
Theory and Applications of Categories, Vol. 28, No. 24, 2013, pp. 780–803.

COMPLICIAL STRUCTURES IN THE NERVES OF
OMEGA-CATEGORIES

RICHARD STEINER

Abstract. It is known that strict omega-categories are equivalent through the nerve
functor to complicial sets and to sets with complicial identities. It follows that complicial
sets are equivalent to sets with complicial identities. We discuss these equivalences. In
particular we give a conceptual proof that the nerves of omega-categories are complicial
sets, and a direct proof that complicial sets are sets with complicial identities.

1. Introduction

This paper is concerned with the nerves of strict ω-categories (all ω-categories in this
paper will be strict ω-categories). The nerve functor, which was defined by Street in [7],
takes ω-categories to simplicial sets. The nerve functor is in fact an equivalence from the
category of ω-categories to a category of simplicial sets with additional structure, and this
additional structure has been described in two different ways. Verity has shown in [9] that
ω-categories are equivalent to complicial sets; in [5] I have shown that ω-categories are
equivalent to sets with complicial identities. Here a complicial set is a simplicial set with a
distinguished class of ‘thin’ elements, and a set with complicial identities is a simplicial set
with additional partial binary operations; in both cases the extra structure is subject to
an appropriate list of axioms. The axioms for complicial sets are simple and elegant, but
their calculational implications are not very obvious; the axioms for sets with complicial
identities are algebraic, in fact equational, like the axioms for cubical nerves in [1], and
they allow one to make concrete calculations as in [4].

It follows from a combination of [5] and [9] that the categories of strict ω-categories, of
complicial sets and of sets with complicial identities are all equivalent. The object of this
paper is to shed some light on these equivalences. There are two parts. In the first part we
give a conceptual proof that the nerve of an ω-category is a complicial set (Theorem 8.2).
This result was first proved computationally by Street in [8] (actually in a rather stronger
form), but the conceptual proof given here still seems to be enlightening. In the second
part of the paper we show directly that a complicial set is a set with complicial identities
(Theorem 9.2); this is straightforward, although the details are somewhat complicated.

The theory of complicial sets is based on thin fillers for a class of ‘complicial’ or
‘admissible’ horns in simplicial sets with thin elements. The process of filling an (n− 1)-
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dimensional complicial horn is therefore an n-ary operation with a rather complicated
domain. The idea behind both parts of this paper is that an (n−1)-dimensional complicial
horn in a complicial set is equivalent to a pair of arbitrary (n− 1)-dimensional elements
with a common face. This idea leads to the conceptual treatment of fillers in the first part
and to the binary operations in the second part. The connection with binary operations
appeared long ago in unpublished work of Street [6].

The structure of the paper is as follows. In Sections 2 and 3 we recall the construction
of the nerve of an ω-category as a simplicial set and we show that it is a stratified simplicial
set (a simplicial set with thin elements). In Section 4 we recall the definition of complicial
sets. In Section 5 we discuss horns in the nerves of ω-categories. In Section 6 we discuss
a class of horns represented by pairs of faces, which are later shown to be the complicial
horns, and in Section 7 we discuss the fillers for these horns. Section 7 contains the bulk
of the proof that the nerves of ω-categories are complicial sets, and the proof is completed
in Section 8.

The second part of the paper consists of Section 9. First we define sets with complicial
identities; then we show that complicial sets are sets with complicial identities.

2. Nerves as simplicial sets

In this section we describe the nerve functor N from ω-categories to simplicial sets.
It was constructed by Street in [7] in the following way: there is a sequence of ω-
categories O0,O1, . . . called orientals, and there is a functor from the simplex category to
ω-categories given on objects by [n] 7→ On; the nerve of an ω-category C is the simplicial
set NC given by

NnC = Hom(On, C).

We will describe this construction in terms of chain complexes, following [2] and [3].
We use a one-sorted description of ω-categories, so that an ω-category C is a set which

serves as the set of morphisms for an infinite sequence of commuting category structures.
The composition operations will be denoted #0,#1, . . . , the left identity for x under #n

will be denoted d−nx, and the right identity for x under #n will be denoted d+
nx. If n < p

then the identities for #n must also be identities for #p; every member of C must be an
identity for some operation #n.

When we say that the category structures commute we mean in particular that for
m 6= n there are equalities

dαmd
β
nx = dβnd

α
mx, dαm(x#n y) = dαmx#n d

α
my,

where the signs α and β are arbitrary. We deduce that the identities for any particular
operation #m form a sub-ω-category. This gives the following result.

2.1. Proposition. Let m be a nonnegative integer and let C be an ω-category generated
by elements g such that d−mg = d+

mg = g. Then d−mx = d+
mx = x for all x ∈ C.
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Next we recall the construction of orientals in terms of chain complexes, as in [2] and [3].
We use a category of free augmented directed complexes defined as follows.

2.2. Definition. A free augmented directed complex is an augmented chain complex
of free abelian groups concentrated in nonnegative dimensions, together with a prescribed
basis for each chain complex. A morphism of free augmented directed complexes is an
augmentation-preserving chain map which takes sums of basis elements to sums of basis
elements.

Note that the word sums is to be taken literally: a sum of basis elements is an expres-
sion

a1 + · · ·+ ak

with k ≥ 0 such that a1, . . . , ak are basis elements; no subtraction is allowed.
The main example used in this paper is the chain complex of the n-simplex. This

chain complex will be denoted ∆n. The q-dimensional chain group of ∆n has prescribed
basis consisting of the (q + 1)-tuples of integers

[a0, . . . , aq] (0 ≤ a0 < a1 < · · · < aq ≤ n);

the boundary of [a0, . . . , aq] for q > 0 is the alternating sum

[a1, . . . , aq]− [a0, a2, . . . , aq] + · · ·+ (−1)q[a0, . . . , aq−1];

the augmentation is given by ε[a0] = 1.
We define morphisms ∂∨i and ε∨i of free augmented directed complexes in the obvious

way, so that they correspond contravariantly to face and degeneracy operations. For n > 0
and for 0 ≤ i ≤ n the face operation

∂∨i : ∆n−1 → ∆n

is given on basis elements by

∂∨i [a0, . . . , aq] = [a′0, . . . , a
′
q]

such that

a′j =

{
aj (0 ≤ aj ≤ i− 1),

aj+1 (i ≤ j ≤ n− 1).

For 0 ≤ i ≤ n the degeneracy operation

ε∨i : ∆n+1 → ∆n

is given on a basis element [a0, . . . , aq] as follows: if the terms aj do not include both i and
i+ 1 then

ε∨i [a0, . . . , aq] = [a′′0, . . . , a
′′
q ]
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such that

a′j =

{
aj (0 ≤ aj ≤ i),

aj−1 (i+ 1 ≤ j ≤ n+ 1);

if the terms aj do include both i and i+ 1 then

ε∨i [a0, . . . , aq] = 0.

These morphisms satisfy the contravariant forms of the standard simplicial relations,

∂∨j ∂
∨
i = ∂∨i ∂

∨
j−1 (i < j),

ε∨j ∂
∨
i = ∂∨i ε

∨
j−1 (i < j),

ε∨j ∂
∨
j = ε∨j ∂

∨
j+1 = id,

ε∨j ∂
∨
i = ∂∨i−1ε

∨
j (i > j + 1),

ε∨j ε
∨
i = ε∨i ε

∨
j+1 (i ≤ j).

They therefore yield a functor from the simplex category to the category of augmented
directed complexes.

It is straightforward to check that there is a functor ν from free augmented directed
complexes to ω-categories defined as follows.

2.3. Notation. Let K be a free augmented directed complex. Then νK is the ω-category
with the following structure. The members of νK are the infinite sequences

(x−0 , x
+
0 | x−1 , x+

1 | . . . )

with finitely many non-zero terms such that x−q and x+
q are sums of prescribed q-dimensional

basis elements in K, such that
εx−0 = εx+

0 = 1

and such that
∂x−q = ∂x+

q = x+
q−1 − x−q−1 (q > 0).

The operations d−n and d+
n are given by

dαn(x−0 , x
+
0 | . . . ) = (x−0 , x

+
0 | . . . | x−n−1, x

+
n−1 | xαn, xαn | 0, 0 | . . . ).

If d+
nx = d−n y = z, say, then

x#n y = x− z + y,

where the addition and subtraction are performed termwise.

By composing the functor [n] 7→ ∆n with the functor ν we obtain a functor from the
simplex category to the category of ω-categories. The nth oriental On may be defined by
the formula

On = ν∆n.

The nerve of an ω-category is then defined as follows.
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2.4. Definition. The nerve of an ω-category C is the simplicial set NC given by

NnC = Hom(On, C) = Hom(ν∆n, C).

3. Nerves as stratified simplicial sets

A complicial set is defined to be a simplicial set with a class of thin elements subject
to certain conditions; in particular they must be stratified simplicial sets in the sense
of Definition 3.2 below. In this section we specify the thin elements in the nerves of
ω-categories and we then show that the nerves are stratified simplicial sets.

3.1. Definition. Let C be an ω-category. Then the thin elements in NC are the ele-
ments x in NnC with n > 0 such that

d−n−1xu = d+
n−1xu = xu

for all u ∈ ν∆n

Note that the elements of ν∆n are of dimension at most n, in the sense that d−nu =
d+
nu = u for all u ∈ ν∆n. A thin element is therefore a morphism that lowers dimension.

We recall the definition of stratified simplicial sets from [9], 5.1.

3.2. Definition. A stratified simplicial set is a simplicial set together with a prescribed
class of thin elements of positive dimension which includes the degenerate elements. A
morphism of stratified simplicial sets is a morphism of simplicial sets taking thin elements
to thin elements.

We obtain the following result.

3.3. Proposition. The nerve functor is a functor from ω-categories to stratified simpli-
cial sets.

Proof. Let C be an ω-category. To show that NC is a stratified simplicial set we must
show that the degenerate elements in NC are thin. To do this, let x be a degenerate
n-dimensional element, say

x = εiy = y(νε∨i )

with y : ν∆n−1 → C. We must show that dαn−1xu = xu for each sign α and for all u ∈ ν∆n.
But we have dαn−1v = v for all v ∈ ν∆n−1, hence

dαn−1xu = dαn−1y(νε∨i )u = ydαn−1(νε∨i )u = y(νε∨i )u = xu

as required.
Now let f : C → C ′ be a morphism of ω-categories. To show that Nf is a morphism

of stratified simplicial sets we must show that (Nf)x is thin whenever x is a thin element
in NnC. But for u ∈ ν∆n and for each sign α we have

dαn−1(Nf)xu = dαn−1fxu = fdαn−1xu = fxu = (Nf)xu;

therefore (Nf)x is thin as required.
This completes the proof.
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4. Complicial sets

A complicial set is a stratified simplicial set satisfying certain conditions on horn-fillers.
In this section we give the definition, following [9], 6–7.

Recall that, for n > 0 and for 0 ≤ k ≤ n, an (n−1)-dimensional k-horn in an arbitrary
simplicial set is a sequence of (n− 1)-dimensional elements

z = (z0, . . . , zk−1, zk+1, . . . , zn)

such that
∂izj = ∂j−1zi (i < j);

thus the elements are like the codimension one faces of an n-dimensional element x, except
that the face ∂kx is omitted. A filler for an (n − 1)-dimensional k-horn z = (z0, . . . , zn)
is an n-dimensional element x such that ∂ix = zi for i 6= k.

In a stratified simplicial set there are distinguished classes of elements and horns
which are called complicial or admissible. Consider a geometrical n-simplex with vertices
0, 1, . . . , n. It has faces spanned by the non-empty subsets of {0, . . . , n}; the face spanned
by the complement of a proper subset {j(1), . . . , j(r)} with j(1) < · · · < j(r) corresponds
to the iterated face operator ∂j(1) · · · ∂j(r). Given integers n and k with 0 < k < n we
will say that an n-dimensional element x is k-complicial (the term k-admissible is also
used) if the iterated face ∂j(1) · · · ∂j(r)x is thin whenever the complement of {j(1), . . . , j(r)}
includes the integers k − 1, k, k + 1. We will also say that an (n − 1)-dimensional horn
z = (z0, . . . , zn) is k-complicial if the elements zi are configured like the codimension one
faces of a k-complicial n-dimensional element x with ∂kx omitted.

Formally, it is most convenient to express these definitions recursively.

4.1. Definition. Let n and k be integers with 0 < k < n.
(1) An (n−1)-dimensional k-complicial horn in a stratified simplicial set is an (n−1)-

dimensional k-horn
z = (z0, . . . , zk−1, zk+1, . . . , zn)

such that zi is a (k−1)-complicial element for 0 ≤ i < k−1 and is a k-complicial element
for k + 1 < i ≤ n.

(2) An n-dimensional k-complicial element in a stratified simplicial set is a thin filler
of an (n− 1)-dimensional k-complicial horn.

Thus a 1-dimensional 1-horn is always 1-complicial, a 2-dimensional element is 1-
complicial if and only if it is thin, etc.

A complicial set is then defined as follows.

4.2. Definition. A complicial set is a stratified simplicial set satisfying the following
conditions.

(1) Every thin 1-dimensional element is degenerate.
(2) For 0 < k < n every (n−1)-dimensional k-complicial horn has a unique thin filler.
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(3) For 0 < k < n, if x is an n-dimensional k-complicial element and if ∂k−1x and
∂k+1x are thin, then ∂kx is thin.

We aim to show that the nerves of ω-categories are complicial sets. Most of the work
is in verifying the last two conditions; we can dispose of the first condition immediately.

4.3. Proposition. Let x be a thin 1-dimensional element in the nerve of an ω-category C.
Then x is degenerate.

Proof. Recall that x is a morphism of ω-categories from ν∆1 to C. It is straightforward
to check that ν∆1 has exactly three members, which can be listed as

u = ( [0], [1] | [0, 1], [0, 1] | 0, 0 | . . . ),
d−0 u = ( [0], [0] | 0, 0 | . . . ),
d+

0 u = ( [1], [1] | 0, 0 | . . . ).

We have xd−0 u = d−0 xu = xu and xd+
0 u = d+

0 xu = xu because x is thin; therefore x is
constant. It follows that x = x(ν∂∨0 )(νε∨0 ) = ε0∂0x; therefore x is degenerate.

5. Horns in nerves

Recall that the n-dimensional elements in the nerves of ω-categories are represented by
the free augmented directed complex ∆n via the functor ν. In this section we show that
(n− 1)-dimensional k-horns are similarly represented by a subcomplex Λk

n of ∆n.
The subcomplex Λk

n is as one would expect.

5.1. Notation. If n > 0 and if 0 ≤ k ≤ n then Λk
n is the free augmented directed

subcomplex of ∆n given by

Λk
n = ∂∨0 ∆n−1 + · · ·+ ∂∨k−1∆n−1 + ∂∨k+1∆n−1 + · · ·+ ∂∨n∆n−1.

The prescribed basis for Λk
n is the prescribed basis for ∆n with the elements

[0, 1, . . . , k − 1, k + 1, . . . , n− 1, n], [0, 1, . . . , n− 1, n]

omitted.

For n ≥ 2 and for 0 ≤ i < j ≤ n we have

∂∨i ∆n−1 ∩ ∂∨j ∆n−1 = ∂∨j ∂
∨
i ∆n−2 = ∂∨i ∂

∨
j−1∆n−2.

In the category of abelian groups this gives a description of Λk
n as a colimit. To show that

Λk
n represents horns in nerves, we must show that νΛk

n is a similar colimit in the category
of ω-categories. We will do this by using results from [2], which we now summarise.
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Let K be a free augmented directed complex. Given a chain c in K, we write ∂+c and
∂−c for the positive and negative parts of the boundary ∂c; in other words, ∂+c and ∂−c
are the sums of basis elements without common terms such that

∂c = ∂+c− ∂−c.

Given basis elements a, a′ of the same dimension q, we will write a < a′ if there is a basis
element b of dimension q + r with r > 0 such that a is a term in (∂−)rb and such that
a′ is a term in (∂+)rb.

5.2. Definition. A free augmented directed complex is unital if ε(∂−)pa = ε(∂+)pa = 1
for every basis element a, where p is the dimension of a.

A free augmented directed complex is loop-free if the transitive closure of the relation <
is a strict partial order on its basis elements.

5.3. Definition. Let a be a p-dimensional basis element in a unital loop-free directed
complex K. The the associated atom is the member 〈a〉 of νK given by

〈a〉 = ( (∂−)pa, (∂+)pa | · · · | ∂−a, ∂+a | a, a | 0, 0 | · · · ).

Note that ∂∂− = ∂∂+ because ∂∂ = 0, hence ∂α∂− = ∂α∂+ for each sign α; it follows
that in Definition 5.3 〈a〉 really is a member of νK.

The main result that we will use is the following ([2], Theorem 6.1).

5.4. Theorem. If K is a unital loop-free free augmented directed complex then the ω-
category νK has a presentation as follows. The generators are the atoms. For a basis
element a of arbitrary dimension p there are relations

d−p 〈a〉 = d+
p 〈a〉 = 〈a〉.

For a basis element a of positive dimension p there are relations

d−p−1〈a〉 = w−(a), d+
p−1〈a〉 = w+(a),

where w−(a) and w+(a) are arbitrarily chosen expressions for d−p−1〈a〉 and d+
p−1〈a〉 as

iterated composites of atoms of dimension less than p.

We will now show that this theorem applies to simplexes, essentially by computing
the atoms.

5.5. Definition. Let
a = [i0, . . . , ip]

be a p-dimensional basis element in a simplex ∆n. Then a block in a is a non-empty
sequence of consecutive terms

u = ir, ir+1, . . . , is.

A block is even if it has an even number of terms, it is odd if it has an odd number of
terms, it is initial if it includes i0, and it is final if it includes ip.
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5.6. Proposition. Let a be a p-dimensional element in a simplex ∆n and let q be an
integer with 0 ≤ q ≤ p. Then (∂−)p−qa is the sum of the q-dimensional basis elements
with expressions

[u0, . . . ,uk] (k ≥ 0)

such that u0 is an odd initial block in a and such that u1, . . . ,uk are even or final blocks
in a. In the same way (∂+)p−qa is the sum of the q-dimensional basis elements with
expressions

[u0, . . . ,uk] (k ≥ 0)

such that u0, . . . ,uk are even or final blocks in a.

Proof. This is a straightforward downward induction on q.

5.7. Proposition. The free augmented directed complexes ∆n and Λk
n are unital and

loop-free.

Proof. We make the following deductions from Proposition 5.6.
If a = [i0, . . . , ip] is a p-dimensional basis element, then

ε(∂−)pa = ε[i0] = 1, ε(∂+)pa = ε[ip] = 1;

therefore the complexes are unital.
If a and a′ are basis elements such that a < a′, say

a = [i0, . . . , ip], a′ = [i′0, . . . , i
′
p]

and if i0 = i′0, . . . , iq−1 = i′q−1, iq 6= i′q, then (−1)qiq < (−1)qi′q. The transitive closure
of < is therefore contained in a total ordering of the basis elements and it follows that
the complexes are loop-free.

For n ≥ 2 it now follows from Theorem 5.4 that νΛk
n is the obvious colimit of copies

of ν∆n−1 and ν∆n−2. If n = 1 then νΛk
n is obviously just a copy of ν∆n−1. We deduce

the following result.

5.8. Theorem. Let n and k be integers with n > 0 and 0 ≤ k ≤ n, and let C be an
ω-category. Then the function

Hom(νΛk
n, C)→ Hom(ν∆n−1, C)× · · · × Hom(ν∆n−1, C)

induced by ( ν∂∨i : i 6= k ) is a bijection whose image consists of the (n − 1)-dimensional
k-horns in the nerve of C. The function

Hom(ν∆n, C)→ Hom(νΛk
n, C)

induced by the inclusion νΛk
n → ν∆n sends n-dimensional elements to the k-horns which

they fill.
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6. Horns represented by pairs of faces

Let n and k be integers with 0 < k < n. We have constructed a subcomplex Λk
n in ∆n

which represents (n − 1)-dimensional k-horns (Theorem 5.8). We will now construct a
subcomplex V k

n of Λk
n and a retraction

Πk
n : ∆n → V k

n .

Eventually we will show that V k
n represents n-dimensional k-complicial elements, and that

Πk
n represents the inclusion of these elements in the set of all n-dimensional elements. We

will also show that V k
n represents (n − 1)-dimensional k-complicial horns and that the

restriction
πkn = Πk

n|Λk
n : Λk

n → V k
n

represents the inclusion of these horns in the set of all (n− 1)-dimensional k-horns.
We will now define the subcomplex V k

n and the retraction Πk
n.

6.1. Notation. If n > 0 and 0 < k < n then V k
n is the free augmented directed subcom-

plex of ∆n given by
V k
n = ∂∨k−1∆n−1 + ∂∨k+1∆n−1.

The prescribed basis elements for V k
n are the prescribed basis elements [i0, . . . , iq] for ∆n

not including both k − 1 and k + 1.

The results for ∆n and Λk
n given in Proposition 5.7 obviously apply to Λk

n as well.

6.2. Proposition. The free augmented directed complex V k
n is unital and loop-free.

6.3. Notation. Let n and k be integers with 0 < k < n. Then

Πk
n : ∆n → V k

n

is the morphism given on basis elements a = [i0, . . . , iq] as follows. If a does not include
k − 1 or does not include k + 1 then Πk

na = a. If a includes k − 1, k and k + 1 then
Πk
na = 0. If a includes k − 1 and k + 1 but not k, say

a = [u, k − 1, k + 1,v],

then
Πk
na = [u, k, k + 1,v] + [u, k − 1, k,v].

We also write πkn for the restriction

πkn = Πk
n|Λk

n : Λk
n → V k

n .

It is straightforward to show Πk
n and πkn are augmentation-preserving chain maps.

Since they take basis elements to sums of basis elements, they are morphisms of free
augmented directed complexes. It is also straightforward to check that they have the
following properties.
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6.4. Proposition. The morphisms of free augmented directed complexes Πk
n and πkn are

retractions such that

πkn∂
∨
i = ∂∨i Πk−1

n−1 (0 ≤ i < k − 1),

πkn∂
∨
k−1 = ∂∨k−1,

πkn∂
∨
k+1 = ∂∨k+1,

πkn∂
∨
i = ∂∨i Πk

n−1 (k + 1 < i ≤ n).

We immediately obtain an analogue for Definition 4.1(1).

6.5. Proposition. Let C be an ω-category, let z be a morphism in Hom(νΛk
n, C), and

let
zi = z(ν∂∨i ) (0 ≤ i ≤ n, i 6= k).

Then z is of the form y(νπkn) if and only if zi is of the form yi(νΠk−1
n−1) for 0 ≤ i < k − 1

and of the form yi(νΠk
n−1) for k + 1 < i ≤ n.

This shows that composites with morphisms of the forms νπkn and νΠk
n−1 are somewhat

analogous to (n − 1)-dimensional complicial horns and (n − 1)-dimensional complicial
elements (see Definition 4.1(1)). To complete the analogy we must relate composites with
νΠk

n to thin fillers of composites with νπkn. We will do this in the next section.

7. Fillers for horns represented by pairs of faces

In this section let n and k be fixed integers with 0 < k < n. We have seen in Theorem 5.8
that the process of filling (n − 1)-dimensional k-horns in the nerves of ω-categories is
represented by the inclusion of Λk

n in ∆n. In Section 6 we have constructed a retraction πkn
from Λk

n to V k
n which is intended to represent the inclusion of the set of (n−1)-dimensional

k-complicial horns in the set of arbitrary (n − 1)-dimensional k-horns. We will now
construct an extension W of V k

n and a morphism Π: ∆n → W extending πkn such that the
square

νΛk
n

νπk
n
��

⊂ // ν∆n

νΠ

��
νV k

n
⊂ // νW

is a push-out square. The fillers for horns represented by V k
n will then be represented

by W . We will also show that any such horn has a unique thin filler.
We will use the following notation.

7.1. Notation. In ∆n let s, t0, . . . , tn be the basis elements of dimensions n and n − 1
given by

s = [0, 1, . . . , n],

ti = [0, . . . , i− 1, i+ 1, . . . , n] (0 ≤ i ≤ n).
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Let κ be the sign given by
κ = (−)k.

Note that ∆n is obtained from Λk
n by adjoining the basis elements tk and s. Note also

that

∂s =
n∑
i=0

(−1)iti

with

πkntk−1 = tk−1,

πkntk+1 = tk+1,

πknti = 0 (i 6= k − 1, k, k + 1).

We can therefore construct a free augmented directed complex W and a morphism of free
augmented directed complexes Π: ∆n → W in the following way.

7.2. Notation. Let W be the free augmented directed complex obtained from V k
n by

adjoining an (n− 1)-dimensional basis element t′k and an n-dimensional basis element s′

with

∂t′k = πkn∂tk,

∂s′ = (−1)k(t′k − tk−1 − tk+1).

Let Π: ∆n → W be the morphism given by

Π|Λk
n = πkn, Πtk = t′k, Πs = s′.

We will obtain properties of νW by using Theorem 5.4. In order to do this, we must
show that W is unital and loop-free. We therefore make the following calculations.

7.3. Proposition. Let a be a basis element in W which is a term in Π(∂α)r+1s′ or
Π(∂α)rt′k for some sign α. If a is a basis element in V k

n omitting k − 1 then a is a term
in (∂α)rtk−1; if a is a basis element in V k

n omitting k + 1 then a is a term in (∂α)rtk+1.

Proof. Let b be a basis element in ∆n which is a term in (∂α)r+1s or (∂α)rtk; then b con-
sists of blocks of consecutive entries in s or tk satisfying the conditions of Proposition 5.6.
It is straightforward to check that any term of Πb in V k

n omitting k− 1 consists of blocks
of consecutive entries in tk−1 satisfying the same conditions and is therefore a term in
(∂α)rtk−1. A similar argument applies to terms omitting k + 1.
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7.4. Proposition. Let α be any sign; then

(∂α)rs′ = Π(∂α)rs (0 ≤ r ≤ n),

(∂α)rt′k = Π(∂α)rtk (0 ≤ r ≤ n− 1).

Proof. We first prove the result for (∂α)rs by induction on r. The result holds for r = 0
and for r = 1 because

s′ = Πs,

∂κs′ = t′k = Π∂κs,

∂−κs′ = tk−1 + tk+1 = Π∂−κs.

In cases with 2 ≤ r ≤ n assume that (∂−)r−1s′ = Π(∂−)r−1s. Then

∂(∂−)r−1s′ = ∂Π(∂−)r−1s = Π∂(∂−)r−1s = Π(∂+)rs− Π(∂−)rs.

By construction, (∂+)rs′ and (∂−)rs′ are sums of basis elements without common terms
such that

∂(∂−)r−1s′ = (∂+)rs′ − (∂−)rs′.

It follows from Proposition 7.3 that Π(∂+)rs and Π(∂−)rs are also sums of basis elements
without common terms, and it then follows that

(∂α)rs′ = Π(∂α)rs

for each sign α.
A similar argument applies to (∂α)rt′k, starting with t′k = Πtk.

7.5. Proposition. Let a and b be basis elements in W such that a is a term in (∂α)rs′

or (∂α)rt′k for some α and such that a is also a term in (∂−α)qb. Then r = 0 or q = 0.

Proof. By construction, if r > 0 then (∂−)rs′ and (∂+)rs′ have no common terms. For
r > 1 we have

(∂−)rs′ = (∂−)r−1t′k, (∂+)rs′ = (∂+)r−1t′k,

because ∂κs′ = t′k. This gives the result for b = s′ and for b = t′k.
Now let b be a basis element in V k

n omitting k − 1. Since a is a term in (∂−α)qb, it
follows that a is also a basis element in V k

n omitting k − 1. By Proposition 7.3, a is a
term in (∂α)r−1tk−1 or (∂α)rtk−1. It now follows from Proposition 5.6 that a is a term in
(∂α)qb, because terms of a which are consecutive in tk−1 are also consecutive in b. This
makes a a term in (∂α)qb and in (∂−α)qb; therefore q = 0.

A similar argument applies when b is a basis element in V k
n omitting k + 1.
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7.6. Theorem. The free augmented directed complex W is unital and loop-free.

Proof. By Proposition 6.2 the subcomplex V k
n is unital and loop-free; it therefore suffices

to consider the effect of the additional basis elements s′ and t′k.
Since Π is augmentation-preserving and ∆n is unital, it follows from Proposition 7.4

that
ε(∂α)ns′ = εΠ(∂α)ns = ε(∂α)ns = 1

and it similarly follows that ε(∂α)n−1t′k = 1; therefore W is unital.
Next we consider the relations a < a′ between basis elements of W . The transitive

closure of the relations coming from V k
n is a partial ordering because V k

n is loop-free. If
a < a′ is a relation coming from the extra basis elements s′ and t′k, then it follows from
Proposition 7.5 that there are no relations of the form c < a or a′ < c′. The transitive
closure therefore remains a partial ordering even after the extra relations are included,
and it follows that W is loop-free.

This completes the proof.

It follows from Theorems 7.6 and 5.4 that νW has a presentation in terms of its atoms.
For these atoms we have the following results.

7.7. Proposition. The atoms 〈s′〉 and 〈t′k〉 in νW are such that

〈s′〉 = (νΠ)〈s〉, 〈t′k〉 = (νΠ)〈tk〉

and
dκn−1〈s′〉 = 〈t′k〉, d−κn−1〈s′〉 ∈ νV k

n .

Proof. The equalities 〈s′〉 = (νΠ)〈s〉 and 〈t′k〉 = (νΠ)〈tk〉 are restatements of Proposi-
tion 7.4. The equality dκn−1〈s′〉 = 〈t′k〉 holds because ∂κs′ = t′k. We have d−κn−1〈s′〉 ∈ νV k

n

because
∂−κs′ = tk−1 + tk+1 ∈ V k

n .

It follows that νW is a push-out in the required way.

7.8. Theorem. The square of ω-categories

νΛk
n

νπk
n
��

⊂ // ν∆n

νΠ

��
νV k

n
⊂ // νW

is a push-out square. The ω-category νW is generated as an extension of νV k
n by the

atom 〈s′〉.
Proof. It follows from Theorem 5.4, Theorem 7.6 and Proposition 7.7 that νW is gen-
erated as an extension of νV k

n by 〈s′〉 and 〈t′k〉 subject to relations which are the images
under νΠ of relations in ν∆n. This shows that the square is a push-out square. Since
〈t′k〉 = dκn−1〈s′〉, the single atom 〈s′〉 suffices to generate νW as an extension of νV k

n .
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We can now prove the main theorem of this section.

7.9. Theorem. Let C be an ω-category and let y be a morphism in Hom(νV k
n , C). Then

the composite
y(νΠk

n) ∈ Hom(ν∆n, C)

is the unique thin filler for the (n− 1)-dimensional k-horn represented by

y(νπkn) ∈ Hom(νΛk
n, C).

Proof. The morphism y(νΠk
n) is certainly a filler for y(νπkn) because Πk

n|Λk
n = πkn. It is

a thin filler because dαn−1v = v for all v ∈ νV k
n .

It now suffices to show that there is at most one thin filler. To do this, let x be an
arbitrary thin filler. By Theorem 7.8 there is a morphism

w ∈ Hom(νW,C)

such that
w|νV k

n = y, w(νΠ) = x.

By Proposition 7.7, w〈s′〉 = x〈s〉. Since x is thin, w〈s′〉 = d−κn−1w〈s′〉. By another
application of Proposition 7.7,

d−κn−1w〈s′〉 = wd−κn−1〈s′〉 = yd−κn−1〈s′〉;

therefore
w〈s′〉 = yd−κn−1〈s′〉.

Since νW is generated by 〈s′〉 as an extension of νV k
n and since x is w(νΠ) it follows that

x is uniquely determined by y. This completes the proof.

8. Nerves as complicial sets

We have shown in Proposition 3.3 that the nerves of ω-categories are naturally stratified
simplicial sets. We will now show that they are complicial sets, with complicial elements
represented by the complexes V k

n .

8.1. Theorem. Let C be an ω-category. For integers n and k with 0 < k < n, an
(n−1)-dimensional k-horn in the nerve of C is k-complicial if and only if it is represented
by a composite y(νπkn) with y ∈ Hom(νV k

n , C), and an n-dimensional element in the
nerve of C is k-complicial if and only if it is represented by a composite y(νΠk

n) with
y ∈ Hom(νV k

n , C).
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Proof. The proof is by induction on n.
Suppose that (n − 1)-dimensional elements are (k − 1)-complicial if and only if they

factor through νΠk−1
n−1 and that they are k-complicial if and only if they factor through

νΠk
n−1. Then it follows from Proposition 6.4 that an (n− 1)-dimensional k-horn

(z0, . . . , zk−1, zk+1, . . . , zn)

factors through νπkn if and only if zi is (k − 1)-complicial for 0 ≤ i < k − 1 and zi is
k-complicial for k + 1 < i ≤ n. This means that an (n − 1)-dimensional k-horn factors
through νπkn if and only if it is k-complicial. It now follows from Theorem 7.9 that an
n-dimensional element is a thin filler of an (n − 1)-dimensional k-complicial horn if and
only if it factors through νΠk

n; therefore an n-dimensional element is k-complicial if and
only if it factors through νΠk

n. This completes the proof.

8.2. Theorem. If C is an ω-category then the nerve of C is a complicial set.

Proof. By Proposition 3.3 the nerve is a stratified simplicial set. By Proposition 4.3
every thin 1-dimensional element in the nerve is degenerate. By Theorems 7.9 and 8.1
complicial horns in the nerve have unique thin fillers. It remains to verify the condition
of Definition 4.2(3).

Let x be an n-dimensional k-complicial element in the nerve such that ∂k−1x and ∂k+1x
are thin; we must show that ∂kx is thin. Equivalently, for each sign α, we must show
that dαn−2x(ν∂∨k ) = x(ν∂∨k ). We will do this by showing that dαn−2x = x. Since x factors
through the retraction νΠk

n : ν∆n → νV k
n it suffices to show that dαn−2xv = xv for all

v ∈ νV k
n . Since νV k

n is generated by its atoms (see Theorem 5.4 and Proposition 6.2) it
suffices by Proposition 2.1 to show that dαn−2x〈a〉 = x〈a〉 for every basis element a in V k

n .
For basis elements a of dimension less than n− 1 this is immediate. For a basis element a
of dimension n− 1 we have

x〈a〉 = x〈tk±1〉 ∈ imx(ν∂∨k±1) = im ∂k±1x,

hence dαn−2x〈a〉 = x〈a〉 because ∂k±1x is thin. This completes the proof.

9. Complicial sets and complicial identities

We have shown in Theorem 8.2 that the nerves of ω-categories are complicial sets. In this
section we will show that complicial sets are sets with complicial identities in the sense of
the following definition ([4], Definition 6.1).

9.1. Definition. A set with complicial identities is a simplicial set X, together with
wedges

x ∧i y ∈ Xm+1,

defined when x, y ∈ Xm and ∂ix = ∂i+1y, such that the following axioms hold.
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(1) If x ∧i y is defined with x, y ∈ Xm, then

∂j(x ∧i y) = ∂jx ∧i−1 ∂jy (0 ≤ j < i),

∂i(x ∧i y) = y,

∂i+2(x ∧i y) = x,

∂j(x ∧i y) = ∂j−1x ∧i ∂j−1y (i+ 2 < j ≤ m+ 1).

(2) If x ∈ Xm and 0 ≤ i < m then

εix = εi∂i+1x ∧i x, εi+1x = x ∧i εi∂ix.

(3) If A is of the form b ∧i (y ∧i z) then

A = (∂i+2b ∧i y) ∧i+1 ∂i+1A.

(4) If A is of the form (x ∧i y) ∧i+1 c then

A = ∂i+2A ∧i (y ∧i ∂ic).

(5) The equality

[x ∧i ∂i+1(y ∧i z)] ∧i (y ∧i z) = (x ∧i y) ∧i+1 [∂i+1(x ∧i y) ∧i z]

holds whenever either side is defined.
(6) If A is of the form ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)], then the equality

A ∧i (w ∧i+1 ∂iA) = (∂i+3A ∧i w) ∧i+2 A

holds whenever either side is defined.
(7) If i ≤ j − 3 then the equality

(x ∧i y) ∧j (z ∧i w) = (x ∧j−1 z) ∧i (y ∧j−1 w)

holds whenever either side is defined.

The object of this section is to prove the following result.

9.2. Theorem. Let X be a complicial set. Then there is a unique family of wedge op-
erations making X into a set with complicial identities such that the wedges x ∧i y are
(i+ 1)-complicial elements.

Since complicial elements in complicial sets are uniquely determined by their faces,
the construction of Theorem 9.2 is functorial.

The proof of Theorem 9.2 uses the method appearing in Street’s notes [6]. It consists
of a sequence of lemmas. In all of these lemmas, X is a complicial set.
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9.3. Lemma. There is a unique way to construct wedges

x ∧i y ∈ Xm+1

such that x ∧i y is defined for x, y ∈ Xm with ∂ix = ∂i+1y, such that x ∧i y is (i + 1)-
complicial, and such that the conditions of Definition 9.1(1) are satisfied.

Proof. The proof is by induction on m. Let x, y ∈ Xm be such that ∂ix = ∂i+1y
and assume that we have constructed wedges with the required properties for pairs of
elements with dimensions less than m. We will show that there is an m-dimensional
(i+ 1)-complicial horn

(z0, . . . , zi, zi+2, . . . , zm+1)

given by

zj = ∂jx ∧i−1 ∂jy (0 ≤ j < i),

zi = y,

zi+2 = x,

zj = ∂j−1x ∧i ∂j−1y (i+ 2 < j ≤ m+ 1).

The conditions on x ∧i y amount to requiring it to be a thin filler of this horn. Since
complicial horns in X have unique thin fillers, this means that there will be a unique
wedge x ∧i y with the required properties.

It remains to show that (z0, . . . , zm+1) really is an m-dimensional (i + 1)-complicial
horn. It is straightforward to verify that ∂kzj = ∂j−1zk for k < j by using Definition 9.1(1)
inductively. It also follows from the inductive hypothesis that zj is i-complicial for j < i
and that zj is (i + 1)-complicial for j > i + 2. Therefore (z0, . . . , zm+1) is indeed an
m-dimensional (i+ 1)-complicial horn. This completes the proof.

We must now verify the conditions of Definition 9.1(2)–(7). Essentially, we need to
show that elements of certain forms are wedges. We will write im∧i for the subset of X
consisting of the wedges x ∧i y and we will use the following result.

9.4. Lemma. Let A be a thin (m+ 1)-dimensional element of X such that ∂jA ∈ im∧i−1

for 0 ≤ j < i and such that ∂jA ∈ im∧i for i+ 2 < j ≤ m+ 1. Then

A = ∂i+2A ∧i ∂iA.

Proof. There is a wedge ∂i+2A ∧i ∂iA, because ∂i∂i+2A = ∂i+1∂iA, and this wedge is
an (i+ 1)-complicial element. The element A is also (i+ 1)-complicial, because elements
of im∧i−1 are i-complicial and elements of im∧i are (i + 1)-complicial. Since (i + 1)-
complicial elements in the complicial set X are uniquely determined by the (i+ 1)-horns
which they fill, it suffices to prove that

∂jA = ∂j(∂i+2A ∧i ∂iA) (j 6= i+ 1).
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We use the conditions of Definition 9.1(1): for 0 ≤ j < i we have ∂jA = xj ∧i−1 yj such
that

xj = ∂i+1(xj ∧i−1 yj) = ∂i+1∂jA = ∂j∂i+2A,

yj = ∂i−1(xj ∧i−1 yj) = ∂i−1∂jA = ∂j∂iA,

hence
∂jA = ∂j∂i+2A ∧i−1 ∂j∂iA = ∂j(∂i+2A ∧i ∂iA);

we certainly have

∂i(∂i+2A ∧i ∂iA) = ∂iA,

∂i+2(∂i+2A ∧i ∂iA) = ∂i+2A;

for i+ 2 < j ≤ m+ 1 we have ∂jA = xj ∧i yj such that

xj = ∂i+2(xj ∧i yj) = ∂i+2∂jA = ∂j−1∂i+2A,

yj = ∂i(xj ∧i yj) = ∂i∂jA = ∂j−1∂iA,

hence
∂jA = ∂j−1∂i+2A ∧i ∂j−1∂iA = ∂j(∂i+2A ∧i ∂iA).

This completes the proof.

When applying this result, we need to show that certain elements are thin. We will
use the following result.

9.5. Lemma. Let x ∧i y be a wedge in X; then x ∧i y is thin. If also x and y are thin
then ∂i+1(x ∧i y) is thin.

Proof. By construction, x ∧i y is an (i + 1)-complicial element; therefore x ∧i y is thin.
If x and y are thin then ∂i(x ∧i y) and ∂i+2(x ∧i y) are the thin elements y and x, and it
follows from Definition 4.2(3) that ∂i+1(x ∧i y) is thin.

We will now verify the conditions of Definition 9.1(2)–(7).

9.6. Lemma. The wedges in X satisfy the conditions of Definition 9.1(2)–(4).

Proof. In each case we proceed by induction on dimension and apply Lemma 9.4. We
use Lemma 9.5 to recognise thin elements and Definition 9.1(1) to compute faces.

(2) Suppose that x ∈ Xm and that 0 ≤ i < m. The elements εix and εi+1x are thin
because they are degenerate (Definition 3.2). For 0 ≤ j < i it follows from the inductive
hypothesis that

∂jεix = εi−1∂jx ∈ im∧i−1, ∂jεi+1x = εi∂jx ∈ im∧i−1;

for i+ 2 < j ≤ m+ 1 it similarly follows that

∂jεix = εi∂j−1x ∈ im∧i, ∂jεi+1x = εi+1∂j−1x ∈ im∧i.
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By Lemma 9.4,

εix = ∂i+2εix ∧i ∂iεix = εi∂i+1x ∧i x,
εi+1x = ∂i+2εi+1x ∧i ∂iεi+1x = x ∧i εi∂ix.

(3) Let A be an element of the form b∧i (y∧i z). Then A is thin because A is a wedge.
For j < i it follows from the inductive hypothesis that

∂jA = ∂jb ∧i−1 (∂jy ∧i−1 ∂jz) ∈ im∧i,

we certainly have
∂iA = y ∧i z ∈ im∧i,

and for j > i+ 3 it follows from the inductive hypothesis that

∂jA = ∂j−1b ∧i (∂j−2y ∧i ∂j−2z) ∈ im∧i+1;

therefore
A = ∂i+3A ∧i+1 ∂i+1A = (∂i+2b ∧i y) ∧i+1 ∂i+1A.

(4) Let A be an element of the form (x ∧i y) ∧i+1 c. Then A is thin because A is a
wedge. For j < i it follows from the inductive hypothesis that

∂jA = (∂jx ∧i−1 ∂jy) ∧i ∂jc ∈ im∧i−1,

we certainly have
∂i+3A = x ∧i y ∈ im∧i,

and for j > i+ 3 it follows from the inductive hypothesis that

∂jA = (∂j−2x ∧i ∂j−2y) ∧i+1 ∂j−1c ∈ im∧i;

therefore
A = ∂i+2A ∧i ∂iA = ∂i+2A ∧i (y ∧i ∂ic).

9.7. Lemma. The wedges in X satisfy the conditions of Definition 9.1(5).

Proof. Note that the conditions for the two sides of Definition 9.1(5) to be defined are
the same, namely ∂ix = ∂i+1y and ∂iy = ∂i+1z. We may therefore assume that the left
side is defined. Let

A = b ∧i (y ∧i z)

with
b = x ∧i ∂i+1(y ∧i z);

we must show that
A = (x ∧i y) ∧i+1 [∂i+1(x ∧i y) ∧i z].
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But it follows from Definition 9.1(3) (already proved in Lemma 9.6) that

A = (∂i+2b ∧i y) ∧i+1 ∂i+1A = (x ∧i y) ∧i+1 ∂i+1A,

and it therefore suffices to prove that

∂i+1A = ∂i+1(x ∧i y) ∧i z.

This we do by induction in the usual way. We have

∂i+1A = ∂i+1[b ∧i (y ∧i z)]

such that b and y ∧i z are thin; therefore ∂i+1A is thin. For j < i it follows from the
inductive hypothesis that ∂j∂i+1A is in im∧i−1 because

∂j∂i+1A = ∂i[∂jb ∧i−1 (∂jy ∧i−1 ∂jz)]

with
∂jb = ∂jx ∧i−1 ∂i(∂jy ∧i−1 ∂jz),

and for j > i+ 2 it follows from the inductive hypothesis that ∂j∂i+1A is in im∧i because

∂j∂i+1A = ∂i+1[∂jb ∧i (∂j−1y ∧i ∂j−1z)]

with
∂jb = ∂j−1x ∧i ∂i+1(∂j−1y ∧i ∂j−1z);

therefore
∂i+1A = ∂i+2∂i+1A ∧i ∂i∂i+1A = ∂i+1(x ∧i y) ∧i z

as required.

9.8. Lemma. The wedges in X satisfy the conditions of Definition 9.1(6).

Proof. Again one side is defined if and only if the other is; we may therefore assume
that the left side is defined. Let

A = ∂i+2[(x ∧i+1 y) ∧i+1 (y ∧i z)]

and let
B = A ∧i (w ∧i+1 ∂iA);

we must show that
B = (∂i+3A ∧i w) ∧i+2 A

and we apply the usual inductive argument. We write Aj = ∂jA, so that

Aj =

{
∂i+1[(∂jx ∧i ∂jy) ∧i (∂jy ∧i−1 ∂jz)] (j < i),

∂i+2[(∂j−1x ∧i+1 ∂j−1y) ∧i+1 (∂j−1y ∧i ∂j−1z)] (j > i+ 3);
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in each of these cases Aj is of the same form as A. For j < i it follows from the inductive
hypothesis that ∂jB is in im∧i+1 because

∂jB = Aj ∧i−1 (∂jw ∧i ∂i−1Aj),

we certainly have
∂iB = w ∧i+1 ∂iA ∈ im∧i+1,

and for j > i+ 4 it follows from the inductive hypothesis that ∂jB is in im∧i+2 because

∂jB = Aj−1 ∧i (∂j−2w ∧i+1 ∂iAj−1).

If we can show that ∂i+1B ∈ im∧i+1 then it will follow that

B = ∂i+4B ∧i+2 ∂i+2B = (∂i+3A ∧i w) ∧i+2 A

as required.
To show that ∂i+1B ∈ im∧i+1 we again apply the usual inductive argument. By

Lemma 9.5 A is thin, hence ∂i+1B is thin. For j < i it follows from the inductive
hypothesis that ∂j∂i+1B is in im∧i because

∂j∂i+1B = ∂i[Aj ∧i−1 (∂jw ∧i ∂i−1Aj)],

we certainly have
∂i∂i+1B = ∂iw ∧i ∂i∂iA ∈ im∧i,

and for j > i + 3 it follows from the inductive hypothesis that ∂j∂i+1B is in im∧i+1

because
∂j∂i+1B = ∂i+1[Aj ∧i (∂j−1w ∧i+1 ∂iAj)];

therefore ∂i+1B ∈ im∧i+1 as required.
This completes the proof.

9.9. Lemma. The wedges in X satisfy the conditions of Definition 9.1(7).

Proof. Again we find that one side is defined if and only if the other is, so we may
assume that the left side is defined. Let

A = (x ∧i y) ∧j (z ∧i w)

with i ≤ j − 3; we will apply the usual inductive argument to show that

A = (x ∧j−1 z) ∧i (y ∧j−1 w).

For k < i it follows from the inductive hypothesis that

∂kA = (∂kx ∧i−1 ∂ky) ∧j−1 (∂kz ∧i−1 ∂kw) ∈ im∧i−1,
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for i+ 2 < k < j it follows from the inductive hypothesis that

∂kA = (∂k−1x ∧i ∂k−1y) ∧j−1 (∂k−1z ∧i ∂k−1w) ∈ im∧i,

we certainly have
∂jA = z ∧i w ∈ im∧i

and
∂j+2A = x ∧i y ∈ im∧i,

and for k > j + 2 it follows from the inductive hypothesis that

∂kA = (∂k−2x ∧i ∂k−2y) ∧j (∂k−2z ∧i ∂k−2w) ∈ im∧i.

If we can show that ∂j+1A ∈ im∧i then it will follow that

A = ∂i+2A ∧i ∂iA = (x ∧j−1 z) ∧i (y ∧j−1 w).

To show that ∂j+1A ∈ im∧i we again apply the usual inductive argument. It follows
from Lemma 9.5 that ∂j+1A is thin. For k < i it follows from the inductive hypothesis
that

∂k∂j+1A = ∂j[(∂kx ∧i−1 ∂ky) ∧j−1 (∂kz ∧i−1 ∂kw)] ∈ im∧i−1,

for i+ 2 < k < j it follows from the inductive hypothesis that

∂k∂j+1A = ∂j[(∂k−1x ∧i ∂k−1y) ∧j−1 (∂k−1z ∧i ∂k−1w)] ∈ im∧i,

we certainly have
∂j∂j+1A = ∂j−1z ∧i ∂j−1w ∈ im∧i

and
∂j+1∂j+1A = ∂jx ∧i ∂jy ∈ im∧i,

and for k > j + 1 it follows from the inductive hypothesis that

∂k∂j+1A = ∂j+1[(∂k−1x ∧i ∂k−1y) ∧j (∂k−1z ∧i ∂k−1w)] ∈ im∧i;

therefore ∂j+1A ∈ im∧i as required.
This completes the proof.

It follows from Lemmas 9.6–9.9 that the wedges of Lemma 9.3 satisfy all the axioms
for sets with complicial identities. This completes the proof of Theorem 9.2.
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