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THE WAVES OF A TOTAL CATEGORY

R.J. WOOD

Abstract. For any total category K , with defining adjunction
∨
a Y : K // setK op

,

the expression W (A)(K) = setset
K op

(K (A,
∨
−), [K,−]), where [K,−] is evaluation at

K, provides a well-defined functor W : K // K̂ = setK op

. Also, there are natural
transformations β : W

∨ // 1
K̂

and γ :
∨
W // 1K satisfying

∨
β = γ

∨
and βW =

Wγ. A total K is totally distributive if
∨

has a left adjoint. We show that K is totally
distributive iff γ is invertible iff W a

∨
. The elements of W (A)(K) are called waves

from K to A.

Write K̃ (K,A) for W (A)(K). For any total K there is an associative composition of

waves. Composition becomes an arrow • : K̃ ◦K K̃ // K̃ . Also, there is an augmenta-

tion ¯(−) : K̃ (−,−) // K (−,−) corresponding to a natural δ :W // Y constructed via

β. We show that if K is totally distributive then • : K̃ ◦K K̃ // K̃ is invertible and

then K̃ supports an idempotent comonad structure. In fact, K̃ ◦K K̃ = K̃ ◦
K̃

K̃ so

that • is the coequalizer of •K and K •, making K̃ a taxon in the sense of Koslowski
[KOS]. For a small taxon T , the category of interpolative modules iMod(1,T ) is to-
tally distributive [MRW]. Here we show, for any totally distributive K , that there is

an equivalence K // iMod(1, K̃ ).

1. Preliminaries

1.1. Most of our notations and conventions are carried over from [MRW]. For a category
K , we write |K | for the set of objects of K . If K and A are objects of K , K (K,A)
denotes the set of arrows from K to A. We assume the existence of full categories of
sets called set and SET, both toposes, with set a (full) subcategory of SET, and |set|
an object of SET. The sets in set are called small sets. We assume that set has all
sums indexed by objects of set and SET has all sums indexed by objects of SET. We
will write i : set // SET for the inclusion. We write CAT for the 2-category of category
objects in SET. If a category K in CAT has all its hom-sets K (K,A) in set, we say
that K is locally small. For K and A in CAT, we write PRO(K ,A ) for the category
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THE WAVES OF A TOTAL CATEGORY 1625

of all functors A op ×K // SET We write P : K � //A for an object of PRO(K ,A )
and say that it is small if P factors through i : set // SET. With the usual compositions,
PRO is a bicategory and we have the usual proarrow equipment (−)∗ :CAT // PRO.

2. The Yoneda functor and total categories

2.1. The following subsection elaborates on the (−)∗ notation, which is used to provide
precision in many of the proofs in the paper.

A locally small category K has a Yoneda functor Y : K // CAT(K op, set). We

will usually write (̂−) :CATcoop // CAT for CAT((−)op, set). Note that if K is locally

small then K̂ is locally small if and only if K is equivalent to a small category —

the “only if” clause being an important result of [F&S] — but, in any event, K̂ is

in CAT. The objects of K̂ are small profunctors P : 1 � //K . Henceforth, K will
denote a locally small category. For A in K , A : 1 // K gives rise to the profunctor
A∗ : 1 � //K and A∗ = K (−, A) = Y (A). Note that A∗ = K (A,−) : K � //1 is

right adjoint to A∗ as a profunctor. Also, K : 1 // K gives rise to K̂ : K̂ // 1̂ =
set, which is easily seen to be evaluation at K, and since 1 is small and K is locally

small, K̂ has both left and right adjoints. We will write K+ : set // K̂ for the right
adjoint of K̂. We have K+(X)(A) = XK (K,A). Since CAT is (cartesian) closed and

K̂ = CAT(K op, set) = setK op
we have evaluation K op × K̂ // set which sends a pair

(K,P ) to K̂(P ) = P (K). However it is convenient for us to write [K,P ], functorially, for

the common value K̂(P ) = P (K) and denote the elements of [K,P ] by arrows e :K // P .
Such arrows are composable with arrows of the form k :L // K in K , where the composite

ek :L // P is P (k)(e) = [k, P ](e), and with arrows of the form t :P // Q in K̂ , where the
composite te :K // Q is t(K)(e) = [K, t](e). It is routine that these composites associate
so that tek is well defined, making the arrows e :K // P elements of a module. In fact

it may be useful to observe that [−,−] : K̂ � //K is an isomorph of the small profunctor

Y ∗ (because Y ∗(K,P ) = K̂ (K∗, P )) but [−,−] exists as a small profunctor, for any K ,
irrespective of local smallness of K .

Yoneda’s Lemma says that the function ξK,P : K̂ (K∗, P ) // [K,P ] given by ξK,P (t) =

t(K)(1K) is an isomorphism, natural in K and P . We will write ζK,P : [K,P ] // K̂ (K∗, P )
for the inverse of ξK,P and ζK,P (e) = e∗. Thus e∗ is the unique natural transformation
that corresponds to element e. We have [K,A∗] = K (K,A) and now our e∗ notation
specializes to the equality:

K̂ (K∗, A∗)
K (K,A)

11
YK,A = (−)∗K,A

bbbbbbbbbbbbbbbbbb

[K,A∗]
K̂ (K∗, A∗)

ζK,A∗
--\\\\\\\\\\\\\\\\\\\[K,A∗]

K (K,A)
‖

2.2. Following [S&W] we say that the locally small K is totally cocomplete (usually
abbreviated to total ) if Y has a left adjoint, which will then be called X. Furthermore, η :
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1K̂
// Y X and ε :XY // 1K will be used consistently for the unit and counit respectively,

so that we speak of the adjunction (η, ε : X a Y ). However, just as we write Y (A) =
A∗ = K (−, A) so also we frequently will write X(P ) =

∨
P . Since Y is fully faithful,

ε is invertible. In terms of the notations introduced so far, we have components ηP :

P // (
∨
P )∗ in K̂ and invertible components εA :

∨
A∗ // A in K . So for e : K // P ,

(ηP )(K)(e) = ηP.e can safely be abbreviated to ηe : K // (
∨
P )∗ which is simply an

arrow ηe :K //
∨
P in K . The adjunction equations for X a Y are:

A∗ (
∨
A∗)∗

ηA∗ //A∗

A∗

1A∗

��????????????? (
∨
A∗)∗

A∗

(εA)∗

��
in K̂ , for all A in K and

∨
(
∨
P )∗

∨
Poo

∨
ηP∨

(
∨
P )∗

∨
P

ε
∨
P

��

∨
P

∨
P

1∨P

��������������

in K , for all P in K̂

But εA is an isomorphism and since (εA)−1
∗ = ηA∗ and ηA∗ is a∗ for a unique a :

A //
∨
A∗ in K , it is consistent with our other abbreviations, to write ηA for this a so

that (ηA)∗ = ηA∗. Now, the first of the triangle equations can be rewritten as

A
∨
A∗

ηA //A

A

1A

��?????????????
∨
A∗

A

εA

��
in K , for all A in K

From the second of the triangle equations, we deduce further that the special case η
∨
P

of the abbreviation of the last paragraph satisfies η
∨
P =

∨
ηP , for all P in K̂ .

2.3. Remark. For any adjunction (η, ε;X a Y ) : K // L , it is classical (see, for example,
Theorem 1, page 90 of [MAC]) that ε is invertible if and only if Y is fully faithful. In
this event, ηY = Y ε−1. In fact, if Y is also dense as in the case of the Yoneda functor
(meaning that 1L is the left Kan extension of Y along Y ), then η is uniquely determined
by the requirement that ηY = Y ε−1.

2.4. For P in K̂ ,
∨
P is the colimit of the discrete fibration, P̄ : elP // K determined

by P and is easily seen to be given by
∫ K

[K,P ] · K, where · denotes multiple, so that
[K,P ] ·K is the [K,P ]-fold sum of copies of K, and the integral

∫
is the familiar quotient

of the corresponding sum
∑

. Thus, for each element e : K // P , we have a colimit

injection ie : K //
∨
P , in K . Since P is the colimit of elP P̄ // K

(−)∗ // K̂ , with

colimit injections K∗
e∗ // P , in K̂ , we have

K∗ P
e∗ // P (

∨
P )∗

ηP //K∗ (
∨
P )∗

(ie)∗

99
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In fact, for any adjunction with invertible counit, colimit comparisons for the right adjoint
are given by instances of the unit. From these observations and the identity above, the
following identities follow easily:

For each pair K e // P t //Q, we have

K
∨
P

ie //
∨
P

∨
Q

∨
t //K

∨
Q

ite

99

For an element f :K // A∗, one and the same as an arrow f :K // A, we have

K
∨
A∗

if //
∨
A∗ A

εA //K A

f

::

For any element e :K // P , we have

K
∨
K∗

ηK //
∨
K∗

∨
P

∨
e∗ //K

∨
P

ie

99

2.5. Remark. Our “sup”-notation while suggestive for those familiar with (construc-
tively) complete distributive latices is less well-adapted when we want to speak of preser-

vation by a functor F : K // L of the colimits we call
∨
P (unless F̂ : L̂ // K̂ has a

left adjoint). The colimit
∨
P is more customarily denoted P · 1K , a particular weighted

colimit, and is said to be preserved by F when the arrows Fix :FK // F
∨
K provide an

isomorphism P · F
' // F (P · 1K ) of weighted colimits. Note that, for total K and any

functor F : K // L for which P ·F exists in L , the colimit comparison P ·F // F (
∨
P )

is given by the natural transformation P // L (F−, F (
∨
P )) determined by the family

〈Fix :FK // F (
∨
P )〉x∈[K,P ].

2.6. Remark. In the next section, in Theorem 3.1, we make passing use of the fact
that set is cototal (meaning that setop is total). This follows from the fact that, for any
functor E : set // set, setset(E, 1set) is small. To prove the latter, proceed as in the proof
of Lemma 2.9 of [MRW] which establishes an apparently more complicated result.

3. The waves of a total category

3.1. Theorem. For any total category K , there is a functor W : K // K̂ given by

W (A)(K) = setK̂ (K (A,−).
∨
, [K,−]) = setK̂ (A∗.

∨
, K̂)

whose transpose K op×K // set will be denoted K̃ (−,−) so that W (A)(K) = K̃ (K,A).

We adapt [J&J] and call K̃ (K,A) the set of waves from K to A and write ω :K ///o A for a
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typical wave. Moreover, there is a natural transformation δ :W // Y , whose A-component
δ(A) : W (A) // Y (A) is a natural transformation whose K-component, δ(A)(K), is de-
noted

δ(K,A) :W (A)(K) = K̃ (K,A) // K (K,A) = Y (A)(K)

defined by δ(K,A)(K ω ///o/o/o A) = ωA∗(ηA) ∈ K (K,A) and we write δ(K,A)(ω) = ω.

Proof. The definition of W , equivalently of K̃ , is manifestly functorial. The force of

the claim is that K̃ (K,A) is small, meaning that it is an object of set. In the following
calculation we use the fact that set is cototal and that its identity functor is represented
by set(1,−). Note that we use

∧
for a functor that provides cototality.

K̃ (K,A) = setK̂ (A∗.
∨
, K̂)

∼= setset(A∗.
∨

.K+, 1set)

∼= (setset)op(set(1,−), A∗.
∨

.K+)

∼= set(1,
∧

(A∗.
∨

.K+))

∼=
∧

(A∗.
∨

.K+)

The second to last set is small, since set is a locally small category, hence K̃ (K,A) is
small.

For k :L // K, ω :A∗.
∨

// K̂, and a :A // B, the following unambiguous composite
of natural transformations:

B∗.
∨ a∗.

∨
// A∗.

∨
ω // K̂

k̂ // L̂

defines the wave

aωk = K̃ (k, a)(ω) = (L k //K ω ///o/o/o A a //B)

(Both (−)∗ and (̂−) have variance (−)coop.) For naturality of δ it suffices to show that
aωk = aωk. Here, and elsewhere, the following configuration diagram is helpful. For a P

in K̂ and an arrow f :A //
∨
P in K , (ωP )(f) is a K-element of P as in

P
∨
P

K

P

(ωP )(f)

��

K A
ω ///o/o/o/o/o A

∨
P

f

��

(1)

(Observe that the right hand vertical arrow of Diagram 1 can equally be displayed as
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f :A // (
∨
P )∗.) In terms of Diagram 1 we see ((aωk)(P ))(f) as:

P P

L

P

((aωk)(P ))(f)=((ωP )(fa))k

��

L K
k // K

P

(ωP )(fa)

��
P

∨
P

K

P

(ωP )(fa)

��

K A
ω ///o/o/o/o/o A

∨
P

fa

��∨
P

∨
P

A

∨
P

fa

��

A B
a // B

∨
P

f

��

Since aωk = (ωB∗)(ηB.a)k, to show aωk = aωk is to show

((ωB∗)(ηB.a))k = a((ωA∗)(ηA))k

for which the case k = 1K clearly suffices. By naturality of η (here standing for ε−1) we
can rewrite the condition as

(ωB∗)(
∨

a∗.ηA) = a((ωA∗)(ηA))

which follows from

[K,A∗] [K,B∗]
[K,a∗]

//

K (A,
∨
A∗)

[K,A∗]

ωA∗

��

K (A,
∨
A∗) K (A,

∨
B∗)

K (A,
∨
a∗) //K (A,

∨
B∗)

[K,B∗]

ωB∗

��

an instance of naturality of ω, evaluated at ηA.

3.2. Remark. The definition of a wave ω :K ///o A as a natural transformation
A∗.

∨
// K̂ provides that it has, for each P ∈ K̂ , a P -component which is a function

ωP : K (A,
∨
P ) // [K,P ]. If, instead of a total category K , we were speaking of a

complete lattice K with elements K and A, we would have K totally below A, written
K << A, if and only if,

(∀P ∈ K̂ )(A ≤
∨

P implies K ∈ P )

where now K̂ is the lattice of down-sets of K . The reader familiar with [LAW] will see
the connection between waves and the totally below relation. In the study of continuous
posets the latter relation, with universal quantification restricted to up-directed down-sets,
has long been called the way below relation. In their paper on continuous categories, [J&J],
Johnstone and Joyal generalized the way below relation to wavy arrows with a definition
analogous to ours. Since the word wave already connotes a directional phenomenon and
physical wavy arrows would not fly very well, we speak more simply of waves.



1630 R.J. WOOD

Whenever possible we will abbreviate (ωP )(f) by ω(f). We illustrate this by exhibiting
naturality of ω in P in terms of Diagram 1:

P
∨
P

K

P

ω(f)

��

K Aω ///o/o/o/o/o A

∨
P

f

��

Q
∨
Q

P

Q

t

��

P
∨
P

∨
P

∨
Q

∨
t

��

K

Q

ω((
∨
t)f)

��

for a t :P // Q in K̂ .
The reader is encouraged to reprove the equation aω = aω (part of the proof of

Theorem 3.1) in terms of Diagram 1.

3.3. Remark. Any full set of natural transformations between a parallel pair of functors
is the value of an end and here we see that

K̃ (K,A) =

∫
P

set(K (A,−).
∨

P , [K,P ]) ∼=
∫
P

[K,P ]K (A,
∨
P )

where the end is over P in K̂ . Of course, we can see K̃ as a small profunctor from K
to K and the display above reveals the following diagram as a right extension diagram
in the bicategory of profunctors. (Recall that

∨
∗(K,P ) = K (K,

∨
P ). We noted in

subsection 2.1 that [−,−] ∼= Y ∗.)

K̂

K

�
???????

Y ∗∼=[−,−]

��???????

K̂ K�
∨

∗ //K

K

?�������

K̃

���������
oo

The totally below relation for a sup-lattice is an order ideal and is given by an analogous
right extension.

3.4. Proposition. For any wave ω :K ///o A in a total category K , any P in K̂ , and
any arrow f :A //

∨
P in K , we have the following equation:

P (
∨
P )∗ηP

//

K

P

ω(f)

��

K A
ω // A

(
∨
P )∗

f

��

(2)
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Proof.

P
∨
P

K

P

ω(f)

��

K Aω ///o/o/o/o/o A

∨
P

f

��

(
∨
P )∗

∨
(
∨
P )∗

P

(
∨
P )∗

ηP

��

P
∨
P

∨
P

∨
(
∨
P )∗

K

(
∨
P )∗

ω(
∨
ηP.f)

��

∨
P

∨
(
∨
P )∗

η
∨
P

��

∨
P

∨
(
∨
P )∗

∨
ηP

��

A

∨
A∗

ηA

��?????????????

∨
A∗

∨
(
∨
P )∗

∨
f∗

��������������
A∗

∨
A∗

K

A∗

ω(ηA)

��

K Aω ///o/o/o/o/o A

∨
A∗

ηA

��

(
∨
P )∗

∨
(
∨
P )∗

A∗

(
∨
P )∗

f∗

��

A∗
∨
A∗

∨
A∗

∨
(
∨
P )∗

∨
f∗

��

K

(
∨
P )∗

ω(
∨
f∗.ηA)

��

Consider the diagram on the left above. Amongst other things, it shows by naturality
of ω that ηP.ω(f) = ω(

∨
ηP.f). But it also shows that

∨
ηP.f =

∨
f∗.ηA. So we have

ηP.ω(f) = ω(
∨
f∗.ηA). Turning to the diagram on the right, we see again by naturality

of ω that ω(
∨
f∗.ηA) = f∗.ω(ηA). But ω(ηA) = ω and the element f∗.ω is equally the

arrow fω so that we have ηP.ω(f) = f.ω as required.

3.5. Definition. For any total category K , there are natural transformations

β :WX // 1K̂ and γ :XW // 1K

where βP : K̃ (−,
∨
P ) // P has β(K,P ) = βP (K) : K̃ (K,

∨
P ) // [K,P ] given by

β(K,P )(ω :K ///o
∨

P ) = ωP (1∨
P ) = ω(1) :K // P

and γA :
∨

K̃ (−, A) // A in K is defined to be εA.
∨
δA so that

γ = ε.Xδ

3.6. Remark. It should be remarked that, for any wave ω : K ///o A, any P , and any
f :A //

∨
P , we have

ωP (f) = βP (f.ω) (3)

It follows that, for parallel waves ψ and ω, ψ = ω if and only if, for all P and all
f :A //

∨
P , βP (f.ψ) = βP (f.ω).

3.7. Proposition. For any wave ω :K ///o A, seen as an element ω :K // WA, in any
total category K , we have the following equation:

K
∨
WA

iω //K

A

ω̄

��?????????????
∨
WA

A

γA

��
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Proof.

K
∨
WA

iω //K

∨
Y A

iδ.ω=iω̄

?????

��?????

∨
WA

∨
Y A

∨
δA

��∨
Y A

A

εA

��

∨
WA

A

γA

��

K

A

ω̄

��

We have used the second and third identities of sub-section 2.4 and δ.ω = ω̄.

3.8. Lemma. For any total category,

W WXYWε−1
//W

Y

δ

��????????????? WXY

Y

βY

��

Proof. For a total category K , the equation of the statement is equivalent to the fol-
lowing equation, for all K and A in K ,

K̃ (K,A) K̃ (K,
∨
A∗)

K̃ (K,ε−1A) //K̃ (K,A)

K (K,A) = [K,A∗]

δ(K,A)

''OOOOOOOOOOOOOOOOOOO
K̃ (K,

∨
A∗)

K (K,A) = [K,A∗]

β(K,A∗)

��

which follows immediately from the definitions.

3.9. Lemma. For any total category K ,

WX 1K̂

β //WX

YX

δX

��????????????? 1K̂

Y X

η

��

Proof. Apply the equation of Lemma 3.8 to X, note ε−1X = ηX, and invoke naturality
of β.
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3.10. Proposition. For any total category K , β :WX // 1K̂ and γ :XW // 1K satisfy

Xβ = γX :XWX //X and βW = Wγ :WXW //W

Proof. To show the first equation, observe that Xβ is the unique natural transfor-
mation satisfying Y Xβ.ηWX = η.β. From Lemma 3.9 we have η.β = δX so it suf-
fices to show that Y γX.ηWX = δX. From Definition 3.5 it follows that we must show
Y εX.Y XδX.ηWX = δX, which is shown by

WX YX
δX

//

Y XWX

WX

OO

ηWX

Y XWX YXYX

YX

OO

1YX

Y XWX YXYXY XδX // Y XY X YXY εX //

Y X

Y XYX

ηY X

__?????????????

For the second equation, observe that the description of β gives βW :WXW //W ,
with βW (A) = β(WA) so that we have

βWA(K) = β(K,WA) : K̃ (K,
∨

(WA)) // [K,WA] = K̃ (K,A)

and, for a wave ω :K ///o
∨

(WA), we have the wave

β(K,WA)(ω) = ω(WA)(1∨
(WA)) = ω(1) :K ///o A (4)

Also, we have

WγA(K) = K̃ (K, γA) : K̃ (K,
∨

(WA)) // K̃ (K,A)

and hence, for a wave ω :K ///o
∨

(WA), we have the wave

K̃ (K, γA)(ω) = γA.ω :K ///o A (5)

We must show that the parallel waves ω(1) and γA.ω, of Equations 4 and 5 respectively,

are equal. So take P in K̂ , f :A //
∨

in K , and consider the following diagram:

WA
∨

(WA)

K

WA

ω(1)

��

K
∨

(WA)ω ///o/o/o
∨

(WA)

∨
(WA)

1

��

W (
∨
P )

∨
(W (

∨
P ))

WA

W (
∨
P )

Wf

��

WA
∨

(WA)
∨

(WA)

∨
(W (

∨
P ))

∨
(Wf)

��

P
∨
P

W (
∨
P )

P

βP

��

W (
∨
P )

∨
(W (

∨
P ))

∨
(W (

∨
P ))

∨
P

∨
(W (

∨
P ))

∨
P

γ
∨
P

��

∨
(W (

∨
P ))

∨
P

∨
(βP )

��

∨
(WA)

A

γA

��?????????????????????

A

∨
P

f

�����������������������
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Observe that we have used the first, established, equation Xβ = γX to assert
∨

(βP ) =
γ
∨
P . We now interpret the diagram in the spirit of Diagram 1 and conclude:

βP.Wf.ω(1) = ω(
∨

(βP ).
∨

(Wf)) = ω(f.γA) = (γA.ω)(f)

The element ω(1) :K // WA = K̃ (−, A) is of course the wave ω(1) :K ///o A and, since

Wf = K̃ (−, f), Wf.ω(1) is the wave f.ω(1) :K ///o
∨
P . It follows that the left side of

the display above is β(f.ω(1)) and, by Equation 3 of Remark 3.6, this is simply (ω(1))(f)
so that we have shown

(ω(1))(f) = (γA.ω)(f)

which proves that ω(1) = γA.ω. This completes the proof of βW = Wγ.

Our somewhat ponderous treatment of elements and the (−)∗ notation was developed
to provide precision for the somewhat subtle notation in the proof of the next Proposition.

3.11. Proposition. For waves K ω ///o/o/o L
ψ ///o/o/o A in a total category K̂ ,

ψω = ψω

Proof. We must show that, for any P in K̂ and any f :A //
∨
P ,

((ψω)P )(f) = ((ψω)P )(f)

Consider

K L
ω ///o/o/o/o/o

P (
∨
P )∗

ηP //

L

P

ψ(f)

��

L A
ψ // A

(
∨
P )∗

f

��

L

(
∨
P )∗

e

��
(
∨
L∗)∗ (

∨
P )∗

(
∨
ψ(f)∗)∗

//

L∗

(
∨
L∗)∗

ηL∗=(ηL)∗

��

L∗ P
ψ(f)∗ // P

(
∨
P )∗

ηP

��

L∗

(
∨
P )∗

e∗
FFFFFF

##FFFFFF

L∗
∨
L∗

K

L∗

ω

��

K L
ω ///o/o/o/o/o L

∨
L∗

ηL

��

P
∨
P

L∗

P

ψ(f)∗

��

L∗
∨
L∗

∨
L∗

∨
P

∨
ψ(f)∗

��

K

L

ω

���������������

L

P

ψ(f)

��

The first diagram provides the configuration for calculating (ψω)(f) and the extra in-
formation needed to apply Proposition 3.4. It names the element e = fψ and the next
diagram provides another calculation for e∗ enabling us to also conclude e =

∨
ψ(f)∗.ηL.

In the third diagram we use naturality of ω to recalculate ω(e) and also note ψ(f)∗.ω =
ψ(f).ω. But ψ(f).ω = (ψω)(f). The step by step details are:

(ψω)(f) = ω(fψ) by definition of ψω
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= ω(ηP.ψ(f)) by Proposition 3.4

= ω(
∨

ψ(f)∗.ηL) as noted in the second diagram above

= ψ(f)∗.ω by naturality of ω

= ψ(f).ω as noted in the third diagram above

= (ψω)(f) by definition of ψω

3.12. Theorem. The waves of a total category K admit an associative composition
ψ • ω given by the common value ψω = ψω and this composition is preserved by (−). In

somewhat informal terminology, K̃ is a semicategory with the same objects as K and

(−) : K̃ // K is an identity-on-objects semifunctor.

Proof. For composable waves we have

(χ • ψ) • ω = (χ • ψ)ω = (χψ)ω = χψω = χ(ψω) = χ(ψ • ω) = χ • (ψ • ω)

Moreover, by definition, ψω = ψ • ω = ψω and, by Theorem 3.1, ψω = ψ.ω = ψω so that
ψ • ω = ψ.ω.

3.13. Remark. It follows immediately that an n-fold composite of waves ω1 • · · · • ωi •
· · · • ωn is given by each of the n expressions, ω1. · · · .ωi. · · · .ωn.

3.14. Lemma. For data K ω ///o/o/o M
f // L

ψ ///o/o/o A in a total category,

ψf • ω = ψ • fω

Proof.

ψf • ω = ψfω = (ψf)ω = ψ(fω) = ψfω = ψ • fω

If follows immediately that a composable pair of waves K ω ///o/o/o M
ψ ///o/o/o A has the same

composite as a composable pair of waves K τ ///o/o/o L σ ///o/o/o A, if there exists M
f // L such

that

K

L

τ

��
�_
�_
�_
�_
�_
�_
�_
�_

M

K

??

ω

�?
�?
�?
�?
�?
�?
�?
�?
M

L

f

��

A

L

??

σ

�?
�?
�?
�?
�?
�?
�?
�?
�?

M

A

ψ

���_
�_
�_
�_
�_
�_
�_
�_

M

L

f

��
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Temporarily, denote by R the relation on composable pairs of waves from K to A given
by 〈ω, ψ〉R〈τ, σ〉 if there exists an arrow f as above. Write ψ⊗ω for the equivalence class
of the pair 〈ω, ψ〉 with respect to the equivalence relation generated by R. It is clear that
composition of waves can be seen as a function defined on such equivalence classes so that
•(ψ ⊗ ω) = ψ • ω. The equivalence relation generated by R is the one whose quotient is
given by: ∫ L

K̃ (K,L)× K̃ (L,A)

This integral is of course the value of the composite profunctor K̃ ◦K K̃ : K � //K at
the pair 〈K,A〉, although we have no reason to suppose, for a general total K , that these

values are in set. Regardless, we have • : K̃ ◦K K̃ // K̃ .

4. Waves and total distributivity

4.1. Lemma. For K a total category, the following are equivalent:

i) The functor X : K̂ // K has a left adjoint;

ii) The natural transformation γ :XW // 1K of Lemma (3.10) is invertible;

iii) The β :WX // 1K̂ of Lemma (3.10) is the counit of an adjunction α, β :W a X.

Proof. ii) implies iii) Let α = γ−1 : 1K
// XW . Then from βW = Wγ we have

βW.Wα = 1W and from Xβ = γX we have Xβ.αX = 1X so that α, β : W a X is an
adjunction with counit β.

iii) implies i) is trivial.
i) implies ii) From L a X =

∨
we have

W (A)(K) = K̃ (K,A)

= setK̂ (K (A,
∨
−), K̂)

∼= setK̂ (K̂ (L(A),−), K̂) by the hypothesized adjunction

∼= K̂(L(A)) by Yoneda’s Lemma

= L(A)(K)

In more detail, suppose that we have an adjunction 〈ι, κ;L a X : K̂ // K 〉, with unit ι.
Since we then have L a X a Y and Y is fully faithful, it follows that L is fully faithfull
and ι : 1K

// XL is an isomorphism. Define µ :W // L by the following display:

W

WXL

Wι

��?????????????W L
µ // L

WXL

??

βL

�������������
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where β :WX // 1K̂ is as described in Definition 3.5.
We evaluate µ(A)(K):

K̃ (K,A)
K̃ (K,ιA) // K̃ (K,

∨
LA)

β(K,LA) // [K,LA]

and see that, for ω :K ///o A, µ(ω) = ω(ιA). Next, define ν : L // W , for λ :K // L(A)
and f :A //

∨
P by ν(λ)(f) = κP.Lf.λ. Clearly

µ(ν(λ)) = ν(λ)(ιA) = κLA.LιA.λ = λ

while

ν(µ(ω))(f) = κP.Lf.ω(ιA) = ω(
∨

κP.
∨

Lf.ιA) = ω(
∨

κP.ι
∨

P.f) = ω(f)

shows that ν(µ(ω)) = ω so that µ and ν are inverse isomorphisms.
Consider the following diagram:

XW

1K

γ

��?????????????XW XLXL

1K

??

ι

�������������
XWXLXW XWXL

XWι //
XβL //

γXL
//XW XL

Xµ

  

We have equality in the top region by the definition of µ. The parallel pair of arrows are
equal by Proposition 3.10. We have equality in the lower region by naturality. It follows
that we have Xµ = ι.γ and since µ and ι are invertible, so too is γ.

In [MRW] a total category K is said to be totally distributive if X : K̂ // K has a
left adjoint. We prefer to restate Lemma 4.1 as

4.2. Theorem. For K a total category, the following are equivalent:

i) The total category K is totally distributive;

ii) The natural transformation γ :XW // 1K is invertible;

iii) The natural transformation β : WX // 1K̂ provides the counit for an adjunction
α, β :W a X.
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Henceforth, we reserve α for γ−1 when K is totally distributive. Observe now that if
K is totally distributive and ω :K ///o A is a wave in K then at first glance we seem to
have also ω(α) :K ///o A, where expanding the notation ω(α) = ω(WA)(αA) as below

WA
∨
WA ,

K

WA

ω(WA)(αA)

��

K Aω ///o/o/o/o/o A

∨
WA ,

αA

��

since K-elements of WA are waves from K to A. However,

4.3. Lemma. For any wave ω :K ///o A in a totally distributive category, ω(α) = ω

Proof. We have

ω(α) = α.ω(1∨
WA) = γ(α.ω) = (γα).ω = 1.ω = ω

where the second equality is an instance of the equation βW = Wγ of Proposition 3.10.

We should also point out that the isomorphisms αA :A //
∨
WA, for all A in a totally

distributive category, can be interpreted as saying that every object A is the colimit of
all waves ω : K ///o A. This follows from the fact that each WA, like any object in

K̂ , is the (not-necessarily small) colimit of its elements and that
∨
WA is the colimit

of the same diagram in K . Each element ω : K ///o A gives rise to a colimit injection

iω :K //
∨

K̃ (−, A).

4.4. Theorem. In a totally distributive category, every wave ω :K ///o A can be factored
as a composite of waves:

K M
ω1 ///o/o/o/o/o M A

ω0 ///o/o/o/o/oK A

ω

88(h )i *j +k -m .n /o 0p 1q 3s
4t 5u
6v

and the factorization is unique up to tensor, in the sense that if also ω = τ0 • τ1 then
τ0 ⊗ τ1 = ω0 ⊗ ω1.

Proof. Let A be in K , totally distributive. So γA is invertible and we have

W
∨

WA
WγA
' //WA

which in a more convenient notation is

K̃ (−,
∨

WA)
K̃ (−,γA)
' // K̃ (−, A)

and still more conveniently is

K̃ (−,
∫ L

L · K̃ (L,A))
K̃ (−,γA)
' // K̃ (−, A) .
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Because W is a left adjoint, W = K̃ (−,2) preserves colimits and we have∫ L

K̃ (−, L) · K̃ (L,A) ' // K̃ (−,
∨

WA)
K̃ (−,γA)
' // K̃ (−, A)

which, evaluating at K in K , gives bijections∫ L

K̃ (K,L)× K̃ (L,A) ' // K̃ (K,
∨

WA)
K̃ (K,γA)
' // K̃ (K,A) .

This much establishes that K̃ ◦K K̃ ∼= K̃ but we want to show that • : K̃ ◦K K̃ // K̃
is an isomorphism. To this end, consider a composable pair of waves:

K L
ψ ///o/o/o/o/o L A

χ ///o/o/o/o/o/o

The invertible integral comparison, as in 2.5 sends χ⊗ ψ to the wave

K
ψ ///o/o/o L

iχ //
∨

WA

To act on this wave by γA is to form γA(iχψ) = (γA.iχ)ψ = χ̄ψ = χ • ψ, where the
second equality is Proposition 3.7.

4.5. Remark. It might be wondered if the components of δ :W // Y exhibit the wave

sets K̃ (K,A) of a total category K as subsets of the arrow sets K (K,A). This is not
true is general, even for set, the very best behaved total category according to [R&W].

For K = set, one can take W (A)(K) = A and δ(a : 1 // A) = K
! // 1 a //A. Evidently,

δ(A)(∅) is not monic.

5. An equivalence

We continue with K a totally distributive category. By Theorem 4.4, • : K̃ ◦K K̃ // K̃

is invertible and, by Theorem 3.12, • is associative. It follows that •−1 : K̃ // K̃ ◦K K̃
is coassociative. Moreover, it follows immediately from the definition of • in terms of

(−) : K̃ // K that (−) provides a counit for •−1 and thus (K̃ , •−1, (−)) is a (small)
idempotent comonad on the totally distributive K in the bicategory PRO of profunctors.

It will be convenient to make some further remarks in terms of the full and locally
small subbicategory of PRO, which we call MAT, determined by the discrete objects.
It follows that the objects of MAT are the objects of SET. For (possibly large) sets X
and A, a profunctor M :X � //A amounts to a matrix of (possibly large) sets M(a, x), for
all pairs of elements a in A and x in X. We write Mat(X,A) for the full subcategory of
MAT(X,A) determined by the set-valued matrices. Given M and a composable matrix
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N : A � //Y , the composite profunctor N ◦M : X � //Y amounts to the matrix product
NM given by:

NM(y, x) =
∑
a

N(y, a)×M(a, x)

Our reason for delving into MAT is that we first defined wave composition • at the
level of composable pairs of waves and it is helpful here to temporarily return to that

point of view. Indeed, if we simply regard K̃ as a matrix K̃ : |K | // |K | then the

matrix product K̃ K̃ is evidently the matrix of composable pairs of waves and we can

see • as • : K̃ K̃ // K
It is standard that a category M can be seen as a monad M : |M | � // |M |in MAT

and that a profunctor Q̃ : M � //L can be seen as a matrix Q̃ : |M | � // |L |, together

with associating, associative and unitary, actions ρ : Q̃M // Q̃ and λ : L Q̃ // Q̃. 2-cells
between parallel profunctors can then be seen as matrix 2-cells that are equivariant with
respect to the actions.

The bicategory MAT, like the bicategory PRO admits local coequalizers that are
stable under composition (from either side). Given Q̃ and a composable profunctor P̃ :

L � //K , the composite profunctor P̃ ◦L Q̃ : M � //K can be computed in MAT as the
local coequalizer (coequalizer in MAT(|M |, |K |):

P̃L Q̃ P̃ Q̃
ρQ̃ //

Q̃λ

// P̃ Q̃ P̃ ◦L Q̃//

where ρ is the right action of L on P̃ and λ is the left action of L on Q̃.

In particular, the composite of K̃ with itself, as a profunctor, K̃ ◦K K̃ is a local

coequalizer in MAT and our • : K̃ ◦K K̃ arises as below:

K̃ K K̃ K̃ K̃
ρK̃ //

K̃ λ

// K̃ K̃ K̃ ◦K K̃//K̃ K̃

K̃

•

��???????????? K̃ ◦K K̃

K̃

•

��

invertibility of • : K̃ ◦K K̃ // K̃ is equivalent to saying that

K̃ K K̃ K̃ K̃
ρK̃ //

K̃ λ

// K̃ K̃ K̃• //

is a coequalizer.
Below on the left, we recall the relation on composable pairs 〈ω, ψ〉 that generates the

equivalence relation whose quotient is K̃ ◦K K̃ . We usually denote the equivalence class
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of 〈ω, ψ〉 by ψ⊗ω but, provisionally, we will now call it ψ⊗K ω. While K̃ is not a monad

on |K | we can can regard • : K̃ K̃ // K̃ as both a left and a right associative action

of K̃ on itself. Accordingly, we can, as on the right below, contemplate the relation on
composable pairs of waves determined by the existence of a wave φ rather than an arrow
f making commutative triangles. For the relation on the right we will write, provisionally,
ψ ⊗K̃ ω for the equivalence class of 〈ω, ψ〉 in the generated equivalence relation.

K

L

τ

��
�_
�_
�_
�_
�_
�_
�_
�_

M

K

??

ω

�?
�?
�?
�?
�?
�?
�?
�?
M

L

f

��

A

L

??

σ

�?
�?
�?
�?
�?
�?
�?
�?
�?

M

A

ψ

���_
�_
�_
�_
�_
�_
�_
�_

M

L

f

��

K

L

τ

��
�_
�_
�_
�_
�_
�_
�_
�_

M

K

??

ω

�?
�?
�?
�?
�?
�?
�?
�?
M

L

φ

�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O

A

L

??

σ

�?
�?
�?
�?
�?
�?
�?
�?
�?

M

A

ψ

���_
�_
�_
�_
�_
�_
�_
�_

M

L

φ

�O
�O
�O
�O
�O
�O

��
�O
�O
�O
�O
�O
�O

(6)

It should be clear that just as composition of profunctors can be computed as a local
coequalizer in MAT, so too the following MAT local coequalizer

K̃ K̃ K̃ K̃ K̃
•K̃ //

K̃ •
// K̃ K̃ K̃ ◦K̃ K̃//

computes the matrix whose value K̃ ◦K̃ K̃ (K,A) is the set of composable pairs of waves
modulo the equivalence relation with equivalence classes given by the ψ ⊗K̃ ω.

5.1. Theorem. If K is a total category for which • : K̃ ◦K K̃ // K̃ is invertible, in

particular if K is a totally distributive category, then K̃ ◦K̃ K̃ = K̃ ◦K K̃ so that

K̃ K̃ K̃ K̃ K̃
•K̃ //

K̃ •
// K̃ K̃ K̃• //

is a local coequalizer in MAT and K̃ is a taxon in the sense of Koslowski [KOS].

Proof. It suffices to show that, for any composable pair of waves 〈ω, ψ〉, ψ⊗K̃ ω = ψ⊗K ω.

If we consider the diagram on the right of (6) and replace the wave φ by the arrow φ,
the definition of wave composition shows immediately that the result is a diagram as on
the left of (6). Formally, we have ψ ⊗K̃ ω ⊆ ψ ⊗K ω. On the other hand, consider the
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diagram on the left of (6) and construct the following diagram by factoring σ as σ0 • σ1:

K Nσ1fω/o ///o

M

K

??

ω

�?
�?
�?
�?
�?
�?
�?
�?
M

N

σ1f

�O
�O

���O
�O

N Aσ0/o/o ///o/o

M

N

σ1f

�O
�O

���O
�O

M

A

ψ

���_
�_
�_
�_
�_
�_
�_
�_

K Nσ1fω/o ///oK

L

τ

��
�_
�_
�_
�_
�_
�_
�_
�_

N

L

OO

σ1

�O
�O

�O
�O

N Aσ0/o/o ///o/oN

L

OO

σ1

�O
�O

�O
�O

A

L

??

σ

�?
�?
�?
�?
�?
�?
�?
�?
�?

The construction shows that ψ ⊗K ω ⊆ ψ ⊗K̃ ω.

In [KOS], Koslowski constructed not only a 2-category of taxons and semi-functors
(with the main effort involving the 2-cells) but also a bicategory of taxons and interpola-
tive modules. The latter when constructed within MAT are like profunctors between
categories except that the unitary conditions for modules — which are not stateable for
modules between taxons — are replaced by requiring that the actions be local coequalizers
in MAT. These ideas were repeated in [MRW] from a perspective closer to ours here.
Nevertheless, we attempt to make this account reasonably self-contained with respect to
the definitions.

5.2. Definition. A taxon T consists of a set |T | (possibly large) and a matrix T :
|T | � // |T | together with a (matrix) 2-cell • : T T // T for which

T T T T T
•T //

T •
// T T T• //

is a coequalizer. For taxons S and T , an i-module (short for interpolative module) from
S to T is a matrix P : |S | � // |T | together with actions ρ :PS // P and λ : T P // P
for which

PS S PS
ρS //

P•
// PS P

ρ // and T T P T P
•P //

T λ
// T P P

λ //

are coequalizers. A 2-cell t : P // Q : S � //T is a matrix 2-cell t : P // Q : |S | � // |T |
which is equivariant with respect to the actions. Given i-modules P : S � //T and Q :
T � //U , the composite i-module Q ◦T P : S � //U is given by the coequalizer

QT P QP
ρT //

T λ
// QP Q ◦T P//

With the other, expected, composites and the obvious constraints, taxons, i-modules, and
their 2-cells constitute a bicategory that we call iMOD. We write iMod(S ,T ) for the
full subcategory of iMOD(S ,T ) determined by the set-valued i-modules.
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Our intention now is to show that, for K a totally distributive category, there is an

equivalence K // iMod(1, K̃ ). To give a small i-module P : 1 � // K̃ is to give a small

matrix P : 1 � // |K̃ | and a left action λ : K̃ P // P for which

K̃ K̃ P K̃ P
•P //

K̃ λ

// K̃ P P
λ //

is a coequalizer. On the other hand, to give a module P : 1 � //K is to give a matrix
P : 1 � // |K | and a left action K P // P which is associative and unitary. (Of course such
a module is but a functor P : K op // set, equally a small profunctor P :1 � //K .) From

an i-module (P, λ) : 1 � // K̃ we now construct a module (P, λ1) : 1 � //K . Consider the

following diagram, in which we have written @ for the left action of K on K̃ .

K K̃ K̃ P K K̃ P
K •P //

K K̃ λ

//K K̃ P K P
K λ //

K̃ K̃ P K̃ P
•P //

K̃ λ

// K̃ P P
λ //

K K̃ K̃ P

K K̃ P

@K̃ P

��

K K̃ P

K̃ P

@P

��

K P

P

λ1

��

The top row is K applied to the coequalizer diagram for (P, λ). It is also a coequalizer
since coequalizers in MAT are preserved by composition. We have equality in the bottom
square on the left by naturality of @. The definition of • in terms of the equivariant (−)
provides equality in the top square on the left. These considerations uniquely determine
λ1 as displayed. Straightforward diagram chases show that λ1 is unitary and associative.

Thus the construction (P, λ) 7→ (P, λ1) defines an object function from K̃ -i-modules to

K -modules. Moreover, if (Q, λ) is another i-module from 1 to K̃ and t : P // Q is a

matrix 2-cell which is equivariant for the K̃ actions then another, easy, diagram shows
that t is also equivariant for the K actions.

5.3. Proposition. The construction (P, λ) 7→ (P, λ1) defines a functor J satisfying the
following identity with the evident forgetful functors.

iMod(1, K̃ )

Mat(1, |K |)
��????????????

iMod(1, K̃ ) Pro(1,K )J // Pro(1,K )

Mat(1, |K |)
��������������
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The functor W : K // K̂ which sends A to K̃ (−, A) can equally be seen as W :

K // Pro(1,K ). The left K action on K̃ (−, A) is just the left action of arrows on waves
with codomain A. An element of the matrix of actable pairs with codomain A, namely

K K̃ (−, A) is a pair L
f //K

ω ///o/o/o A. The effect of the action has been denoted ωf and

can further be seen as the result of applying the function K̃ (f, A) : K̃ (K,A) // K̃ (L,A)

to the element ω ∈ K̃ (K,A). It is clear that for a wave L
ψ ///o/o/o K we can define

K̃ (ψ,A) : K̃ (K,A) // K̃ (L,A) by composition of waves and, at the risk of labour-

ing the obvious, A 7→ K̃ (−, A) defines some functor K // iMod(1, K̃ ) that we will call

W̃ : K // iMod(1, K̃ ). (That K̃ (−, A) satisfies the requisite coequalizer condition is

easily seen formally by recognizing it as the profunctor composite 1 A� // K K̃� // K .)
What does require a check, which we leave for the reader, is showing that J applied to

the actions K̃ (ψ,A), for ψ a wave returns the actions given by the K̃ (f, A), for f an
arrow. More formally:

5.4. Proposition. The functor W̃ satisfies the equality

K Pro(1,K )
W
//

iMod(1, K̃ )

K

??

W̃

������������
iMod(1, K̃ )

Pro(1,K )

J

��

We further define X̃ : iMod(1, K̃ ) // K to be the composite XJ . In the sequel, when

we refer to the matrix entries P (K, ∗) of an i-module (P, λ) from 1 to K̃ , we will write

P (K, ∗) = [K, (P, λ)] = [K,P ] to conform with our usage in K̂ , equally in Pro(1,K ).

5.5. Theorem. For K totally distributive, the functors W̃ : K // iMod(1, K̃ ) and X̃
provide an adjoint equivalence of categories.

Proof. We have the isomorphism α̃ = α : 1K
// XW = XJW̃ = X̃W̃ , by total distribu-

tivity of K . We wish to construct a β̃ : W̃ X̃ // 1
iMod(1,K̃ )

. To this end we require, for

each (P, λ) in iMod(1, K̃ ), a K̃ -equivariant β̃(K, (P, λ)) : K̃ (K,
∨

(P, λ1)) // [K, (P, λ)].

The requisite functions are provided by the β(K, (P, λ1)) : K̃ (K,
∨

(P, λ1)) // [K, (P, λ1)],
where we recall that for ω :K ///o

∨
(P, λ1), we have β(ω) = ω(1). However, we need to

show that these are equivariant with respect to the K̃ actions. So given L
ψ ///o/o/o K we

require that β(ω • ψ) = β(ω)ψ. By the right side we refer to L
ψ ///o/o/o K

β(ω) // P in
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[L, (P, λ)]. However, writing β(ω) = pχ by interpolativity of (P, λ) as in:

K

M

χ

���_
�_
�_
�_
�_
�_
�_
�_

K P
β(ω) // P

M

??

p

we have

β(ω • ψ)=β(ωψ)=(ωψ)(1)
(a)
= ω(1)ψ=β(ω)ψ=(pχ)ψ

(b)
= p(χψ)=p(χ • ψ)=(pχ)ψ=β(ω)ψ

where (a) follows from the action of K on waves and (b) follows from the construction of

a K module from a K̃ i-module. To complete the proof of the theorem it now suffices

to show that the βP : K̃ (−,
∨
P ) // [−, P ] are invertible when P arises from a left K̃

i-module via J . Because K̃ (−,2) is a left adjoint,it suffices to show that the composite:∫ L

K̃ (−, L) · [L, P ] ' // K̃ (−,
∫ L

L · [L, P ])
βP // [−, P ]

is invertible, where the first isomorphism is the sup-comparison. Invertibility of this
composite is equivalent to each evaluation at K:∫ L

K̃ (K,L)× [L, P ] ' // K̃ (K,
∨

P )
βP // [K,P ]

being a bijection. Note that the domain of the composite can be written as the profunctor

composite K̃ ◦K P , evaluated at K. However, using the interpolativity of P , the argument

in Theorem 5.1 shows that K̃ ◦K P is equally K̃ ◦K̃ P , so that the composite above can
be written:

(K̃ ◦K̃ P )(K) ' // K̃ (K,
∨

P )
βP // [K,P ] (7)

We will show that this composite is the evaluation at K of the invertible matrix arrow

K̃ ◦K̃ P // P corresponding to the MAT coequalizer λ : K̃ P // P . Consider a compos-

able wave and element K ω ///o/o/o L
p // P . Integral comparison sends the tensor p ⊗ ω to

the wave K ω ///o/o/o L
ip //

∨
P which β sends to ipω(1∨

P ) = ω(ip) : K // P . Using the
expansion of ip on the right below, as discussed in 2.4:

L∗
∨
L∗

K

L∗

ω

��

K L
ω ///o/o/o/o/o L

∨
L∗

ηL

��

P
∨
P

L∗

P

p∗

��

L∗
∨
L∗

∨
L∗

∨
P

∨
p∗

��

K

L

ω

������������

L

P

p

��

L

∨
P

ip

��
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we see that ω(ip) = pω. However, we can write p = qψ (for unique q ⊗ ψ) and now

pω = (qψ)ω = q(ψω) = q(ψ • ω) = (qψ)ω = pω

This shows that the composite in (7) is the required bijection and completes the proof

that β̃ is invertible.
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