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FORMS AND EXTERIOR DIFFERENTIATION
IN CARTESIAN DIFFERENTIAL CATEGORIES

G.S.H. CRUTTWELL

Abstract. Cartesian differential categories abstractly capture the notion of a differ-
entiation operation. In this paper, we develop some of the theory of such categories by
defining differential forms and exterior differentiation in this setting. We show that this
exterior derivative, as expected, produces a cochain complex.

1. Introduction

Differential categories [Blute et. al. 2006] and Cartesian differential categories [Blute
et. al. 2008] were defined so as to abstractly capture the essential properties of the
derivative. Since then, much work has been done on describing and classifying different
types of examples of these structures. For example, see [Cockett and Seely 2011], [Cockett
et. al 2011], [Blute et al. 2012], [Manzonetto 2012], [Laird et. al. 2013], and [Cockett
and Cruttwell 2013] on how these structures relate to derivatives throughout mathematics
and logic. However, less work has been done on describing the theory of these structures:
how, given a differential or Cartesian differential category, one can define and prove various
definitions and theorems familiar from ordinary calculus in this abstract setting.

In this paper, we examine one aspect of this by defining differential forms and exte-
rior differentiation in the abstract setting of a generalized Cartesian differential category
[Cruttwell 2013]. These are a slight generalization of Cartesian differential categories
that allow for additional examples. In particular, while smooth maps between Carte-
sian spaces are a Cartesian differential category, smooth maps between open subsets of
Cartesian spaces are an example of a generalized Cartesian differential category which is
not a Cartesian differential category. Since forms and exterior differentiation are much
more interesting when applied to open subsets of Cartesian spaces, we would like to work
in this more general setting. Thus, in the setting of a generalized Cartesian differential
category, we define differential forms, we define an exterior differentiation operation for
these differential forms, and we show the essential properties of exterior differentiation,
namely that it is a natural operation which, when applied twice, gives the 0 map.
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One of the initial difficulties in doing this is determining how to define differential
forms. In the standard setting of smooth maps between open subsets of Cartesian spaces,
one way to define a differential form is as a multilinear alternating map. However, since
Cartesian differential categories have no vector space or monoidal structure, it is not
immediately obvious what it means to say that a map in a Cartesian differential category
is multilinear. What is required is an adaptation of the notion of linear map from [Blute
et. al. 2008]. There, the authors define a map to be linear if its derivative takes a
particularly simple form (see definition 2.4). In this paper, we extend this definition to
be able to talk of multilinear maps. The resulting definition (2.9) captures the ordinary
definition of a multilinear map solely in terms of properties of its derivative.

Once we have the abstract definition of multilinearity, we then give an abstract defi-
nition of the exterior derivative of multilinear alternating maps. The main results of the
paper are then showing that this definition of exterior differentiation has all the ordinary
properties of the exterior derivative: (i) that it produces another differential form, (ii)
that it is a natural transformation and (iii) that the result of applying the exterior deriva-
tive twice is zero. The standard way to prove these results in the setting of smooth maps
between open subsets of Cartesian spaces is to approach the problem indirectly (see, for
example, pages 210-213 of [Spivak 1997]). However, we cannot adapt the standard proof
in our general setting, as it uses structure that is not available to us. Thus, we must prove
the results directly, and this takes some work.

In the final section, we describe how this abstract approach relates to exterior differen-
tiation for finite and infinite-dimensional smooth manifolds and diffeological spaces, and
discuss possible extensions of this work to even more general settings.

2. Generalized Cartesian differential categories

Consider a smooth map f from some open subset of U ⊆ Rn to some open subset V ⊆ Rm.
Its Jacobian at a point x ∈ U is then an n×m matrix, that is, a linear map from Rn to
Rm. Looking at this in another way, one can view the Jacobian of f : U // V as being a
map from

Rn × U // Rm

which is linear in its first variable, but has other properties (such as the chain rule) as
well. Describing these properties abstractly is the idea behind a generalized Cartesian
differential category.

Before we give the definition, we briefly describe some notation we use throughout the
paper. First of all, composites will be written in diagrammatic order, so that f , followed
by g, is written fg. Secondly, if (A,+, 0) is a commutative monoid in a category and
there are maps f, g : X //A, we write f + g : X //A for 〈f, g〉+ and 0 : X //A for !0.
Note that these operation are left-additive; that is, for h : Y //X, h(f + g) = hf + hg
and h0 = 0. Finally, if B is also a monoid, then a map h : A //B which has the property
that (f + g)h = fh + gh and 0h = 0 will be called additive. The following definition is
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from [Cruttwell 2013], but is only a slight generalization of the central definition of [Blute
et. al. 2008].

2.1. Definition. A generalized Cartesian differential category consists of a cat-
egory X with chosen products, which has, for each object X, a commutative monoid
L(X) = (A,+, 0), with L(L(X)) = L(X) and L(X × Y ) = L(X) × L(Y ). In addition,
for each map f : X // Y , there is a map

D(f) : L(X)×X // L(Y )

such that:

[CD.1] D(+) = π0+ and D(0) = π00;

[CD.2] 〈a+ b, c〉D(f) = 〈a, b〉D(f) + 〈b, c〉D(f) and 〈0, a〉D(f) = 0;

[CD.3] D(π0) = π0π0, D(π1) = π0π1, and D(1) = π0;

[CD.4] D(〈f, g〉) = 〈D(f), D(g)〉;

[CD.5] D(fg) = 〈D(f), π1f〉D(g);

[CD.6] 〈〈a, 0〉, 〈c, d〉〉D(D(f)) = 〈a, d〉D(f);

[CD.7] 〈〈0, b〉, 〈c, d〉〉D(D(f)) = 〈〈0, c〉, 〈b, d〉〉D(D(f));

A Cartesian differential category is a generalized Cartesian differential category in
which L(A) = A for every object A.

We can get some understanding for these axioms by considering how they work in the
example of smooth maps between open subsets of Cartesian spaces. In this example, for
U ⊆ Rn, we define L(U) = Rn. For a smooth map f : U //V , D(f)(v, x) is defined to be
the Jacobian of f , evaluated at x, then multiplied by the vector v. [CD.1] describes how
to differentiate addition and zero maps. [CD.2] says that the derivative is additive in its
first variable. [CD.3] and [CD.4] describe how to differentiate projections, pairings, and
identity maps.

To understand [CD.5], it may be useful to look at how the above structure relates
to a smooth map R // R. Here, if f ′(x) : R // R is the ordinary derivative of f , then
D(f)(v, x) = f ′(x) · v. Then for another smooth map g : R // R, by the chain rule,

D(fg)(v, x) = g′(f(x)) · f ′(x) · v

so that we can write
D(fg) = 〈Df, π1f〉D(g).

In other words, [CD.5] is how to express the chain rule in this formalism.
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To understand [CD.6] and [CD.7], it is useful to see how to recover partial derivatives
from the operator D. If we have a map g : R2 // R, then

∂g

∂x1
(a1, a2) = 〈1, 0, a1, a2〉D(g) and

∂g

∂x2
(a1, a2) = 〈0, 1, a1, a2〉D(g).

Now, given a map f : R // R, D(f) : R2 // R is given by D(f)(v, x) = f ′(x) · v. Then
∂D(f)
∂v

= f ′(x). In other words, given how partial derivatives relate to the D operation, we
have for any a, c, d

〈〈a, 0〉, 〈c, d〉〉D(D(f)) = 〈a, d〉D(f)

which is [CD.6]. Thus [CD.6] represents the linearity of D in its first variable.
[CD.7] is the independence of order of partial differentiation. Indeed, if we have a

map f : R2 // R, then as above

∂f

∂x1
(a1, a2) = 〈1, 0, a1, a2〉D(f)

and then using [CD.3],[CD.4], and [CD.5],

∂f

∂x1∂x2
(a1, a2) = 〈〈0, 0〉〈0, 1〉〈1, 0〉〈a1, a2〉〉D2(f).

The independence of order of partial differentiation says that this is equal to

∂f

∂x2∂x1
(a1, a2) = 〈〈0, 0〉〈1, 0〉〈0, 1〉〈a1, a2〉〉D2(f).

The axiom [CD.7] is the generalization of this to arbitrary maps, so it asks that for any
map f ,

〈〈0, b〉, 〈c, d〉〉D(D(f)) = 〈〈0, c〉, 〈b, d〉〉D(D(f)).

2.2. Examples. In addition to the standard example give above, there are many other
examples of generalized Cartesian differential categories. All examples but the last are
from [Cruttwell 2013]:

(i) Convenient vector spaces are certain locally convex vector spaces with a well-defined
notion of smooth map (see [Kriegl and Michor 1997]). The open subsets of convenient
vector spaces form a generalized Cartesian differential category, with differential as
described in [Blute et al. 2012].

(ii) Any category with finite products has an associated cofree generalized Cartesian
differential category. For details, see corollary 2.13 in [Cruttwell 2013], which gen-
eralizes work in [Cockett and Seely 2011].

(iii) Each model of the differential lambda calculus of [Erhard and Regnier 2003] is a
Cartesian differential category, as described in [Manzonetto 2012].
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(iv) The coKleisli category of any differential storage category is a Cartesian differential
category ([Blute et. al. 2008], proposition 3.2.1) and hence is a generalized Cartesian
differential category. This includes such categories as rel, the category of sets and
relations.

(v) In any category with an “abstract tangent functor” [Rosický 1984], the category of
“tangent spaces” forms a Cartesian differential category, by theorems 4.15 and 4.11
of [Cockett and Cruttwell 2013]. For example, this includes the tangent spaces of
infinitesimally linear objects in a model of synthetic differential geometry ([Kock
2006]).

2.3. Linear objects and linear maps. Linear maps are an important subclass of
maps in any Cartesian differential category, and the same is true in the generalized version.
Since these categories do not assume any sort of vector space or monoidal structure,
linearity is defined directly through a property of the derivative.

2.4. Definition. In a generalized Cartesian differential category, say that an object A
is linear if L(A) = A. Say that a map f : A // B between linear objects is linear if
D(f) = π0f .

It may be useful to consider how this definition of linear corresponds to the ordinary
definition of linear in the case when we are dealing with smooth maps between open
subsets of Cartesian spaces. Here, the linear objects are simply the Cartesian spaces. To
understand linear maps, consider first the case of a smooth map f : R //R. If f is linear in
the vector space sense, then f(x) = λx for some λ, so that D(f)(v, x) = f ′(x) ·v = λ ·v =
f(v), so that D(f) = π0f . Thus f is linear in the differential sense above. Conversely, if
f is linear in the differential sense, then in particular f ′(x) = D(f)(1, x) = f(1). Thus
f(x) = f(1) · x + c. But substituting x = 1 gives c = 0, so f(x) = f(1) · x, so f is linear
in the vector space sense.

A similar result holds for a smooth map f : Rn // R. For simplicity we will consider
the case n = 2. If f is linear in the vector space sense, then f(x1, x2) = λ1 · x1 + λ2x2,
so that D(f)(v1, v2, x1, x2) = (λ1, λ2) · (v1, v2) = f(v1, v2), so D(f) = π0f . Hence f is
linear in the differential sense. Conversely, if f is linear in the differential sense, then in
particular

∂f

∂x1
= D(f)(1, 0, x1, x2) = f(1, 0) and

∂f

∂x2
= D(f)(0, 1, x1, x2) = f(0, 1)

so that f(x1, x2) = f(1, 0) · x1 + f(0, 1) · x2 + c, but substituting x1 = 1 and x2 = 0 gives
c = 0, so f(x1, x2) = f(1, 0) · x1 + f(0, 1) · x2, so that f is linear in the vector space sense.
Thus this differential definition of linear captures the ordinary notion of linearity without
referring to any explicit vector space or monoidal structure.

The following are some basic properties of linear maps in a generalized Cartesian
differential category; the proofs are as in lemma 2.2.2 of [Blute et. al. 2008].
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2.5. Lemma. In a generalized Cartesian differential category:

(i) if f is linear, then f is additive;

(ii) for any linear object A, the addition map + : A×A //A and the zero map 0 : 1 //A
are linear;

(iii) composites of linear maps are linear, and identities are linear;

(iv) projections are linear, and pairings of linear maps are linear.

2.6. Multilinear maps. We have just seen how to define linear maps between linear
objects by using the derivative. We now turn to defining multilinear maps. We first need
to define the domain for such a map: the space of n tangent vectors at a single point.

2.7. Lemma. If X is a generalized Cartesian differential category, then for any n ≥ 1
there is an endofunctor Tn : X // X which is defined on an object M by

Tn(M) := L(M)n ×M

and on a map f : M //M ′ by

Tn(f) := 〈〈π0, πn〉D(f), 〈π1, πn〉D(f), . . . 〈πn−1, πn〉D(f), πnf〉

Proof. The fact that Tn preserves composition follows from [CD.5]:

D(fg) = 〈D(f), π1f〉D(g),

and the fact that Tn preserves identities follows from [CD.3] (D(1) = π0).

The functor T1, which we sometimes write as T , is the tangent bundle functor. Its
properties are studied in more detail in [Cockett and Cruttwell 2013].

In the definitions below, we will often be dealing with the first and second derivatives
of maps with domain and codomains of the form

T (TnM) = L(M)n+1 × L(M)n ×M.

A map into such an object has 2n terms, and we will often use a | to distinguish the first
set of n terms from the last set of n terms.

As we shall see below, differential n-forms on M will be certain maps from TnM to a
linear object A. We would like to be able to define what it means for such a map to be
“linear” in one of its terms. To define this, we first need some special maps.

2.8. Definition. For any n ≥ 1 and 0 ≤ i ≤ n− 1, define the map ei by

L(M)× Tn(M)
ei:=〈0,...,0,π0,0,...0|π1,π2,...πn+1〉 // T (Tn(M))

where the π0 is in the ith position.

We can now define when a map with domain Tn(M) and codomain a linear object is
“linear in each of the first n variables”
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2.9. Definition. If A is a linear object and 0 ≤ i ≤ n−1, say that a map f : TnM //A
is linear in the ith variable if the diagram

TnM A
f

//

L(M)× Tn(M)

TnM

〈π1,π2,...πi,π0,πi+2,...πn+1〉

��

L(M)× Tn(M) T (TnM)
ei // T (TnM)

A

D(f)

��

commutes. Say that f is multilinear if it is linear for each such i.

Note that the map on the left excludes the πi+1 term. In the case n = 1, only one
equality (i = 0) must be satisfied, namely

L(M)×M A
f

//

L(M)× L(M)×M

L(M)×M

〈π0,π2〉

��

L(M)× L(M)×M L(M)× L(M)× L(M)×M〈π0,0,π1,π2〉 // L(M)× L(M)× L(M)×M

A

D(f)

��

There is a canonical class of maps that satisfy this definition: for any f : M // N , the
map D(f) : L(M)×M //L(N) is multilinear, since the required equality in this case is

〈π0, 0, π1, π2〉D2(f) = 〈π0, π2〉D(f)

which is exactly [CD.6].
The definition above is thus a generalization of property [CD.6] for derivatives. Even

so, however, it may seem somewhat arbitrary. In a future paper, we will consider a
general theory of linear bundles in a tangent category (a tangent category is a category
equipped with an abstract tangent bundle functor, see [Cockett and Cruttwell 2013] for
more detail). The definition above can then be seen as a linear bundle morphism between
particular linear bundles in the tangent category associated to the generalized Cartesian
differential category.

The following is a generalization of lemma 2.2.1(i) from [Blute et. al. 2008] (“linear
maps are additive”), and the proof is essentially the same.

2.10. Proposition. If ω : TnM // A is multilinear, then ω is additive in each of its
first n variables.

Proof. Consider

〈a0, a1, . . . ai + a′i . . . an, p〉ω
= 〈0, 0, . . . , ai + a′i . . . 0|a0, a1, . . . an, p〉D(ω) (by linearity of ω)

= 〈0, . . . , ai, . . . 0|a0, a1, . . . an, p〉D(ω) + 〈0, . . . , a′i, . . . 0|a0, a1, . . . an, p〉D(ω) (by [CD.2])

= 〈a0, a1, . . . ai, . . . an, p〉ω + 〈a0, a1, . . . a′i, . . . an, p〉ω (by linearity of ω)

so that ω preserves addition in its ith variable. Preservation of 0 is similar.
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The last thing we need to define is when such maps are alternating.

2.11. Definition. Suppose is M an object of a Cartesian differential category X, A is
a linear object in X, and n ≥ 1. Say that a map f : TnM //A is alternating if for any
0 ≤ i, j ≤ n− 1,

〈π0, . . . , πi, . . . , πi, . . . πn−1, πn〉ω = 0

(where the second πi is in the j position).

3. Forms and exterior differentiation

We are now in a position to define differential forms and exterior differentiation of forms,
and to prove this operation’s essential properties.

3.1. Definition. For M an object of a Cartesian differential category X, A a linear
object in X, and n ≥ 1, a differential n-form on M with values in A is a map
ω : Tn(M) // A which is multilinear and alternating. Denote the set of n-forms on M
with values in A by Ωn(M ;A). Define Ω0(M ;A) as simply the hom-set X(M,A).

It is worth noting that most standard definitions of differential n-form define them as
maps M // AL(M)n (see, for example, [Spivak 1997], pg. 207). That is, they curry the
above maps. Since we do not assume our Cartesian differential categories are Cartesian
closed, we use the uncurried format given above, which only requires products. In fact, for
convenient vector spaces, the above definition of differential form is the only appropriate
one. In section 33 of [Kriegl and Michor 1997], the authors consider 12 different definitions
of differential form, all of which are equivalent for Cartesian spaces, but which are different
for convenient vector spaces. They determine that only one definition, the one given above,
has all of the necessary properties of a differential form.

As usual, the alternating property of a differential form implies skew-symmetry.

3.2. Lemma. If ω : Tn(M) // A is alternating, then it is also skew-symmetric; that is,
for any 0 ≤ i, j ≤ n− 1,

〈π0, . . . , πi, . . . , πj, . . . πn−1, πn〉ω + 〈π0, . . . , πj, . . . , πi, . . . πn−1, πn〉ω = 0.

Proof. Since ω is additive in each of its first n variables,

〈π0, . . . , πi, . . . , πj, . . . πn−1, πn〉ω + 〈π0, . . . , πj, . . . , πi, . . . πn−1, πn〉ω
= 〈π0, . . . , πi + πj, . . . , πj + πi, . . . πn−1, πn〉ω
= 0

since ω is alternating.
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Before proving our next result, we note a useful consequence of [CD.1].

3.3. Lemma. If A is a linear object and we have maps f, g : X // A, then D(f + g) =
D(f) +D(g) and D(0) = 0.

Proof. Indeed, using [CD.1], [CD.4], and [CD.5]:

D(f + g) = D(〈f, g〉+) = 〈D(〈f, g〉), π1〈f, g〉〉D(+)

= 〈〈Df,Dg〉, π1〈f, g〉〉π0+ = 〈Df,Dg〉+ = Df +Dg,

and similarly for the preservation of 0.

We can then use this to prove:

3.4. Lemma. For each M , A, and n, Ωn(M ;A) is a monoid, with monoid structure
inherited from the hom-set X(Tn(X), A).

Proof. It is clear that 0 ∈ Ωn(M ;A), and that the sum of two alternating maps is
alternating. Thus, the only thing we need to check is that the sum of two multilinear
maps is multilinear; this follows almost immediately from the fact, proven above, that
D(f + g) = D(f) +D(g).

We would like to view Ωn(−;A) as a functor from Xop to the category of monoids.
Note that since each Tn is a functor, we have a functor X(Tn(−), A): Xop // set, and
we will use this as the action on arrows for Ωn(−;A). However, we need to check that
when applied to an alternating multilinear map, the result of this functorial action is still
alternating multilinear.

3.5. Lemma. Let f : M ′ //M , and ω ∈ Ωn(M ;A). Then the composite

Tn(M ′)
Tn(f) // Tn(M) ω // A

is in Ωn(M ′;A).

Proof. Since Tn(f) works with each of the first p components equally, if ω is alternating,
then so is Tn(f)ω.

For multilinearity, let 0 ≤ i ≤ n− 1, and consider

eiD(Tn(f)ω) = ei〈D(Tn(f)), π1Tn(f)〉D(ω)

by [CD.5]. Recall that

Tn(f) = 〈. . . 〈πj, πn〉D(f) . . . πnf〉

So that, by [CD.3] and [CD.4],

D(Tn(f)) = 〈. . . 〈π0πj, π0πn, π1πj, π1πn〉D2(f) . . . 〈π0πn, π1πn〉〉
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Thus

eiD(Tn(f)ω) = 〈. . . ei〈π0πj, π0πn, π1πj, π1πn〉D2(f) . . . ei〈π0πn, π1πn〉D(f)|eiπ1Tn(f))〉D(ω)

We consider each of the terms inside the bracketing separately. For i 6= j, by the definition
of ei,

ei〈π0πj, π0πn, π1πj, π1πn〉D2(f) = 〈0, 0, πj+1, πn+1〉D2(f) = 0

by [CD.2]. For i = j,

ei〈π0πj, π0πn, π1πj, π1πn〉D2(f) = 〈π0, 0, πj+1, πn+1〉D2(f) = 〈π0, πn+1〉D(f)

by [CD.6]. Finally, the last term in the bracketing before | is

ei〈π0πn, π1πn〉D(f) = 〈0, πn+1〉D(f) = 0

by [CD.2]. Thus

eiD(Tn(f)ω) = 〈0, . . . , 〈π0, πn+1〉D(f), . . . 0|eiπ1Tn(f)〉D(ω)

where the only non-zero term before the bracket is in the ith position. But then by the
definition of ei, we can rewrite this as

〈〈π0, πn+1〉D(f), 〈π1, π2, . . . πn+1〉Tn(f)〉eiD(ω).

By multilinearity of ω, this equals

〈〈π0, πn+1〉D(f), 〈π1, π2, . . . πn+1〉Tn(f)〉〈π1, π2, . . . πi, π0, πi+2, . . . πn+1〉ω

which, recalling the definition of Tn(f), is equal to

〈π1, π2, . . . πi, π0, πi+2, . . . πn+1〉Tn(f)ω.

So Tn(f)ω is multilinear, as required.

Thus, we have the following result:

3.6. Proposition. If mon is the category of monoids and monoid homomorphisms, then
for any n ≥ 0, the above data defines a functor Ωn(−;A) : Xop //mon.

Proof. The only thing left to check is that for a map f : Y //X, Ωn(f ;A) is a monoid
homomorphism. But this follows from left additivity: Tn(f)(ω1+ω2) = Tn(f)ω1+Tn(f)ω2,
and Tn(f)(0) = 0.
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3.7. Exterior differentiation. As we have seen in the previous sections, we can
define differential forms if the coefficient object is any linear object; that is, one with
A = L(A). To define the exterior derivative, however, will require more: we will need
these linear objects to not just be monoids, but groups. For discussion on why negatives
are necessary, see the remarks following the definition of the exterior derivative below.
For now, we will briefly describe these objects and their properties.

3.8. Definition. Say that an object A in a Cartesian differential category X is a linear
group if A = L(A), and, in addition to its monoid structure, A = L(A) has a map
n : A // A making it into a group object.

3.9. Lemma. If A is a linear group, then:

(i) for each M , X(M,A) is a group, with −f := fn,

(ii) D(−f) = −D(f);

(iii) n is a linear map.

Moreover, for any object M and n ≥ 0, Ωn(−;A) is a functor to ab.

Proof. All results are straightforward.

Before defining the exterior derivative, we need to define another important set of
maps.

3.10. Definition. For n ≥ 1 and M an object, define

L(M)× Tn(M)
zi:=〈0,0,...,0,πi|π0,π1,...π̂i...πn+1〉 // T (Tn(M))

where π̂i indicates the exclusion of that term.

It is important to note the difference with the definition of zi and with the earlier
maps ei. In the definition of multilinearity, we considered the maps

ei = 〈0, 0, . . . , π0, 0, . . . , 0, 0|π1, π1, . . . πi−1, πi+1 . . . πp, πp+1〉

where the π0 is in the ith position. These maps have the same domain and codomain as
the zi’s. However, in the ei’s, we always assign a zero to the nth term. By comparison,
in the zi’s, we assign a non-zero term to the nth term, namely πi.

We can now define the exterior derivative.

3.11. Definition. Suppose A is a linear group, and ω ∈ Ωn(M ;A). For n ≥ 1, define
the exterior derivative of ω, denoted ∂n(ω), to be the map

Tn+1(M)
∂n // A
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given by

∂n(ω) :=
n∑
i=0

(−1)iziD(ω)

For a 0-form ω : M // A, define ∂0(ω) := D(ω).

This corresponds to the usual definition of the exterior derivative in the standard
example. However, it will be useful to see why, from a structural point of view, this
particular definition of the exterior derivative is used. In particular, one may wonder why
the simpler expression

〈0, 0, . . . , 0, π0|π1, π2, . . . πn, πn+1〉D(ω)

which is not a sum and does not require negatives in A, is not used. The problem is
that this definition of the exterior derivative will not be a natural map from Ωn(M ;A) to
Ωn+1(M ;A). To see this intuitively, note that in the domain of the map

L(M)n × L(M)× L(M)n ×M D(ω) // A,

the (n+ 1)st L(M) has a different status than the L(M)’s before or after it; in particular,
while ω alternating implies D(ω) is alternating in those L(M)’s before or after the second
one, it is not alternating in that one. Thus, making a choice to take one of the i elements
in Tn+1(M) (in particular, the 0th one) and selecting it to go in that slot is a non-natural
choice.

To see this concretely, suppose we have a differential 1-form ω : L(M)×M //A and
a map f : M ′ //M . For naturality of δ1, we would need to verify that

T2(f)(∂1(ω)) = ∂1(T (f)(ω)).

Both are maps
L(M ′)× L(M ′)×M ′ // A.

Using the “wrong” definition of the exterior derivative ∂1 given above, after calculations,
one find that the term on the left is

〈0, 〈π0, π2〉D(f), 〈π1, π2〉D(f), π2f〉D(ω)

while the term on the right is

〈〈0, π0, π1, π2〉D2(f), 〈π0, π2〉D(f), 〈π1, π2〉D(f), π2f〉D(ω).

For any non-trivial f , then, the expressions are not equal, and the difference is a D2(f)
term in the second expression which is a 0 term in the first.

The actual definition of the exterior derivative avoids this problem by considering an
alternating sum of all the possible choices for placing a term in the privileged L(M).
As we will see in the proof of naturality, one then uses [CD.7] and the fact that ω is
alternating to cancel out the D2(f) terms that appear.

Before proving naturality, however, we first need to prove that the exterior derivative
of a differential form produces another differential form.
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3.12. Proposition. For each ω ∈ Ωn(M ;A), its exterior derivative ∂n(ω) is in Ωn+1(M ;A).

Proof. We will first show that ∂n(ω) is alternating. Suppose j < k. Repeating the jth
projection in the kth slot of the exterior derivative

∂n(ω) =
n∑
i=0

(−1)i〈0, 0, . . . , 0, πi|π0, π1, . . . π̂i . . . πn+1〉D(ω)

gives the sum

n∑
i=0,i 6=j,k

(−1)i〈0, 0, . . . , 0, πi|π0, π1, . . . πj . . . πj . . . πn, πn+1〉D(ω)

as well as the i = j term

(−1)j〈0, 0, . . . 0, πj|π0 . . . πj . . . πn+1〉D(ω)

where the πj after | is in the kth position, and the i = k term

(−1)k〈0, 0, . . . 0, πk|π0 . . . πj . . . πn+1〉D(ω)

where the πj after | is in the jth position. Now since ω is alternating, the map

D(ω) : L(M)n × L(M)× L(M)n ×M // A

is alternating in both the first and second set of n variables. In particular, each term
in the sum with i 6= j, k is 0. For the i = j term, since ω is skew-symmetric, we can
transpose the πj term to the jth slot by multiplying by (−1)k−j+1. This term is then
(−1) times the i = k term, and hence the sum of these two terms is 0. Thus the entire
term sums to 0, as required.

We now wish to show that ∂n(ω) is multilinear. That is, we wish to show ∂n(ω) is
linear in each i for 0 ≤ i ≤ n. Fix some 0 ≤ j ≤ n. We will show that each map zjD(ω)
is linear in i, and hence ∂n(ω), which is an alternating sum of zjD(ω)’s, is also linear in i.

Thus, we want to show that

eiD(zjD(ω)) = ei〈π0zj, π1zj〉D2(ω) (†)

is equal to
〈π1 . . . π0 . . . πn+2〉zjD(ω)

where the π0 term is in the ith slot. We will consider the cases i = j, i < j, and j < i
separately.

For i = j, using the definitions of ei and zj, the expression † is equal to

〈0, 0, . . . π0|0, . . . , 0|0, 0, . . . πi+1|π1, π2 . . . π̂i+1 . . . πn+2〉D2(ω)
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which, by [CD.6], equals

〈0, 0, . . . π0|π1, π2 . . . π̂i+1 . . . πn+2〉D(ω)

which by the definition of zi equals

〈π1 . . . π0 . . . πn+2〉ziD(ω)

as required.
For i < j, the expression † is equal to

〈0, 0 . . . 0|0, . . . π0 . . . 0|0, 0, . . . πj+1|π1, π2 . . . π̂j+1 . . . πn+2〉D2(ω)

(where the π0 is in the i slot). By [CD.7], this equals

〈0, 0 . . . 0|0, 0, . . . πj+1|0, . . . π0 . . . 0|π1, π2 . . . π̂j+1 . . . πn+2〉D2(ω) (††)

Since ω itself is linear in the ith term, we have

eiD(ω) = 〈π1, π2, . . . π0 . . . πn+1〉ω

where the π0 is in the ith slot. Applying D to both sides of this equation tells us that

〈0, . . . π0π0 . . . 0|π0π1|0 . . . π1π0 . . . 0|π1π1〉D2(ω)

(where the terms π0π0 and π1π0 are in their respective ith slots) equals

〈π0π1, π0π2 . . . π0π0 . . . π0πn+1|π1π1, π1π2 . . . π1π0 . . . π1πn+1〉D(ω)

Applying this equality to ††, we get

〈0, 0, . . . πj+1|π1, π2 . . . π̂j+1 . . . πn+2〉D(ω)

which in turn is equal to
〈π1 . . . π0 . . . πn+2〉zjD(ω)

as required.
Finally, for the case j < i, the expression † is equal to

〈0, 0 . . . 0|0, . . . π0 . . . 0|0, 0, . . . πj+1|π1, π2 . . . π̂j+1 . . . πn+2〉D2(ω)

where the π0 is in the i− 1 slot. We then proceed as in the case i < j, except we use the
linearity of ω in its i− 1 term instead of its i term.
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3.13. Properties of exterior differentiation. The purpose of this section is to
prove the two fundamental properties of exterior differentiation: (i) that for each n, ∂n is
natural; (ii) that applying ∂n then ∂n+1 to a differential n-form produces 0.

3.14. Proposition. For each n ≥ 0 and differential group A, exterior differentiation

∂n : Ωn(−, A) // Ωn+1(−, A)

is a natural transformation.

Proof. Let f : M ′ //M , and fix some ω ∈ Ωn(M,A). We need to show that

∂n(Ωn(f ;A)(ω)) = Ωn+1(f ;A)(∂n(ω)).

For n = 0, naturality asks that D(fw) = T (f)D(ω); this follows immediately from the
chain rule, [CD.5].

We will first demonstrate the case n = 1 to get the reader familiar with some of the
manipulations used in the general case. We begin by calculating the left term. We have

Ω1(f ;A)(ω) = T (f)ω = 〈Df, π1f〉ω.

We then apply ∂1 to that expression, which consists of the sum of two terms. We consider
the first term in the sum:

〈0, π0, π1, π2〉D(〈Df, π1f〉ω)

= 〈0, π0, π1, π2〉〈D(〈Df, π1f〉), π1〈Df, π1f〉〉D(ω)

= 〈0, π0, π1, π2〉〈〈D2f, 〈π0π1, π1π1〉Df, 〈π0π0, π1π1〉Df, π1π1f〉D(ω)

= 〈〈0, π0, π1, π2〉D2f, 〈π0, π2〉Df, 〈π1, π2〉Df, π2f〉D(ω)

Let a = 〈0, π0, π1, π2〉D2f , b = 〈π0, π2〉Df , c = 〈π1, π2〉Df , and x = π2f . Then the above
is 〈a, b, c, x〉D(ω). Note that by [CD.7], a is also equal to 〈0, π1, π0, π2〉D2(f). Thus the
second term in the sum is 〈a, c, b, x〉D(ω), and hence

∂1(Ω1(f ;A)(ω)) = 〈a, b, c, x〉D(ω)− 〈a, c, b, x〉D(ω).

Now, by [CD.2] we can write this as

〈a, 0, c, x〉D(ω) + 〈0, b, c, x〉D(ω)− 〈a, 0, b, x〉D(ω)− 〈0, c, b, x〉D(ω) (†).

But, ω is linear, so 〈a, 0, c, x〉D(ω) = 〈a, x〉ω = 〈a, 0, b, x〉D(ω). Hence the left composite
of the naturality equation is

〈0, b, c, x〉D(ω)− 〈0, c, b, x〉D(ω).
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We now calculate the right side of the naturality equation. Again it will be a sum
with two terms. The first term of the sum is:

T2(f)〈0, π0, π1, π2〉D(ω)

= 〈〈π0, π2〉Df, 〈π1, π2〉Df, π2f〉〈0, π0, π1, π2〉D(ω)

= 〈0, 〈π0, π2〉Df, 〈π1, π2〉Df, π2f〉D(ω)

= 〈0, b, c, x〉D(ω)

and similarly the second term of the sum is 〈0, c, b, x〉D(ω). Thus

Ω2(f ;G)(∂1(ω)) = 〈0, b, c, x〉D(ω)− 〈0, c, b, x〉D(ω) = ∂1(Ω1(f ;A)(ω)),

so that ∂1 is natural.
We now turn to the general case. As above, we begin by calculating the left side of

the equation first. As above, there will be terms with D2(f), and a key element of the
proof will be to use separate those terms out using [CD.2] and cancel them.

The left side is a sum with n+ 1 terms. The ith term of this sum is

(−1)iziD(Tn(f)ω)

= (−1)izi〈D(Tn(f), π1Tn(f)〉D(ω) (by [CD.5])

= (−1)izi〈. . . 〈π0πj, π0πn, π1πj, π1πn〉D2(f) . . . 〈π0πn, π1πn〉D(f)| . . . 〈π1πj, π1πn〉D(f) . . .〉D(ω)

Using [CD.2], we can separate out each of the first n + 1 variables before the D(ω)
expression. For example, we can write 〈a, b, c|d, e, f〉D(ω) as

〈a, 0, 0|d, e, f〉D(ω) + 〈0, b, 0|d, e, f〉D(ω) + 〈0, 0, c|d, e, f〉D(ω).

Doing this to the above expression gives n+1 separate terms, with the first n terms being
of the form

(−1)izi〈0, 0, . . . , 〈π0πj, π0πn, π1πj, π1πn〉D2(f), 0, . . . , 0| . . . 〈π1πj, π1πn〉D(f), . . .〉D(ω)

(where 0 ≤ j ≤ n− 1) and the final term being

(−1)izi〈0, 0, . . . 〈π0πn, π1πn〉D(f)| . . . 〈π1πj, π1πn〉D(f) . . .〉D(ω)(?)

As we shall see, this last term will appear in the right side of the naturality equation, so we
will leave it aside for now. To simplify the first n terms, let us define a(i) := 〈πi, πn〉D(f),
b(i, j) := 〈0, πi, πj, πn〉D2(f), and x = πnf . Then by the definition of zi, for i ≤ j the jth
term equals

(−1)i〈0, 0, . . . , b(i, j + 1), 0, . . . , 0|a(0) . . . a(j), . . . x〉D(ω)

while for j < i the jth term equals

(−1)i〈0, 0, . . . , b(i, j), 0, . . . , 0|a(0) . . . a(j), . . . x〉D(ω)
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Then by linearity of ω, for i ≤ j we have

(−1)i〈(a(0), a(1), . . . , a(j), b(i, j + 1), a(j + 2), . . . a(n), x〉ω,

and for i > j we have

(−1)i〈a(0), a(1), . . . , a(j), b(i, j), a(j + 1), . . . a(n), x〉ω,

where in both sequences the term a(i) is not present. As a sequence of numbers, the effect
in both cases is to take the sequence 〈a(0), a(1), a(2), . . . , a(n)〉, remove the ith term, place
it to the left of the j + 1st term, and group those two terms together with a b(i, j).

We now claim that for i ≤ j, the (i, j)th term and the (j + 1, i)th terms sum to 0. To
see this, first note that the (i, j)th term contains b(i, j) while the (j+1, i)th term contains
b(j, i). But since

b(i, j) = 〈0, πi, πj, πn〉D2(f),

by [CD.7], b(i, j) = b(j, i). In the (i, j)th term, this is in the ith position; in the (j+1, i)th
term it is in the j + 1st position. However, since ω is skew-symmetric, we can transpose
the b(j, i) in the (j + 1, i)st term to the ith position by multiplying by (−1)j−i. Since
the original parity of the term is (−1)j+1, this gives parity (−1)i+1, which is exactly the
opposite parity of the ith term. Thus, the two terms sum to 0; and in particular, allowing
i and j to range over all possible i ≤ j, this cancels out all the above terms.

As a result, all that remains on the left-side composite are terms of the form ?:

(−1)izi〈0, 0, . . . 〈π0πn, π1πn〉D(f)| . . . 〈π1πj, π1πn〉D(f) . . .〉D(ω)

which, by definition of zi, are equal to

(−1)i〈0, 0, . . . 0, a(i)|a(0), a(1), . . . â(i), . . . a(n)〉D(ω).

So that the left side is simply

n∑
i=0

(−1)i〈0, 0, . . . 0, a(i)|a(0), a(1), . . . â(i), . . . a(n)〉D(ω).

But this is equal to
Tn(f)∂n(ω),

by the definitions of Tn(f) and ∂n. Thus ∂n is indeed natural.

We now turn to proving the “square-zero” property of exterior differentiation.

3.15. Proposition. For any n ≥ 0 and differential group A, the composite

Ωn(−;A)
∂n // Ωn+1(−;A)

∂n+1 // Ωn+2(−;A)

is the 0 map.
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Proof. Fix some objectM and some ω ∈ Ωn(M ;A). We want to show that ∂n+1(∂n(ω)) =
0. As with the proof of naturality, looking at some of the initial cases will help build in-
tuition for the general case.

For n = 0, ∂0(ω) = D(ω) and then

∂1(∂(ω)) = 〈0, π0, π1, π2〉D2(ω)− 〈0, π1, π0, π2〉D2(ω).

The statement that this equals 0 is precisely [CD.7].
We now consider the case n = 1. Here

∂1(ω) = 〈0, π0, π1, π2〉D(ω)− 〈0, π1, π0, π2〉D(ω)

Note that ∂2(∂1(ω)) will have six terms. We consider the first one:

〈0, 0, π0, π1, π2, π3〉D(〈0, π0, π1, π2〉D(ω))

= 〈0, 0, π0, π1, π2, π3〉〈〈0, π0π0, π0π1, π2π2〉, π1〈0, π0, π1, π2〉〉D2(ω)

= 〈〈0, 0, 0, π0〉, 〈0, π1, π2, π3〉〉D2(ω)

Now, for i ∈ {0, 1, 2}, define ai = 〈0, πi〉 and bi = 〈πi, π3〉. Then the above term equals

〈0, a0, a1, b2〉D2(ω)

Then by similar calculations ∂2(∂1(ω)) equals

〈0, a0, a1, b2〉D2(ω)− 〈0, a0, a2, b1〉D2(ω)− 〈0, a1, a0, b2〉D2(ω)

+〈0, a1, a2, b0〉D2(ω) + 〈0, a2, a0, b1〉D2(ω)− 〈0, a2, a1, b0〉D2(ω)

Recalling that [CD.7] lets us flip interior terms, one can see that the above sum equals
0, as required.

We now turn to the general case. By definition

∂n(ω) =
n∑
j=0

(−1)jzjD(ω)

and so

∂n+1(∂n(ω))

= ∂n+1

(
n∑
j=0

(−1)jzjD(ω)

)

=
n+1∑
i=0

(−1)iziD

(
n∑
j=0

(−1)jzjD(ω)

)

=
n+1∑
i=0

zi

n∑
j=0

(−1)j〈D(zj), π1zj〉D2(ω) (by [CD.2] and [CD.5])

=
n+1∑
i=0

n∑
j=0

(−1)i+jzi〈π0zj, π1zj〉D2(ω) (by left additivity and [CD.3,4])
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To simplify this further, we need to find 〈ziπ0zj, ziπ1zj〉. Let ai = 〈0, 0, . . . 0, πi〉 and
bi,j = 〈π0, π1, . . . π̂i . . . π̂j . . . πn〉. Then by the definition of the zi’s,

〈ziπ0zj, ziπ1zj〉 = 〈0, ai, ak, bi,k〉
where

k =

{
j + 1 if i ≤ j;
j if j < i.

Thus

∂n+1(∂n(ω)) =
n+1∑
i=0

n∑
j=0

(−1)i+j〈0, ai, ak, bi,k〉D2(ω).

We now claim that for i ≤ j, the (i, j) term in the above sum cancels out the (j + 1, i)
term. Indeed, for i ≤ j, the (i, j) term is

(−1)i+j〈0, ai, aj+1, bi,j+1〉D2(ω)

while the (j + 1, i) term is

(−1)i+j+1〈0, aj+1, ai, bj+1,i〉D2(ω).

But bi,j+1 = bj+1,i (both simply exclude the projections πi and πj+1) and

〈0, ai, aj+1, bi,j+1〉D2(ω) = 〈0, aj+1, ai, bi,j+1〉D2(ω)

by [CD.7]. Then since (−1)i+j+1 = (−1)(−1)i+j, the sum of the two terms is 0. As i
ranges over all 0 ≤ i ≤ n+ 1 and j ranges over all 0 ≤ j ≤ n, all terms cancel out, leaving
a sum of 0.

Thus, for any linear group A, each object M ∈ X has an associated cochain complex

Ω0(M ;A)
∂0 // Ω1(M ;A)

∂1 // . . .Ωn(M ;A)
∂n // Ωn+1(M ;A)

∂n+1 // . . .

from which one can define its de Rham cohomology groups.

3.16. Future work. For Cartesian spaces or convenient vector spaces, the previous
sections only show us how to define forms and the exterior derivative for open subsets.
However, we can easily extend this definition to manifolds and sheaves if the associated
differential category has a “differential site”.

3.17. Definition. A differential coverage on a generalized Cartesian differential cat-
egory X is a coverage T for which:

• the site (X, T ) is subcanonical,

• for each n, the functor Tn : X // X preserves covers.

A differential site is a generalized Cartesian differential category equipped with a dif-
ferential coverage.

For example, both ordinary Cartesian spaces and convenient vector spaces have such
a site, where Ui covers U if the union of the Ui’s covers U .
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3.18. Lemma. If (X, T ) is a differential site, then for each p and differential group G,
the functor Ωn(−;G) is a sheaf on (X, T ).

Proof. Since the site is subcanonical, each presheaf functor X(−;G) is a sheaf. Then,
since Tn preserves covers, X(Tn(−);G) is also a sheaf, and so Ωn(−;G) is a sheaf.

3.19. Definition. Suppose that (X, T ) is a differential site with A a linear object and
F ∈ Sh(X,T ). We define a differential n-form on F with values in A to be a
natural transformation F // Ωn(−;A).

The natural transformations

∂n : Ωn(−;A) // Ωn+1(−;A)

are then maps in the sheaf category, and if ω : F // Ωn(−;A) is an n-form on F ,
we can then simply define ∂n(ω) to be the composite ω∂n. This reproduces the de Rham
cochain complex of ordinary or convenient manifolds when the manifolds are considered as
sheaves on the appropriate sites. Moreover, it also reproduces the more general de Rham
cochain complex of diffeological spaces, since diffeological spaces are certain sheaves on
the Cartesian site (see [Baez and Hoffnung 2011], proposition 24), and their de Rham
cohomology is defined as above (see [Iglesias-Zemmour 2013], chapter 6).

Ideally, one would like to be able to define forms and exterior differentiation for any
category which is an “abstract categorical setting for differential geometry”. One approach
to defining such categories is to consider a category with an abstract “tangent bundle
functor” [Rosický 1984]. As described in Example 2.2(v) of this paper, such tangent
categories are closely related to Cartesian differential categories, and so in future we hope
to show that the definitions and results here can be extended to a general tangent category.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
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