
Theory and Applications of Categories, Vol. 30, No. 25, 2015, pp. 882–908.

ACTIONS IN MODIFIED CATEGORIES OF INTEREST WITH
APPLICATION TO CROSSED MODULES

Dedicated to Teimuraz Pirashvili on his 60th birthday

Y. BOYACI, J. M. CASAS, T. DATUASHVILI AND E. Ö. USLU

Abstract. The existence of the split extension classifier of a crossed module in the
category of associative algebras is investigated. According to the equivalence of cate-
gories XAss ' Cat1-Ass we consider this problem in Cat1-Ass. This category is not
a category of interest, it satisfies its all axioms except one. The action theory developed
in the category of interest is adapted to the new type of category, which will be called
modified category of interest. Applying the results obtained in this direction and the
equivalence of categories we find a condition under which there exists the split extension
classifier of a crossed module and give the corresponding construction.

1. Introduction

Categories of interest were introduced in order to study properties of different algebraic
categories and different algebras simultaneously. The idea comes from P. G. Higgins
[Higgins, 1956] and the definition is due to M. Barr and G. Orzech [Orzech, 1972]. The
categories of groups, modules over a ring, vector spaces, associative algebras, associa-
tive commutative algebras, Lie algebras, Leibniz algebras, alternative algebras, Poisson
algebras, left-right non-commutative Poisson algebras are categories of interest [Orzech,
1972, Casas, Datuashvili and Ladra, 2009∗, Casas, Datuashvili and Ladra, 2014]. Note
that the category of noncommutative Leibniz-Poisson algebras defined and studied in
[Casas and Datuashvili, 2006] is not a category of interest. In [Montoli, 2010] there are
given new examples of categories of interest, these are associative dialgebras and trial-
gebras, which were defined and studied in [Loday, 1995, Loday, 2001, Loday and Ronco,
2004]. The categories of crossed modules and precrossed modules in the category of
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groups, respectively, are equivalent to categories of interest as well, in the sense of [Casas,
Datuashvili and Ladra, 2010, Casas, Datuashvili and Ladra, 2007].

In the procedure of investigation of representability of actions in the category of pre-
crossed modules in the categories of Lie algebras [Casas, Datuashvili, Ladra and Uslu,
2012] and associative algebras, we recognized that the categories of cat1-Lie algebras and
that of cat1-associative algebras (see Section 2 for definitions) satisfy all axioms of cate-
gory of interest except one. Consequently, we plan to introduce and study a new type of
category of interest; namely, a category which satisfies all axioms of a category of groups
with operations stated in [Porter, 1987] except one, which is replaced by a new axiom;
this category satisfies as well two additional axioms introduced in [Orzech, 1972] for cat-
egories of interest. The examples are mainly those categories which are equivalent to the
categories of crossed modules and precrossed modules in the categories of Lie algebras,
Leibniz algebras, associative and associative commutative algebras. Also, applying a re-
sult of [Borceux, Janelidze and Kelly, 2005∗], the category of commutative Von Neumann
regular rings is isomorphic to a category of commutative rings with a unary operation
satisfying two axioms, which is a new type of category of interest as well. Therefore we
decided to give a name to this sort of a category, which could be called “modified category
of interest”.

In this work our main purpose is to unify the study of actions in certain algebraic
categories by means of this new kind of category. We describe main notions, in particular,
the notion of actor defined in [Casas, Datuashvili and Ladra, 2010] in categories of interest,
or, equivalently, split extension classifier defined in the more general setting of semi-abelian
categories [Borceux, Janelidze and Kelly, 2005], universal strict general actor, defined
in [Casas, Datuashvili and Ladra, 2010]. At the same time we plan to study concrete
examples of modified categories of interest and their equivalent ones. In this paper we find
sufficient conditions for the existence of the split extension classifier of a crossed module
in the category of associative algebras and give the corresponding construction. The
analogous problem for (pre)crossed modules in the category of groups, crossed modules in
the categories of Lie algebras and associative commutative algebras and in the category
of Lie-Leibniz algebras were considered in [Norrie, 1990, Casas and Ladra, 1998, Arvasi
and Ege, 2003, Casas, Datuashvili and Ladra, 2009, Casas, Datuashvili, Ladra and Uslu,
2012, Casas, Datuashvili and Ladra, 2013]. Note that the results and the constructions
obtained in the cases of (pre)crossed modules in the categories of Lie and associative
commutative algebras could be obtained in the way considered in this paper, i.e. by
application of action theory in modified categories of interest. The analogous is true for
the future investigations in the cases of precrossed modules in the category of associative
algebras and (pre)crossed modules in the category of Leibniz algebras. This kind of
results, like in the cases of associative algebras [Hochschild, 1947] and rings [Mac Lane,
1958], could be applied in the cohomology and obstruction theories of the corresponding
objects.

The notion of crossed module in the category of associative algebras was defined by
Dedecker and Lue in [Dedecker and Lue, 1966]. It was used as a fundamental gadget to
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determine the coefficients in low-dimensional non-abelian cohomology [Lue, 1968]. On
the other hand, it was used for the representation of Hochschild cohomology in [Baues
and Minian, 2002]. Naturally, it will be important to investigate the existence of the split
extension classifier of a crossed module in the category of associative algebras.

At this vein, for a given crossed module A : A1
d−→ A0, we found a condition under

which we construct an actor of the corresponding cat1-associative algebra (A1oA0, ω1, ω0)
by using the general construction of universal strict general actor of (A1oA0, ω1, ω0). Then
applying the equivalence of the categories Cat1-Ass ' XAss of cat1-associative algebras
(cat1-algebras in what follows) and crossed modules, we carry the construction of an actor
of (A1oA0, ω1, ω0) to the category of crossed modules, which is a split extension classifier

of the crossed module A : A1
d−→ A0 under the appropriate condition on it. Therefore we

found a new example of a category and individual objects there with representable actions
and described the representing objects. This problem is stated in [Borceux, Janelidze and
Kelly, 2005∗] (Problem 2).

The outline of the paper is as follows: in Section 2 we recall some well-known definitions
of the category of crossed modules in the category of associative algebras and introduce
some new notions, such as bimultipliers and crossed multipliers. In Section 3 we introduce
a notion of modified category of interest and actions in this category. Then we introduce
notions of general and strict general properties and universal strict general actors and
construct a universal strict general actor of an object in a modified category of interest. We
start Section 4 by constructing an object (A(A), ω0, ω1) for a cat1-algebra (A, ω0, ω1), and
prove that if Ann(A) = 0 or A2 = A, then the constructed object is an actor of (A, ω0, ω1).
We finish this section by examining a particular case; namely, an actor of a cat1-algebra

(A1 o A0, ω1, ω0), corresponding to a given crossed module A : A1
d−→ A0. Finally, in

Section 5, applying this result, we prove, that if Ann(Ai) = 0 or A2
i = Ai, i = 0, 1, for

a crossed module A : A1
d−→ A0, then there exists the split extension classifier of this

crossed module and give the corresponding construction.

2. Crossed Modules in the Category of Associative Algebras

In this section we will give some well-known definitions and results about crossed modules
in the category of associative algebras. We also define new notions such as bimultiplier
and crossed bimultiplier of a crossed module and give some related results, which will be
needed in the rest of the paper.

Let k be a fixed commutative ring with unit. All algebras in the rest of the paper will
be associative algebras over k.

Let A, B be associative algebras. An action (i.e. a derived action) of B on A is a pair
of bilinear maps

B × A −→ A, A×B −→ A



ACTIONS IN MODIFIED CATEGORIES OF INTEREST 885

which we denote respectively as (b, a) 7−→ b ∗ a, (a, b) 7−→ a ∗ b, with conditions

(b1 ∗ b2) ∗ a = b1 ∗ (b2 ∗ a)
a ∗ (b1 ∗ b2) = (a ∗ b1) ∗ b2
(b1 ∗ a) ∗ b2 = b1 ∗ (a ∗ b2)
b ∗ (a1 ∗ a2) = (b ∗ a1) ∗ a2
(a1 ∗ a2) ∗ b = a1 ∗ (a2 ∗ b)
a1 ∗ (b ∗ a2) = (a1 ∗ b) ∗ a2

(2.1)

for all a, a1, a2 ∈ A, b, b1, b2 ∈ B.
We recall the construction of the algebra Bim(A) of bimultipliers of an associative

algebra A defined by G. Hochschild and by S. Mac Lane for rings (called bimultiplica-
tions in [Mac Lane, 1958] and multiplications in [Hochschild, 1947], from where the notion
comes [Lavendhomme and Lucas, 1996]). An element of Bim(A) is a pair f = (fl, fr) of
k-linear maps from A to A with

fl(a ∗ a′) = fl(a) ∗ a′,
fr(a ∗ a′) = a ∗ fr(a′),
a ∗ fl(a′) = fr (a) ∗ a′,

for all a, a′ ∈ A.
As it is well-known, Bim(A) has an associative algebra structure, defined by com-

ponentwise scalar multiplication and addition, and composition as the multiplication.
Note that since the bimultipliers fl and fr are written from the left side of an ele-
ment, for the product of two bimultipliers we have (fl, fr) ∗ (gl, gr) = (flgl, frgr), where
(flgl)(a) = fl(gl(a)) and (frgr)(a) = gr(fr(a)), for all a ∈ A.

The following definition of a crossed module is well-known from [Dedecker and Lue,
1966] and it is a special case of the definition of a crossed module in categories of interest
[Casas, Datuashvili and Ladra, 2010] (cf. [Porter, 1987]).

2.1. Definition. A precrossed module A : (A1
d−→ A0) in the category of associative

algebras consists of an associative algebra homomorphism d : A1 −→ A0, called boundary
map, together with an action of A0 on A1, satisfying the conditions

d(a0 ∗ a1) = a0 ∗ d(a1), d(a1 ∗ a0) = d(a1) ∗ a0,

for all a1 ∈ A1, a0 ∈ A0. In addition, if

d(a′1) ∗ a1 = a′1 ∗ a1, a1 ∗ d(a′1) = a1 ∗ a′1,

for all a1, a
′
1 ∈ A1, then A : (A1

d−→ A0) is called a crossed module.

Let A : (A1
d−→ A0) and A′ : (A′1

d′−→ A′0) be crossed modules. A homomorphism
from A to A′ is a pair (µ1, µ0) where µ1 : A1 −→ A′1 and µ0 : A0 −→ A′0 are associative
algebra homomorphisms, such that d′µ1 = µ0d and

µ1(a0 ∗ a1) = µ0(a0) ∗ µ1(a1), µ1(a1 ∗ a0) = µ1(a1) ∗ µ0(a0),
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for all a1 ∈ A1, a0 ∈ A0. The corresponding category of crossed modules in the category
of associative algebras will be denoted by XAss.

2.2. Example. Let I be a two-sided ideal of an associative algebra A. Then, inc. : I −→
A is a crossed module with the action by conjugation (product) of A on I. Consequently,
id : A −→ A and inc. : 0 −→ A are crossed modules.

2.3. Example. Let C be a singular associative algebra (i.e. an associative algebra with
trivial multiplication) with an action of the associative algebra A. Then, 0 : C −→ A is
a crossed module. Take C = A, then 0 : A −→ A and 0 : A −→ 0 are crossed modules.
Nevertheless, if C is non-singular, then 0 : C −→ A is a precrossed module, in general.

2.4. Definition. Let A : (A1
d−→ A0) be a crossed module in the category of associa-

tive algebras. A bimultiplier of A is a pair (α, β) of bimultipliers α and β of A1, A0,
respectively, such that dαl = βld, dαr = βrd and

a) αl(a0 ∗ a1) = βl(a0) ∗ a1,

b) αl(a1 ∗ a0) = αl(a1) ∗ a0,

c) a0 ∗ αl(a1) = βr(a0) ∗ a1,

d) αr(a1 ∗ a0) = a1 ∗ βr(a0),

e) αr(a0 ∗ a1) = a0 ∗ αr(a1),

f) αr(a1) ∗ a0 = a1 ∗ βl(a0),

for all a0 ∈ A0, a1 ∈ A1.

2.5. Notation. In the definition, instead of writing dαl = βld, dαr = βrd, we may write
these two equalities in one as dαl,r = βl,rd. In the rest of the paper we will use this notation
for shortness.

The set of all bimultipliers of a crossed module A is denoted by Bim(A). It can be
easily checked that Bim(A) is an associative algebra with usual scalar multiplication and
addition, and the multiplication defined by

(α, β) ∗ (α′, β′) = (α ∗ α′, β ∗ β′) ,

for all (α, β), (α′, β′) ∈ Bim(A), where α ∗ α′ = (αlα
′
l, αrα

′
r) and β ∗ β′ = (βlβ

′
l, βrβ

′
r).

2.6. Definition. Let A : (A1
d−→ A0) be a crossed module and ∂l : A0 −→ A1, ∂r :

A0 −→ A1 be k-linear maps such that ∂r(a0 ∗a′0) = a0 ∗∂r(a′0), ∂l(a0 ∗a′0) = ∂l(a0)∗a′0 and
a0 ∗ ∂l(a′0) = ∂r(a0) ∗ a′0, for all a0, a

′
0 ∈ A0. Then the pair ∂ := (∂l, ∂r) will be called a

crossed bimultiplier of A.

The set of all crossed bimultipliers of a crossed module A : (A1
d−→ A0) will be denoted

by BM(A).
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2.7. Remark. Definitions 2.4 and 2.6 are deduced from the construction of bimultipliers
of a semidirect product in Section 4. In Section 5 one can see that bimultipliers and

crossed bimultipliers of a crossed module A : (A1
d−→ A0) can be easily obtained from

certain type of bimultipliers of the semidirect product A1oA0 (Propositions 5.3 and 5.4).
In the case of commutative associative algebras these definitions coincide with the ones
given in [Arvasi and Ege, 2003].

2.8. Proposition. Let A : (A1
d−→ A0) be a crossed module. Then BM(A) is a non-

empty set.

Proof. Let a1 be a fixed element of A1. Define (∂a1)l (a0) = − a1 ∗ a0, (∂a1)r (a0) =
−a0 ∗ a1, for all a0 ∈ A0. Then by a direct calculation we find that ∂a1 := ((∂a1)l , (∂a1)r)
is a crossed bimultiplier.

We can endow BM(A) with addition and scalar multiplication operations, which are
defined in the usual ways. Multiplication operation is defined as follows:

∂ ∗ ∂′ = ((∂ ∗ ∂′)l , (∂ ∗ ∂
′)r),

where
(∂ ∗ ∂′)l = ∂ld∂

′
l,

(∂ ∗ ∂′)r = ∂′rd∂r,

for all ∂, ∂′ ∈ BM(A). Note that, in an analogous way, as it is in the case of groups
[Casas, Datuashvili and Ladra, 2009], it can be easily seen from the results of Section
4, that the product of two crossed bimultipliers corresponds to the composition of two
bimultipliers of the semidirect product A1 oA0, where βl,r : A0 → A0 is zero (see Section
4, 4.1). The identity element and the opposite of an element in addition are also defined
in the usual ways.

2.9. Proposition. BM(A) endowed with the above defined operations is an associative
algebra.

Proof. We will only show that the product ∂ ∗ ∂′ is a crossed bimultiplier. Other
conditions need straightforward verifications. Let ∂, ∂′ ∈ BM(A). We have

(∂ ∗ ∂′)l(a0 ∗ a′0) = ∂ld∂
′
l(a0 ∗ a′0)

= ∂ld(∂′l(a0) ∗ a′0)
= ∂l(d∂

′
l(a0) ∗ a′0)

= ∂ld∂
′
l(a0) ∗ a′0,
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and similarly, we have (∂ ∗ ∂′)r(a0 ∗ a′0) = a0 ∗ ∂rd∂′r(a′0), for all a0, a
′
0 ∈ A0. On the other

hand we have

a0 ∗ (∂ ∗ ∂′)l(a′0) = a0 ∗ ∂l(d∂′l(a′0))
= ∂r(a0) ∗ d∂′l(a′0)
= ∂r(a0) ∗ ∂′l(a′0)
= d∂r(a0) ∗ ∂′l(a′0)
= ∂′rd∂r(a0) ∗ a′0,

for all a0, a
′
0 ∈ A0. So the operation is well-defined, as required.

2.10. Definition. A crossed moduleA′ : (A′1
d′−→ A′0) is a crossed submodule of a crossed

module A : (A1
d−→ A0), if A′1, A

′
0 are subalgebras of A1, A0 respectively, d′ = d

∣∣
A′

1
and

the action of A′0 on A′1 is induced by the action of A0 on A1.

2.11. Definition. A crossed submodule A′ : (A′1
d−→ A′0) of a crossed module A :

(A1
d−→ A0) is an ideal if A′1, A

′
0 are ideals of A1, A0, respectively; a0 ∗ a′1, a′1 ∗ a0 ∈ A′1,

for all a0 ∈ A0, a
′
1 ∈ A′1 and a′0 ∗ a1, a1 ∗ a′0 ∈ A′1, for all a′0 ∈ A′0, a1 ∈ A1. This situation

is denoted by A′ E A.

Let A′ : (A′1
d−→ A′0) be an ideal of a crossed module A : (A1

d−→ A0). Then the
quotient crossed module A/A′ is the crossed module A1/A

′
1 −→ A0/A

′
0 with the induced

boundary map and action.

2.12. Definition. A cat1-associative algebra (or, for shortness, cat1-algebra) A is an
associative algebra with two additional unary operations ω0, ω1 : A −→ A such that

ω0ω1 = ω1 , ω1ω0 = ω0 and kerω0 ∗ kerω1 = 0 = kerω1 ∗ kerω0,

where ω0 and ω1 are associative algebra homomorphisms.

Obviously, a homomorphism between two cat1-algebras is an associative algebra ho-
momorphism, which preserves the unary operations. We will denote a cat1-algebra by
(A, ω0, ω1) and the corresponding category of such triples and homomorphisms between
them by Cat1-Ass. Note that catn-unitary associative algebras are defined in [Ellis,
1988].

Note that from the conditions on unary operations it follows that ωiωi = ωi, i = 0, 1.
Define a functor P : Cat1-Ass −→ XAss as follows; for any object (A, ω1, ω0) in

Cat1-Ass, P (A, ω0, ω1) is the crossed module A1
d−→ A0, where A1 = kerω0, A0 = Imω0,

the action is given by multiplication in A and d = ω1|kerω0 . Now we define a functor

S : XAss −→ Cat1-Ass as follows; for any crossed module A : (A1
d−→ A0), S(A) :=

(A1 o A0, ω0, ω1), where

ω0(a1, a0) = (0, a0), ω1(a1, a0) = (0, d(a1) + a0),
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for all a1 ∈ A1, a0 ∈ A0. Note that the semidirect product A1oA0 is defined by the action
of A0 on A1, as it is in the corresponding crossed module. These two functors give rise to
an equivalence of categories XAss ' Cat1-Ass.

Precrossed modules in the category of associative algebras suggest the appropriate defi-
nition of precat1-associative algebras, and we have an equivalence of categories PreXAss '
PreCat1-Ass. Similarly, for Lie and Leibniz algebras. Some details can be found in [Ellis,
1988, Ellis, 1993].

3. Modified Categories of interest

We will have the main definitions and the statements given for categories of interest
in [Casas, Datuashvili and Ladra, 2010, Datuashvili, 1995, Orzech, 1972] with certain
modifications which we present as follows.

Let C be a category of groups with a set of operations Ω and with a set of identities
E, such that E includes the group identities and the following conditions hold. If Ωi is
the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;

(b) the group operations (written additively: 0,−,+) are elements of Ω0, Ω1 and Ω2

respectively. Let Ω′2 = Ω2 \ {+}, Ω′1 = Ω1 \ {−}. Assume that if ∗ ∈ Ω2, then Ω′2
contains ∗◦ defined by x ∗◦ y = y ∗ x and assume Ω0 = {0};

(c) for each ∗ ∈ Ω′2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;

(d) for each ω ∈ Ω′1 and ∗ ∈ Ω′2, E includes the identities ω(x + y) = ω(x) + ω(y) and
ω(x ∗ y) = ω(x) ∗ ω(y).

Let C be an object of C and x1, x2, x3 ∈ C:

Axiom 1. x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1, for each ∗ ∈ Ω′2.

Axiom 2. For each ordered pair (∗, ∗) ∈ Ω′2 × Ω′2 there is a word W such that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1,

(x3x2)x1, x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′2.

We will denote the right side of Axiom 2 by W (x1, x2, x3; ∗, ∗).

3.1. Definition. A category of groups with operations C satisfying conditions (a)− (d),
Axiom 1 and Axiom 2, will be called a modified category of interest.
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3.2. Remark. The difference of this definition from the original one of a category of
interest is the identity ω(x)∗ω(y) = ω(x∗y), which is ω(x)∗y = ω(x∗y) in the definition
of a category of interest.

Denote by EG the subset of identities of E which includes the group identities and
the identities (c) and (d). We denote by CG the corresponding category of groups with
operations. Thus we have EG ↪→ E, C = (Ω,E), CG = (Ω,EG) and there is a full inclusion
functor C ↪→ CG. We will call CG a general category of groups with operations of a
modified category of interest C.

3.3. Example. The categories Cat1-Ass, Cat1-Lie, Cat1-Leibniz, PreCat1-Ass,
PreCat1-Lie and PreCat1-Leibniz are modified categories of interest, which are not
categories of interest. Also the category of commutative von Neumann regular rings is
isomorphic to the category of commutative rings with a unary operation ( )∗ satisfying
two axioms, defined in [Borceux, Janelidze and Kelly, 2005∗], which is a modified category
of interest.

3.4. Definition. Let C ∈ C. A subobject of C is called an ideal if it is the kernel of
some morphism.

3.5. Proposition. Let A be a subobject of B in C. Then like in the case of categories
of interest we have that A is an ideal of B if and only if the following conditions hold:

1. A is a normal subgroup of B,

2. a ∗ b ∈ A, for all a ∈ A, b ∈ B and ∗ ∈ Ω′2.

Proof. Can be proved in a similar way as Theorem 1.7 in [Orzech, 1972].

3.6. Definition. Let A, B ∈ C. An extension of B by A is a sequence

0 // A i // E
p // B // 0 , (3.1)

in which p is surjective and i is the kernel of p. We say that an extension is split if there
is a morphism s : B −→ E such that ps = 1B.

3.7. Definition. For A,B ∈ C we will say that we have a set of actions of B on A,
whenever there is a map f∗ : A×B −→ A for each ∗ ∈ Ω2.
A split extension of B by A, induces an action of B on A corresponding to the operations
in C. For a given split extension (3.1), we have

b · a = s(b) + a− s(b), (3.2)

b ∗ a = s(b) ∗ a, (3.3)

for all b ∈ B, a ∈ A and ∗ ∈ Ω2
′. Actions defined by (3.2) and (3.3) will be called derived

actions of B on A. We will often use the notation b
·∗ a, where we mean both the dot and

the star actions.
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3.8. Definition. Given an action of B on A, a semidirect product AoB is a universal
algebra, whose underlying set is A×B and the operations are defined by

ω(a, b) = (ω (a) , ω (b)),
(a′, b′) + (a, b) = (a′ + b′ · a, b′ + b),
(a′, b′) ∗ (a, b) = (a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b),

for all a, a′ ∈ A, b, b′ ∈ B, ∗ ∈ Ω′2.

3.9. Theorem. An action of B on A is a derived action if and only if AoB is an object
of C.

Proof. Let B have a derived action on A defined by the split extension (3.1). We will
only show that AoB satisfies the new condition. Other proofs can be found in [Orzech,
1972]. By the definition of semidirect product, we have:

ω((a′, b′) ∗ (a, b)) = ω(a′ ∗ a+ a′ ∗ b+ b′ ∗ a, b′ ∗ b) =
(ω (a′) ∗ ω (a) + ω (a′) ∗ ω (b) + ω (b′) ∗ ω (a) , ω (b′) ∗ ω (b)) =
(ω (a′) , ω (b′)) ∗ (ω (a) , ω (b)) = ω(a′, b′) ∗ ω(a, b),

for all (a, b) , (a′, b′) ∈ AoB.

3.10. Proposition. A set of actions of B on A in CG is a set of derived actions if and
only if it satisfies the following conditions:

1. 0 · a = a,

2. b · (a1 + a2) = b · a1 + b · a2,

3. (b1 + b2) · a = b1 · (b2 · a),

4. b ∗ (a1 + a2) = b ∗ a1 + b ∗ a2,

5. (b1 + b2) ∗ a = b1 ∗ a+ b2 ∗ a,

6. (b1 ∗ b2) · (a1 ∗ a2) = a1 ∗ a2,

7. (b1 ∗ b2) · (a ∗ b) = a ∗ b,

8. a1 ∗ (b · a2) = a1 ∗ a2,

9. b ∗ (b1 · a) = b ∗ a,

10. ω(b · a) = ω(b) · ω(a),

11. ω(a ∗ b) = ω(a) ∗ ω(b),

12. x ∗ y + z ∗ t = z ∗ t+ x ∗ y,

for each ω ∈ Ω′1, ∗ ∈ Ω2
′, b, b1, b2 ∈ B, a, a1, a2 ∈ A and for x, y, z, t ∈ A ∪ B whenever

each side of 12 makes sense.

Proof. Follows from Definitions 3.7, 3.8 and Theorem 3.9.
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3.11. Remark. In the case of a category of interest, condition 11 is ω(a ∗ b) = ω(a) ∗ b
[Casas, Datuashvili and Ladra, 2010].

3.12. Example. Let (A, ωA
1 , ω

A
0 ), (B,ωB

1 , ω
B
0 ) ∈ Cat1-Ass and let (B,ωB

1 , ω
B
0 ) have a

derived action on (A, ωA
1 , ω

A
0 ). By Definition 3.7 we have the identities (2.1) and also the

identities

a ∗ b = b ∗ a = 0, if b ∈ kerωB
0 , a ∈ kerωA

1 or b ∈ kerωB
1 , a ∈ kerωA

0 ;

ωB
i (b) ∗ ωA

i (a) = ωA
i (b ∗ a), ωA

i (a) ∗ ωB
i (b) = ωA

i (a ∗ b),
ωB
j (b) ∗ ωA

i (a) = ωA
i (ωB

j (b) ∗ a), ωA
i (a) ∗ ωB

j (b) = ωA
i (a ∗ ωB

j (b)),
ωB
j (b) ∗ ωA

i (a) = ωA
j (b ∗ ωA

i (a)), ωA
i (a) ∗ ωB

j (b) = ωA
j (ωA

i (a) ∗ b),

i, j = 0, 1, i 6= j, for any a ∈ (A, ωA
1 , ω

A
0 ), b ∈ (B,ωB

1 , ω
B
0 ).

3.13. Definition. A precrossed module in a modified category of interest C is a triple
(C1, C0, ∂), where C0, C1 ∈ C, the object C0 has a derived action on C1 and ∂ : C1 −→ C0

is a morphism in C with the conditions:

a) ∂(c0 · c1) = c0 + ∂(c1)− c0,

b) ∂(c0 ∗ c1) = c0 ∗ ∂(c1),

for all c0 ∈ C0, c1 ∈ C1, and ∗ ∈ Ω2
′.

In addition, if ∂ : C1 −→ C0 satisfies the conditions

c) ∂(c1) · c′1 = c1 + c′1 − c1,

d) ∂(c1) ∗ c′1 = c1 ∗ c′1,

for all c1, c
′
1 ∈ C1, and ∗ ∈ Ω2

′, then the triple (C1, C0, ∂) is called a crossed module in C.

3.14. Definition. A morphism between two (pre)crossed modules (C1, C0, ∂) −→ (C ′1, C
′
0, ∂
′)

in C is a pair of morphisms (µ1, µ0) in C, µ0 : C0 −→ C ′0, µ1 : C1 −→ C ′1, such that

a) µ0∂(c1) = ∂′µ1(c1),

b) µ1(c0 · c1) = µ0(c0) · µ1(c1),

c) µ1(c0 ∗ c1) = µ0(c0) ∗ µ1(c1),

for all c0 ∈ C0, c1 ∈ C1 and ∗ ∈ Ω2
′.

3.15. Definition. Let A ∈ C. The center of A is defined by

Z(A) = {z ∈ A | a+ z = z + a, a+ ω(z) = ω(z) + a, a ∗ z = 0, a ∗ ω (z) = 0,
for all a ∈ A, ω ∈ Ω1 and ∗ ∈ Ω2

′}.
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3.16. Definition. If A is an ideal of B, then

Z(B,A) = {b ∈ B | a+ b = b+ a, a+ ω(b) = ω(b) + a, a ∗ b = 0, a ∗ ω (b) = 0,
for all a ∈ A, ω ∈ Ω1 and ∗ ∈ Ω2

′}

is called the centralizer of A in B.

3.17. Lemma. In a modified category of interest, Z(B,A) is an ideal of B.

Proof. Follows from Definition 3.16

The definition of split extension classifier (object which represents actions), is for-
mulated in [Borceux, Janelidze and Kelly, 2005] for semi-abelian categories in terms of
categorical notions of internal object action and semidirect product. Categories of inter-
est are semi-abelian categories. According to [Bourn and Janelidze, 1998] in this special
case these notions coincide with the ones given in [Orzech, 1972]. Analogous situation
we have in the cases of modified categories of interest and categories equivalent to them.
Therefore the definition of a split extension classifier for modified categories of interest
has the following form. Consider the category of all split extensions with fixed kernel A;
thus the objects are

0→ A→ C
sx−→ C ′ → 0

and the arrows are the triples of morphisms (1A, γ, γ
′) ) between the extensions, which

commute with the section homomorphisms as well. By definition, an object [A] is a
split extension classifier for A if there exists a derived action of [A] on A, such that the
corresponding extension

0→ A→ Ao [A]
sx−→ [A]→ 0

is a terminal object in the above defined category.

3.18. Proposition. Let C be a modified category of interest and A be an object in C.
An object B ∈ C is a split extension classifier for A in the sense of [Borceux, Janelidze
and Kelly, 2005] if and only if it satisfies the following condition: B has a derived action
on A such that for all C in C and a derived action of C on A there is a unique morphism
ϕ : C −→ B, with c · a = ϕ(c) · a, c ∗ a = ϕ(c) ∗ a, for all ∗ ∈ Ω2

′, a ∈ A and c ∈ C.

Proof. Analogous to the one for categories of interest [Casas, Datuashvili and Ladra,
2010].

The object B in C satisfying the above stated condition will be called an actor of
A and denoted by Act(A). The corresponding universal acting object, which represents
actions in the sense of [Borceux, Janelidze and Kelly, 2005, Borceux, Janelidze and Kelly,
2005∗], in the categories equivalent to modified categories of interest will be called a split
extension classifier and denoted by [A], as it is generally in semi-abelian categories.

3.19. Remark. As a consequence of this proposition, an actor of an object is unique up
to isomorphism.
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3.20. Definition. Let A, B ∈ C. We will say that a set of actions of B on A is strict
if for any two elements b, b′ ∈ B, from the conditions b · a = b′ · a, ω(b) · a = ω(b′) · a,
b ∗ a = b′ ∗ a and ω(b) ∗ a = ω(b′) ∗ a, for all a ∈ A, ω ∈ Ω1

′ and ∗ ∈ Ω2
′, it follows that

b = b′.

3.21. Remark. In the case of a category of interest, the condition ω(b) ∗ a = ω(b′) ∗ a is
always satisfied.

3.22. Example. For any object A ∈ C we have an action of A on itself defined by
a · a′ = a+ a′ − a, a ∗ a′ = a ∗ a′, for all a, a′ ∈ A, ∗ ∈ Ω′2, where ∗ on the left side denotes
the action and on the right side the operation in A. This action is called an action by
conjugation of A on itself.

3.23. Example. Let A ∈ C and Z(A) = 0. Then the action by conjugation of A on
itself is a strict action.

3.24. Proposition. Let A,B ∈ C. A set of derived actions of B on A is strict if and
only if in the corresponding split extension (3.1), we have Im(s)

⋂
Z(E,A) = 0.

Proof. Follows from Definitions 3.16 and 3.20.

3.25. Example. Let A ∈ C. If Act(A) exists, then the derived action of Act(A) on A is
strict.

3.26. Remark. Let A ∈ C. If Act(A) exists, then by Definition 3.18 and Example 3.22,
there is a unique morphism β : A →Act(A) in C, determined by β(a) · a′ = a · a′, and
β(a) ∗ a′ = a ∗ a′, for all a, a′ ∈ A. β : A → Act(A) is a crossed module and a terminal
object in the category of crossed modules with the same domain A. Up to isomorphism,
there is a unique crossed module with this property.

3.27. Definition. We will say that an object G ∈ CG has a general actor property to
the object A ∈ C (for shortness GA(A)-property) if G has a set of actions on A ∈ C,
which is a set of derived actions in CG and for any object C ∈ C and a derived action of

C on A in C, there exists in CG a unique morphism ϕ : C −→ G such that c
·∗a = ϕ(c)

·∗a,
for all c ∈ C, a ∈ A and ∗ ∈ Ω2

′.

3.28. Definition. We will say that an object G ∈ CG has a strict general actor property
to the object A ∈ C (for shortness SGA(A)-property) if G has GA(A)-property and the
action of G on A is strict.

Below we formulate a condition on objects with GA(A)-property, which will be used
in the definition of universal strict general actor of an object in C.

Condition 1. Let A ∈ C and {Bj}j∈J denote the set of all objects in C which have
derived actions on A. Let G be an object in CG with GA(A)-property and ϕj : Bj −→ G,

j ∈ J , denote the corresponding unique morphism such that bj
·∗ a = ϕj(bj)

·∗ a, for all
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bj ∈ Bj, a ∈ A, ∗ ∈ Ω2
′. The elements of G of the type ϕi(bi), i ∈ J satisfy the following

equality:

(ϕi(bi) ∗ ϕj(bj))∗a = W (ϕi(bi), ϕj(b
′
j), a; ∗, ∗)

for any bi ∈ Bi, bj ∈ Bj, ∗, ∗ ∈ Ω2
′, i, j ∈ J and a ∈ A.

3.29. Definition. A universal strict general actor of an object A, denoted by USGA(A),
is an object in CG with SGA(A)-property and with Condition 1, such that for any ob-
ject G with SGA(A)-property and with Condition 1 there exists a unique morphism
η : USGA(A)→ G in the category CG, with ηψj = ϕj, for any j ∈ J , where ϕj : Bj → G
and ψj : Bj → USGA(A) denote the corresponding unique morphisms with the appropri-
ate properties from the definition of general actor property. By Corollary 3.33 a universal
strict general actor is the unique object (up to isomorphism) satisfying the corresponding
properties.

We establish the following two statements without proofs, since they are the same as
the ones of Proposition 3.8 and Theorem 3.9 in the case of categories of interest [Casas,
Datuashvili and Ladra, 2010].

3.30. Proposition. Let C be a modified category of interest and A ∈ C. If an actor
Act(A) exists, then the unique morphism η : USGA(A)→ Act(A) is an isomorphism with

x
·∗ a = η(x)

·∗ (a), for all x ∈ USGA(A), a ∈ A.

3.31. Theorem. Let C be a modified category of interest and A ∈ C. A has an actor if
and only if the semidirect product AoUSGA(A) is an object in C. If it is the case, then
Act(A) ∼= USGA(A).

Now we will show the existence of USGA(A) for any object A in a modified category
of interest C. The construction given here is similar to that given for the case of categories
of interest in [Casas, Datuashvili and Ladra, 2010] with some modifications.

Let A ∈ C; consider all split extensions of A in C

Ej : 0 // A
ij // Cj

pj // Bj
// 0 , j ∈ J.

When Bj = Bk = B, for j 6= k, in this case the corresponding extensions derive different
actions of B on A. Let {bj·, bj ∗ |bj ∈ Bj, ∗ ∈ Ω′2} be the set of functions defined by
the action of Bj on A. For any element bj ∈ Bj denote bj = {bj·, bj∗, ∗ ∈ Ω′2}. Let
B = {bj|bj ∈ Bj, j ∈ J}.

Thus each element bj ∈ B, j ∈ J is a special type of a function bj : Ω2 −→
Maps(A // A), defined by

bj(+) = bj · −, bj(∗) = bj ∗ − : A −→ A,

∗ ∈ Ω′2.
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We define the ∗ operation, bi ∗ bk, ∗ ∈ Ω′2, for the elements of B according to Axiom
2.

((bi ∗ bk)(∗)) (a) = W (bi, bk, a; ∗, ∗), and ((bi ∗ bk)(+))(a) = a.
We define the operation of addition by
((bi + bk)(+))(a) = bi · (bk · a),
((bi + bk)(∗))(a) = bi ∗ a+ bk ∗ a.
For a unary operation ω ∈ Ω′1 we define
(ω(bk)(+))(a) = ω(bk) · (a), (ω(bk)(∗))(a) = ω(bk) ∗ (a),
ω(b∗b′) = ω(b)∗ω (b′) (in the case of categories of interest, this condition is ω(b∗b′) =

ω(b) ∗ b′)
ω(b1 + · · ·+ bn) = ω(b1) + · · ·+ ω(bn),
((−bk)(+))(a) = (−bk) · a, (−b) · (a) = a
((−bk)(∗))(a) = −(bk ∗ a), ((−b)(∗))(a) = −((b(∗))(a)),
−(b1 + · · ·+ bn) = −bn − · · · − b1,

where b, b′, b1, ..., bn are certain combinations of ∗ operations on the elements of B, i.e. the
elements of the type bi1 ∗1 · · · ∗n−1 bin , n > 1.

Denote by B′(A) the set of all functions (Ω2 −→ Maps(A→ A)) obtained by perform-
ing all kind of operations defined above on the elements of B and on the new obtained
elements as the results of operations. In what follows we will write for simplicity b ∗ a or
b · a instead of (b(∗))(a) or (b(+))(a), respectively, where b ∈ B′(A), a ∈ A. Note that it

may happen that b
·∗ a = b′

·∗ a, for any a ∈ A and any ∗ ∈ Ω′2, but we do not have the

equality ω(b)
·∗a = ω(b′)

·∗a, for any a ∈ A, any ∗ ∈ Ω′2 and any unary operation ω (i.e. for
any ω which is a finite combination of elements of Ω′1). We define the following relation:

we will write b ∼ b′, for b, b′ ∈ B′(A), if and only if b
·∗a = b′

·∗a and ω(b)
·∗a = ω(b′)

·∗a, for
any a ∈ A, any ∗ ∈ Ω′2 and any unary operation ω. This relation is a congruence relation
on B′(A), i.e. it is compatible with the operations we have defined in B′(A). We define
B(A) = B′(A)/ ∼. The operations defined on B′(A) define the corresponding operations
on B(A). For simplicity we will denote the elements of B(A) by the same letters b, b′ etc.
instead of the classes clb, clb′ etc.

3.32. Theorem. Let A ∈ C, then we have:

1. B(A) is an object of CG;

2. The set of actions of B(A) on A, defined as in [Casas, Datuashvili and Ladra, 2010]
for categories of interest, is a set of strict derived actions in CG;

3. B(A) is a universal strict general actor for A.

Proof. The proofs of the statements 1., 2., and 3. are similar to the ones of Proposition
4.1, Proposition 4.2 and Theorem 4.3, respectively, for categories of interest [Casas, Dat-
uashvili and Ladra, 2010].
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3.33. Corollary. Let C be a modified category of interest. For any universal strict

general actor C of an object A, we have an isomorphism θ : C ≈ B(A) with θ(c)
·∗a = c

·∗a,
for all c ∈ C, a ∈ A. The unique morphism η given in Definition 3.29 satisfies the analogous

condition η(x)
·∗ a = x

·∗ a, for all x ∈ USGA(A), a ∈ A.

Proof. See the proof of Corollary 4.4 in [Casas, Datuashvili and Ladra, 2010].

Define a map d : A −→ B(A) by d(a) = a, where a = {a·, a∗ : ∗ ∈ Ω′2}. By definition
we have d(a) · a′ = a + a′ − a, and d(a) ∗ a′ = a ∗ a′, for all a, a′ ∈ A, ∗ ∈ Ω′2. By direct
checking we have also ker d = Z(A).

3.34. Proposition. For any object A in C we have:

1. d : A −→ B(A) is a crossed module in CG.

2. For any crossed module γ : A → B in C there exists a unique crossed module
morphism A: (A,B, γ)→ (A,B(A), d) in CG under the object A.

3. d : A −→ B(A) is the unique crossed module (up to isomorphism) with the property
that the operator object on the right side is a universal strict general actor of A.

Proof. 1. In the proof we will only show that the new equalities, which occur in the
modified category of interest case, are satisfied. The others can be found in [Casas,
Datuashvili and Ladra, 2010].
First we will prove that d is a homomorphism in CG. For this we will show that d(ω (a)) =
ω(d(a)), for any ω ∈ Ω′1 and a ∈ A. Therefore, we need to prove for all a, a′ ∈ A, ω, ω′ ∈
Ω′1, ∗ ∈ Ω′2, that

d(ω(a)) · a′ = ω(d(a)) · a′,
ω′(d(ω(a))) · a′ = ω′(ω(d(a))) · a′,

d(ω(a)) ∗ a′ = ω(d(a)) ∗ a′,
ω′(d(ω(a))) ∗ a′ = ω′(ω(d(a))) ∗ a′,

We will prove the fourth equality.
Since

d(ω(a)) ∗ a′ = ω(a) ∗ a′,
ω(d(a)) ∗ a′ = ω(a) ∗ a′ = ω(a) ∗ a′,

we have
ω′(d(ω(a))) ∗ a′ = ω′(ω(a)) ∗ a′ = ω′(ω(d(a))) ∗ a′,

as required. On the other hand, for ω = − we have

d(−a) = −d(a)

and
d(a1 + a2) = d(a1) + d(a2).
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The next equality that we must prove is d(a1 ∗ a2) = d(a1) ∗ d(a2). For this we need to
show the following four equalities:

d(a1 ∗ a2) · a = (d(a1) ∗ d(a2)) · (a),
ω(d(a1 ∗ a2)) · a = ω(d(a1) ∗ d(a2)) · a,

d(a1 ∗ a2)∗a = (d(a1) ∗ d(a2))∗(a),
ω(d(a1 ∗ a2)) ∗ a = ω(d(a1) ∗ d(a2)) ∗ a.

We will only show the fourth equality. For this, we have

ω(d(a1 ∗ a2)) ∗ a = d(ω(a1 ∗ a2)) ∗ a
= (ω(a1) ∗ ω(a2)) ∗ a
= W (ω (a1) , ω (a2) , a; ∗, ∗)
= W (d(ω (a1)), d(ω (a2)), a; ∗, ∗)
= (d(ω(a1)) ∗ d(ω(a2))) ∗ a
= (ω(d(a1)) ∗ ω(d(a2))) ∗ a
= ω(d(a1) ∗ d(a2)) ∗ a

as required.
Now we will show that d is a crossed module. We have to check conditions a)-d) from

the definition of a crossed module given in Definition 3.13. We will check condition b).
Other conditions are checked similarly, see also [Casas, Datuashvili and Ladra, 2010]. The
condition b) states

d(b ∗ a) = b ∗ d(a), for any b ∈ B(A), a ∈ A, ∗ ∈ Ω′2.

Thus we have to show

d(b ∗ a)
·
∗ a′ = (b ∗ d(a))

·
∗ a′, ω(d(b ∗ a))

·
∗ a′ = ω(b ∗ da)

·
∗ a′, where each equality represents

two equalities corresponding to the dot and star actions. We only show the second equlity
of the second one, others are proved analogously. Consider the case b = bi, i ∈ J. Recall
that by definition ω (bi) ∗ a = ω (bi) ∗ a. We have

ω (d(bi ∗ a)) ∗ a′ = d (ω(bi ∗ a)) ∗ a′
= d (ω(bi ∗ a)) ∗ a′
= d (ω(bi) ∗ ω(a)) ∗ a′
= (ω(bi) ∗ ω(a)) ∗ a′
= W (ω(bi), ω(a), a′; ∗, ∗)
= W (ω(bi), ω(a), a′; ∗, ∗)
= W (ω(bi), d(ω(a)), a′; ∗, ∗)
= (ω(bi) ∗ d(ω(a))) ∗ a′
= (ω(bi) ∗ ω(d(a))) ∗ a′
= ω(bi ∗ d(a))∗ a′.

The case b = bi1 ∗1 · · · ∗n−1 bin , or b is the sum of elements of the type bi1 ∗1 · · · ∗n−1 bin

is proved in a similar way as in the case of categories of interest [Casas, Datuashvili and
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Ladra, 2010], i.e. by application of the result in the case b = bi and Axiom 2.
The proofs of 2. and 3. are the same as the ones of Proposition 4.6 for categories of
interest [Casas, Datuashvili and Ladra, 2010].

4. Actor of an object in Cat1-Ass

In this section we will construct an object (A(A), ω0, ω1) for an object (A,w0, w1) in Cat1-
Ass and prove that under certain conditions it is an actor of (A,w0, w1). The construction
is deduced from the general construction of a universal strict general actor in modified
categories of interest given in Section 3 and its interpretation for the case C = Cat1-Ass,
i.e. from the construction of (B(A),w

B(A)
0 , w

B(A)
1 ), for (A,w0, w1) ∈ Cat1-Ass.

Consider the triples (fl,r, f
0
l,r, f

1
l,r), which consist of bimultipliers of A such that

M1. f i
l,rωi = ωifl,r, for i = 0, 1,

M2. f j
l,rωi = ωif

j
l,r, for i = 0, 1, j = 0, 1, and ωif

j
l,r = ωjfl,rωi, for i = 0, 1, j = 0, 1, i 6= j,

M3. fl,r(x) = f 1
l,r(x), for all x ∈ kerω0,

M4. fl,r(x) = f 0
l,r(x), for all x ∈ kerω1.

Denote the set of all this kind of triples by A(A). This set is not empty, we will show

now that the elements of (B(A),w
B(A)
0 , w

B(A)
1 ) are elements of A(A). We have to show that

the elements of (B(A),w
B(A)
0 , w

B(A)
1 ) satisfy conditions M1-M4. The proofs of M1 and M2

are obvious. We will demonstrate M3; M4 is proved in an analogous way. First we will
show that if (Bi, w

Bi
0 , w

Bi
1 ) has a derived action on (A,wA

0 , w
A
1 ) in Cat1-Ass, then for any

bi ∈ Bi the triple (bi(l,r)∗, ωBi
0 (bi(l,r))∗, ωBi

1 (bi(l,r))∗) (i.e. cl(bi(l,r)∗, ωBi
0 (bi(l,r))∗, ωBi

1 (bi(l,r))∗))
is an element of A(A). We will show this fact for the left multipliers and omit the
corresponding index l. Let a ∈ kerωA

0 , then since (bi − wBi
1 (bi)) ∈ kerωBi

1 , we have
(bi − wBi

1 (bi)) ∗ a = 0 (see Example 3.12 for the derived action conditions in Cat1-
Ass), from which follows that condition M3 is satisfied. Now let b = bi ∗ bj, where
bi ∈ Bi, bj ∈ Bj, and Bi and Bj have derived actions on A. Then by definition of action

of (B(A),w
B(A)
0 , w

B(A)
1 ) on A we have

(bi ∗ bj) ∗ a− ωB(A)
1 (bi ∗ bj) ∗ a = (bi ∗ bj) ∗ a− (ωBi

1 (bi) ∗ ω
Bj

1 (bj)) ∗ a =

bi ∗ (bj ∗ a)− ωBi
1 (bi) ∗ (ω

Bj

1 (bj) ∗ a) = bi ∗ (ω
Bj

1 (bj) ∗ a)− ωBi
1 (bi) ∗ (ω

Bj

1 (bj) ∗ a) = 0,

since ω
Bj

1 (bj)∗a ∈ kerωA
0 . The case where b is any type of element in (B(A),w

B(A)
0 , w

B(A)
1 )

is proved by induction on the length of b, applying the distributive property of the action
and the fact that ω0 and ω1 are homomorphisms for the addition. The fact that a ∗ b =
a ∗ ωB(A)

1 (b) is proved in an analogous way.

An easy checking shows that if (fl,r, f
0
l,r, f

1
l,r) satisfies conditions M1-M4, then the

triples (f 0
l,r, f

0
l,r, f

0
l,r) and (f 1

l,r, f
1
l,r, f

1
l,r) also satisfy the same conditions. We will demon-

strate this fact for the triple (f 0
l,r, f

0
l,r, f

0
l,r); the proof for the case (f 1

l,r, f
1
l,r, f

1
l,r) is analogous.
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Checking of condition M1. We have to show that

f 0
l,rω0 = ω0f

0
l,r andf 0

l,rω1 = ω1f
0
l,r.

The first equality follows from M2, for the triple (fl,r, f
0
l,r, f

1
l,r), for i = j = 0, and the

second one follows again from M2, for i = 1 and j = 0.
Checking of condition M2, the case i=j=0. We have to prove

f 0
l,rω0 = ω0f

0
l,r.

This equality was proved above as condition M1. The case i = 0, j = 1.
We have to prove the following equalities

f 0
l,rω0 = ω0f

0
l,r = ω1f

0
l,rω0.

The first equality has been already proved in the previous case. For the second equality
we apply the first equality of this case, the fact that ω1ω0 = ω0 and obtain ω0f

0
l,r =

ω1ω0f
0
l,r = ω1f

0
l,rω0.

The case i = 1, j = 0. We have to prove

f 0
l,rω1 = ω1f

0
l,r = ω0f

0
l,rω1.

The first equality follows from M2 for the triple (fl,r, f
0
l,r, f

1
l,r), for i = 1, j = 0. For

the second equality we apply the fact that ω1ω1 = ω1, the first equality of this case and
obtain ω1f

0
l,r = ω0ω1f

0
l,r = ω0f

0
l,rω1.

The case i = 1, j = 1. We have to prove

f 0
l,rω1 = ω1f

0
l,r.

This equality was proved already in the previous case.
It is obvious that conditions M3 and M4 are satisfied for the triple (f 0

l,r, f
0
l,r, f

0
l,r).

A(A) has an associative algebra structure with componentwise addition, scalar multi-
plication and multiplication of the corresponding bimultipliers. The zero element is the
triple (0, 0, 0), where 0 is the zero map. (A(A), ω0, ω1) is a cat1-algebra with unary oper-
ations, ω0, ω1 : A(A) −→ A(A) defined by ω0(f, f

0, f 1) = (f 0, f 0, f 0) and ω1(f, f
0, f 1) =

(f 1, f 1, f 1), respectively. Define an action of A(A) on A by the maps A(A) × A −→ A,
((f, f 0, f 1), a) = fl(a), and A × A(A) −→ A, (a, (f, f 0, f 1)) = fr(a), for all a ∈ A and
(f, f 0, f 1) ∈ A(A). We have an injective homomorphism

ψ : (B(A),w
B(A)
0 , w

B(A)
1 ) ↪→ (A(A), ω0, ω1).

It is worth to recall that we write left or right bimultipliers as maps on the left side
of an element (i.e. fl(a) and fr(a), see Section 2). Therefore for the product of two right
bimultipliers ∗b and ∗b′, from the triples in A(A), which is a composition of bimultipliers
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by definition of product in A(A) we have (∗b)(∗b′)(a) = (a ∗ b′) ∗ b, since (∗b)(∗b′) denotes
the composition and we apply first ∗b′ and then ∗b.

Condition 2. Let A be an associative algebra such that Ann(A) = 0 or A2 = A.

Let A0, A1 ∈ Ass and A0 has an action on A1. It is easy to see that if Ai, i = 0, 1,
satisfy Condition 2, then the semidirect product A1 oA0 also satisfies this condition. We
will show first that if Ann(Ai) = 0, then Ann(A1oA0) = 0. Suppose (a′1, a

′
0)∗(a1, a0) = 0,

for any ai ∈ Ai, i = 0, 1. By the definition of multiplication in A1 o A0, it follows that
a′0∗a0 = 0 and a′1∗a1+a′1∗a0+a′0∗a1 = 0, for any ai ∈ Ai, i = 0, 1. From the first equality
it follows that a′0 = 0. Taking in the second equality a0 = 0 we obtain that a′1 = 0, which
proves that Ann(A1oA0) = 0. Now suppose that A2

i = Ai, i = 0, 1; we have to show that
(A1 o A0)

2 = A1 o A0. Suppose (a1, a0) ∈ A1 o A0, where a0 = a110 ∗ a120 + · · · + ai10 ∗ ai20
and a1 = a111 ∗ a121 + · · ·+ aj11 ∗ a

j2
1 . We have the following equalities

(a1, a0) = (0, a110 ∗ a120 + · · ·+ ai10 ∗ ai20 ) + (a111 ∗ a121 + · · ·+ aj11 ∗ a
j2
1 , 0) =

(0, a110 ) ∗ (0, a120 ) + · · · + (0, ai10 ) ∗ (0, ai20 ) + (a111 , 0) ∗ (a121 , 0) + · · · + (aj11 , 0) ∗ (aj21 , 0),
which proves that (A1 o A0)

2 = A1 o A0.

4.1. Proposition. If A satisfies Condition 2, then there is an isomorphism

(A(A), ω0, ω1) ≈ (B(A),w
B(A)
0 , w

B(A)
1 ).

Proof. It is a well-known fact that under Condition 2 the action of Bim(A) on A is
a derived action in the category of associative algebras [Lavendhomme and Lucas, 1996,
Casas, Datuashvili and Ladra, 2010, Borceux, Janelidze and Kelly, 2005∗]. In an analogous
way, from the definition of action of A(A) on A, one can easily see that this action is a

derived action in Ass and in Cat1-Ass as well. Therefore, since (B(A),w
B(A)
0 , w

B(A)
1 ) has

general actor property, by definition (see Definition 3.27) there exists a unique morphism
ϕ : A(A) −→ B(A) in Cat1-AssG such that ϕ((f, f 0, f 1)) ∗ a = (f, f 0, f 1) ∗ a and
a∗ϕ((f, f 0, f 1)) = a∗(f, f 0, f 1), for all a ∈ A and (f, f 0, f 1) ∈ A(A). We have shown above

that there exists an injective homomorphism ψ : (B(A),w
B(A)
0 , w

B(A)
1 ) ↪→ (A(A), ω0, ω1).

For any b ∈ (B(A),w
B(A)
0 , w

B(A)
1 ) and a ∈ A we have ψ(b)∗a = b∗a and a∗ψ(b) = a∗b. By

the construction of (A(A), ω0, ω1) its action on (A, ω0, ω1) is strict. By Theorem 3.32.2.

the action of (B(A),w
B(A)
0 , w

B(A)
1 ) on (A, ω0, ω1) is also strict. From these facts it follows

that ϕψ = 1 and ψϕ = 1. Therefore we find that ϕ is an isomorphism.

4.2. Corollary. If A satisfies Condition 2, then (A(A), ω0, ω1) is an actor of (A, ω0, ω1).

Proof. Since (A(A), ω0, ω1) ∈ Cat1-Ass and its action on A is a derived action in this
category, the semidirect product (A, ω0, ω1) o (A(A), ω0, ω1) ∈ Cat1-Ass. Now the result
follows from Proposition 4.1 and Theorems 3.31 and 3.32.3.
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4.1 Actor of a cat1-algebra corresponding to a given crossed module

Let A1, A0 be associative algebras with a derived action of A0 on A1. Let f = (fl, fr) ∈
Bim(A1 oA0). Then fl : A1 oA0 −→ A1 oA0 can be represented by four k-linear maps

αl : A1 −→ A1, γl : A1 −→ A0, βl : A0 −→ A0, ∂l : A0 −→ A1

such that
fl(a1, a0) = (αl(a1) + ∂l(a0), βl(a0) + γl(a1))

for all a1 ∈ A1, a0 ∈ A0. Also, fr : A1 o A0 −→ A1 o A0 can be represented by four
k-linear maps

αr : A1 −→ A1, γr : A1 −→ A0, βr : A0 −→ A0, ∂r : A0 −→ A1

such that
fr(a1, a0) = (αr(a1) + ∂r(a0), βr(a0) + γr(a1))

for all a1 ∈ A1, a0 ∈ A0. Let f = (fl, fr) ∈ Bim(A1 o A0) and suppose f satisfies the
condition M1, for i = 0 and certain f 0 ∈ Bim(A1 o A0). Then we find that γr = γl = 0
and so we can represent f by the triple (α, ∂, β). One can easily see that α ∈ Bim(A1),
β ∈ Bim(A0) and we have the following conditions

A1. αl(a0 ∗ a1) = ∂l(a0) ∗ a1+ βl(a0) ∗ a1,

A2. αl(a1 ∗ a0) = αl(a1) ∗ a0,

A3. a0 ∗ αl(a1) = ∂r(a0) ∗ a1+ βr(a0) ∗ a1,

A4. αr(a1 ∗ a0) = a1 ∗ ∂r(a0) + a1 ∗ βr(a0),

A5. αr(a0 ∗ a1) = a0 ∗ αr(a1),

A6. αr(a1) ∗ a0 = a1 ∗ ∂l(a0) + a1 ∗ βl(a0),

A7. ∂r(a0 ∗ a′0) = a0 ∗ ∂r(a′0),

A8. ∂l(a0 ∗ a′0) = ∂l(a0) ∗ a′0,

A9. a0 ∗ ∂l(a′0) = ∂r(a0) ∗ a′0,

for all a1 ∈ A1, a0, a
′
0 ∈ A0.

We have an analogous result for the representations of bimultipliers f 0 and f 1 from
any triple (f, f 0, f 1) ∈ A(A1oA0), since we have showed that (f 0, f 0, f 0) and (f 1, f 1, f 1)
are elements in A(A1 o A0), and therefore f 0 and f 1 satisfy condition M1 for i = 0.

Note that in the case where the semidirect product A1 o A0 corresponds to a certain

crossed module A1
d−→ A0, Conditions A7-A9 are crossed bimultiplier conditions of the

crossed module (Section 2, Definition 2.6).
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4.3. Notation. In the rest of the paper, A will denote a crossed module A : (A1
d−→

A0), S(A) will denote the corresponding cat1-algebra (A1 o A0, ω1, ω0).

4.4. Proposition. Let f := (α, ∂, β), f 0 := (α0, ∂0, β0), f 1 := (α1, ∂1, β1) be bimulti-
pliers of A1 o A0. Then (f, f 0, f 1) ∈ A(A1 o A0) if and only if (f, f 0, f 1) satisfies the
following conditions.

1. βl,r(a0) = β0
l,r(a0),

2. ∂il,r(a0) = 0, for i = 0, 1,

3. β1
l,r(a0) = d∂l,r(a0) + βl,r(a0),

4. β1
l,rd(a1) = dαl,r(a1),

5. βi
l,rd(a1) = dαi

l,r(a1), for i = 0, 1,

6. αl,r(a1) = α1
l,r(a1),

7. αl,r(a1) = α0
l,r(a1) + ∂l,rd(a1),

for all a0 ∈ A0, a1 ∈ A1.

Proof. Let (f, f 0, f 1) ∈ A(A1 o A0). All the properties 1-7 follow from the conditions
M1-M4 and the presentations of the bimultipliers fl,r, f

0
l,r, and f 1

l,r in terms of the corre-
sponding linear maps α, β, ∂, given in this section. We will demonstrate property 6.

We have
fl,r(a1, a0) = (αl,r(a1) + ∂l,r(a0), βl,r(a0)).

For any a1 ∈ A1 we obtain

fl,r(a1, 0) = (αl,r(a1), 0).

Analogously,
f 1
l,r(a1, 0) = (α1

l,r(a1), 0).

Now the result follows from M3.
The converse statement of the proposition is proved by direct checking and is left to

the reader.

4.5. Corollary. kerω0 = {(f, 0, f 1) ∈ A(A1oA0)}, and any element (f, 0, f 1) ∈ kerω0

can be represented by ((α, ∂, 0), (0, 0, 0), (α, 0, β1)).

Proof. Follows from the definition of the map ω0 and Proposition 4.4.
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4.6. Proposition. For any ((α, ∂, 0), (0, 0, 0), (α, 0, β1)) ∈ kerω0 we have:

1. (α, β1) is a bimultiplier of A,

2. αl,r(a1) = ∂l,rd(a1),

3. β1
l,r(a0) = d∂l,r(a0),

for all a0 ∈ A0, a1 ∈ A1.

Proof. 1. By Proposition 4.4, condition 6, we have α = α1 and by A1-A6 we obtain
that (α1, β1) satisfies conditions of Definition 2.4.
Property 2. Follows from Proposition 4.4, condition 7
Property 3. Follows from Proposition 4.4, conditions 1, 2 and 3 and from the fact that
β0
l,r = 0

5. Split extension classifier of a crossed module

According to the definition of action in semi-abelian categories [Borceux, Janelidze and
Kelly, 2005∗], it is natural to define an action (i.e. a derived action) in XAss in an
analogous way as it is defined in a modified category of interest, thus as an action derived
from a split extension in this category. In this section we will construct a crossed module ∆

for a given crossed module A : A1
d−→ A0 and prove, that if A0 and A1 satisfy Condition

2, then ∆ is isomorphic to P (Act(S (A))), which means that ∆ is the split extension
classifier of A.

5.1. Lemma. The bilinear maps

Bim(A)× BM(A) −→ BM(A),

BM(A)× Bim(A) −→ BM(A),

given by

((α′, β′), ∂) 7−→ ∂,

(∂, (α′, β′)) 7−→ ∂,

define a derived action of Bim(A) on BM(A) in the category of associative algebras, where

∂l = α′l∂l, ∂r = ∂rβ
′
r

and
∂l = ∂lβ

′
l, ∂r = α′r∂r,

for all (α′, β′) ∈ Bim(A), ∂ ∈ Bim(A0, A1).

Proof. The proof is a direct consequence of the definitions.
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Define a map ∆ : BM(A) −→ Bim(A) by ∆(∂) = (α, β), for all ∂ ∈ BM(A), where
α = ∂d, β = d∂.

5.2. Proposition. ∆ : BM(A) −→ Bim(A) is a crossed module with the action defined
in Lemma 5.1.

Proof. Direct checking by using the definitions.

5.3. Proposition. kerω0
∼= BM(A).

Proof. By Corollary 4.5 and Proposition 4.6 any element of kerω0 has the form ((∂d, ∂, 0),
(0, 0, 0), (∂d, 0, d∂)), where ∂ ∈ BM(A), from which follows the result.

5.4. Proposition. Imω0
∼= Bim(A).

Proof. We have

Imω0 = {(f 0, f 0, f 0) : (f, f 0, f 1) ∈ A(A1 o A0)}.

By Proposition 4.4.2 we have ∂0l,r = 0. Therefore we can represent an element of Imω0 by
((α0, 0, β0), (α0, 0, β0), (α0, 0, β0)), where α0 ∈ Bim(A1), β

0 ∈ Bim(A0). From properties

A1-A6 it follows that (α0, β0) is a bimultiplier of the crossed module A : (A1
d−→ A0).

Conversely, any bimultiplier (α, β) ∈ Bim(A) can be considered as an element of Imω0.
Namely, define f 0 := (α, 0, β). Since f 0 ∈ Bim(A1 o A0), by Proposition 4.4 we have
(f 0, f 0, f 0) ∈ A(A1 o A0) and ω0(f

0, f 0, f 0) = (f 0, f 0, f 0), as required.

5.5. Proposition. ∆ ∼= P (A(S (A))).

Proof. Follows from Propositions 5.2, 5.3 and 5.4, since ∆ is isomorphic to the restriction
of ω1.

5.6. Theorem. IfA0 andA1 satisfy Condition 2, then the crossed module ∆ : BM(A) −→
Bim(A) defined in Proposition 5.2 is the split extension classifier of the crossed module
A.

Proof. As we have proved in Section 4, if A0 and A1 satisfy Condition 2, then the
semidirect product A1 o A0 also satisfies this condition. Now the result follows from
Corollary 4.2, Proposition 5.5 and the fact that P and S define an equivalence of the
corresponding categories.

5.7. Example. Let A1 be an associative algebra which satisfies Condition 2, then A :

(A1
id−−→ A1) is a crossed module and the split extension classifier of A is the crossed

module ∆ : BM(A) −→ Bim(A), where BM(A) ∼= Bim(A1), Bim(A) = {(α, α) | α ∈
Bim(A1)} ∼= Bim(A1) and ∆ is defined by ∆(∂) = (∂, ∂). So [A] ∼= (Bim(A1), Bim(A1), id).
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