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TANNAKA–KREĬN DUALITY FOR COMPACT QUANTUM
HOMOGENEOUS SPACES. I. GENERAL THEORY

KENNY DE COMMER AND MAKOTO YAMASHITA

Abstract. An ergodic action of a compact quantum group G on an operator algebra
A can be interpreted as a quantum homogeneous space for G. Such an action gives rise to
the category of finite equivariant Hilbert modules over A, which has a module structure
over the tensor category Rep(G) of finite-dimensional representations of G. We show
that there is a one-to-one correspondence between the quantum G-homogeneous spaces
up to equivariant Morita equivalence, and indecomposable module C∗-categories over
Rep(G) up to natural equivalence. This gives a global approach to the duality theory
for ergodic actions as developed by C. Pinzari and J. Roberts.

Introduction

In the study of compact group actions on topological spaces, homogeneous spaces play a
key rôle as fundamental building blocks. Ever since the foundational works of I. Gelfand
and M. Neumark, the notion of unital C∗-algebras is known to be a rich generalization of
compact topological spaces, and one frequently interprets them as function algebras on
(compact) ‘quantum spaces’. In this more general noncommutative framework, a generally
accepted notion of ‘compact quantum homogeneous space’ for a compact group is that
of a continuous ergodic action of the group on a unital C∗-algebra, that is, an action for
which the scalars are the only invariant elements.

In the same way as compact topological spaces are generalized to unital C∗-algebras,
S.L. Woronowicz [38, 40] generalized the notion of compact topological groups to that of
compact quantum groups. His axiom system for compact quantum groups is a very simple
and natural one involving the coproduct homomorphism dualizing the product map of
groups. The resulting theory turns out to be strikingly rich, but at the same time as
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structured as the classical one. As in the classical case, we have the Haar measure, the
Peter–Weyl theory and the Tannaka–Krĕın duality ([40, 39, 18]).

One may also formulate the notion of actions of compact quantum groups on quantum
spaces, in a way which respects the Gelfand–Neumark duality when applied to the contin-
uous map G×X → X defining a classical group action. In this framework there is also a
natural candidate for the ‘quantum homogeneous spaces’ over compact quantum groups,
by using the formalism of ergodic (co)actions [30, 7]. In this paper, we aim to characterize
such quantum homogeneous spaces in the spirit of the Tannaka–Krĕın duality.

Such a duality theory for ergodic actions was already developed in [29], where the notion
of quasi-tensor functor, a special kind of isometrically lax functor, was used. For practical
purposes however, the lack of a strong tensor structure on such a functor makes it difficult
to let algebra run its course in computations, due to the appearance of extraneous pro-
jections as stumbling blocks. Taking a cue from the theory of fusion categories, we rather
formulate a duality theory in terms of module C∗-categories over the tensor C∗-category
of finite-dimensional representations of G. Indeed, module categories over fusion cate-
gories are known to correspond to a good generalized notion of subgroup/homogeneous
space (see A. Ocneanu’s pioneering work in the subfactor context [26], and more recent
developments in the purely algebraic framework [1, 27, 12]).

Module C∗-categories can equivalently, and more concretely, be described in terms of
tensor functors into a category of bi-graded Hilbert spaces. This formulation then makes
at the same time the connection with the ‘fiber functor theory’ from [6], which corresponds
to non-graded Hilbert spaces and ergodic actions of full quantum multiplicity, and with
the theory of [29], which corresponds to considering one particular component of such
a graded tensor functor. In the purely algebraic setting, such bi-graded tensor functors
also lead to the construction of weak Hopf algebras, i.e. quantum groupoids [15, 16, 11],
and Hopf–Galois actions [33, 34, 31]. The relation with ergodic actions comes by means
of a crossed product construction and a Morita theory for quantum groupoids, but we
will not further go in to this in this paper. We also mention that a different kind of
Tannaka-Krĕın duality for classical homogeneous spaces was developed in [17], and for
actions on finite quantum spaces in [5, 4] within the framework of planar algebras. Finally,
in the recent work [25] one can find a treatment of non-ergodic actions in terms of module
C∗-categories.

Here is a short summary of the contents of the paper. The first two sections will cover
preliminaries and fix notations. They are meant as an aid for readers who are not familiar
with the methodology. In the first section, we will recall the basic concepts concerning
compact quantum groups and quantum homogeneous spaces. In the second section, we
introduce the necessary prerequisites concerning C∗-categories, tensor C∗-categories and
module C∗-categories. Then, in the next five sections, we prove our main results. In
the third section, we explain how quantum homogeneous spaces lead to indecomposable
module C∗-categories. In the fourth section, we briefly expand on the algebraic content of
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a general compact quantum group action, so that in the fifth section, we can concentrate
on the essential part of the reconstruction of a quantum homogeneous space from an inde-
composable module C∗-category. In the short sixth section we show that this establishes
essentially an equivalence between the two notions. In the seventh section, we give further
comments on the functoriality of this correspondence. In the appendix, we explain the
link between module C∗-categories and bi-graded tensor functors. It is mainly meant to
provide details for, as well as to generalize, the remark which appears in the proof of
Theorem 2.5 of [11].

In the accompanying paper [8], we apply the results of the present paper to the case of
the compact quantum group SU q(2).

Conventions To have consistency when working with Hilbert C∗-modules, we will always
take the inner product 〈ξ, η〉 of a Hilbert space to be linear in η and antilinear in ξ. When
ξ and η are vectors in a Hilbert space H , we write ωξ,η for the functional T 7→ 〈ξ, Tη〉
on B(H ). When A and B are C∗-algebras, A⊗B denotes their minimal tensor product
unless otherwise stated.

1. Compact quantum groups and related structures

1.1. Definition. [40] A compact quantum group G consists of a unital C∗-algebra C(G)
and a faithful unital ∗-homomorphism ∆: C(G)→ C(G)⊗C(G) satisfying the coassocia-
tivity condition (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ and the cancelation condition

[∆(C(G))(1⊗ C(G))]n-cl = C(G)⊗ C(G) = [∆(C(G))(C(G)⊗ 1)]n-cl,

where n-cl means taking the norm-closed linear span.

We recall from [40] that any compact quantum group admits a unique positive state ϕG
which satisfies

(id⊗ϕG)(∆(x)) = ϕG(x)1 = (ϕG ⊗ id)(∆(x)), x ∈ C(G). (1.1)

This state is called the invariant state (or the Haar state) of C(G).

1.2. Definition. The compact quantum group G is called reduced if the invariant state
ϕG is faithful.

In the rest of the paper, we will always work with reduced compact quantum groups. This
is no serious restriction, as to any G one can associate a reduced companion which has
precisely the same representation theory as G.
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1.3. Definition. A unitary corepresentation u of C(G) on a Hilbert space Hu is given
by a unitary element u of B(Hu)⊗ C(G) satisfying the multiplicativity condition

(id⊗∆)(u) = u12u13 ∈ B(Hu)⊗ C(G)⊗ C(G),

where the leg numbering indicates at which slot in a multiple tensor product one places
the element, filling the blank spots with units. A unitary corepresentation u is said to be
finite-dimensional when Hu is so.

When u and v are unitary corepresentations of C(G), an operator T ∈ B(Hu,Hv) is
said to be an intertwiner between u and v if it satisfies v(T ⊗ 1) = (T ⊗ 1)u. A unitary
corepresentation u is called irreducible if the space of intertwiners from u to itself is
one-dimensional.

In what follows we will refer to unitary corepresentations of C(G) as unitary representa-
tions of G.

1.4. Definition. [7, 30] Let G be a compact quantum group. An action of G on a unital
C∗-algebra A is a faithful unital ∗-homomorphism

α : A→ A⊗ C(G)

satisfying the coaction condition (id⊗∆) ◦ α = (α⊗ id) ◦ α and the density condition

[(1⊗ C(G))α(A)]n-cl = A⊗ C(G).

We call the action ergodic if the space

AG = {x ∈ A | α(x) = x⊗ 1}

is equal to C1. If (A,α) is an ergodic action, we will use the notation A = C(X), and
refer to the symbol X as the quantum homogeneous space.

If X is a quantum homogeneous space for G, then C(X) carries a canonical faithful positive
state ϕX, determined by the identity

(id⊗ϕG)(α(x)) = ϕX(x)1 (x ∈ C(X)).

It is the unique state on C(X) which is α-invariant, (ϕX ⊗ id)α(x) = ϕX(x)1 for all
x ∈ C(X).
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2. C∗-categories and related structures

2.1. Definition. [13] A C∗-category D is a C-linear category whose morphism spaces
are Banach spaces satisfying the submultiplicativity condition ‖ST‖ ≤ ‖S‖‖T‖ for com-
position of morphisms S and T , and admitting antilinear ‘involutions’

∗ : Mor(X, Y )→ Mor(Y,X), T 7→ T ∗,

which behave contravariantly and satisfy the C∗-condition ‖T ∗T‖ = ‖T‖2 for each mor-
phism T . A linear functor between two C∗-categories is called a C∗-functor if it preserves
the ∗-operation.

2.2. Remark. Let D and D′ be C∗-categories. Let Fun(D,D′) be the category

• whose objects are the C∗-functors from D to D′, and

• whose morphisms between two functors F,G : D → D′ consist of the natural trans-
formations φ• = (φX : FX → GX)X∈D such that (‖φX‖)X∈D is uniformly bounded.

Then Fun(D,D′) is a C∗-category with the norm ‖φ•‖ = supX∈D ‖φX‖ and the involution
(φ∗)X = (φX)∗.

2.3. Definition. [13] We say that an object X in a C∗-category D is simple if Mor(X,X)
is isomorphic to C. We call D semi-simple [23, Section 1.6] if D admits finite direct sums
and if any of its objects is isomorphic to a finite direct sum of simple objects.

2.4. Remark. A C∗-category D is semi-simple if and only if all morphism spaces are
finite-dimensional and ‘idempotents split’. The latter condition means that any self-
adjoint projection p ∈ Mor(X,X) is of the form vv∗ for some isometry v ∈ Mor(Y,X).
Furthermore, a semi-simple C∗-category also has a zero object 0, i.e. an object which is
both initial and terminal.

2.5. Definition. Let J be a set, and D a semi-simple C∗-category. We say that D is
based on J if we are given a bijection between J and a maximal family of mutually non-
isomorphic simple objects in D. We then write Xr for the simple object associated with
r ∈ J .

By definition, any object X in a semi-simple C∗-category D based on J is isomorphic to a
direct sum ⊕r∈JmrXr. The integer mr is called the multiplicity of Xr in X, and is uniquely
determined by mr = dim(Mor(Xr, X)). Then for any object X and any irreducible Xr,
the complex vector space Mor(Xr, X) admits a natural structure of Hilbert space by the
inner product 〈S, T 〉 = S∗T ∈ Mor(Xr, Xr) = C.

Examples of semi-simple C∗-categories will be presented in Section 3 and the appendix.
They can be seen as categorified versions of Hilbert spaces, cf. the slightly different context
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of [3]. As with Hilbert spaces, there is essentially only one semi-simple C∗-category for each
cardinal number, the cardinality of the set of isomorphism classes of irreducible objects
in the given semi-simple C∗-category, cf. Lemma A.1.6. However, true to this analogy,
they arise in various presentations in practical situations, from concrete to abstract. For
the moment, it will suffice to have the following characterization of equivalences between
semi-simple C∗-categories.

2.6. Lemma. Let D and D′ be semi-simple C∗-categories, with D based on an index set
J . Let F be a C∗-functor from D to D′. Then F is an equivalence of categories if and only
if the set {F (Xr) | r ∈ J} forms a maximal set of mutually non-isomorphic irreducible
objects in D′.

Proof. The necessity of the condition is obvious. Let us see that it is also sufficient.
Let X be an irreducible object of D and let m be a nonnegative integer. Then the C∗-
algebra End(mX) is isomorphic to Mm(C), where the identity morphisms of the direct
summands form a partition of unity by mutually equivalent minimal projections. Since
F (X) is also an irreducible object, it follows that F induces a C∗-algebra isomorphism
between End(mX) and End(F (mX)) ∼= End(mF (X)). More generally, given a finite
direct sum X = ⊕r∈JmrXr, we can conclude that F provides an isomorphism between
End(X) and End(F (X)). Finally, by considering this argument for X ⊕ Y , we conclude
that F gives a bijection from Mor(X, Y ) to Mor(F (X), F (Y )) for any objects X, Y , that
is, F is a fully faithful functor.

As the set {F (Xr) | r ∈ J} forms a maximal set of mutually non-isomorphic irreducible
objects in D′, we also have that F is essentially surjective. From [21, Theorem IV.4.1],
we conclude that F is an equivalence.

2.7. Definition. [10] A (strict) tensor C∗-category C = (C,⊗,1) consists of a C∗-
category C together with a bilinear C∗-functor ⊗ : C × C → C and an object 1 ∈ C such
that there are equalities of functors

−⊗ (−⊗−) = (−⊗−)⊗−, 1⊗− = idC = −⊗ 1.

The ‘strictness’ condition refers to the on the nose associativity of ⊗. In most exam-
ples which arise in practice, the associativity only holds up to certain coherence isomor-
phisms [21, Chapter VII]. But for the cases we will encounter, the coherence isomorphisms
will be obvious and one can safely ignore them. Also for abstract tensor categories, one
can almost always restrict oneself to the setting of strict tensor categories by Mac Lane’s
coherence theorem [21, Section VII.2]. This coherence result holds as well on the C∗-level.

2.8. Definition. [10, 20] Let C be a tensor C∗-category. An object U in C is said to
admit a conjugate or dual if there exists a triple (Ū , RU , R̄U) with Ū ∈ C and (RU , R̄U) a
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couple of morphisms

RU : 1→ Ū ⊗ U, R̄U : 1→ U ⊗ Ū

satisfying the conjugate equations

(R̄∗U ⊗ idU)(idU ⊗RU) = idU , (R∗U ⊗ idŪ)(idŪ ⊗R̄U) = idŪ . (2.1)

The full subcategory of all objects in C admitting duals is denoted by Cf. A tensor C∗-
category C is called rigid if C = Cf.

2.9. Remarks.

1. [20, Theorem 2.4] When U and V are in Cf, the product V̄ ⊗ Ū of their duals is in
duality with U ⊗V . Moreover, if (Ū , RU , R̄U) makes a dual for U , then (U, R̄U , RU)
makes a dual for Ū . It follows that Cf is a rigid C∗-tensor subcategory of C.

2. For any U , the object Ū , when it exists, is unique up to isomorphism. If (RU , R̄U)
satisfy the conjugate equations, then for any λ ∈ C× also (λRU , λ̄

−1R̄U) satisfy the
same equations. When the unit of C is irreducible, then for U irreducible and Ū a
fixed dual, this is the only arbitrariness in the choice of (RU , R̄U).

3. When the unit of C is irreducible, then for any irreducible U with dual Ū , one can al-
ways arrange for a solution (RU , R̄U) of the conjugate equations which is normalized,
i.e. such that R∗URU = R̄∗U R̄U . Then by the above scaling result, dimq(U) = R∗URU

is a strictly positive real number which is uniquely determined by U . It is called
the quantum dimension of U .

2.10. Examples.

1. The category of all Hilbert spaces and bounded maps is a tensor C∗-category for the
ordinary tensor product of Hilbert spaces. The maximal rigid subcategory consists
of all finite-dimensional Hilbert spaces. If H is a finite-dimensional Hilbert space,
the complex conjugate space H can be taken as its conjugate object, where the maps
RH and R̄H are given by

R∗H : H ⊗H → C, ξ̄ ⊗ η → 〈ξ, η〉, R∗H : H ⊗H → C, ξ ⊗ η̄ → 〈η, ξ〉.

2. For any compact quantum group G, the category Rep(G) of its finite-dimensional
unitary representations together with the intertwiners forms a rigid tensor C∗-catego-
ry with irreducible unit object. The tensor product u ⊗ v of two representations u
and v is defined to be the representation on Hu ⊗Hv given by the unitary u13v23 ∈
B(Hu)⊗ B(Hv)⊗ C(G). When u is an object of Rep(G), its dual can be given by
a unitarization of (j⊗ id)(u−1) ∈ B(Hu)⊗C(G), where j : B(Hu)→ B(Hu) is the
natural anti-isomorphism characterized by j(T )ξ̄ = T ∗ξ. Unlike the case of Hilbert
spaces or compact groups, u⊗ v is not isomorphic to v ⊗ u in general.
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3. [10, 37] For a fixed C∗-category D, let End(D) denote the category of C∗-endofunc-
tors, cf. Remark 2.2. Then End(D) is a tensor C∗-category, with the ⊗-structure
F⊗G = F ◦G given by the composition of endofunctors, and with the identity functor
providing the unit. The associated rigid category End(D)f consists of adjointable
functors whose unit and co-unit maps are uniformly bounded.

We recall the notion of strong tensor functor and tensor equivalence.

2.11. Definition. Let C1 and C2 be two tensor C∗-categories. A strong tensor C∗-functor
from C1 to C2 consists of a C∗-functor F : C1 → C2 together with natural unitary transfor-
mations

ψU,V : F (U)⊗ F (V )→ F (U ⊗ V ), c : 1C2 → F (1C1),

satisfying certain coherence conditions [24, Section 1.2].

It is called a tensor equivalence if the underlying functor F is an equivalence.

2.12. Example. If G is a compact quantum group, there is a natural forgetful functor
from Rep(G) to Hf, sending each unitary representation u to the underlying Hilbert space
Hu, and acting as the identity on intertwiners. The natural transformations ψ and c are
identity maps. In general, there can exist other faithful strong tensor C∗-functors from
Rep(G) to Hf besides this canonical one, cf. [6], but each one of them determines a unique
compact quantum group ([39]).

The following lemma will be used at some point.

2.13. Lemma. [20] Let C1 and C2 be tensor C∗-categories, and F : C1 → C2 a strong tensor
C∗-functor. If C1 is rigid, then the image of F is contained in (C2)f.

Proof. If U ∈ C1, then the compatibility of F with the tensor products can be used to
construct a duality between F (U) and F (Ū). Hence the image of F is inside (C2)f.

2.14. Definition. Let C be a tensor C∗-category with unit object 1, and D a C∗-category.
One says that D = (D,M, φ, e) is a C-module C∗-category if M : C ×D → D is a bilinear
∗-functor with natural unitary transformations

φ : M((−⊗−),−)
∼→M(−,M(−,−)), e : M(1,−)

∼→ id,

satisfying certain obvious coherence conditions, cf. [28], which we will spell out below.

We say that D is semi-simple if the underlying C∗-category is semi-simple.

We say that D is indecomposable or connected if, for all non-zero X, Y ∈ D, there exists
an object U ∈ C such that Mor(M(U, Y ), X) 6= 0.
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In the following, we will use the more relaxed notation U ⊗X for M(U,X), and similarly
for morphisms. The coherence conditions can then be written in the following form, as
the commutation of the diagrams

(U ⊗ V ⊗W )⊗X
φU,V⊗W,X //

φU⊗V,W,X
��

U ⊗ ((V ⊗W )⊗X)

idU ⊗φV,W,X
��

(U ⊗ V )⊗ (W ⊗X)
φU,V,W⊗X // U ⊗ (V ⊗ (W ⊗X)),

(2.2)

and
U ⊗ (1⊗X)

idU ⊗eX

''
U ⊗X

φU,1,X
77

φ1,U,X ''

idU⊗X // U ⊗X.

1⊗ (U ⊗X)

eU⊗X

77

(2.3)

2.15. Examples.

1. Let D be a C∗-category. Then D is a module C∗-category for End(D) in an obvious
way.

2. Let G be a compact (quantum) group and H be a closed (quantum) subgroup of
G. Then Rep(H) is a Rep(G)-module C∗-category in a natural way: the action of
π ∈ Rep(G) on θ ∈ Rep(H) is defined as π|H ⊗ θ. In other words, this is induced by
the restriction functor Rep(G)→ Rep(H), which is a strong tensor C∗-functor.

3. More generally, if C1 and C2 are tensor C∗-categories, and F a strong tensor C∗-
functor from C1 to C2, then C2 becomes a C1-module C∗-category by the association
M(X, Y ) = F (X)⊗ Y .

We will need the following interplay between dual objects and the module structure.

2.16. Lemma. Let C be a rigid tensor C∗-category, and let D be a C-module C∗-category.
For any U in C and any objects X, Y in D, we have an isomorphism Mor(U ⊗ Y,X) ∼=
Mor(Y, Ū ⊗X), called the Frobenius isomorphism associated with (RU , R̄U).

Proof. This can be proved by a standard argument involving the conjugate equations,
cf. Proposition A.4.2.
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The appropriate notion of morphisms between module C∗-categories is the following.

2.17. Definition. Let D and D′ be module C∗-categories over a fixed tensor C∗-category
C. A C-module homomorphism from D to D′ is given by a pair (G,ψ), where G is a
functor from D to D′ and ψ is a unitary natural equivalence G(−⊗−)→ −⊗G−, such
that the diagrams of the form

G(1⊗X)

G(e)
��

ψ1,X // 1⊗GX

e
ww

GX

(2.4)

and

U ⊗G(V ⊗X)
idU ⊗ψV,X

**
G(U ⊗ (V ⊗X))

ψU,V⊗X
44

G(φU,V,X)

��

U ⊗ (V ⊗GX)

φU,V,GX
��

G((U ⊗ V )⊗X)
ψU⊗V,X

// (U ⊗ V )⊗GX

(2.5)

commute.

An equivalence between D and D′ is a morphism (G,ψ) for which G is an equivalence of
categories.

The following section is dedicated to the Rep(G)-module C∗-categories which are the star
actors of this paper.

3. Equivariant Hilbert modules

3.1. Definition. [2] Let X be a quantum homogeneous space for a compact quantum
group G. An equivariant Hilbert C∗-module E over X is a right Hilbert C(X)-module E,
carrying a coaction αE : E → E ⊗ C(G), where the right hand side is the exterior product
of E with the standard right Hilbert C(G)-module C(G), satisfying the density condition

[(1⊗ C(G))αE(E)]n-cl = E ⊗ C(G) = [αE(E)(1⊗ C(G))]n-cl

and the compatibility conditions

1. ∀x ∈ C(X),∀ξ ∈ E : αE(ξ · x) = αE(ξ)αX(x),

2. ∀ξ, η ∈ E : 〈αE(ξ), αE(η)〉C(X)⊗C(G) = αX(〈ξ, η〉C(X)).
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3.2. Remark. An equivariant Hilbert C∗-module is necessarily saturated, and in par-
ticular faithful as a right C(X)-module. Indeed, otherwise the closed linear span of
{〈ξ, η〉C(X) | ξ, η ∈ E} would give a proper equivariant closed 2-sided ideal I in C(X).
But any invariant state on C(X)/I would induce a non-faithful invariant state over C(X),
which is a contradiction.

To any equivariant Hilbert C(X)-module one can associate a special unitary which imple-
ments the coaction.

3.3. Definition. Let X be a quantum homogeneous space for a compact quantum group
G, and E an equivariant Hilbert C∗-module over X. One defines the associated unitary
morphism

XE ∈ LC(X)⊗C(G) (E ⊗αX (C(X)⊗ C(G)), E ⊗ C(G))

by the formula XE(ξ ⊗ (x⊗ h)) = αE(ξ)(x⊗ h).

3.4. Example. Consider a set • with one element, and consider C(•) = C with the
trivial right action

αtriv : C(•)→ C(•)⊗ C(G), 1→ 1⊗ 1.

Then an equivariant Hilbert C∗-module over • is nothing but a representation of G. In-
deed, a right Hilbert C(•)-module is just a Hilbert space H . Then the receptacle of the
unitary operator in Definition 3.3 can be identified with B(H )⊗C(G). This gives the cor-
respondence of the equivariant Hilbert C∗-modules over • and the unitary representations
of G. We will denote the equivariant Hilbert space associated to u as (Hu, δu).

We will be particularly interested in a subcategory of equivariant Hilbert C∗-modules
which admit a nice decomposition into irreducible objects.

3.5. Definition. An equivariant Hilbert C∗-module E is called

• finite if it is finitely generated projective as a right C(X)-module, and

• irreducible if the space

LG(E) = {T ∈ L(E) | αE(Tξ) = (T ⊗ 1)αE(ξ) for all ξ ∈ E}

is one-dimensional.

Any irreducible equivariant Hilbert C∗-module is finite in the above sense, as seen in the
next proposition.

3.6. Proposition. An equivariant C∗-module is finite if and only if the C∗-algebra LG(E)
is finite-dimensional.
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Proof. Let XE be the unitary morphism associated with αξ as in Definition 3.3. Then,
the map x 7→ XE(x⊗αξ 1)X∗E defines a coaction of C(G) on L(E), and the ideal of compact
endomorphisms is a G-invariant subalgebra [2]. Moreover, LG(E) is precisely the G-fixed
point subalgebra of L(E).

First, let us prove that an equivariant module over X is finitely generated projective over
C(X) when LG(E) is finite-dimensional. We can reduce it to the case of LG(E) = C by
taking a decomposition associated with a partition of unity by minimal projections in
LG(E). Then, taking any non-zero positive compact endomorphism x of E , we see that
(id⊗ϕG)(Xα(x⊗αE 1)X∗α) is simultaneously compact and nonzero positive scalar in L(E).
Hence E is finitely generated projective over C(X) [19, Lemma 6.5].

Conversely, suppose that we are given a finitely generated projective C(X)-module E
admitting a compatible corepresentation of C(G). Then, the crossed product module
E o G, which is finitely generated projective over C(X) o G, admits a natural faithful
representation of LG(E) as C(X) oG-module homomorphisms.

By the ergodicity of G on X, we know that C(X)oG is a direct sum of algebras of compact
operators [7]. Hence, for any finitely generated projective module over C(X) o G, the
module endomorphisms must form a finite-dimensional algebra. This implies that LG(E)
is finite-dimensional.

In particular, any irreducible equivariant Hilbert C∗-module E over C(X) gives another
quantum homogeneous space L(E) = K(E), by the action as given in the beginning of the
above proof.

3.7. Definition. A quantum homogeneous space Y is called equivariantly Morita equi-
valent to X if there exists an irreducible equivariant Hilbert C∗-module E over C(X) and
an equivariant C∗-algebra isomorphism C(Y) → K(E). We say that such an equivariant
Hilbert module E and associated isomorphism implement the Morita equivalence.

Note that the above terminology is justified by Remark 3.2.

3.8. Notation. Let G be a compact quantum group, and X a quantum homogeneous
space over G. We let DX denote the category of finite equivariant Hilbert C∗-modules over
X, whose morphisms are the equivariant adjointable maps between Hilbert C∗-modules.

3.9. Proposition. The category DX is a semi-simple C∗-category.

Proof. By the above proposition, for any object E in DX, the algebra Mor(E , E) is a
finite-dimensional C∗-algebra. Moreover, if p ∈ Mor(E , E) is a projection, then pE is
again an object of DX. Remark 2.4 then implies the assertion.
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In view of Example 3.4, it can be seen that finite (resp. irreducible) equivariant Hilbert
C∗-modules play a similar rôle as the finite-dimensional (resp. irreducible) representations
of G.

Now let E be a finite equivariant Hilbert C(X)-module, and let u be a finite-dimensional
unitary representation of G. Then we can amplify E with u to obtain the equivariant
Hilbert module u ⊗ E . As a Hilbert C(X)-module, u ⊗ E is the amplification Hu ⊗ E of
E with the Hilbert space Hu. The coaction of C(G) is given by the formula

(u⊗ αE)(ξ ⊗ η) = u13(ξ ⊗ α(η)),

Then obviously u⊗ E is still finite. We record the following facts for later reference.

3.10. Lemma. For any E ∈ DX, there exists a representation u of G for which there is
an isometric morphism of E into u⊗ C(X).

Proof. This is a consequence of the equivariant stabilization, see Section 3.2 of [35].

3.11. Proposition. Let X be a quantum homogeneous space for a compact quantum
group G. Denote by DX the C∗-category of finite equivariant Hilbert C(X)-modules. Then
the operation

Rep(G)×DX → DX, (u, E) 7→ u⊗ E

defines a connected Rep(G)-module C∗-category structure on DX.

Proof. The maps necessary to complete the Rep(G)-module category structure are ob-
vious, coming from the ordinary associativity maps for the concrete tensor products of
the underlying Hilbert spaces and Hilbert C∗-modules.

Let us prove that DX is connected over Rep(G). Let E and F be arbitrary objects in
D. By Lemmas 3.10 and 2.16, we can find a representation u such that C(X) appears
inside u ⊗ E . Then, again by Lemma 3.10, we can a suitable representation v such that
Mor(v ⊗ E ,F) 6= 0. Hence D is connected.

3.12. Remark. The equivariant K-group KG
0 (C(X)) is a free abelian group generated

by the irreducible classes of DX. Note that for compact groups, the above picture was
already presented, modulo some of the terminology, in [36, section 9]. Its extension to
the compact quantum group setting was treated in [32].

We aim to show in the next sections that the module C∗-category DX, together with the
distinguished element corresponding to the standard Hilbert C∗-module C(X), remembers
the quantum homogeneous space X.
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4. An algebraic approach to quantum group actions

In this section, we will provide a characterization of quantum homogeneous spaces and
equivariant Hilbert modules with the analysis drained out of it. This intermediate step
will make the Tannaka–Krĕın machine of the next section run more smoothly.

The main argument provides an algebraic description of an arbitrary action of a compact
quantum group G. It is based on results which appear already in [7, 30].

We first recall the notion of Hopf ∗-algebra associated with a compact quantum group.

4.1. Definition. [40] Let G be a compact quantum group. If u is a finite-dimensional
unitary representation of G, the elements (id⊗ωξ,η)(u) ∈ C(G) for ξ, η ∈ Hu are called
the matrix coefficients of u. The set of all such elements with the u ranging over the
representations of G form a dense Hopf ∗-subalgebra P(G) ⊆ C(G).

4.2. Definition. Let G be a compact quantum group. Let A be a unital ∗-algebra. An
algebraic action of G on A is defined to be a Hopf ∗-algebra coaction

αA : A → A ⊗ P(G),

the tensor product on the right being the algebraic one, such that A G is a unital C∗-algebra,
and such that the following positivity condition is satisfied:

The map x 7→ EG(x) = (id⊗ϕG)α(x) ∈ A G is completely positive on A . (P)

To be clear, the complete positivity means that for any n ∈ N and any element a ∈
A ⊗Mn(C), the element (EG⊗id)(a∗a) is a positive element in the C∗-algebra A G⊗Mn(C).

4.3. Lemma. Let G be a compact quantum group with an action αA on a unital C∗-algebra
A. Let A denote the linear span of (id⊗ϕG)(αA(x)(1 ⊗ g)) for x ∈ A and g ∈ P(G).
Then A is a dense unital ∗-subalgebra of A on which αA restricts to an algebraic action.

Proof. See [30, Theorem 1.5], and [7, Lemma 11 and Proposition 14], whose proofs do not
depend on the ergodicity assumption made there. The complete positivity of EG follows
from the way it is defined in (P); namely, ∗-homomorphisms, states, their amplifications,
and their compositions are completely positive.

4.4. Proposition. Let G be a compact quantum group with an algebraic action αA on
a unital ∗-algebra A . Then there exists a unique C∗-completion A of A to which αA

extends as a coaction of C(G). Moreover, AG = A G.
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Proof. We denote by B the C∗-algebra A G. By the complete positivity assumption on
EG, the B-valued inner product 〈a, b〉B = EG(a∗b) on A gives a pre-Hilbert B-module
structure. We want to show that the left representation of A on itself by left multiplication
extends to the Hilbert module completion A.

Let a be an arbitrary element of A . Since the image of αA ends up in the algebraic tensor
product of A and P(G), there is a finite-dimensional unitary representation u of G and
an intertwiner from ū to A whose image contains a.

Let us choose an orthonormal basis ei of Hu, and put uij = (ωei,ej ⊗ id)(u). Then, the
above statement means that there are elements ai ∈ A such that

• a can be written as a linear combination
∑

i λiai, and

• the elements ai transform according to (u∗ji), so αA (ai) =
∑

j aj ⊗ u∗ji.

The unitarity of u implies that
∑

i a
∗
i ai ∈ B.

Since B is a C∗-algebra, one has the inequality
∑

i a
∗
i ai ≤ ‖

∑
i a
∗
i ai‖B. Fix now some j.

Combining the inequalities a∗jaj ≤
∑

i a
∗
i ai in A with the previous one, the positivity of

EG implies that

EG
(
b∗a∗jajb

)
≤
∥∥∥∑

i

a∗i ai

∥∥∥
B
EG(b∗b), ∀b ∈ A .

It follows that left multiplication with each aj is bounded, so that a extends as a left
multiplication operator to A.

We obtain in this way a faithful ∗-representation A → LB(A). Define A to be the norm-
completion of A in this representation. We claim that the coaction αA extends to A.
Consider the transformation X on A ⊗P(G) defined by X(a⊗ g) = αA (a)(1⊗ g). Then,
the invariance of ϕG implies that X extends to a unitary morphism on the right Hilbert
B-module A ⊗L 2(G). By a routine computation we obtain that a 7→ X(a ⊗ 1)X∗ for
a ∈ A gives the extension αA of αA to A.

From this formula for αA, it also follows that we have (id⊗ϕG)α(a) = 〈a · 1B, 1B〉B for all
a ∈ A. It follows that the invariant elements of A lie in B.

It remains to prove the uniqueness of A. Let us assume that A is an arbitrary unital
C∗-algebra satisfying the conclusion of the lemma. Then EG can, by the same formula, be
extended to a conditional expectation from A to B. Since G is reduced, this conditional
expectation is faithful.

Now, if a ∈ A ⊆ A and R < ‖a‖, the functional calculus shows that there is a positive
element b ∈ A such that (Rb)2 < ba∗ab. Thus, the norm of a can be characterized by

‖a‖ = sup
b∈A \{0}

(
‖EG(b∗a∗ab)‖
‖EG(b∗b)‖

) 1
2

.

Hence the C∗-norm on A is uniquely determined in terms of (A , αA ).
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4.5. Proposition. Let G be a compact quantum group. Then the correspondences A 7→
A and A 7→ A of Lemma 4.3 and Proposition 4.4 can be extended to respective func-
tors Alg and Comp between the categories of actions of G and algebraic actions of G.
Moreover, Comp ◦Alg is naturally equivalent to the identity functor.

Here, the morphisms on the respective categories are understood to be the equivariant
unital ∗-homomorphisms.

Proof. Let A and B be unital C∗-algebras endowed with G-actions, and let f : A → B
be an equivariant unital ∗-homomorphism. The equivariance implies that f restricts to
an equivariant ∗-homomorphism A → B. This gives the functor Alg.

Conversely, suppose that A and B are unital ∗-algebras with algebraic G-actions, A and
B their respective completions. Then the direct sum A⊕B admits a canonical G-action
extending the ones on the direct summands. If f : A → B is an equivariant unital ∗-
homomorphism, the map (id×f)(a) = a⊕f(a) is a faithful G-equivariant homomorphism
from A to A⊕B. Proposition 4.4 implies that the C∗-norm on A induced by id×f has
to agree with the A-norm. Hence f extends to an equivariant ∗-homomorphism A → B.
This way we obtain the functor Comp.

Now, the natural equivalence between Comp ◦Alg and the identity functor follows directly
from density part in Lemma 4.3 and the uniqueness part in Proposition 4.4.

4.6. Remark. The composition Alg ◦Comp is not equivalent to the identity functor in
general. For example, if A is given by the function algebra of closed disk C(D̄) endowed
with the rotation action of U(1), the algebra A contains many U(1)-invariant norm dense
subalgebras corresponding to the various decaying conditions around the origin. However,
on the subcategory of the actions with finite-dimensional fixed point algebras, Alg ◦Comp
is indeed equivalent to the identity functor.

5. Tannaka–Krĕın construction

Let G be a compact quantum group. We take a set I indexing the equivalence classes of
irreducible objects in Rep(G), and a distinguished irreducible object ua for each a ∈ I.
When convenient, we will abbreviate ua by a. The index corresponding to the unit object
of Rep(G) will be written as o. We identify Ho with C (canonically) by means of the
tensor structure.

It will be handy to use the following Penrose–Einstein-like notation. It concerns the
natural map ⊕

a∈I

Mor(ua, u)⊗Ha →Hu,
∑
i

xi ⊗ ξi 7→
∑
i

xi(ξi) (5.1)

for any representation u. This map is an isomorphism, see Lemma A.1.4.
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5.1. Notation. We will write the inverse of (5.1) as ξ 7→ ξa ⊗ ξa, so that ξ = ξaξa.

For the rest of this section, we will fix a semi-simple Rep(G)-module C∗-category D.

5.2. Notation. For objects x, y in D, we denote by A y
x the vector space

A y
x =

⊕
a∈I

Mor(ua ⊗ y, x)⊗Ha

The direct sum on the right hand side is the algebraic one. We can endow A y
x with the

P(G)-comodule structure αyx = ⊕a(id⊗δa), where δa is defined in Example 3.4.

5.3. Remark. The space ⊕a Mor(ua⊗y, x)⊗Ha may be seen as the coend of the functor
Cop×C → Vect sending (u, v) to Mor(u⊗ y, x)⊗Hv, see for instance [23, Section 2], [21,
Chapter IX].

Our goal is to make the A y
y into algebraic actions for G, and the A y

x into equivariant
right pre-Hilbert modules for A y

y .

5.4. Notation. When f stands for an element in A y
x , its leg in Mor(ua ⊗ y, x) (resp.

in Ha) for a ∈ I is denoted by fa (resp. fa). Thus, the expression of the form fa ⊗ fa is
understood to represent f .

We will combine this notation with Notation 5.1. This notation can be seen as analogous
to the Sweedler notation for coproducts. As an example, consider fixed a, b ∈ I, and
elementary tensors f = x ⊗ ξ and g = y ⊗ η respectively in Mor(ua ⊗ y, x) ⊗Ha and
Mor(ub⊗y, x)⊗Hb. Choose a maximal family of mutually orthogonal isometric morphisms
(ιcab,k)k from uc to ua ⊗ ub. Then we have

f c ⊗ gd ⊗ (fc ⊗ gd)e ⊗ (fc ⊗ gd)e =
∑
c,k

x⊗ y ⊗ ιcab,k ⊗ (ιcab,k)
∗(ξ ⊗ η)

inside
⊕

c Mor(ua ⊗ y, x)⊗Mor(ub ⊗ y, x)⊗Mor(uc, ua ⊗ ub)⊗Hc.

As an exercise to get acquainted with the notation, the reader could try to prove the
following interchange law

[(ξa ⊗ idv)(ξa ⊗ η)c]⊗ (ξa ⊗ η)c = (ξ ⊗ η)c ⊗ (ξ ⊗ η)c ∼= ξ ⊗ η,

where ξ, η are arbitrary vectors respectively in Hu and Hv.
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5.5. Definition. Let x, y, z be objects in D. We define a multiplication map

A y
x ×A z

y → A z
x (5.2)

by the formula

fg = (fg)c ⊗ (fg)c = [fa(ida⊗gb)φa,b,z((fa ⊗ gb)c ⊗ idz)]⊗ (fa ⊗ gb)c.

where φa,b,z is the associator from Definition 2.14.

5.6. Proposition. The multiplication (5.2) is associative.

Proof. Let (f, g, h) ∈ A y
x ×A z

y ×A w
z . First, the product (fg)h can be expressed as

[[fa(ida⊗gb)φa,b,z((fa⊗gb)c⊗idz)](idc⊗hd)φc,d,w(((fa⊗gb)c⊗hd)e⊗idw)]⊗((fa⊗gb)c⊗hd)e.

Taking composition at c and using naturality of φ, the above is equal to

[fa(ida⊗gb)(ida⊗ idb⊗hd)φa,b,d⊗wφa⊗b,d,w((fa ⊗ gb ⊗ hd)e ⊗ idw)]⊗ (fa ⊗ gb ⊗ hd)e.

Similarly, the expression f(gh) reduces to

[fa(ida⊗gb)(ida⊗ idb⊗hd)(ida⊗φb,d,w)φa,b⊗d,w((fa ⊗ gb ⊗ hd)e ⊗ idw)]⊗ (fa ⊗ gb ⊗ hd)e.

The conclusion then follows from the associativity constraint on φ.

5.7. Proposition. Let x and y be objects in D, and let ey ∈ Mor(uo ⊗ y, y) be the
structure map of tensor unit included in the module package. Then the element 1y =
ey ⊗ 1 ∈ A y

y is a right unit for the multiplication map A y
x × A y

y → A y
x , and a left unit

for the multiplication map A y
y ×A x

y → A x
y .

Proof. Take f ∈ A x
y . Then the formula for the product f · 1y reads

[fa(ida⊗ey)φa,o,y((fa ⊗ 1)c ⊗ idy)]⊗ (fa ⊗ 1)c.

Since Mor(uc, uo⊗ua) 6= 0 if and only if a = c for a, c ∈ I, the unit constraint on e reduces
this expression to fa(ida⊗ idy)⊗ fa = f . This shows that 1y is a left unit. An analogous
argument shows that 1y is also a left unit.

It follows that we can make a category A having the same objects as D, and with
morphism space from x to y the linear space A x

y . In particular the ‘endomorphism
spaces’ A y

y are unital algebras. It contains D as a faithful sub-∗category, as shown by the
following lemma.

5.8. Lemma. There is a linear functor D → A which is the identity on objects, and which
sends f ∈ Mor(y, x) to fey ⊗ 1 ∈ A y

x .

Proof. This is proven in the same way as Proposition 5.7.
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In the following, we will identify Mor(y, x) with its image inside A y
x .

5.9. Proposition. Take x, y, z objects in D. Let f ∈ A y
x and g ∈ A z

y . Then

αzx(fg) = αyx(f)αzy(g).

Proof. When (E,α) a right comodule over P(G), let us write, for x ∈ E,

α(x) = x(0) ⊗ x(1) ∈ E ⊗ P(G).

Then, resorting again to the notation of Example 3.4, one has

δu⊗v(ξ ⊗ η) = ξ(0) ⊗ η(0) ⊗ ξ(1)η(1).

Using that ξc ⊗ δc(ξc) = (ξ(0))
c ⊗ (ξ(0))c ⊗ ξ(1), the element αzx(fg) can thus be computed

as

[fa(ida⊗gb)φa,b,z(fa ⊗ gb)c]⊗ δc((fa ⊗ gb)c)
= [fa(ida⊗gb)φa,b,z(fa(0) ⊗ gb(0))

c]⊗ (fa(0) ⊗ gb(0))c ⊗ fa(1)gb(1).

On the other hand, the way the coaction αyx is defined implies that

fa ⊗ fa(0) ⊗ fa(1) = (f(0))
a ⊗ (f(0))a ⊗ f(1).

It follows that αzx(fg) can be expressed as

[(f(0))
a(ida⊗(g(0))

b)φa,b,z((f(0))a ⊗ (g(0))b)
c]⊗ ((f(0))a ⊗ (g(0))b)c ⊗ f(1)g(1),

which is precisely αyx(f)αzy(g).

We will now define a ∗-operation A y
x → A x

y . Here the rigidity of Rep(G) will come into
play, so we first fix our conventions concerning duals.

5.10. Notation. When fu ∈ Mor(u ⊗ y, x), we write fu ∈ Mor(y, ū ⊗ x) for its image
of the Frobenius isomorphism associated with (Ru, R̄u) (see Lemma 2.16). So,

fu = (idū⊗fu)φū,u,y(Ru ⊗ idy)e
∗
y.

Similarly, when ξu ∈Hu, we define ξu ∈Hū by the formula

ξu = (ξ∗u ⊗ idu)R̄u(1),

where ξ∗ for a vector ξ ∈H is the obvious map H → C.
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5.11. Definition. We define the anti-linear conjugation map ∗ : A y
x → A x

y by

f ∗ = (f ∗)ā ⊗ (f ∗)ā = ( fa )∗ ⊗ fa .

Since the above formula involves both Ra and R̄∗a for each a ∈ I, the definition of ∗ is
actually independent of the choice of the duality morphisms.

5.12. Proposition. The operation ∗ is anti-multiplicative.

Proof. Let f ∈ A y
x and g ∈ A z

y . Then by definition of the product,

(g∗f ∗)c̄ ⊗ (g∗f ∗)c̄ = [(g∗)ā(idā⊗(f ∗)b̄)φā,b̄,x(((g
∗)ā ⊗ (f ∗)b̄)

c̄ ⊗ idx)]⊗ ((g∗)ā ⊗ (f ∗)b̄)c̄

= [( ga )∗(idā⊗( fb )∗)φā,b̄,x(( ga ⊗ fb )c̄ ⊗ idx)]⊗ ( ga ⊗ fb )c̄.

Let us concentrate first on the part φ∗
ā,b̄,x

(idā⊗ fb ) ga . Choose as solution for the conjugate

equations for b⊗ a the couple ((idā⊗Rb ⊗ ida)Ra, (ida⊗R̄b ⊗ idā)R̄a). Then, using natu-
rality and coherence for φ and e, we can write, after some diagram manipulations,

φ∗ā,b̄,x(idā⊗ fb ) ga = (idā⊗b̄⊗(f b(idb⊗ga)))φā⊗b̄,b,a⊗zφā⊗b̄⊗b,a,z(Rb⊗a ⊗ idz)e
∗
z.

Substituting in the expression for g∗f ∗ and pulling through the factor ((g∗)a⊗(f ∗)b)
c⊗idx,

we find that g∗f ∗ is equal to the expression

[ez(R
∗
b⊗a ⊗ idz)(( ga ⊗ fb )c̄ ⊗ idb⊗a⊗ idz)φ

∗
c̄⊗b,a,zφ

∗
c̄,b,a⊗z(idc̄⊗((idb⊗ga∗)f b∗))]⊗ ( ga ⊗ fb )c̄.

Now for vectors ξ and η in representation spaces, we have

[R∗b⊗a(( ξa ⊗ ηb )c̄ ⊗ idb⊗ ida)]⊗ ( ξa ⊗ ηb )c̄ = [R∗c(idc̄⊗((ηb ⊗ ξa)c)∗)]⊗ (c ηb ⊗ ξa),
which can be verified using the natural isomorphism

⊕c Mor(c̄⊗ b⊗ a,1)⊗Hc̄ →H b ⊗H a

and the conjugate equations for (R, R̄). It follows that g∗f ∗ can be written as

[ez(R
∗
c ⊗ idz)(idc̄⊗((fb ⊗ ga)c)∗ ⊗ idz)φ

∗
c̄⊗b,a,zφ

∗
c̄,b,a⊗z(idc̄⊗((idb⊗ga∗)f b∗))]⊗ (c fb ⊗ ga).

Using once more coherence and naturality for φ, this reduces to (fg)∗.

5.13. Proposition. The operation ∗ is involutive.

Proof. Let f ∈ A y
x . By the definition of the ∗-operation, (f ∗)∗ can be written as

[ex(R
∗
ā ⊗ idx)φ

∗
a,ā,x(ida⊗ idā⊗fa)(ida⊗φā,a,y)(ida⊗Ra ⊗ idy)(ida⊗e∗y)]

⊗ (R̄∗a ⊗ ida)(fa ⊗ R̄ā(1)).

Using again naturality and coherence for φ and e, this can be rewritten

(f ∗)∗ = [fa(R∗ā ⊗ ida⊗ idy)(ida⊗Ra ⊗ idy)]⊗ (R̄∗a ⊗ ida)(fa ⊗ R̄ā(1)).

But since we may replace the conjugate solution (Rā, R̄ā) with (R̄a, Ra), the conjugate
equations for (Ra, R̄a) show that the above expression reduces to f .
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5.14. Proposition. For f ∈ A y
x , we have αyx(f)∗ = αxy(f

∗).

Proof. The coaction on f ∗ can be written as

[ey(R
∗
a ⊗ idy)φ

∗
ā,a,y(idā⊗fa∗)]⊗ (f ∗a ⊗ uā)(R̄a(1)⊗ 1).

Since R̄a ∈ Mor(uo, ua ⊗ uā), one has

(uā)23(R̄a)12 = (u∗a)13(ua)13(uā)23(R̄a)12 = (u∗a)13(R̄a)12.

Thus, we obtain

αxy(f
∗) = [ey(R

∗
a ⊗ idy)φ

∗
ā,a,y(idā⊗fa∗)]⊗ (u(fa ⊗ 1))∗13(R̄a(1)⊗ 1) = αyx(f)∗,

which proves the assertion.

5.15. Lemma. There is a natural equivariant ∗-isomorphism

A x⊕y
x⊕y
∼=
(

A x
x A y

x

A x
y A y

y

)
.

Proof. This follows from the natural decomposition

End(x⊕ y) ∼=
(

End(x) Mor(y, x)
Mor(x, y) End(y)

)
,

which passes through all further structure imposed on the A y
x .

5.16. Lemma. We have (A y
x )G = Mor(y, x). Furthermore, for f ∈ A y

y , we have

(id⊗ϕG)(αyy(f)) = f ofoe
∗
y ∈ End(y).

Proof. These formulas follow from the definition of αyx and the orthogonality of irre-
ducible representations.

5.17. Theorem. For each object y of D, the coaction of P(G) on A y
y defines an algebraic

action of G.
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Proof. The only thing left to prove is the complete positivity (P) for the map EG =
(id⊗ϕG)◦αyy. By Lemma 5.15, it is enough to show that EG is positive on A y

y for arbitrary
y. Let f, g ∈ A y

y . Then we have

f ∗g = [ey(R
∗
a ⊗ idy)φ

∗
ā,a,y(idā⊗fa∗gb)φā,a,y((((f ∗a ⊗ idā)R̄a(1)⊗ gb))c ⊗ idy)]

⊗ ((f ∗a ⊗ idā)R̄a(1)⊗ gb)c.

Applying EG to this means taking the value at c = o.

Since ua and ub are irreducible, there exists an embedding of uo into uā⊗ub if and only if
b = a. In that case an isometric embedding is given by (dimq ua)

−1/2Ra for the normalized
choice of (Ra, R̄a). Thus, we obtain, using the conjugate equations for (Ra, R̄a) in the last
step,

((f ∗a ⊗ idā)R̄a(1)⊗ ga)o((f ∗a ⊗ idā)R̄a(1)⊗ ga)o =
1

dimq ua
(f ∗a ⊗R∗a)(R̄a(1)⊗ ga)Ra

=
〈fa, ga〉
dimq ua

Ra

as a morphism from uo to uā ⊗ ua. Hence,

EG(f ∗g) =
〈fa, ga〉
dimq ua

· ey(R∗a ⊗ idy)φ
∗
ā,a,y(idā⊗fa∗ga)φā,a,y(Ra ⊗ idy)e

∗
y

=
1

dimq ua
· ey(R∗a ⊗ idy)φ

∗
ā,a,y(idā⊗〈f, g〉Mor(y,y))φā,a,y(Ra ⊗ idy)e

∗
y,

where 〈f, g〉Mor(y,y) = 〈fa, ga〉fa∗ga is the standard Mor(y, y)-valued inner product on A y
x .

From this formula, it follows that EG is indeed completely positive.

5.18. Remark. In [27], the construction of an action from a module category is carried
out internally within the tensor category. There are two obstacles for attempting such
a construction in our setting. The first obstacle is a finiteness problem, in that the
algebra underlying an ergodic action will in general live inside a completion of the tensor
category. This could be taken care of by standard techniques. The second obstacle is
that we want our algebras to be endowed with a good ∗-structure. Now ergodic actions
on finite-dimensional C∗-algebras can be characterized abstractly inside of Rep(G) as
(irreducible) abstract Q-systems ([20], [22]). However, the definition of Q-system is too
restrictive if we want to allow non-finite quantum homogeneous spaces. So although it
seems manageable to lift both of the above obstacles separately, we do not know how to
tackle them in combination.

At this stage, we can apply the material developed in the previous section.
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5.19. Notation. For each object y in D, we denote the G-C∗-algebraic completion of
A y
y (see Proposition 4.4) by Ayy. We denote the block decomposition of Ax⊕y induced by

the isomorphism of Lemma 5.15 as

Ax⊕yx⊕y =

(
Axx Ayx
Axy Ayy

)
.

In this way, for general x, y, the space Axy naturally has the structure of an equivariant
right Hilbert Ayy-module, together with a unital ∗-homomorphism from Axx into LAyy(Ayx).

5.20. Lemma. When x and y are objects in D with y irreducible, then the action of G
on Ayy is ergodic, and Ayx is a finite equivariant Hilbert Ayy-module.

Proof. From the block decomposition as in Notation 5.19, we may as well suppose that
also x is irreducible. Then by Lemma 5.16 and Proposition 4.4, we obtain that the actions
on Ayy and Axx are ergodic. Since the image of Axx in L(Ayx) must by construction contain
KAyy(Ayy), we deduce from Remark 3.2 that either we have an identification Axx

∼= KAyy(Ayx),
in which case Ayx is in particular finitely generated projective, or else Ayx = 0.

The Ayx are Banach spaces with the ∗-operations Ayx → Axy satisfying the C∗-condition.
It follows that we can make a C∗-category A having the same objects as D, and with
morphism space from x to y given by the Banach space Axy . By Lemma 5.8, it contains a
faithful copy of the C∗-category D, which are precisely the fixed points under the G-action
on the morphism spaces.

5.21. Proposition. Let y be a fixed irreducible object in D, and let Ay be the category
with

• objects the Ayx, where x ranges over the objects in D, and

• with morphism space MorAy(z, x) the space KAyy(Ayz , Ayx).

Then we have a C∗-functor Fy : A→ Ay, sending x to Ayx and an element f ∈ Azx to left
multiplication with this element. Moreover, the resulting maps MorA(z, x)→ KAyy(Ayz , Ayx)
are G-equivariant.

Proof. Since the modules Ayx are finitely generated projective over Ayy, left multiplication
with elements in Azx indeed gives compact operators from Ayz to Ayx. The functoriality of
the given map is then a formality to check. The equivariance follows from Proposition
5.9.
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5.22. Example. Let H be a quantum subgroup of G. We have seen in Example 2.15 that
Rep(H) is a Rep(G)-module category. When w is an irreducible unitary representation of
H, we find that

A w
w
∼= Mor((ua)|H ⊗ w,w)⊗Ha

∼= (w̄ ⊗ (ūa)|H ⊗ w)H ⊗Ha
∼= (B(Hw)⊗ P (G))H,

the fixed points being with respect to the w-induced left H-action on B(Hw) ⊗ P (G). It
then follows that the action of G on C(Xw) given by Lemma 5.20 is equal to the right
translation action on the fixed point algebra (B(Hw)⊗ C(G))H.

6. Correspondence between the constructions

Let G be a compact quantum group, and let X be a quantum homogeneous space over G.
It is known [29] that the G-algebra C(X) can be recovered from the associated ‘spectral
functor’

u 7→ HomG(Hu, C(X))

on Rep(G), where the right hand side simply means the space of G-equivariant linear
maps. In general, if we ignore the problem of completion, any right comodule E over
C(G) can be recovered from its spectral functor by the formula⊕

a∈I

HomG(Ha, E)⊗Ha ' E , (6.1)

up to completion. The algebra structure of C(X) was recovered from the usual tensor
structure on the forgetful functor of Rep(G), and the ‘quasi-tensor’ structure on the
spectral functor.

The above general scheme and our construction of G-algebra in the previous section are
related by the following simple translation.

6.1. Lemma. Let u ∈ Rep(G), and let (E , αE) be a G-equivariant Hilbert C∗-module over
C(X). Then one has a natural isomorphism

HomG(Hu, E) ' HomG,C(X)(Hu ⊗ C(X), E), (6.2)

where the right hand side denotes the space of linear G-equivariant, right C(X)-linear
maps.

Proof. If T ∈ HomG(Hu, E), the map ξ ⊗ x 7→ T (ξ)x from Hu ⊗ C(X) to E is G-
equivariant and right C(X)-linear. On the other hand, the inverse correspondence is
given by pulling back with the embedding Hu →Hu ⊗ C(X), ξ 7→ ξ ⊗ 1.



TANNAKA–KREĬN DUALITY FOR COMPACT QUANTUM HOMOGENEOUS SPACES. I.1123

The above isomorphism can be regarded as an adjunction between the ‘scalar extension
by C(X)’ functor and the ‘scalar restriction’ functor (forgetting the action of C(X)).
Moreover, C(X) itself can be regarded as an irreducible object in the category DX by the
ergodicity. Hence, if E is a finite equivariant Hilbert module over C(X), we have for the
right hand side of (6.2) that

HomG,C(X)(Hu ⊗ C(X), E) = Mor(u⊗ C(X), E),

the latter a morphism space in DX. We use here implicitly that adjointability is automatic
for C(X)-module maps between finitely generated projective modules).

In the following, we use Notation 5.19.

6.2. Proposition. Let • denote the object C(X) in DX. Then the G-C∗-algebra A•• is
equivariantly isomorphic to C(X). This isomorphism is induced by the embedding

A •
• → C(X), f 7→ fa(fa ⊗ 1). (6.3)

Proof. By Lemma 6.1, A •
• can be identified with ⊕a HomG(Ha, C(X)) ⊗Ha, and the

map (6.3) is identified with the canonical embedding (6.1). We obtain the assertion by
comparing our product structure on A •

• with the one in [29, Theorem 8.1].

6.3. Proposition. Let D be a connected module C∗-category over Rep(G). Let y ∈ D
be an irreducible object, and write Ayy = C(Xy). Then there is an equivalence of Rep(G)-
module C∗-categories D ∼= DXy , by restricting the functor Fy from Proposition 5.21 to
D.

Proof. First of all, Lemma 5.20 ensures us that Fy has the proper range on objects.
Since D is realized inside the category A by taking the G-invariants in morphism spaces,
the equivariance part of Proposition 5.21 ensures that Fy also has the proper range on
morphisms. In the following, we will mean by Fy its restriction to D.

We next show that Fy is a Rep(G)-module homomorphism. Let u be a finite-dimensional
representation of G, and let x be an object in D. Then, the spectral subspace functors
associated with Ayu⊗x and u⊗ Ayx are the same: the one for Ayu⊗x is, by definition, deter-
mined by the spaces (Mor(ua⊗ y, u⊗x))a∈I , but the Frobenius isomorphism implies that
these are equal to

Mor((ū⊗ ua)⊗ y, x) ' Mor(ū⊗ ua, Ayx) = Mor(ua,Hu ⊗ Ayx)

for a ∈ I. The resulting linear isomorphism A y
u⊗x → Hu ⊗ A y

x is by construction a
G-homomorphism. It is right A y

y -linear and isometric by the same type of calculation as
in the previous section. The coherence conditions for Fy follow from the naturality for
scalar restriction/extension and from the fact that we can canonically take u⊗ v = v̄⊗ ū
using the chosen duality morphisms for u and v.
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It remains to show that the sets of irreducible classes are in bijection under the functor Fy.
By the connectedness of D, for any object x, there exists an (irreducible) representation
u of G such that Mor(u ⊗ y, x) 6= 0. Hence Ayx is a non-zero Hilbert module. As in the
proof of Lemma 5.20, it follows that Ayx is irreducible if x is irreducible. If further x and
z are irreducible, we must have by the same reasoning that the map(

Axx Azx
Axz Azz

)
→
(
K(Ayx) K(Ayz , A

y
x)

K(Ayx, A
y
z) K(Ayz)

)
is an isomorphism. Using Lemma 5.16, we see that if x and z are non-isomorphic irre-
ducible objects, Ayx and Ayz are not equivalent in DXy .

Now, any object in DXy is a subobject of u⊗C(Xy) for some finite-dimensional represen-
tation u of G. As Fy preserves the module structure, and as C(Xy) is the image of y by
construction, we find that any object of DXy is isomorphic to an object in the image of Fy.
By Lemma 2.6, we conclude that Fy is an equivalence of Rep(G)-module C∗-categories.

To conclude this section, we summarize our main result in the following theorem, which
will also include the formalism on bi-graded Hilbert spaces developed in the Appendix.
Indeed, in our setup, abstract module C∗-categories will arise naturally from the study
of quantum homogeneous spaces, and one then passes to the bi-graded Hilbert space
picture to reveal the combinatorial structure in a more tangible form, cf. the remark after
Theorem 1.5 in [14]. This will be exploited in our forthcoming paper [8] to classify the
ergodic actions of the quantum SU q(2) groups for 0 < |q| ≤ 1.

6.4. Theorem. Let G be a compact quantum group. There is a one-to-one correspon-
dence between the following notions.

1. Ergodic actions of G (modulo equivariant Morita equivalence).

2. Connected module C∗-categories over Rep(G) (modulo module equivalence).

3. Connected strong tensor functors from Rep(G) into bi-graded Hilbert spaces (modulo
natural tensor equivalence).

The connectedness of a strong tensor functor F into J-bi-graded Hilbert spaces means
that it can not be decomposed as a direct sum F1⊕F2 with the Fi strong tensor functors
into Ji-bi-graded Hilbert spaces, J = J1 ∪ J2 with J1 and J2 disjoint.

Proof. The equivalence between the first two structures is a direct consequence of Propo-
sitions 6.2 and 6.3, where the arbitrariness of the choice of irreducible object corresponds
precisely to equivariant Morita equivalence, cf. the remark above Notation 3.8. The
equivalence between the last two is a consequence of Proposition A.4.2, under which the
connectedness can be easily seen to be preserved.
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Let us give a little more detail on the direct correspondence between tensor functors and
ergodic actions. Let J be a set, and (Frs)r,s∈J be a connected strong tensor functor from
Rep(G) into column-finite J-bi-graded Hilbert spaces. Then by Proposition A.4.2, HJ

f has
a structure of Rep(G)-module C∗-category, in such a way that Frs(u) ∼= Mor(xr, u⊗ xs).
Hence for r, s elements of J , the spaces A xs

xr which were constructed in Section 5 can be
explicitly expressed as

A xs
xr =

⊕
a∈I

Frs(a)⊗Ha,

since we can identify Mor(u⊗ xs, xr) with the conjugate Hilbert space of Mor(xr, u⊗ xs)
by means of the adjoint map.

7. Categorical description of equivariant maps

In this last section, we investigate the relationship between equivariant maps between
quantum homogeneous spaces and equivariant functors between module C∗-categories.

Let X and Y be quantum homogeneous spaces over G, respectively given by the coactions
α : C(X) → C(X) ⊗ C(G) and β : C(Y) → C(Y) ⊗ C(G). A G-morphism from Y to X
is represented by a unital ∗-algebra homomorphism θ from C(X) to C(Y) satisfying the
G-equivariance condition (θ ⊗ id) ◦ α = β ◦ θ.

Given such a homomorphism θ, we obtain a ∗-preserving functor θ# : DX → DY defined
as the extension of scalars E 7→ E ⊗C(X) C(Y)θ . We may assume that this functor maps
the distinguished object C(X) of DX to the one of DY, namely C(Y). When u ∈ Rep(G)
and E ∈ DX, let ψθ denote the isomorphism

(Hu ⊗ E)⊗C(X) C(Y)→Hu ⊗ (E ⊗C(X) C(Y)), (ξ ⊗ x)⊗ y 7→ ξ ⊗ (x⊗ y).

Then ψθ can be considered as a natural unitary transformation ψθ : θ#(− ⊗ −) → − ⊗
(θ#−) between functors from Rep(G) × DX to DY. This ψθ enables one to complete θ#

to a module C∗-category homomorphism between DX and DY, cf. Definition 2.17.

We aim to characterize the G-equivariant morphisms of quantum homogeneous spaces in
terms of their associated categories and functors between them.

7.1. Theorem. Let X and Y be quantum homogeneous spaces over G. Let (G,ψ) be a
Rep(G)-module homomorphism from DX to DY satisfying G(C(X)) = C(Y). Then there
exists a G-equivariant ∗-homomorphism θ from C(X) to C(Y) such that θ# is naturally
isomorphic to G.

Furthermore, two Rep(G)-module homomorphisms (G,ψ) and (G,ψ′) with the same un-
derlying functor give rise to the same homomorphism θ if and only if ψ and ψ′ are con-
jugate by a unitary self-equivalence of G.
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Proof. By Proposition 6.2, we know that C(X) can be identified with a completion of
the space A = ⊕a∈I Mor(Ha⊗C(X), C(X))⊗Ha, and similarly for C(Y) as a completion
of the space B = ⊕a∈I Mor(Ha⊗C(Y), C(Y)). For any u ∈ Rep(G), the action of G and
ψ∗u,C(X) induces a linear map

ΨEu : Mor (Hu ⊗ C(X), E)→ Mor (Hu ⊗ C(Y), GE) ,

sending f to G(f)ψ∗u,C(X). When E = C(X), we write Ψ
C(X)
u = Ψu, and we put θ =

⊕a∈IΨa ⊗ ida as a map from A to B.

We first want to show that this is an algebra homomorphism. Let f and g be elements of
A . The effect of θ on fg can be expressed, using the notation from Definition 5.5, as

(θ(fg))c ⊗ (θ(fg))c = [G
(
fa(ida⊗gb)((fa ⊗ gb)c ⊗ idC(X))

)
ψ∗c,C(X)]⊗ (fa ⊗ gb)c (7.1)

where we have dropped the associativity constraint for the module category since the
latter is concrete.

By functoriality of G, naturality of ψ and coherence of ψ, the morphism part in the left
leg of the above formula can be written as

G(fa)ψ∗a,C(X)(ida⊗G(gb))(ida⊗ψ∗b,C(X))((fa ⊗ gb)c ⊗ idC(Y)),

which can be simplified to Ψa(f
a)(ida⊗Ψb(g

b))((fa ⊗ gb)c ⊗ idC(Y)). Since we can write
θ(f) = Ψa(f

a) ⊗ fa, we conclude that indeed θ(fg) = θ(f)θ(g). In the same way, the
unitality of θ is proven.

Next, let us observe that θ is compatible with the involution on both algebras. This is a
consequence of the facts that G ‘commutes’ with the morphisms in R and intertwines the
∗-operations on DX and DY, and of naturality of ψ. Since θ is equivariant by construction,
it then follows from Proposition 4.5 that θ can be extended uniquely to an equivariant
∗-homomorphism from C(X) to C(Y), which we denote by the same symbol.

Finally, we have to prove that θ# and G are equivalent. Let E be an object of DX, and
write AE = ⊕a∈I Mor(ua ⊗C(X), E)⊗Ha, which we know can be identified with a dense
subset of E . Similar notation will be used for B. Then for f ∈ AE and g ∈ B, we can
define an element nE(f, g) in BGE by

nE(f, g) = ΨEa(fa)(fa ⊗ g)

= [ΨEa(fa)(ida⊗gb)((fa ⊗ gb)c ⊗ idC(Y))]⊗ (fa ⊗ gb)c.

This will give a linear map nE from the algebraic tensor product AE ⊗B to BGE . By
construction, it extends to the canonical isomorphism θ#C(X) ' C(Y) = GC(X) at the
object C(X). Using Rep(G)-equivariance, it then follows that nE also extends to a unitary
from θ#(E) to G(E) for E of the form u ⊗ C(X) for some representation u of G. By the
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connectedness of DX and linearity, we deduce that this holds for arbitrary E . Hence nE
induces a natural unitary transformation n : θ#E → GE .

The way in which n is constructed shows that the canonical ψθ is interchanged with ψ,
i.e.

(id⊗ηE) ◦ (ψθ)u,E = ψu,E ◦ ηu⊗E .
Indeed, taking ξ ∈Hu, f ∈ AE and g ∈ C(Y), we have that

ηu⊗E((ξ ⊗ f)⊗ g) = G((ξ ⊗ f)a)ψ∗a,C(X)((ξ ⊗ f)a ⊗ g).

On the other hand,

ψ∗u,E(id⊗ηE)(ξ ⊗ (f ⊗ g)) = ψ∗u,E [ξ ⊗G(f c)ψ∗c,C(X)(fc ⊗ g)]

= G(idu⊗f c)ψ∗u,c⊗C(X)(1⊗ ψ∗c,C(X))(ξ ⊗ fc ⊗ g)

= G(idu⊗f c)ψ∗u⊗c,C(X)(ξ ⊗ fc ⊗ g)

= G(idu⊗f c)ψ∗u⊗c,C(X)((ξ ⊗ fc)a(ξ ⊗ fc)a ⊗ g)

= G((idu⊗f c)((ξ ⊗ fc)a ⊗ idC(X)))ψ
∗
a,C(X)((ξ ⊗ fc)a ⊗ g),

which then reduces to the expression above.

It follows that if we have a different ψ′ which leads to the same θ, we can construct by
means of the two n-maps for ψ and ψ′ a unitary self-equivalence of G which conjugates ψ
and ψ′. Conversely, if µ is a natural unitary equivalence from G to itself, the µ-conjugated
natural transformation

ψµ = (idu⊗µC(X))ψµ
∗
u⊗C(X) : G(u⊗ C(X))→ u⊗ C(Y)

gives the same map Mor(u⊗C(X), C(X))→ Mor(u⊗C(Y), C(Y)) as the one induced by
ψ.

7.2. Example. Let K < H be an inclusion of quantum subgroups of G. Then, the
restriction functor Rep(H)→ Rep(K) is a Rep(G)-module homomorphism, and maps the
trivial representation of H to the one of K. The induced G-equivariant homomorphism
C(H\G)→ C(K\G) is the canonical inclusion of fixed point subalgebras for the respective
left translation actions.

We now want to interpret Theorem 7.1 in the context of bi-graded Hilbert spaces. We
keep X and Y fixed quantum homogeneous spaces for G. In the following, we let J (resp.
J ′) be an index set of the irreducible objects in DX (resp. DY). We denote the index
corresponding to C(X) (resp. C(Y)) by • (resp. ∗). The J × J-graded (resp. J ′ × J ′-
graded) Hilbert space associated with the action of u ∈ C on DX (resp. DY) is denoted
by (FX

rs(u))r,s∈J (resp. (FY
pq(v))p,q∈J ′), and the corresponding unitaries by

φ·rs,u,v : F ·rs(u⊗ v)→ ⊕tF ·rt(u)⊗ F ·ts(v).
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Then if θ : C(X) → C(Y) is an equivariant ∗-homomorphism, we have the J ′ × J-graded
Hilbert space ⊕p,rFpr associated with θ#, where Fpr = Mor(xp, θ#xr)) for p ∈ J ′, r ∈ J ,
cf. Section A.2.

From Theorem 7.1, we then obtain the following corollary.

7.3. Corollary. Let X and Y be quantum homogeneous spaces for G. The equivariant
homomorphism from C(X) to C(Y) are in one-to-one correspondence with the classes of
families of Hilbert spaces Fpr, p ∈ J ′ and r ∈ J , and unitary maps

ψupr :
⊕
s∈J

Fps ⊗ FX
sr(u)→

⊕
q∈J ′

FY
pq(u)⊗ Fqr

for u ∈ Rep(G), r ∈ J , and p ∈ J ′, such that ψop,r is δp,r times the identity, Fp,• = δp,∗,
the diagrams

⊕sFps ⊗ FX
sr(u)

ψupr //

⊕s id⊗FX
sr(T )

��

⊕qFY
pq(u)⊗ Fqr

⊕qFY
pq(T )⊗id

��
⊕sFps ⊗ FX

sr(v)
ψvpr

// ⊕qFY
pq(v)⊗ Fqr

are commutative for any T ∈ Mor(u, v), and

⊕q,tFY
pq(u)⊗ Fqt ⊗ FX

tr(v)
⊕q idpq ⊗ψvqr

++
⊕s,tFps ⊗ FX

st(u)⊗ FX
tr(v)

⊕tψupt⊗idtr
44

⊕s idps⊗φXsr,u,v
��

⊕q,wFY
pq(u)⊗ FY

qw(v)⊗ Fwr
⊕wφYpw,u,v

��
⊕sFps ⊗ FX

sr(u⊗ v)
ψu⊗vpr

// ⊕wFY
pw(u⊗ v)⊗ Fwr

is commutative.

Here two families (Fpr, ψ
u
qt) and (Gpr, µ

u
qt) belong to the same class if and only if there are

unitaries Urs : Fpr → Gpr such that

(⊕w(idqw⊗Uws))ψuqt = µuqt(⊕s(Uqs ⊗ idst))

for all q ∈ J ′, t ∈ J and u ∈ Rep(G).

In practice, one only needs to verify the above assumptions for all irreducible u (in which
case the naturality condition simplifies), or for tensor products of a⊗-generating object (in
which case the constraint condition simplifies). Moreover, the fact that the above Hilbert
spaces are often one-dimensional in special cases makes the problem of determining the
possible ψ more tractable.
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Important invariants of (X,Y, θ) are the families of integer-valued matrices (dimFX
rs(ua))rs

and (dimFY
pq(ua))pq for a ∈ I, and (dim(Fpr))pr. These are multiplicity matrices as con-

sidered in [36] and [32] (see Remark 3.12).

Let us examine them more closely in the particular case when the larger algebra C(Y) is
of full quantum multiplicity [6, 9]. This is the case if and only if DY is based on a singleton
{y}. Thus, the functor θ# : DX → DY itself can be classified among the C∗-functors by the
dimension of the vector spaces Fr = Mor(θ#(xr), y) for r ∈ J . The next result is useful
in determining the coideals inside the full quantum multiplicity ones even when there is
no trace, c.f. [32, Corollary 4.21].

7.4. Proposition. Let X and Y be quantum homogeneous spaces over G. Assume that
C(Y) is of full quantum multiplicity, and that there is a G-equivariant homomorphism
θ from C(X) to C(Y). Then, for any u ∈ Rep(G), the matrix (dimFX

rs(u))r,s∈J has an
integer-valued eigenvector for the eigenvalue dimFY(u).

Proof. The vector (dimFr)r∈J satisfies∑
r∈J

dimFr dimFX
rs(u) = dim Mor (θ#(u⊗ xs), C(Y))

= dim Mor(u⊗ θ#xs, C(Y)) = dimFY(u) dim(Fs)

for any s ∈ J (the above sum makes sense because (FX
rs(u))r,s∈J is banded). Hence it is

an eigenvector of the eigenvalue dimFY(u).

Appendix. Concrete C∗-categories

In this appendix, we pick up the discussion which we started in Section 2. It is, essentially,
an elaborate write-out of the remark appearing in the proof of Theorem 2.5 of [11].

A.1. Concrete semi-simple C∗-categories

As we will show in Lemma A.1.6, there is essentially only one semi-simple C∗-category
based on a given set J . This can easily be shown by using Lemma 2.6, but we would
like to have a more concrete formula for the inverse of such an equivalence functor. To
accomplish this, we first establish some preliminaries results. The first goal is to generalize
the direct sum construction in the setting of C∗-categories.
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A.1.1. Definition. Let D be a C∗-category. Let X be an object of D, and H a finite-
dimensional Hilbert space. An H -amplification of X is an object H ⊗X together with
a linear map θH

X : H → Mor(X,H ⊗X) such that

1. For all ξ, η ∈H , we have θH
X (ξ)∗θH

X (η) = 〈ξ, η〉 idX .

2. If ξi is an orthonormal basis of H , then
∑

i θ
H
X (ξi)θ

H
X (ξi)

∗ = idH ⊗X .

Note that, if H = 0, the second condition above implies that the H -amplification is
a zero object. Similarly, if H = C, the H -amplification is equivalent to the identity
functor.

A.1.2. Lemma. Let D be a C∗-category admitting finite direct sums, and H a Hilbert
space of finite dimension. Then any object of D admits an H -amplification. The ensuing
operation Hf ×D → D can be extended to an Hf-module C∗-category structure on D.

We recall that Hf is the category of finite-dimensional Hilbert spaces.

Proof. Choose a fixed orthonormal basis (ei)
n
i=1 for each H . For an object X ∈ D, define

H ⊗X as the direct sum ⊕ni=1X of n copies of X. With vi denoting the i-th isometric
injection X → ⊕iX, the θH

X (ξ) =
∑

i〈ei, ξ〉vi are easily seen to satisfy the conditions
for an H -amplification. The resulting construction is obviously functorial in X. If x is
an operator H → K , we choose an orthonormal basis (fi)i for H and define x ⊗ idX
to be the operator

∑
i θ

K
X (xfi)θ

H
X (fi)

∗ from H ⊗ X to K ⊗ X. Again, this is clearly
independent of the chosen basis for H , and will give functoriality on the H -component.
Finally, the associator for the module structure can be made as follows: given Hilbert
spaces H and K with respective bases (fi) and (gj), we define

φH ,K ,X =
∑
i,j

θH
K ⊗X(fi)θ

K
X (gj)θ

H ⊗K
X (fi ⊗ gj)∗

as a morphism (H ⊗K )⊗X →H ⊗ (K ⊗X).

As a consequence of the Hf-module structure, we obtain a natural isomorphism

Mor(H ⊗X,K ⊗ Y ) ' K ⊗H ⊗Mor(X, Y ).

In the presentation of the right hand side, composition of morphisms involves the con-
catenation of the form H ⊗ H̄ → C ‘in the middle’ by means of the inner product.

A.1.3. Notation. Let D be a semi-simple C∗-category based on the set J . Let r ∈ J
and X ∈ D. We denote by X(r) the Hilbert space Mor(Xr, X).

A.1.4. Lemma. Let D be a semi-simple C∗-category based on an index set J . Then there
is a natural unitary equivalence X → ⊕r∈JX(r)⊗Xr for X ∈ D.
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Proof. Let Y be another object of D. Considering the central support of range projec-
tions for morphisms in Mor(Y,X), we see that the map⊕

r∈J

Mor(Xr, X)⊗Mor(Y,Xr)→ Mor(Y,X)

induced by composition of morphisms is an isomorphism. The left hand side of the above
is, by definition of the amplification, canonically isomorphic to Mor (Y,⊕r∈JX(r)⊗Xr).
By the Yoneda lemma, we obtain the assertion.

The next definition provides the canonical semi-simple C∗-category with which we will
want to compare an arbitrary one.

A.1.5. Definition. Let J be a set. A J-graded Hilbert space is a Hilbert space H
endowed with a direct sum decomposition H = ⊕r∈JHr (the right hand side should be
understood as the Hilbert space direct sum). They form a C∗-category HJ by considering
as morphisms the grading-preserving operators,

Mor(H ,K ) = {T ∈ B(H ,K ) | ∀r ∈ J : T (Hr) ⊆ Kr}

=
{

(Tr)r∈J ∈
∏
r∈J

B(Hr,Kr) | sup
r∈J
‖Tr‖ <∞

}
.

The full subcategory of J-graded finite-dimensional Hilbert spaces is denoted HJ
f .

The category HJ
f then forms a semi-simple C∗-category, based on the set J in a natural

way. Namely, an irreducible object for the label r ∈ J is given by the graded Hilbert
space Cr which has C as component at place r and 0 at the other places.

A.1.6. Lemma. Let D be a semi-simple C∗-category based on a set J . Then the categories
D and HJ

f are unitarily equivalent, an adjoint pair of equivalences being given by

X 7→
⊕
r∈J

X(r), H 7→
⊕
r∈J

Hr ⊗Xr,

where Hr denotes the r-th component of H .

Proof. An equivalence between D and HJ
f can be established by using Lemma A.1.4 and

Definition A.1.1 to define invertible unit and co-unit maps for the stated functors.
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A.2. Functors and natural transformations

The goal of this section is to give an equally concrete description of functors between
semi-simple C∗-categories, and natural transformations between them.

Let J and J ′ be index sets. Let H = ⊕p∈J ′,r∈JHpr be a Hilbert space endowed with a
direct sum decomposition over the set J ′×J . We also assume that H is column-finite in
the sense that

∑
p dim(Hpr) is finite for all r. In particular all Hpr are finite-dimensional.

Then one has a functor FH from HJ
f to HJ ′

f given by (FH K )p = ⊕rHpr⊗Kr on objects,
and (FH (T ))p = ⊕r idpr⊗Tr on morphisms.

If J ′′ is another index set and H ′ is a column-finite J ′′ × J ′-graded Hilbert space, the
composition of functors FH ′

and FH is given by FK , where the J ′′ × J-graded Hilbert
space K is given by the l∞(J ′)-balanced tensor product

(H ′
⊗
l∞(J ′)

H )vr =
⊕
p∈J ′

(H ′
vp ⊗Hpr) (v ∈ J ′′, r ∈ J).

Let D (resp. D′) be a semi-simple C∗-category based on an index set J (reps. J ′), with
a system of irreducible objects (Xr)r∈J (resp. (Yp)p∈J ′). The next proposition shows that
any functor between abstract semi-simple C∗-categories is induced by a column-finite
J ′ × J-graded Hilbert space as above.

A.2.1. Proposition. Let F be a C∗-functor from D to D′. Up to the unitary equivalence
of Lemma A.1.6, F is naturally equivalent to the functor induced by the J ′ × J-graded
Hilbert space H F whose (p, r)-th component is Mor(Yp, F (Xr)).

Proof. First of all, the graded Hilbert space ⊕p,r Mor(Yp, F (Xr)) is indeed column-finite,
as the F (Xr) splits into a finite number of irreducible objects.

A natural equivalence as in the statement of the proposition must then be given by unitary
maps

φp :
⊕
r∈J

H F
pr ⊗X(r)→ (FX)(p)

for p ∈ J ′. On the direct summand at r, we define φp as the map

Mor(Yp, F (Xr))⊗Mor(Xr, X) 3 f ⊗ g 7→ F (g) ◦ f ∈ Mor(Yp, FX).

Then the resulting map is indeed unitary by the semi-simplicity of D. The compatibility
with the morphisms in D is apparent from the above definition of φp.



TANNAKA–KREĬN DUALITY FOR COMPACT QUANTUM HOMOGENEOUS SPACES. I.1133

Suppose we are given two J ′ × J-graded Hilbert spaces H and K , and an operator
T ∈ B(H ,K ) which respects the grading. Then, we obtain a natural transformation ηT

of FH into FK by the formula

(ηTM )p =
⊕
r∈J

Tpr ⊗ idMr : FH (M )p → FK (M )p,

because the norm of this operator is uniformly bounded by ‖T‖. Thus, we obtain a
morphism from FH to FK in the category Fun(HJ

f ,HJ ′

f ) (see Remark 2.2).

Conversely, let F and G be functors from D to D′, and η be a natural transformation of
uniformly bounded norm from F to G. Then the induced maps

T ηpr : Mor(Yp, F (Xr))→ Mor(Yp, G(Xr)), f 7→ ηXr ◦ f

has a norm bounded from above by ‖η‖. Now, from the way F and H F is identified
in Proposition A.2.1, one sees that the above correspondences T 7→ ηT and η 7→ T η are
inverse to each other. We record this for reference in the following proposition.

A.2.2. Proposition. Let F and G be functors from D to D′. Then morphisms from F
to G in Fun(D,D′) can be naturally identified with grading preserving bounded operators
from H F to H G.

A.3. Concrete semi-simple tensor C∗-categories

We next apply the above constructions to the endomorphism tensor category End(D)f

associated with a semi-simple C∗-category D.

A.3.1. Notation. Let J be an index set, and denote by EJ the C∗-category of column-
finite J × J-graded Hilbert spaces H = ⊕r,s∈JHrs. As morphisms, we take the bounded
operators v : H → K which preserve the grading.

By the results of Section A.2, we can identify EJ with the tensor C∗-category of C∗-
endofunctors on HJ

f . Thus, the tensor product, is given by the l∞(J)-balanced tensor
product, and the unit object 1J is given by l2(J) with the diagonal J×J-grading (1J)st =
δs,tC.

A.3.2. Lemma. The maximal rigid subcategory EJf of EJ has as its objects those H which
satisfy the condition

sup
r

∑
s

(dim(Hrs) + dim(Hsr)) <∞.
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In particular, all Hrs are finite-dimensional, and only a finite number of Hrs are non-zero
on each ‘row’ and ‘column’, i.e. the grading is banded. The dual d(H ) of H can then
be given by d(H )rs = Hsr = H ∗

sr with duality morphisms

RH : l2(J)→
⊕
r,s∈J

Hrs ⊗Hrs, δs 7→
∑
r,i

ξ
(r,s)
i ⊗ ξ(r,s)

i

R̄H : l2(J)→
⊕
r,s∈J

Hrs ⊗Hrs, δr 7→
∑
s,i

ξ
(r,s)
i ⊗ ξ(r,s)

i ,

where the ξ
(r,s)
i form an orthogonal basis of Hrs.

Proof. The restriction on the dimensions of the Hrs ensures that both operators RH

and R̄H are bounded. It is then straightforward to check that they satisfy the snake
identities for a duality.

Conversely, suppose that ⊕rsHrs admits a dual ⊕rsGrs by means of duality morphisms
(R, R̄). Then the latter decompose into maps

Rrs : C→ Grs ⊗Hsr, R̄rs : C→Hrs ⊗ Gsr.

Let us write

Jrs(ξ) = (ξ∗ ⊗ id)(Rrs(1)) ∈Hsr, Irs(η) = (η∗ ⊗ id)(R̄rs(1)) ∈ Gsr

for ξ ∈ Grs and η ∈ Hrs. Then Jrs gives an anti-linear map from Grs to Hsr, and Irs
from Hrs to Gsr. The snake identities (2.1) imply that Irs is the inverse of Jsr.

By the boundedness of R and R̄, we obtain that supr
∑

s Tr(J ∗rsJrs) = ‖R‖2, and similarly
supr

∑
s Tr(I∗rsIrs) = ‖R̄‖2. Since Irs = J −1

sr , the trace property allows us to rewrite the
latter equality as sups

∑
r Tr((J ∗rsJrs)−1) = ‖R̄‖2.

Suppose now that the condition supr
∑

s(dim(Hrs)+dim(Hsr)) <∞ is not satisfied. Then
by symmetry we may assume that there exists a sequence rn such that

∑
s dim(Hrn,s) ≥ n.

This implies that we can also find sn and a strictly positive eigenvalue λ of J ∗rn,snJrn,sn
such that λ ≤ ‖R‖2

n
. But as λ−1 ≤ ‖R̄‖2, this gives a contradiction.

We now show that if D is a semi-simple C∗-category based on an index set J , then End(D)f

is tensor equivalent with EJf .

A.3.3. Proposition. Let D be a semi-simple C∗-category, based on an index set J . Then
the categories End(D)f and EJf are tensor equivalent, by means of the associations

F 7→
⊕

(r,s)∈J×J

Mor(Xr, F (Xs)), H 7→
[
X 7→

⊕
r,s∈J

Hrs ⊗X(s)⊗Xr

]
.

Proof. We have already remarked that there are mutually inverse tensor equivalences
End(D)↔ EJ . Since equivalences preserve duality, they restrict to equivalences between
End(D)f and EJf .
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A.4. Module C∗-categories and bi-graded tensor functors

This section essentially establishes that also in the categorical set-up, there is an equiva-
lence between modules and representations. Combined with the material of the previous
sections, it allows one to present a concrete and workable version of a semi-simple module
C∗-category.

A.4.1. Lemma. Let C be a tensor C∗-category, and D a C∗-category. Then there is
an equivalence between C-module C∗-category structures M on D and strong tensor C∗-
functors F : C → End(D).

Proof. For module structures M and tensor functors F , we have the associations

M 7→ [FM : U 7→M(U,−)], F 7→ [MF : (U,X) 7→ F (U)(X)],

mapping all other structural morphisms in the obvious ways. These maps are clearly
inverses to each other.

We can now state the following useful result.

A.4.2. Proposition. Let C be a tensor C∗-category, and let J be a set. Then there is
an equivalence between

1. module C∗-structures on J-based semi-simple C∗-categories, and

2. strong tensor C∗-functors C → EJf .

Given a module C∗-category (D,M, φ, e), the corresponding tensor functor C → EJf is
given by

F : U →
⊕
r,s

Mor(Xr,M(U,Xs)).

Writing the right hand side above as ⊕r,sFrs(U), the coherence maps for tensoriality are
encoded as isometries

Frs(U)⊗ Fst(V )→ Frt(U ⊗ V ), f ⊗ g 7→ φ∗U,V,Xt ◦ (idU ⊗g) ◦ f, (A.4.1)

Proof. By Lemma A.4.1 and Lemma 2.13, a C-module C∗-category structure on a semi-
simple C∗-category D based on J is equivalent to giving a strong tensor C∗-functor from
C to End(D)f. Composing with the tensor equivalence from Proposition A.3.3, we obtain
the correspondence stated in the proposition.
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