proposition. If K and L are totally ordered directed complexes, then K ∗ L is a
totally ordered directed complex.

Proof. One can check that K ∗ L has a suitably ordered basis consisting of the basis
elements of K and L and of the tensor products of these basis elements. The ordering of
the basis for K ∗L is obtained as follows. Take the basis elements of K in order followed
by the basis elements of L in order. If a is an odd-dimensional basis element in K, then
the basis elements of the form a⊗ b are inserted before a in the order given by the second
factor; if a is an even-dimensional basis element in K, then the basis elements of the form
a⊗ b are inserted after a in the reverse of the order given by the second factor.

6.5. Proposition. A simplex is a totally ordered directed complex.

Proof. Obviously ∆(0) is a totally ordered directed complex. The result now follows
from Example 6.3 and Proposition 6.4.

We will now use simplexes to construct a functor λ from augmented directed com-
plexes to sets with complicial identities. The m-dimensional elements in λK will be the
morphisms of augmented directed complexes from ∆(m) to K. An operation θ in sets
with complicial identities will be contravariantly represented by a morphism θ∨ between
simplexes. In particular there are the obvious morphisms corresponding to the face and
degeneracy operations.

6.6. Notation. The face and degeneracy morphisms

∂∨i : ∆(m− 1)→ ∆(m) (m > 0, 0 ≤ i ≤ m),

ε∨i : ∆(m+ 1)→ ∆(m) (0 ≤ i ≤ m)

are defined on basis elements as follows.
If a = [a0, . . . , aq] is a basis element for ∆(m− 1) then ∂∨i a = [a′0, . . . , a

′
q] with

a′q =

{
aq (0 ≤ aq ≤ i− 1),

aq + 1 (i ≤ aq ≤ m− 1).
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If b = [b0, . . . , bq] is a basis element for ∆(m+ 1) including both the terms i and i+ 1
then ε∨i b = 0.

If b = [b0, . . . , bq] is a basis element for ∆(m + 1) not including both the terms i and
i+ 1 then ε∨i b = [b′′0, . . . , b

′′
q ] with

b′′q =

{
bq (0 ≤ bq ≤ i),

bq − 1 (i+ 1 ≤ bq ≤ m+ 1).

Recall from Definition 4.1 that morphisms of augmented directed complexes are
augmentation-preserving chain maps taking prescribed submonoids into prescribed sub-
monoids. Recall also that the prescribed submonoid of a free augmented directed complex
is the submonoid generated by the prescribed basis elements. We obviously have the fol-
lowing result.

6.7. Proposition. The face and degeneracy morphisms are morphisms of augmented
directed complexes.

Less obviously we also have the following result.

6.8. Proposition. Let K be an augmented directed complex and let

x, y : ∆(m)→ K

be morphisms of augmented directed complexes such that x∂∨i = y∂∨i+1 for some i with
0 ≤ i < m. Then there is a morphism of augmented directed complexes

z : ∆(m+ 1)→ K

given by
z = xε∨i+1 − x∂∨i (ε∨i )2 + yε∨i = xε∨i+1 − y∂∨i+1(ε

∨
i )2 + yε∨i .

Proof. It is clear that z is an augmentation preserving chain map; it therefore suffices to
prove that za is in the prescribed submonoid of K for each basis element a in ∆(m+ 1).
We do this by considering three cases: if a has no term i+ 2 then ∂∨i+1(ε

∨
i )2a = ε∨i a, hence

za = xε∨i+1a; if a has no term i then ∂∨i (ε∨i )2a = ε∨i+1a, hence za = yε∨i a; if a has terms
i and i+ 2 then (ε∨i )2a = 0, hence

za = xε∨i+1a+ yε∨i a.
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The definition of λ is now as follows.

6.9. Notation. Let K be an augmented directed complex. Then λK is the graded set
given by

(λK)m = Hom[∆(m), K].

If x ∈ (λK)m with m > 0 and if 0 ≤ i ≤ m then

∂ix = x∂∨i .

If x ∈ (λK)m and 0 ≤ i ≤ m then
εix = xε∨i .

If x, y ∈ (λK)m and ∂ix = ∂i+1y for some i with 0 ≤ i < m then

x ∧i y = εi+1x− ε2i∂ix+ εiy = εi+1x− ε2i∂i+1y + εiy.

6.10. Proposition. If K is an augmented directed complex then λK is a set with com-
plicial identities.

Proof. We see that the operations are well-defined. The axioms follow straightforwardly
from computations with chain maps.

We conclude this section with the main result of [5] (Theorem 8.7).

6.11. Theorem. Let O be the full subcategory of the category of augmented directed
complexes with objects ∆(0), ∆(1), . . . . For n ≥ 0 let ιn be the identity endomorphism
of ∆(n). Then λ is a fully faithful embedding of O in the category of sets with complicial
identities such that λ∆(n) is freely generated by the n-dimensional element λιn.

7. Complicial identities in terms of chain complexes

In the last section we constructed a functor λ from augmented directed complexes to
sets with complicial identities (see Proposition 6.10). A set with complicial identities X
therefore defines a contravariant set-valued functor

K 7→ Hom(λK,X)

on the category adc of augmented directed complexes. We will now reverse this process:
we will show that sets with complicial identities can be obtained from contravariant set-
valued functors on a suitable subcategory of adc, provided that they take certain diagrams
to limit diagrams.

The objects and diagrams correspond to the domains in the axioms for sets with
complicial identities (see Definition 3.1), and we will now consider the various axioms.

The augmented directed complexes associated to axioms (1) and (3) are the simplexes
∆(m).
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In the remaining cases we use diagrams of augmented directed complexes which are
colimit diagrams as diagrams of abelian groups. The prescribed submonoid of the target
object is always the sum of the images of the prescribed submonoids of the other objects
in the diagram.

For axioms (2) and (4) we use diagrams

∆(m− 1)

∂∨i
��

∂∨i+1 // ∆(m)

ηy

��
∆(m) ηx

// ∆(2)(m, i)

with 0 ≤ i < m. Since these diagrams are to be colimit diagrams as diagrams of abelian
groups, we have

∆(2)(m, i) ∼=
∆(m)⊕∆(m)

{ (∂∨i z,−∂∨i+1z) : z ∈ ∆(m− 1) }
.

If X is a set with complicial identities then ∆(2)(m, i) corresponds to the limit

{ (x, y) ∈ Xm ×Xm : ∂ix = ∂i+1y }.

We will also need the morphisms

v∨i : ∆(m+ 1)→ ∆(2)(m, i)

corresponding to the wedge operations; these are given by

v∨i = ηxε
∨
i+1 − ηx∂∨i (ε∨i )2 + ηyε

∨
i = ηxε

∨
i+1 − ηy∂∨i+1(ε

∨
i )2 + ηyε

∨
i .

For axiom (5) we use similar diagrams

∆(m)

∂∨i

��

v∨i ∂
∨
i+1// ∆(2)(m, i)

��

∆(m)

^^

ηy

��

∆(m− 1)
∂∨ioo

∂∨i+1 // ∆(m)

ii

ηz

uu
∆(m+ 1) ηb

// ∆(5)(m, i)

with 0 ≤ i < m.
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For axiom (6) we use diagrams

∆(2)(m, i)

��

∆(m)
v∨i ∂

∨
i+1

oo

∂∨i+2

��

∆(m)

55

ηx

))

∆(m− 1)
∂∨ioo

∂∨i+1 // ∆(m)

@@

ηy

��
∆(6)(m, i) ∆(m+ 1)ηc

oo

with 0 ≤ i < m.
For axiom (7) we use diagrams

∆(m− 1)

∂∨i
��

∂∨i+1 // ∆(m)

ηy

��

∆(m− 1)
∂∨ioo

∂∨i+1

��
∆(m) ηx

// ∆(7)(m, i) ∆(m)ηz
oo

with 0 ≤ i < m.
For axiom (8) we use diagrams

∆(m− 1)

∂∨i

��

// ∆(2)(m− 1, 1) ∆(m− 1)oo

∂∨i+2

��

∆(m− 1)

v∨i ∂
∨
i+1

OO

∂∨i+1

��
∆(m)

ηw

��
∆(m)

ηx // ∆(7)(m, i) ∆(m)
ηzoo

∆(m− 1)

∂∨i+1

OO

∂∨i+2

// ∆(m)

ηy

OO

∆(m− 1)
∂∨i

oo

∂∨i+1

OO

with 0 ≤ i ≤ m− 2.
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For axiom (9) we use diagrams

∆(m− 1)
∂∨i+1 //

∂∨i
��

∆(m)

ηy

��

∆(m− 1)
∂∨j−1oo

∂∨j
��

∆(m)
ηx // ∆(9)(m, i, j) ∆(m)

ηwoo

∆(m− 1)
∂∨j

//

∂∨j−1

OO

∆(m)

ηz

OO

∆(m− 1)
∂∨i

oo

∂∨i+1

OO

with 0 ≤ i ≤ j − 3 ≤ m− 3.
We can evidently obtain sets with complicial identities from contravariant set-valued

functors in the following way.

7.1. Proposition. Let Π be the full subcategory of the category of augmented directed
complexes given by the objects in the diagrams associated to the axioms for sets with
complicial identities. Let X be a contravariant set-valued functor on Π taking each of
the diagrams to a limit diagram. Then there is a set with complicial identities functorial
in X such that the m-dimensional elements are the members of X[∆(m)] and such that
the operations are induced by the morphisms ∂∨i , ε∨i and v∨i .

In particular let C be an ω-category; then there is a contravariant set-valued functor
on the category Π of this definition given by Hom[ν(−), C]. We want this functor to
yield a set with complicial identities. In order to do this, we must show that the images
under ν of the diagrams associated to the axioms are colimit diagrams of ω-categories.
We will do this by showing that the objects of Π are totally ordered directed complexes;
the colimit properties will then be consequences of the presentations in terms of atoms
(Theorem 4.4).

7.2. Proposition. If K is an object in a diagrams associated to an axiom for sets with
complicial identities, then K is a totally ordered directed complex.

Proof. We already know from Proposition 6.5 that the simplexes ∆(m) are totally or-
dered directed complexes, because they are joins of copies of ∆(0) and because ∆(0) is
a totally ordered directed complex. We will prove the result for the other complexes in-
volved in a similar way, by expressing them as joins. It is convenient to write ∆(−1) for
the zero chain complex, which serves as an identity for the join construction; it is then
straightforward to verify that

∆(k)(m, i) ∼= ∆(i− 1) ∗∆(k)(1, 0) ∗∆(m− i− 2) (k = 2, 5, 6, 7),

∆(8)(m, i) ∼= ∆(i− 1) ∗∆(8)(2, 0) ∗∆(m− i− 3),

∆(9)(m, i, j)
∼= ∆(i− 1) ∗∆(2)(1, 0) ∗∆(j − i− 4) ∗∆(2)(1, 0) ∗∆(m− j − 1).
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It now suffices to show that ∆(k)(1, 0) is a totally ordered directed complex for k = 2, 5, 6, 7
and that ∆(8)(2, 0) is a totally ordered directed complex. We will do this in each case by
drawing a figure and listing the basis elements in the correct order.

For ∆(2)(1, 0) the figure is

• • •// //ηx ηy

and the ordered basis is

ηx[0], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1], ηy[1].

For ∆(5)(1, 0) the figure is

•

•

•

•

??

��

��

//

ηb

ηy

ηz

and the ordered basis is

ηb[0], ηb[0, 2], ηb[0, 1, 2], ηb[0, 1], ηb[1] = ηy[0],

ηy[0, 1], ηy[1] = ηz[0], ηz[0, 1], ηz[1],

with
∂+ηb[0, 1, 2] = ηb[0, 1] + ηb[1, 2] = ηb[0, 1] + ηy[0, 1] + ηz[0, 1].

For ∆(6)(1, 0) the figure is

•

•

•

•
??

??

��

//

ηx

ηy

ηc

and the ordered basis is

ηc[0], ηc[0, 2], ηc[0, 1, 2], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1],

ηy[1] = ηc[1], ηc[1, 2], ηc[2],

with
∂+ηc[0, 1, 2] = ηc[0, 1] + ηc[1, 2] = ηx[0, 1] + ηy[0, 1] + ηc[1, 2].

For ∆(7)(1, 0) the figure is

• • • •// // //ηx ηy ηz
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and the ordered basis is

ηx[0], ηx[0, 1], ηx[1] = ηy[0], ηy[0, 1], ηy[1] = ηz[0], ηz[0, 1], ηz[1].

For ∆(8)(2, 0) the figure is

•

• •

•

•

•

GG

// //

��

//

77 ''

:: $$

ηx
ηy

ηz

ηw

and the ordered basis is

ηy[0], ηy[0, 2], ηy[0, 1, 2], ηy[0, 1] = ηx[0, 2], ηx[0, 1, 2], ηx[0, 1],

ηx[1], ηx[1, 2], ηx[2] = ηz[0], ηz[0, 2], ηz[0, 1, 2], ηz[0, 1],

ηw[0, 1, 2], ηw[0, 1], ηw[1], ηw[1, 2], ηw[2] = ηz[1], ηz[1, 2], ηz[2],

with
∂−ηw[0, 1, 2] = ηw[0, 2] = ηx[1, 2] + ηz[0, 1].

This completes the proof.

Now let Π be the category of Proposition 7.1 and let C be an ω-category. We have
shown in Proposition 7.2 that the objects of Π are totally ordered directed complexes.
It follows from the atomic presentations (Theorem 4.4) that the images under ν of the
diagrams of Proposition 7.1 are colimit diagrams of ω-categories. It therefore follows from
Proposition 7.1 that one obtains a set with complicial identities from the functor

K 7→ Hom[νK,C].

We will use the following notation.

7.3. Notation. Let α be the functor from ω-categories to sets with complicial identities
defined on an ω-category C as follows. The set of m-dimensional elements is given by

(αC)m = Hom[ν∆(m), C].

If x ∈ (αC)m then

∂ix = x(ν∂∨i ) (m > 0, 0 ≤ i ≤ m),

εix = x(νε∨i ) (0 ≤ i ≤ m).

If x, y ∈ (αC)m and ∂ix = ∂i+1y with 0 ≤ i < m then

x ∧i y = zv∨i ,

where z is the member of Hom[ν∆(2)(m, i), C] with

z(νηx) = x, z(νηy) = y.
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8. Simple chain complexes as quotients of simplexes

At the end of Section 7 we have constructed a functor α from ω-categories to sets with
complicial identities. We also need a functor in the opposite direction. Equivalently
(Proposition 5.8), given sets with complicial identities, we need contravariant set-valued
functors with suitable properties on the category of simple chain complexes. We will
again use the functor λ of Proposition 6.10 from augmented directed complexes to sets
with complicial identities; the functor on simple chain complexes corresponding to a set
with complicial identities X will be given by

S 7→ Hom[λS,X].

We must show that these functors take simple squares of chain complexes to pull-backs
(see Proposition 5.8). We will obtain information about the sets Hom[λS,X] by showing
that simple chain complexes are retracts of simplexes. In this section, as a first step, we
show that an s-simple chain complex can be expressed as a quotient

Ss = ∆(|s|)/Us,

where ∆(|s|) is a simplex of a suitable dimension. We will also show an s-simple square
of chain complexes can be obtained from a commutative square of simplexes Qs.

We will now define our notations.

8.1. Notation. Let s be an up-down vector given by

s = (p0, q1, p1, . . . , pk−1, qk, pk).

Then
|s| = p0 − q1 + p1 − . . .+ pk−1 − qk + pk.

We make the following observation, which will be used frequently in inductive argu-
ments, mostly without comment.

8.2. Proposition. Let s be an up-down vector with more than one term given by s =
(s′, q, p), and let p′ be the last term in s′. Then

|s| − p = |s′| − q > |s′| − p′.

Proof. This holds because |s| = |s′| − q + p and because p′ > q.

8.3. Notation. Let s = (s′, q, p) be an up-down vector with more than one term. Then
Qs is the commutative square

∆(q)

(∂∨0 )|s|−p

��

(∂∨1 )p−q

// ∆(p)

(∂∨0 )|s|−p

��
∆(|s′|)

(∂∨|s|−p+1
)p−q
// ∆(|s|).
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8.4. Notation. For p ≥ 0 let U(p) be the subcomplex of ∆(p) generated by the basis
elements [i0, . . . , im] with m > 0 and i1 ≤ p−m.

For s = (s′, q, p) let Vs be the subcomplex of ∆(|s|) generated by the basis elements
[i0, . . . , ir−1, |s| − p, ir+1, . . . , im] with 0 < r < m and

0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q,

and let
Us = (∂∨|s|−p+1)

p−qUs′ + (∂∨0 )|s|−pU(p) + Vs.

8.5. Notation. For an arbitrary up-down vector s, let

Ss = ∆(|s|)/Us.

8.6. Remark. As an abelian group, Us is generated by basis elements of positive dimen-
sion and by their boundaries. It follows that the quotient Ss is naturally an augmented
chain complex and the quotient homomorphism

∆(|s|)→ ∆(|s|)/Us = Ss

is augmentation-preserving. We make Ss into an augmented directed complex by taking
the images of the basis elements for ∆(|s|) as generators for the prescribed submonoid
of Ss. This makes the quotient homomorphism into a morphism of augmented directed
complexes.

We will now consider the one-term case.

8.7. Proposition. Let p be a nonnegative integer and let

aim = [i, p−m+ 1, p−m+ 2, . . . , p] (0 ≤ i ≤ p−m ≤ p).

Then S(p) is a (p)-simple chain complex with generator a such that

aim + U(p) = (∂−)p−ma (0 ≤ i < p−m ≤ p),

ap−mm + U(p) = (∂+)p−ma (0 ≤ m ≤ p).

Proof. We use Definition 5.1. Note that U(p) is the subcomplex of ∆(p) generated by
the basis elements not of the form aim. If b is a generator of U(p) of the form

b = [j, i, p−m+ 1, p−m+ 2, p−m+ 3, . . . , p] (0 ≤ j < i < p−m ≤ p),

then
∂b = aim − ajm + u

with u ∈ U(p); if b is any other generator for U(p) then ∂b ∈ U(p). As an abelian group,
U(p) is therefore generated by the basis elements not of the form aim and by the differences

aim − a0m (0 < i < p−m ≤ p).



THE ALGEBRA OF THE NERVES OF OMEGA-CATEGORIES 753

It follows that S(p) is a free augmented directed complex with basis

a00 + U(p), . . . , a
0
p−1 + U(p), a

0
p + U(p), a

1
p−1 + U(p), . . . , a

p
0 + U(p)

and that
aim + U(p) = a0m + U(p) (0 ≤ i < p−m ≤ p).

It is straightforward to check that

∂(a0m+1 + U(p)) = ap−mm − a0m + U(p) (0 ≤ m < p),

∂(ap−m−1m+1 + U(p)) = ap−mm − ap−m−1m + U(p) (0 ≤ m < p),

from which it follows that

aim + U(p) = (∂−)p−m(a0p + U(p)) (0 ≤ i < p−m ≤ p),

ap−mm + U(p) = (∂+)p−m(a0p + U(p)) (0 ≤ m ≤ p).

We also have
ε(a00 + U(p)) = ε(ap0 + U(p)) = 1;

therefore S(p) is (p)-simple with generator app + U(p), and the images aim + U(p) are as
described.

We will now consider up-down vectors with more than one term. We first show that
we can pass to quotients in the squares Qs.

8.8. Proposition. Let s = (s′, q, p). Then the morphisms in the square Qs restrict to
morphisms between the subcomplexes Us′, U(q), U(p), Us.

Proof. We have
(∂∨|s|−p+1)

p−qUs′ ⊂ Us, (∂∨0 )|s|−pU(p) ⊂ Us

by definition. We also have (∂∨1 )p−qU(q) ⊂ U(p) by considering generators. It therefore
remains to show that (∂∨0 )|s|−pU(q) ⊂ Us′ . To do this, let p′ be the last term of s′, so that

(∂∨0 )|s|−pU(q) = (∂∨0 )|s
′|−qU(q) = (∂∨0 )|s

′|−p′(∂∨0 )p
′−qU(q).

We have (∂∨0 )p
′−qU(q) ⊂ U(p′) by considering generators. We also have

(∂∨0 )|s
′|−p′U(p′) ⊂ Us′

trivially (if s′ = (p′)) or by definition (if s′ has more than one term). Therefore
(∂∨0 )|s|−pU(q) ⊂ Us′ as required.
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It therefore makes sense to use the following notation.

8.9. Notation. Let s = (s′, q, p) be an up-down vector with more than one term. Then
Rs is the commutative square

S(q)

��

// S(p)

��
Ss′

// Ss

induced by Qs.

We want to show that these squares are simple in the sense of Definition 5.5. In
particular we want to show that they are push-outs as squares of abelian groups, and we
begin with the following computations.

8.10. Proposition. Let s = (s′, q, p) and let T ′, T 0, T ′′ be the subcomplexes of ∆(|s|)
given by

T ′ = (∂∨|s|−p+1)
p−q∆(|s′|),

T 0 = (∂∨|s|−p+1)
p−q)(∂∨0 )|s|−p∆(q) = (∂∨0 )|s|−p(∂∨1 )p−q)∆(q),

T ′′ = (∂∨0 )|s|−p∆(p).

Then
T ′ ∩ T ′′ = T 0, ∆(|s|) = (T ′ + T ′′)⊕ Vs,

and every standard basis element for ∆(|s|) is congruent modulo Vs to a sum of basis
elements in T ′ + T ′′.

Proof. We consider various sets of basis elements of ∆(|s|). Let

J ′ = {0, 1, . . . , |s| − p− 1}, J ′′ = {|s| − p+ 1, |s| − p+ 2, . . . , |s| − q},
let A′ be the set of basis elements with no terms in J ′′, and let A′′ be the set of basis
elements with no terms in J ′. We see that T ′, T ′′ and T 0 have bases A′, A′′ and A′ ∩ A′′
respectively; therefore T ′ ∩ T ′′ = T 0.

Further, let B be the set of generators for Vs; that is, B is the set of basis elements
containing terms in both J ′ and J ′′ and also containing a term |s|−p. We see that A′∪A′′
and B are disjoint; we also see that the boundary of a member of B has exactly one term
not in A′∪A′′∪B, and that each basis element not in A′∪A′′∪B arises in this way from
exactly one member of B; therefore ∆(|s|) = (T ′ + T ′′)⊕ Vs.

It now suffices to show that every basis element c not in A′ ∪A′′ ∪B is congruent to a
sum of members of A′∪A′′ modulo Vs. To do this, note that c has terms in both J ′ and J ′′

but has no term |s| − p. Let b be the member of B obtained from c by inserting |s| − p,
so that c is a term in ∂b, and let u′, u′′ be the terms of ∂b adjacent to c. We see that

∂b = ±(u′ − c+ u′′) + v

such that v is a linear combination of members of B; therefore c is congruent to u′ + u′′

modulo Vs. We also see that u′ and u′′ are in A′ ∪ A′′ ∪ B; therefore c is congruent
modulo Vs to a sum of basis elements in T ′ + T ′′ as required.
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8.11. Proposition. Let s = (s′, q, p) be an up-down vector with more than one term.
Then the square Rs is a push-out as a square of abelian groups. The prescribed sub-
monoid in the target object Ss is generated by the images of the prescribed submonoids in
Ss′ and S(p).

Proof. Recall that

Us = (∂∨|s|−p+1)
p−qUs′ + (∂∨0 )|s|−pU(p) + Vs.

From Proposition 8.10, a morphism θ of abelian groups with domain ∆(|s|) such that
θ|Us = 0 is equivalent to a pair of morphisms θ′ and θ′′ with domains ∆(|s′|) and ∆(p)
such that

θ′|Us′ = 0, θ′′|U(p) = 0, θ′(∂∨0 )|s|−p = θ′′(∂∨1 )p−q.

From this it follows that a morphism χ of abelian groups with domain Ss is equivalent to
a pair of morphisms χ′ and χ′′ with domains Ss′ and S(p) which agree on S(q). Therefore
Rs is a push-out as a square of abelian groups.

It also follows from Proposition 8.10 that the prescribed submonoid in Ss is generated
by the images of the prescribed submonoids in Ss′ and S(p), because the basis elements in
∆(|s|) are congruent modulo Vs to sums of basis elements in

(∂∨|s|−p+1)
p−q∆(|s′|) + (∂∨0 )|s|−p∆(p).

This completes the proof.

We can now give the main result in this section.

8.12. Theorem. Let s be an up-down vector with last term p and let

am = [ |s| −m, |s| −m+ 1, |s| −m+ 2, . . . , |s| ] (0 ≤ m ≤ p).

Then Ss is an s-simple chain complex with final generator a such that

am + Us = (∂+)p−ma (0 ≤ m ≤ p).

If s has more than one term, then Rs is an s-simple square of chain complexes.

Proof. The proof is by induction on the number of terms in s. Proposition 8.7 gives the
result for the case s = (p). From now on let s = (s′, q, p), let p′ be the last term of s′, and
recall that the square Rs has the form

S(q)

π

��

ρ // S(p)

τ

��
Ss′ σ

// Ss.



756 RICHARD STEINER

From the inductive hypothesis and the one-term case we see that Ss′ , S(q) and S(p) are s′-
simple, (q)-simple and (p)-simple; let the final generators be a′, a0 and a′′. For 0 ≤ m ≤ q
it follows from the equalities

(∂∨0 )|s|−p[q −m, q −m+ 1, . . . , q] = [ |s′| −m, |s′| −m+ 1, . . . , |s′| ],
(∂∨1 )p−q[0, q −m+ 1, . . . , q] = [0, p−m+ 1, . . . , p]

that

π(∂+)q−ma0 = (∂+)p
′−ma′,

π(∂−)q−ma0 = (∂−)p−ma′′.

It now follows from Proposition 8.11 that Rs is an s-simple square (see Definition 5.5).
By Proposition 5.6, this makes Ss an s-simple chain complex with final generator a such
that

τ(∂+)p−ma′′ = (∂+)p−ma (0 ≤ m ≤ p).

For 0 ≤ m ≤ p let

a′′m = [p−m, p−m+ 1, . . . , p] ∈ ∆(p),

so that a′′m + U(p) = (∂+)p−ma′′ by Proposition 8.7; then

am + Us = (∂∨0 )|s|−pa′′m + Us = τ(a′′m + U(p)) = τ(∂+)p−ma′′ = (∂+)p−ma.

This completes the proof.

9. Combined operations in sets with complicial identities

In Theorem 8.12 we have constructed an s-simple chain complex Ss as a quotient of a
simplex,

Ss = ∆(|s|)/Us.

We really want to express Ss as a retract of ∆(|s|); that is, we want to construct an
idempotent endomorphism of ∆(|s|) with kernel Us. In this section we construct the
corresponding operation on |s|-dimensional elements in sets with complicial identities;
this operation will be denoted Ψs. We use the axioms of Definition 3.1 throughout.

We will construct Ψs by iterating wedge operations. There are two basic families of
iterated wedges, and we will now describe the first of these families.

9.1. Notation. For 0 < i ≤ i + j ≤ m, let φ̃i,j and φi,j be the operations on m-
dimensional elements in sets with complicial identities given by

φ̃i,0x = εi−1x,

φ̃i,jx = φ̃i,j−1∂i+1x ∧i x (j > 0),

φi,jx = ∂i+1φ̃i,jx.
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The wedge in the formula for φ̃i,jx exists by an induction on j: if φ̃i,j−1x exists and is
given by the stated formula, then

∂iφ̃i,j−1∂i+1x = ∂i+1x,

and the wedge φ̃i,j−1∂i+1x ∧i x therefore exists.
We will now compute some faces and some fixed point sets.

9.2. Proposition. The operations φi,j and φ̃i,j are such that

∂iφi,j = ∂i, ∂ji+1φi,j = ∂j+1
i+1 φ̃i,j = εi−1∂

j+1
i .

Proof. The first formula holds because

∂iφi,jx = ∂i∂i+1φ̃i,jx = ∂i∂iφ̃i,jx = ∂ix.

The second formula holds by induction on j: we certainly have

φi,0x = ∂i+1φ̃i,0x = ∂i+1εi−1x = εi−1∂ix,

and for j > 0 we have

∂ji+1φi,jx = ∂j+1
i+1 φ̃i,jx

= ∂ji+1∂i+2(φ̃i,j−1∂i+1x ∧i x)

= ∂ji+1φ̃i,j−1∂i+1x

= εi−1∂
j
i ∂i+1x

= εi−1∂
j+1
i x.

9.3. Proposition. Let x be a member of a set with complicial identities. Then

φ̃i,jx = εix ⇐⇒ φi,jx = x ⇐⇒ ∂ji+1x ∈ im εi−1.

Proof. Suppose that φ̃i,jx = εix. Then

φi,jx = ∂i+1εix = x.

Suppose that φi,jx = x. Then

∂ji+1x = ∂ji+1φi,jx = εi−1∂
j+1
i x ∈ im εi−1.

It now suffices to show that

∂ji+1x ∈ im εi−1 ⇒ φ̃i,jx = εix.

We argue by induction on j.
Suppose that x ∈ im εi−1. Since εi−1εi−1 = εiεi−1, it follows that φ̃i,0x = εix.
Now suppose that ∂ji+1x ∈ im εi−1 for some j > 0. It follows from the inductive

hypothesis that φ̃i,j−1∂i+1x = εi∂i+1x, and it then follows that

φ̃i,jx = εi∂i+1x ∧i x = εix.

This completes the proof.
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We now consider the second basic family of iterated wedges.

9.4. Notation. For integers k, l ≥ 0 let ∧k,l be the partial binary operation in sets with
complicial identities such that x ∧k,l y is defined when

∂k0x = ∂l1y

and such that

x ∧k,l y = x (l = 0),

x ∧k,l y = y (k = 0),

x ∧k,l y = (x ∧k,l−1 ∂1y) ∧k−1 (∂k−1x ∧k−1,l y) (k, l > 0),

∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y (k > 0),

∂k+1(x ∧k,l y) = x ∧k,l−1 ∂1y (l > 0).

To justify this definition, let x and y be such that ∂k0x = ∂l1y; we must show that the
stated conditions make sense and are consistent. We do this by induction on k and l.

Suppose that k = l = 0. Then x = y, so the conditions x ∧k,l y = x and x ∧k,l y = y
are consistent.

Suppose that k > 0 and l = 0. Then ∂k−10 ∂k−1x = ∂k0x = ∂l1y; hence, by the inductive
hypothesis, ∂k−1x ∧k−1,l y exists and is equal to ∂k−1x. The conditions x ∧k,l y = x and
∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y therefore make sense and are consistent.

Suppose that k = 0 and l > 0. Then ∂k0x = ∂l1y = ∂l−11 ∂1y; hence x ∧k,l−1 ∂1y exists
and is equal to ∂1y. The conditions x ∧k,l y = y and ∂k+1(x ∧k,l y) = ∂1y therefore make
sense and are consistent.

Finally suppose that k > 0 and l > 0. As in the previous cases, the expressions
∂k−1x ∧k−1,l y and x ∧k,l−1 ∂1y make sense. We also have

∂k−1(x ∧k,l−1 ∂1y) = ∂k−1x ∧k−1,l−1 ∂1y = ∂k(∂k−1x ∧k−1,l y),

so the conditions

x ∧k,l y = (x ∧k,l−1 ∂1y) ∧k−1 (∂k−1x ∧k−1,l y),

∂k−1(x ∧k,l y) = ∂k−1x ∧k−1,l y,
∂k+1(x ∧k,l y) = x ∧k,l−1 ∂1y

all make sense. It is also clear that they are consistent.
Each of these binary operations determines its own factors.

9.5. Proposition. If x ∧k,l y is defined, then

∂lk+1(x ∧k,l y) = x, ∂k0 (x ∧k,l y) = y.
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Proof. The first equality is proved by induction on l; for l = 0 it is obvious, and for
l > 0 we have

∂lk+1(x ∧k,l y) = ∂l−1k+1∂k+1(x ∧k,l y) = ∂l−1k+1(x ∧k,l−1 ∂1y) = x.

The second equality is similarly proved by induction on k; for k = 0 it is obvious, and for
k > 0 we have

∂k0 (x ∧k,l y) = ∂k−10 ∂k−1(x ∧k,l y) = ∂k−10 (∂k−1x ∧k,l y) = y.

Because of the simplicial identities ∂k0∂
l
k+1 = ∂l1∂

k
0 there are everywhere defined unary

operations as follows.

9.6. Notation. If k and l are nonnegative integers and if x is an element of dimension
at least k + l in a set with complicial identities, then

wk,lx = ∂lk+1x ∧k,l ∂k0x.

9.7. Proposition. The operations wk,l are idempotent operations such that

∂lk+1wk,l = ∂lk+1, ∂k0wk,l = ∂k0 .

If X is a set with complicial identities and if q ≥ 0 then the square

wk,lXk+l+q

∂lk+1

��

∂k0 // Xl+q

∂l1
��

Xk+q
∂k0

// Xq

is a pull-back square.

Proof. For all x it follows from Proposition 9.5 that

∂lk+1wk,lx = ∂lk+1(∂
l
k+1x ∧k,l ∂k0x) = ∂lk+1x,

∂k0wk,lx = ∂k0 (∂lk+1x ∧k,l ∂k0x) = ∂k0x;

therefore ∂lk+1wk,l = ∂lk+1 and ∂k0wk,l = ∂k0 . It then follows that

wk,lwk,lx = ∂lk+1wk,lx ∧k,l ∂k0wk,lx = ∂lk+1x ∧k,l ∂k0x = wk,lx;

therefore wk,l is idempotent. If x ∈ wk,lXk+l+q then certainly ∂k0∂
l
k+1x = ∂l1∂

k
0x. Con-

versely, if y ∈ Xk+q and z ∈ Xl+q are such that ∂k0y = ∂l1z then

x = wk,l(y ∧k+l z)

is a member of wk,lXk+l+q such that ∂lk+1x = y and ∂k0x = z and it is clearly the unique
such member; therefore the square is a pull-back square.
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We will now combine the operations φi,j and wk,l. Let s be an up-down vector. We
will construct operators ψi,s on |s|-dimensional elements for 0 < i < |s|. We begin with
large values of i and work downwards.

9.8. Notation. Let s be an up-down vector with last term p and let x be an |s|-
dimensional element in a set with complicial identities. Then

ψi,sx = φi,1x (|s| − p < i < |s|).

9.9. Notation. Let s = (s′, q, p) and let x be an |s|-dimensional element in a set with
complicial identities. Then

ψ|s|−p,sx =

{
w|s|−p,p−qx (q = 0),

w|s|−p,p−qφ|s|−p,p−q+1x (q > 0).

9.10. Proposition. If s is an up-down vector with last term p and if ψi,s is an operator
with |s| − p ≤ i < |s|, then

∂j0ψi,s = ∂j0 (i < j ≤ |s|).
Proof. In cases with i > |s| − p the result holds by Proposition 9.2 because

∂j0ψi,s = ∂j−10 ∂iφi,1 = ∂j−10 ∂i = ∂j0.

In cases with i = |s| − p we have

ψi,s = w|s|−p,p−q

or we have
ψi,s = w|s|−p,p−qφ|s|−p,p−q+1

for some q. The result now holds because

∂j0w|s|−p,p−q = ∂
j−|s|+p
0 ∂

|s|−p
0 w|s|−p,p−q = ∂

j−|s|+p
0 ∂

|s|−p
0 = ∂j0

by Proposition 9.7 and because ∂j0φ|s|−p,p−q+1 = ∂j0 by Proposition 9.2 as before.

In the remaining cases we use induction on the number of terms in s.

9.11. Notation. Let s = (s′, q, p), let x be an |s|-dimensional element in a set with
complicial identities, and let i be an integer with 0 < i < |s| − p. Then ψi,sx is the
element such that

ψi,sx = ψi,s′∂
p−q
|s|−p+1x ∧|s|−p,p−q ∂

|s|−p
0 x

and
∂j0ψi,sx = ∂j0x (|s| − p ≤ j ≤ |s|).

To justify this definition, we must show that the two conditions make sense and are
consistent. We argue by induction on the number of terms in s. Let p′ be the last term
in s′, so that

|s| − p = |s′| − q > |s′| − p′.
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If i ≥ |s′| − p′ then ∂
|s|−p
0 ψi,s′ = ∂

|s|−p
0 by Proposition 9.10; if i < |s| − p′ then ∂

|s|−p
0 ψi,s′ =

∂
|s|−p
0 by the inductive hypothesis. In all cases it follows that

∂
|s|−p
0 ψi,s′∂

p−q
|s|−p+1x = ∂

|s|−p
0 ∂p−q|s|−p+1x = ∂p−q1 ∂

|s|−p
0 x.

The condition
ψi,sx = ψi,s′∂

p−q
|s|−p+1x ∧|s|−p,p−q ∂

|s|−p
0 x

therefore makes sense because the iterated wedge exists. This condition actually implies
the other condition by Proposition 9.7, because for |s| − p ≤ j ≤ |s| we have

∂j0(ψi,s′∂
p−q
|s|−p+1x ∧|s|−p,p−q ∂

|s|−p
0 x)

= ∂
j−|s|+p
0 ∂

|s|−p
0 (ψi,s′∂

p−q
|s|−p+1x ∧|s|−p,p−q ∂

|s|−p
0 x)

= ∂
j−|s|+p
0 ∂

|s|−p
0 x

= ∂j0x.

Finally we construct the operation Ψs as an iterated composite.

9.12. Notation. Let s be an up-down vector. Then Ψs is the operation on |s|-
dimensional elements in sets with complicial identities given by

Ψs = (ψ1,s)(ψ2,sψ1,s)(ψ3,sψ2,sψ1,s) · · · (ψ|s|−1,s · · ·ψ2,sψ1,s)

(to be interpreted as the identity when |s| ≤ 1).

10. The induced morphisms between simplexes

In Section 9 we have constructed operations in sets with complicial identities. We will
now give some results concerning the induced morphisms between simplexes.

10.1. Proposition. If θ1 and θ2 are operations in sets with complicial identities such
that ∂iθ1 = ∂i+1θ2 and if θ is the operation given by

θx = θ1x ∧i θ2x,

then
θ∨ = θ∨1 ε

∨
i+1 − θ∨1 ∂∨i (ε∨i )2 + θ∨2 ε

∨
i = θ∨1 ε

∨
i+1 − θ∨2 ∂∨i+1(ε

∨
i )2 + θ∨2 ε

∨
i .

Proof. This follows from the construction of wedges in sets with complicial identities of
the form λK; see Notation 6.9.
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10.2. Proposition. If j > 0 then

φ∨i,j = (∂∨i+1)
j[ε∨i−1 − ε∨i ](ε∨i+1)

j−1 + id .

Proof. Recall from Notation 9.1 that φi,j = ∂i+1φ̃i,j with

φ̃i,0x = εi−1x,

φ̃i,jx = φ̃i,j−1∂i+1x ∧i x (j > 0).

It follows from Proposition 10.1 by induction on j that

φ̃∨i,j = (∂∨i+1)
j
[
ε∨i−1 − ε∨i )

]
(ε∨i+1)

j + ε∨i (j ≥ 0),

and for j > 0 it then follows that

φ∨i,j = φ̃∨i,j∂
∨
i+1 = (∂∨i+1)

j
[
ε∨i−1 − ε∨i )

]
(ε∨i+1)

j−1 + id .

10.3. Proposition. If θ1 and θ2 are operations in sets with complicial identities such
that ∂k0θ1 = ∂l1θ2 and if θ is the operation given by

θx = θ1x ∧k,l θ2x,

then

θ∨ = θ∨1 (ε∨k )l − θ∨1 (∂∨0 )k(ε∨0 )k+l + θ∨2 (ε∨0 )k

= θ∨1 (ε∨k )l − θ∨2 (∂∨1 )k(ε∨0 )k+l + θ∨2 (ε∨0 )k.

Proof. This follows by induction from Proposition 10.1 using the formulae

θ1x ∧k,0 θ2x = θ1x,

θ1x ∧0,l θ2x = θ2x,

θ1x ∧k,l θ2x = (θ1x ∧k,l−1 ∂1θ2x) ∧k−1 (∂k−1θ1x ∧k−1,l θ2x) (k, l > 0)

(see Notation 9.4).

10.4. Proposition. The morphisms w∨k,l are given by

w∨k,l = (∂∨k+1)
l(ε∨k )l − (∂∨k+1)

l(∂∨0 )k(ε∨0 )k+l + (∂∨0 )l(ε∨0 )l.

Proof. This follows from Proposition 10.3, because

wk,lx = ∂lk+1x ∧k,l ∂k0x

(see Notation 9.6).
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10.5. Proposition. If s = (s′, q, p) and if 0 < i < |s| − p, then

ψ∨i,s − w∨|s|−p,p−q = (∂∨|s|−p+1)
p−q[ψ∨i,s′ − id](ε∨|s|−p)

p−q,

ψ∨i,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨i,s′ ,

ψ∨i,s(∂
∨
0 )|s|−p = (∂∨0 )|s|−p.

Proof. By Definition (see Notation 9.11),

ψi,sx = ψi,s′∂
p−q
|s|−p+1x ∧|s|−p,p−q ∂

|s|−p
0 x.

The formula for ψ∨i,s−w∨|s|−p,p−q follows from Propositions 10.3 and 10.4. The other two for-

mulae hold because ∂p−q|s|−p+1ψi,s = ψi,s′∂
p−q
|s|−p+1 and ∂

|s|−p
0 ψi,s = ∂

|s|−p
0 (see Proposition 9.5).

10.6. Proposition. If s = (s′, q, p) with q = 0, then

ψ∨|s|−p,s − w∨|s|−p,p−q = 0,

ψ∨|s|−p,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q,

ψ∨|s|−p,s(∂
∨
0 )|s|−p = (∂∨0 )|s|−p.

Proof. By Notation 9.9, ψ|s|−p,s = w|s|−p,p−q. The last two formulae follow from Propo-
sition 10.4.

10.7. Proposition. If s = (s′, q, p) with q > 0, then

ψ∨|s|−p,s − w∨|s|−p,p−q = (∂∨|s|−p+1)
p−q[ψ∨|s|−p,s′ − id](ε∨|s|−p+1)

p−qw∨|s|−p,p−q,

ψ∨|s|−p,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨|s|−p,s′ ,[

ψ∨|s|−p,s − id
]
(∂∨0 )|s|−p

= (∂∨|s|−p+1)
p−q+1

[
ε∨|s|−p−1 − ε∨|s|−p

]
(ε∨|s|−p+1)

p−q(∂∨0 )|s|−p.

Proof. In this case ψ|s|−p,s = w|s|−p,p−q+1φ|s|−p,p−q+1 (see Notation 9.9), hence

ψ∨|s|−p,s − w∨|s|−p,p−q
= [φ∨|s|−p,p−q+1 − id]w∨|s|−p,p−q

= (∂∨|s|−p+1)
p−q+1[ε∨|s|−p−1 − ε∨|s|−p](ε∨|s|−p+1)

p−qw∨|s|−p,p−q

= (∂∨|s|−p+1)
p−q[φ∨|s|−p,1 − id](ε∨|s|−p+1)

p−qw∨|s|−p,p−q

by Proposition 10.2. We also have φ|s|−p,1 = ψ|s|−p,s′ by Notation 9.8 because |s| − p >
|s′| − p′, where p′ is the last term in s′. The results follow.
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10.8. Proposition. If s = (s′, q, p) then

ψ∨i,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q (|s| − p < i < |s| − q),

ψ∨|s|−q,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−q (q > 0),

ψ∨i,s(∂
∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨i−p+q,s′ (|s| − q + 1 < i < |s|),

w∨|s|−p,p−qψ
∨
|s|−q+1,s(∂

∨
|s|−p+1)

p−q = (∂∨|s|−p+1)
p−qψ∨|s|−p+1,s′

+ (∂∨0 )|s|−p
[
φ∨p−q+1,1(∂

∨
1 )p−q − (∂∨1 )p−qφ∨1,1

]
(ε∨0 )|s|−p (q > 1),

ψ∨|s|−q,s(∂
∨
0 )|s|−p = (∂∨0 )|s|−pψ∨i−|s|+p,(p) (|s| − p < i < |s|).

Proof. According to Notation 9.8 we have

ψi,s = φi,1, ψi−|s|+p,(p) = φi−|s|+p,1

for |s| − p < i < |s|. We also have ψi−p+q,s′ = φi−p+q,1 for |s| − q < i < |s| because

i− p+ q > |s| − p > |s′| − p′,

where p′ is the last term in s′. The results now follow from Propositions 10.2 and 10.4.

Finally in this section, we consider the action of ψ∨i,s on Vs in the case s = (s′, q, p);
we recall from Notation 8.4 that Vs is the subcomplex of ∆(|s|) generated by the basis
elements

[i0, . . . , ir−1, |s| − p, ir+1, . . . , im]

with 0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q.

10.9. Proposition. If s = (s′, q, p) then

ψ∨i,sVs = 0 (0 < i ≤ |s| − p),
ψ∨i,sVs ⊂ Vs (|s| − p < i < |s).

Proof. For 0 < i < |s| − p we have

ψ∨i,s = (∂∨|s|−p+1)
p−qψ∨i,s′(ε

∨
|s|−p)

p−q − (∂∨|s|−p+1)
p−q(∂∨0 )|s|−p(ε∨0 )|s|−q + (∂∨0 )|s|−p(ε∨0 )|s|−p

(see Notation 9.11 and Proposition 9.3), hence ψ∨i,sVs = 0. In the same way w∨|s|−p,p−qVs = 0

by Proposition 10.4; hence, by Notation 9.9, ψ∨|s|−p,sVs = 0. For |s| − p < i < |s| we have
ψi,s = φi,1 by Notation 9.8, hence ψ∨i,sVs ⊂ Vs by Proposition 10.2.
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11. Simple chain complexes as retracts of simplexes

Given an up-down vector s, we have shown in Section 8 that the simplex ∆(|s|) has an
s-simple quotient

Ss = ∆(|s|)/Us.

In Section 9 we have constructed an operation Ψs on |s|-dimensional elements in sets with
complicial identities. By Theorem 6.11 there is a corresponding endomorphism Ψ∨s of
∆(|s|). We will now show that Ss is a retract of ∆(|s|) by showing that Ψ∨s is idempotent
with kernel Us.

The method is as follows. By construction (see Notation 9.12), Ψ∨s is a composite,

Ψ∨s = (ψ∨1,sψ
∨
2,s · · ·ψ∨|s|−1,s) · · · (ψ∨1,sψ∨2,sψ∨3,s)(ψ∨1,sψ∨2,s)(ψ∨1,s).

We will construct subcomplexes U j
s of ∆(|s|) for 0 ≤ j < |s| such that

Us = U0
s + · · ·+ U |s|−1s ,

ψ∨i,sU
j
s ⊂ U j

s (0 < i < j < |s|),
ψ∨j,sU

j
s ⊂ U j−1

s (0 < j < |s|),
U0
s = 0,

from which it will follow that Us ⊂ ker Ψ∨s . We will also show that

(ψ∨i,s − id)∆(|s|) ⊂ Us (0 < i < |s|),

from which it will follow that (Ψ∨s − id)∆(|s|) ⊂ Us. From these inclusions it will indeed
follow that Ψ∨s is idempotent with kernel Us as required.

The subcomplexes U j
s are defined by induction on the number of terms in s. In the

many-term case s = (s′, q, p) recall from Notation 8.4 that

Us = (∂∨|s|−p+1)
p−qUs′ + (∂∨0 )|s|−pU(p) + Vs,

where Vs is the subcomplex of ∆(|s|) generated by the basis elements

[i0, . . . , ir−1, |s| − p, ir+1, . . . , im]

with 0 ≤ ir−1 < |s| − p < ir+1 ≤ |s| − q.

11.1. Notation. For 0 ≤ j < p let U j
(p) be the subcomplex of ∆(p) generated by the

basis elements [i0, . . . , im] with at least two terms less than or equal to j and with no term
equal to j + 1.

For s = (s′, q, p) with q = 0, let

U j
s =

{
(∂∨|s|−p+1)

p−qU j
s′ (0 ≤ j < |s| − p),

(∂∨0 )|s|−pU
j−|s|+p
(p) + Vs (|s| − p ≤ j < |s|).
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For s = (s′, q, p) with q > 0, let

U j
s =



(∂∨|s|−p+1)
p−qU j

s′ (0 ≤ j < |s| − p),
(∂∨|s|−p+1)

p−qU
|s|−p
s′

+ (∂∨0 )|s|−pU
j−|s|+p
(p) + Vs (|s| − p ≤ j < |s| − q),

(∂∨|s|−p+1)
p−qU j−p+q

s′

+ (∂∨0 )|s|−pU
j−|s|+p
(p) + Vs (|s| − q ≤ j < |s|).

We begin with the following result.

11.2. Proposition. Let s be an up-down vector. Then

Us = U0
s + · · ·+ U |s|−1s ,

U0
s = 0.

Proof. We use induction on the number of terms in s. The inductive step is obvious; we
will therefore consider the one-term case s = (p).

Recall from Notation 8.4 that U(p) is the subcomplex of ∆(p) generated by the basis
elements [i0, . . . , im] with m > 0 and i1 ≤ p−m. It is easy to see that the generating set
for U(p) is the union of the generating sets for U0

(p), . . . , U
p−1
(p) ; therefore U(p) = U0

(p) + . . .+

Up−1
(p) . It is also easy to see that the generating set for U0

(p) is empty; therefore U0
(p) = 0.

This completes the proof.

We will now give three lemmas aimed at describing the subcomplexes Vs more explic-
itly.

11.3. Lemma. If k is a fixed integer with 0 ≤ k ≤ m then ∆(m) is generated as a chain
complex by the basis elements [j0, . . . , jm] including a term equal to k.

Proof. Let a be a basis element not including k, and let b be the basis element obtained
by inserting a term equal to k in a. Then ∂b has a term equal to a, and every other term
of ∂b includes k. The result follows.

11.4. Lemma. If s = (s′, q, p) then

[w∨|s|−p,p−q − id]∆(|s|) ⊂ Vs.

Proof. Let a be a basis element for ∆(|s|) which includes the term |s| − p. By Proposi-
tion 10.4, if a is a generator for Vs then w∨|s|−p,p−qa = 0; if a is not a generator for Vs then
w∨|s|−p,p−qa = a. The result now follows because of Lemma 11.3.
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11.5. Lemma. Let s be an up-down vector with last term p and let A be the set of basis
elements [j0, . . . , jm] for ∆(|s|) with at least two terms in the set

{ 0, 1, . . . , |s| − p }.

For 0 ≤ j < |s| let Bj be the set of basis elements with at least two terms in the set

{0, 1, . . . , j}

and with no term j + 1, and let Cj be the set of basis elements with at least two terms in
the set

{ |s| − p, |s| − p+ 1, . . . , j}
and with no term j + 1. Then U j

s is generated as a chain complex by a subset of A ∪Bj,
and U j

s contains every member of Cj.

Proof. The proof is by induction on the number of terms in s.
If s = (p) then the results hold because U j

s is generated by the members of Cj and
because Bj = Cj.

From now on let s = (s′, q, p) and let p′ be the last term of s′. We will first show that
U j
s is generated by some of the members of A∪Bj. We do this by considering the various

constituents of U j
s .

Suppose that 0 ≤ j < |s| − p. Since |s′| − p′ < |s| − p, it follows from the inductive
hypothesis that U j

s′ is generated by basis elements with at least two terms less than or
equal to |s| − p, and it then follows that (∂∨|s|−p+1)

p−qU j
s′ is generated by members of A.

Suppose that q > 0 and |s| − p ≤ j < |s| − q. Then (∂∨|s|−p+1)
p−qU

|s|−p
s′ is generated by

members of A as in the previous case.
Suppose that |s| − q ≤ j < |s|. Then U j−p+q

s′ is generated by basis elements with at
least two terms less than or equal to |s| − p, or with at least two terms less than or equal
to j−p+q and with no term j−p+q+1. It follows that (∂∨|s|−p+1)

p−qU j−p+q
s′ is generated

by members of A ∪Bj.
For |s| − p ≤ j < |s| it is clear that (∂∨0 )|s|−pU

j−|s|+p
(p) is generated by members of Bj.

It is also clear that Vs is generated by members of A.
From these results it follows in all cases that U j

s is generated by members of A ∪Bj.
Next we show that every member c of Cj is in U j

s .
There is nothing to prove in cases with 0 ≤ j < |s| − p, because in those cases Cj is

empty.
From now on, suppose that |s| − p ≤ j < |s|. By Lemma 11.4

im(w∨|s|−p,p−q − id) ⊂ Vs ⊂ U j
s ,

so it suffices to show that w∨|s|−p,p−qc ∈ U j
s . We do this by considering the various terms

of

w∨|s|−p,p−qc = (∂∨|s|−p+1)
p−q(ε∨|s|−p)

p−qc

+ (∂∨|s|−p+1)
p−q(∂∨0 )|s|−p(ε∨0 )|s|−qc+ (∂∨0 )|s|−p(ε∨0 )|s|−pc
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(see Proposition 10.4).
If |s|− p ≤ j < |s|− q then it follows from the inductive hypothesis that the first term

is zero or is in (∂∨|s|−p+1)
p−qU

|s|−p
s′ ; if |s| − q ≤ j < |s| then it similarly follows from the

inductive hypothesis that the first term is zero or is in (∂∨|s|−p+1)
p−qU j−p+q

s′ ; in any case we

see that the first term is in U j
s .

For all j with |s| − p ≤ j < |s| the second and third terms are zero or are in

(∂∨0 )|s|−pU
j−|s|+p
(p) , so they are also in U j

s .
This completes the proof.

We deduce that the morphisms ψ∨i,s act in the required way.

11.6. Proposition. The morphisms ψ∨i,s are such that

(ψ∨i,s − id)∆(|s|) ⊂ Us (0 < i < |s|).

Proof. We use induction on the number of terms in s.
Suppose that s = (s′, q, p) and 0 < i < |s| − p. By Proposition 10.5,

im(ψ∨i,s − id) ⊂ (∂∨|s|−p+1)
p−q im(ψi,s′ − id) + im(w∨|s|−p,p−q − id).

By the inductive hypothesis,

(∂∨|s|−p+1)
p−q im(ψi,s′ − id) ⊂ (∂∨|s|−p+1)

p−qUs′ ⊂ Us;

by Lemma 11.4,
im(w∨|s|−p,p−q − id) ⊂ Vs ⊂ Us.

Therefore im(ψ∨i,s − id) ⊂ Us.
Now suppose that s = (s′, q, p) and i = |s| − p. We can apply a similar argument,

using Propositions 10.6 and 10.7.
Finally suppose that |s| − p < i < |s|. By Notation 9.8 and Proposition 10.2,

ψ∨i,s − id = φ∨i,1 − id = ∂∨i+1(ε
∨
i−1 − ε∨i ).

Because of Lemma 11.3, it suffices to show that ∂∨i+1(ε
∨
i−1 − ε∨i )a is in Us when a is a

basis element including i + 1. If a is a basis element of that form not including i, then
∂∨i+1(ε

∨
i−1− ε∨i )a = 0; if a is a basis element of that form including i, then ∂∨i+1(ε

∨
i−1− ε∨i )a

is a basis element including i− 1 and i but not i+ 1. In view of Lemma 11.5, this suffices
to show that ∂∨i+1(ε

∨
i−1 − ε∨i )a is in Us in all cases, and this completes the proof.

11.7. Proposition. The morphisms ψ∨i,s are such that

ψ∨i,sU
j
s ⊂ U j

s (0 < i < j < |s|).
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Proof. We use induction on the number of terms in s.
Suppose first that s = (p). By Notation 9.8 and Proposition 10.2

ψ∨i,s = φ∨i,1 = ∂∨i+1(ε
∨
i−1 − ε∨i ) + id .

According to Notation 11.1, the chain complex U j
s is generated by the basis elements with

at least two terms less than or equal to j and with no term equal to j + 1. The result
now follows from a simple computation.

Now suppose that s = (s′, q, p), and let p′ be the last term of s′. Recall from Nota-
tion 11.1 that U j

s is a sum of constituents which may have one of the following forms:

(∂∨|s|−p+1)
p−qU j′

s′ , (∂∨0 )|s−pU j′′

(p), Vs.

In almost all cases it follows straightforwardly from Propositions 10.5–10.9 and the in-
ductive hypothesis that ψ∨i,s maps the constituents of U j

s into U j
s . The exceptional cases

are
ψ∨|s|−p,s(∂

∨
0 )|s|−pU

j−|s|+p
(p) (q > 0, |s| − p < j < |s|)

and
ψ∨|s|−q+1,s(∂

∨
|s|−p+1)

p−qU j−p+q
s′ (|s| − q + 1 < j < |s|).

We deal with these cases as follows.
In the first case let c be a generator for U

j−|s|+p
(p) , so that c is a basis element with at

least two terms less than or equal to j − |s|+ p and with no term equal to j − |s|+ p+ 1.
By Proposition 10.7, [

ψ∨|s|−p,s − id
]
(∂∨0 )|s|−pc = (∂∨|s|−p+1)

p−qc′,

where
c′ = ∂∨|s|−p+1

[
ε∨|s|−p−1 − ε∨|s|−p

]
(ε∨|s|−p+1)

p−q(∂∨0 )|s|−pc.

If |s| − p < j ≤ |s| − q then c′ = 0; if |s| − q < j < |s| then c′ is a linear combination of
basis elements with at least two terms in the set

{ |s| − p− 1, |s| − p, . . . , j − p+ q }

and with no term equal to j − p+ q + 1, so that c′ ∈ U j−p+q
s′ by Lemma 11.5. In all cases

it follows that ψ∨|s|−p ∈ U j
s .

It remains to show that

ψ∨|s|−q+1,s(∂
∨
s|−p+1)

p−qU j−p+q
s′ ⊂ U j

s (|s| − q + 1 < j < |s|).

Because of Lemma 11.5 it suffices to show that ψ∨|s|−q+1,s(∂
∨
s|−p+1)

p−qc is in U j
s when c is a

basis element in U j−p+q
s′ with two terms less than or equal to |s| − p, or with two terms

less than or equal to j − p+ q and with no term j − p+ q + 1. By Lemma 11.4

im(w∨|s|−p,p−q − id) ⊂ Vs ⊂ U j
s ;
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it therefore suffices to show that w∨|s|−p,p−qψ
∨
|s|−q+1,s(∂

∨
s|−p+1)

p−qc is in U j
s for each such basis

element c. By Proposition 10.8

w∨|s|−p,p−qψ
∨
|s|−q+1,s(∂

∨
|s|−p+1)

p−qc = (∂∨|s|−p+1)
p−qψ∨|s|−p+1,s′c

+ (∂∨0 )|s|−p
[
φ∨p−q+1,1(∂

∨
1 )p−q − (∂∨1 )p−qφ∨1,1

]
(ε∨0 )|s|−pc.

The first of the terms on the right hand side is in U j
s by the inductive hypothesis. If c has

two terms less than or equal to |s| − p, then the second term on the right hand side is
zero. If c has two terms less than or equal to j− p+ q and has no term j− p+ q+ 1, then
the second term on the right hand side is a linear combination of basis elements with at
least two terms in the set

{ |s| − p, |s| − p+ 1, . . . , j }
and with no term j + 1 and is in U j

s by Lemma 11.5. This completes the proof.

11.8. Proposition. The morphisms ψ∨j,s are such that

ψ∨j,sU
j
s ⊂ U j−1

s (0 < j < |s|).

Proof. This is similar. Again we use induction on the number of terms in s.
Suppose that s = (p). By definition, U j

s is generated by the basis elements with at
least two terms less than or equal to j and with no term j+1. If a is such a basis element
then

ψ∨j,sa = φ∨j,1a = ∂∨j+1(ε
∨
j−1 − ε∨j )a+ a,

and this is a linear combination of basis elements with at least two terms less than or
equal to j − 1 and with no term j. Therefore ψ∨j,sU

j
s ⊂ U j−1

s .
Now suppose that s = (s′, q, p). In almost all cases it follows from Propositions 10.5–

10.9 and the inductive hypothesis that ψ∨j,s maps each constituent of U j
s into U j−1

s . The
only difficulty is to show that

ψ∨|s|−q+1,s(∂
∨
s|−p+1)

p−qU
|s|−p+1
s′ ⊂ U |s|−qs

in the case q > 1. By Lemma 11.5, it suffices to show that

ψ∨|s|−q+1,s(∂
∨
s|−p+1)

p−qc ∈ U |s|−qs

when c is a basis element in U
|s|−p+1
s′ with two terms less than or equal to |s| − p, or with

two terms less than or equal to |s| − p+ 1 and with no term |s| − p+ 2. As in the proof
of Proposition 11.7 it suffices to show that

(∂∨|s|−p+1)
p−qψ∨|s|−p+1,s′c+ (∂∨0 )|s|−p

[
φ∨p−q+1,1(∂

∨
1 )p−q − (∂∨1 )p−qφ∨1,1

]
(ε∨0 )|s|−pc

is in U
|s|−q
s .

The first of these terms is in U
|s|−q
s by the inductive hypothesis. If c has two terms less

than or equal to |s|−p, then the second term is zero. If c has two terms less than or equal
to |s| − p+ 1 and has no term |s| − p+ 2, then the second term is a linear combination of
basis elements with terms |s| − p and |s| − q and with no term |s| − q+ 1, and is therefore

in U
|s|−q
s by Lemma 11.5. This completes the proof.
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It follows from Propositions 11.2 and 11.6–11.8 that Ψ∨s is idempotent with ker-
nel Us. Recall from Theorem 6.11 that if X is a set with complicial identities then
X|s| ∼= Hom[λ∆(|s|), X]. We draw the following conclusions.

11.9. Proposition. Let s be an up-down vector and let X be a set with complicial iden-
tities. Then Ψs is an idempotent operation on X|s|. There is a natural bijection

ΨsX|s| ∼= Hom[λSs, X],

where
Ss = ∆(|s|)/Us,

and the inclusion of ΨsX|s| in

X|s| ∼= Hom[λ∆(|s|), X]

is induced by the quotient homomorphism ∆(|s|) → Ss. The image ΨsX|s| is the subset
of X|s| consisting of the elements x such that

ψ1,sx = · · · = ψ|s|−1,sx = x.

Proof. We need only prove the final statement. To do this we first observe that if
0 < i < |s| then

im(ψ∨i,s − id) ⊂ Us = ker Ψ∨s

by Proposition 11.6, hence ψi,sΨs = Ψs. We then recall from Notation 9.12 that Ψs is an
iterated composite of the operations ψi,s. The result follows.

12. The pull-back property

Let X be a set with complicial identities. According to Proposition 11.9 there is a functor
Ss 7→ ΨsX|s| from simple chain complexes to sets. According to Theorem 8.12 (see also
Notations 8.3 and 8.9) the image of an s-simple square is given by

ΨsX|s|

∂p−q
|s|−p+1

��

∂
|s|−p
0 // Ψ(p)Xp

∂p−q
1

��
Ψs′X|s′|

∂
|s|−p
0

// Ψ(q)Xq.

In this section we show that the functor yields an ω-category; that is, we show that the
images of simple squares are pull-back squares (see Proposition 5.8).

Recall from Proposition 11.9 that the image of Ψs is the intersection of the fixed point
sets of the operations ψi,s. We begin the proof by making the following observations.
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12.1. Proposition. Let s be an up-down vector with last term p and let k be an integer
with |s| − p ≤ k < |s|. Then

ψk+1,sx = ψk+2,sx = · · · = ψ|s|−1,sx = x

if and only if

∂k+2x = εk∂
2
k+1x, ∂k+3x = ε2k∂

3
k+1x, . . . , ∂|s|x = ε

|s|−k−1
k ∂

|s|−k
k+1 x.

Proof. For k < i < |s| we have ψi,s = φi,1 (Notation 9.8), hence, by Proposition 9.3,

ψi,sx = x ⇐⇒ ∂i+1x ∈ im εi−1.

Note also that ∂iεi−1 = id and ∂i∂i+1 = ∂i∂i, hence

∂i+1x ∈ im εi−1 ⇐⇒ ∂i+1x = εi−1∂i∂i+1x ⇐⇒ ∂i+1x = εi−1∂i∂ix.

It follows from this that if ψi,sx = x for all i with k < i < |s| then

∂k+2x = εk∂k+1∂k+1x = εk∂
2
k+1x,

∂k+3x = εk+1∂k+2∂k+2x = εk+1εk∂k+2∂
2
k+1x = ε2k∂

3
k+1x,

. . . ,

∂|s|x = ε
|s|−k−1
k ∂

|s|−k
k+1 x.

Conversely, if ∂i+1x = εi−kk ∂i−k+1
k+1 x for all i with k < i < |s| then ∂i+1x ∈ im εi−1 for all i

with k < i < |s|, hence ψi,sx = x for all i with k < i < |s|. This completes the proof.

12.2. Proposition. Let x be an n-dimensional element in the image of an operation wk,l.
If k < i ≤ k + l then

[∂i+1x = εi−kk ∂i−k+1
k+1 x] ⇐⇒ [∂i−k+1∂

k
0x = εi−k0 ∂i−k+1

1 ∂k0x].

If k + l < i < n then

[∂i+1x = εi−kk ∂i−k+1
k+1 x] ⇐⇒ [∂i−l+1∂

l
k+1x = εi−k−lk ∂i−k−l+1

k+1 ∂lk+1x

and ∂i−k+1∂
k
0x = εi−k0 ∂i−k+1

1 ∂k0x].

Proof. Recall from Proposition 10.4 that

w∨k,l = (∂∨k+1)
l(ε∨k )l − (∂∨k+1)

l(∂∨0 )k(ε∨0 )k+l + (∂∨0 )k(ε∨0 )k.

Direct computations show that

∂i+1wk,l =

{
wk,l−1∂i+1 (k < i < k + l),

wk,l∂i+1 (k + l ≤ i < n)
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and

εi−kk ∂i−k+1
k+1 wk,l =

{
wk,l−1ε

i−k
k ∂i−k+1

k+1 (k < i < k + l),

wk,lε
i−k
k ∂i−k+1

k+1 (k + l ≤ i < n).

Recall from Notation 9.6 and Proposition 9.7 that

wk,lx = ∂lk+1x ∧k,l ∂k0x, ∂lk+1wk,lx = ∂lk+1x, ∂
k
0wk,lx = ∂k0x.

For x ∈ imwk,l and for k < i < k + l it follows that ∂i+1x = εi−kk ∂i−k+1
k+1 x if and only if

∂l−1k+1∂i+1x = ∂l−1k+1ε
i−k
k ∂i−k+1

k+1 x, ∂k0∂i+1x = ∂k0 ε
i−k
k ∂i−k+1

k+1 x;

for k + l ≤ i < n it follows that ∂i+1x = εi−kk ∂i−k+1
k+1 x if and only if

∂lk+1∂i+1x = ∂lk+1ε
i−k
k ∂i−k+1

k+1 x, ∂k0∂i+1x = ∂k0 ε
i−k
k ∂i−k+1

k+1 x.

This gives the result. (In cases with k < i ≤ k + l the first condition is omitted from the
statement of the proposition because it is satisfied automatically).

12.3. Proposition. Let s = (s′, q, p) be an up-down vector with more than one term, let
X be a set with complicial identities, let x be a member of X|s| such that w|s|−p,p−qx = x,

and let y = ∂p−q|s|−p+1x, z = ∂
|s|−p
0 x. Then x ∈ ΨsX|s| if and only if y ∈ Ψs′X|s′| and

z ∈ Ψ(p)Xp.

Proof. According to Proposition 11.9 we must show that

ψ1,sx = · · · = ψ|s|−1,sx = x

if and only if

ψ1,s′y = · · · = ψ|s′|−1,s′y = y, ψ1,(p)z = · · · = ψp−1,(p)z = ∂
|s|−p
0 z.

We will consider ψi,sx for i > |s| − p, then for i < |s| − p, then for i = |s| − p.
Let p′ be the last term in s′, and recall that |s| − p > |s′| − p′. It follows from

Propositions 12.1 and 12.2 that

ψ|s|−p+1,sx = · · · = ψ|s|−1,sx = x

if and only if

ψ|s|−p+1,s′y = · · · = ψ|s′|−1,s′y = y, ψ1,(p)z = · · · = ψp−1,(p)z = ∂
|s|−p
0 z.

Recall that x = y ∧|s|−p,p−q z (Notation 9.6). For 0 < i < |s| − p we have ψi,sx =
ψi,s′y ∧|s|−p,p−q z (Notation 9.11), hence ψi,sx = x if and only if ψi,s′y = y.

In the case q = 0 we have ψ|s|−p,sx = w|s|−p,p−qx = x by hypothesis (see Notation 9.9).
This completes the proof in the case q = 0.



774 RICHARD STEINER

From now on suppose that q > 0. It suffices to show that

ψ|s|−p,sx = x ⇐⇒ ψ|s|−p,s′y = y.

Equivalently, since |s| − p > |s′| − p′, it suffices to show that

w|s|−p,p−qφ|s|−p,p−q+1x = x ⇐⇒ φ|s|−p,1y = y

(see Notations 9.9 and 9.8).
To do this, suppose first that w|s|−p,p−qφ|s|−p,p−q+1x = x. Then

∂|s|−p+1y = ∂p−q+1
|s|−p+1x

= ∂p−q|s|−p+1w|s|−p,p−qφ|s|−p,p−q+1x

= ∂p−q|s|−p+1φ|s|−p,p−q+1x

by Proposition 9.7, hence ∂|s|−p+1y ∈ im ε|s|−p−1 (Proposition 9.2), hence φ|s|−p,1y = y
(Proposition 9.3).

Conversely, suppose that φ|s|−p,1y = y. By Proposition 9.3

∂p−q+1
|s|−p+1x = ∂|s|−p+1y ∈ im ε|s|−p−1,

hence
w|s|−p,p−qφ|s|−p,p−q+1x = w|s|−p,p−qx = x.

This completes the proof.

12.4. Proposition. If s = (s′, q, p) and if X is a set with complicial identities, then the
square

ΨsX|s|

∂p−q
|s|−p+1

��

∂
|s|−p
0 // Ψ(p)Xp

∂p−q
1

��
Ψs′X|s′|

∂
|s|−p
0

// Ψ(q)Xq.

is a pull-back square of sets.

Proof. By Proposition 9.7 there is a pull-back square

w|s|−p,p−qX|s|

∂p−q
|s|−p+1

��

∂
|s|−p
0 // Xp

∂p−q
1

��
X|s′|

∂
|s|−p
0

// Xq

with w|s|−p,p−q idempotent. By Proposition 11.9 and Notation 9.9, if x ∈ ΨsX|s| then

w|s|−p,p−qx = w|s|−p,p−qψ|s|−p,sx = ψ|s|−p,sx = x.

The result now follows from Proposition 12.3.
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For a set with complicial identities X it now follows from Proposition 11.9 that the
functor

S 7→ Hom[λS,X]

takes simple squares of chain complexes to pull-back squares of sets. By Proposition 5.8
this determines an ω-category functorially in X. We will use the following notation.

12.5. Notation. Let β be the functor from sets with complicial identities to ω-categories
such that

Hom[νS, βX] = Hom[λS,X]

for every simple chain complex S.

13. The equivalence

We have constructed functors α and β between ω-categories and sets with complicial
identities (see Notations 7.3 and 12.5). We will now show that these functors are inverse
equivalences.

In particular we must show that αβX ∼= X for every set with complicial identities X.
We will do this by showing that

Ψ(m)(αβX)m ∼= Ψ(m)Xm (m ≥ 0).

We must therefore show that a set with complicial identities is determined up to isomor-
phism by the images of the operations Ψ(m). We will do this by induction on m: for m > 0
we will show that an m-dimensional element c is equivalent to the family consisting of the
image Ψ(m)c and of its faces.

Recall that Ψ(m) is a composite of the operations ψi,(m), where

ψi,(m)x = φi,1x = ∂i+1(εi−1∂i+1x ∧i x)

(see Notations 9.12, 9.8 and 9.1). We begin by considering an individual operation φi,1.

13.1. Proposition. Let X be a set with complicial identities, let m and i be integers
with 0 < i < m, and let T be the set of triples (a, y, z) in φi,1Xm ×X2

m−1 such that

∂i−1y = ∂iz, ∂i−1a = ∂i(y ∧i−1 z), ∂i+1a = εi−1∂iy.

Then there is a bijection f : Xm → T given by

f(c) = (φi,1c, ∂i+1c, ∂i−1c).
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Proof. It follows from the axioms (Definition 3.1) that the formula for f defines a function
whose image is contained in T . We will show that there is an inverse function g : T → Xm

given by
g(a, y, z) = ∂i[a ∧i−1 (y ∧i−1 z)];

the wedges in this formula exist because

∂i−1y = ∂iz, ∂i−1a = ∂i(y ∧i−1 z).

First we show that gf(c) = c for c ∈ Xm. Let

A = εi−1∂i+1c ∧i c = (εi−1∂i∂i+1c ∧i−1 ∂i+1c) ∧i c,

so that φi,1c = ∂i+1A. By Definition 3.1(6),

A = ∂i+1A ∧i−1 (∂i+1c ∧i−1 ∂i−1c);

therefore

gf(c) = ∂i[φi,1c ∧i−1 (∂i+1c ∧i−1 ∂i−1c]
= ∂i[∂i+1A ∧i−1 (∂i+1c ∧i−1 ∂i−1c)]
= ∂iA

= c.

Conversely we will show that fg(a, y, z) = (a, y, z) for (a, y, z) in T . Let

B = a ∧i−1 (y ∧i−1 z),

so that g(a, y, z) = ∂iB. Then

∂i+1g(a, y, z) = ∂i+1∂iB

= ∂i∂i+2B

= ∂i[∂i+1a ∧i−1 ∂i+1(y ∧i−1 z)]

= ∂i(εi−1∂iy ∧i−1 y)

= ∂iεi−1y

= y,

and
∂i−1g(a, y, z) = ∂i−1∂iB = ∂i−1∂i−1B = ∂i−1(y ∧i−1 z) = z.

We also deduce that

εi−1∂i+1g(a, y, z) = εi−1y = εi−1∂iy ∧i−1 y = ∂i+1a ∧i−1 y.

By Definition 3.1(5),
B = (∂i+1a ∧i−1 y) ∧i ∂iB,
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hence

φi,1g(a, y, z) = ∂i+1[εi−1∂i+1g(a, y, z) ∧i g(a, y, z)]

= ∂i+1[(∂i+1a ∧i−1 y) ∧i ∂iB]

= ∂i+1B

= a.

Therefore fg(a, y, z) = (a, y, z).
This completes the proof.

According to this proposition, if X is a set with complicial identities and if 0 < i < m,
then an m-dimensional member c of X can be recovered from the image φi,1c and the
faces ∂i+1c, ∂i−1c. The triples (φi,1c, ∂i+1c, ∂i−1c) that can occur are those permitted by
the formulae

∂i+1φi,1c = εi−1∂i∂i+1c, ∂i−1φi,1c = ∂i(∂i+1c ∧i ∂i−1c).

We extend this as follows.

13.2. Proposition. Let X be a set with complicial identities. Then X0 = Ψ(0)X0. For
m > 0 the function on Xm given by

c 7→ (Ψ(m)c, ∂0c, . . . , ∂mc)

is injective. The image consists of the (m+ 2)-tuples

(a, u0, . . . , um) ∈ Ψ(m)X(m) ×Xm−1 × . . .×Xm−1

such that
∂ia = Fi(u0, . . . , um) (0 < i < m),

where Fi is the operation such that

∂iΨ(m)c = Fi(∂0c, . . . , ∂mc)

for all c.

Proof. Recall from Notations 9.12 and 9.8 that Ψ(m) is a composite of the operations φi,1
(an empty composite in the case m = 0). The result therefore follows from Proposi-
tion 13.2.

13.3. Theorem. The categories of ω-categories and sets with complicial identities are
equivalent under the functors α and β.
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Proof. Let C be an ω-category and let X be a set with complicial identities. We will
construct natural isomorphisms

βαC ∼= C, αβX ∼= X.

Let m be a nonnegative integer. By Proposition 5.4 and Definition 2.5, S(m) is a free
ω-category on one m-dimensional generator. By Theorem 6.11 λ∆(m) is a free set with
complicial identities on one m-dimensional generator. It follows that

Cm ∼= Hom[νS(m), C], Xm
∼= Hom[λ∆(m), X];

recall also from Proposition 11.9 that Hom[λS(m), X] ∼= Ψ(m)Xm. It is convenient to write

Ψ(m) Hom[λ∆(m), X] = {x ∈ Hom[λ∆(m), X] : x(λΨ∨(m)) = x },

so that
Hom[λS(m), X] ∼= Ψ(m) Hom[λ∆(m), X].

Analogously we will write

Ψ(m) Hom[ν∆(m), C] = {x ∈ Hom[ν∆(m), C] : x(νΨ∨(m)) = x },

so that
Hom[νS(m), C] ∼= Ψ(m) Hom[ν∆(m), C].

It follows from Notations 7.3 and 12.5 that

(βαC)m ∼= Hom[νS(m), βαC]
∼= Hom[λS(m), αC]
∼= Ψ(m) Hom[λ∆(m), αC]
∼= Ψ(m) Hom[ν∆(m), C]
∼= Hom[νS(m), C]
∼= Cm,

hence βαC ∼= C. Analogously

Ψ(m)(αβX)m ∼= Hom[λS(m), αβX]
∼= Ψ(m) Hom[λ∆(m), αβX]
∼= Ψ(m) Hom[ν∆(m), βX]
∼= Hom[νS(m), βX]
∼= Hom[λS(m), X]
∼= Ψ(m)Xm,

hence αβX ∼= X by Proposition 13.2. This completes the proof.
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