#
Galois theories of commutative semigroups via semilattices

##
Isabel A. Xarez and Joao J. Xarez

The classes of stably-vertical, normal, separable, inseparable, purely
inseparable and covering morphisms, defined in categorical Galois theory,
are characterized for the reflection of the variety of commutative
semigroups into its subvariety of semilattices. It is also shown that
there is an inseparable-separable factorization, but there is no
monotone-light factorization.

Keywords:
Commutative semigroups, semilattices, admissible
reflection, covering morphisms, stably-vertical morphisms, normal
morphisms, inseparable-separable factorization

2010 MSC:
18C99, 08B99, 20M07

*Theory and Applications of Categories,*
Vol. 28, 2013,
No. 33, pp 1153-1169.

Published 2013-12-21.

http://www.tac.mta.ca/tac/volumes/28/33/28-33.dvi

http://www.tac.mta.ca/tac/volumes/28/33/28-33.ps

http://www.tac.mta.ca/tac/volumes/28/33/28-33.pdf

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/28/33/28-33.dvi

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/28/33/28-33.ps

TAC Home