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STACKS AND SHEAVES OF CATEGORIES AS FIBRANT
OBJECTS, II

ALEXANDRU E. STANCULESCU

Abstract. We revisit what we call the fibred topology on a fibred category over a
site and we prove a few basic results concerning this topology. We give a general result
concerning the invariance of a 2-category of stacks under change of base.

1. Introduction

This article is a sequel to [15] and it consists of two parts that can be read independently.
The first part is centered around a certain topology on a fibred category over a site.

Let E be a site and F a fibred category over E. Then F , with a suitable notion of
refinement of objects, becomes a site (Definition 2.15 and Proposition 2.20). We call this
topology the fibred topology on F , in order to emphasize that we are in the presence of a
fibration and to distinguish it from the induced topology on F [1, III, Section 3] (but see
below). The fibred topology has a long history. It first appeared in [2, Definition 4.10]
for E the category of schemes with the étale topology and F a stack in groupoids. It is
also found in [9, page 596], [8, Lemma 1], [11, 3.1], [14, Tag 06NT], and surely in other
sources that we are not aware of. However, all the mentioned sources treat only the cases
where either the fibred category F is the Grothendieck construction on a presheaf on E
of categories or the topology on E is generated by a pretopology. We establish here the
existence of the fibred topology in full generality, with no restrictions on E or F . Our
approach aims at clarifying the role of cartesian morphisms in the construction of this
topology. We prove a few basic results concerning the fibred topology. A first (Corollary
2.31) is that for fibrations in groupoids, the fibred topology coincides with the induced
topology. A second (Lemma 2.25) is that for prestacks over a subcanonical site the fibred
topology is itself subcanonical, at least for prestacks in groupoids or when the topology
on the base category is generated by a pretopology. A third result (Theorem 2.33) is a
‘fibred’ analogue of the comparison lemma [1, III, Théorème 4.1]. A fourth (Proposition
3.1) is a characterization of stacks over stacks in groupoids inspired by [14, Tag 06NT],
which goes as follows. Let G be a stack in groupoids over E. Then a fibration F over
G is a stack over G for the fibred topology if and only if F is a stack over E. The proof
that we give uses the language of model categories We give the following application to
Proposition 3.1. Recall from [15, Theorem 7.4] the localized ‘projective’ model category
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for presheaves of categories, denoted by Stack(Ê)proj . Let X be a preasheaf on E of
groupoids such that ΦX, the Grothendieck construction associated to X, is a stack. We
show that the model categories Stack(Φ̂X)proj and (Stack(Ê)proj )/X are Quillen equivalent
(Theorem 3.4). This result is similar to [12, Theorem 6.2(a)] and [8, Lemma 18], but it is
weaker in the sense that op. cit. do not require that ΦX is a stack.

The second part of the article deals with the invariance of stacks under change of base.
Given a functor E → E ′ between sites, it is natural to compare stacks over E ′ to stacks
over E, in other words to give an analogue of the comparison lemma for stacks. The
first result in this sense is due to Giraud [5, II, Théorème 3.3.1]: when E → E ′ is the
functor underlying a morphism of sites E ′ → E that induces an equivalence between the
associated categories of sheaves, the 2-categories stacks over E ′ and E are biequivalent. In
Theorem 4.7 we give an alternative version to this result, using model categories. Instead
of a morphism of sites, we work with a continuous functor that is what we call locally flat
on refinements, and instead of requiring the equivalence between the categories of sheaves,
we ask for a Quillen equivalence between the ‘projective’ model categories of sheaves of
categories [15, Theorem 7.2].

An Appendix is devoted to a general version of the above mentioned comparison
lemma.

2. The fibred topology on a fibred category over a site

2.1. Inverse and direct images of sieves. We recall some basic results about inverse
and direct images of sieves.

Let E be a category. We shall identify a collection S of objects of E with the full
subcategory of E having as objects the elements of S . We recall that for an object S of
E, E/S stands for the category of objects of E over S.

A sieve of E is a collection R of objects of E such that for every arrow x → y of E,
y ∈ R implies x ∈ R. A set theoretical union or intersection of sieves is a sieve.

Let S be a collection of objects of E. We define S to be the collection of objects x
of E for which there is an S ∈ S and an arrow x → S. Then S is a sieve of E, called
the sieve generated by S . If S is contained in a sieve R, then S ⊆ R. The collection
S is a sieve if and only if S = S . The sieve S is the intersection of all sieves of E that
contain S .

Let E ′ be another category and u:E → E ′ a functor. Then u(S ) ⊆ u(S ) and so

u(S ) = u(S ). For S ∈ Ob(E), we denote by uS the natural functor E/S → E ′/u(S). If
either uS is surjective on objects for all S ∈ S or u is surjective on objects and full, then
u(S ) = u(S ). In particular, if R is a sieve of E then u(R) is a sieve of E ′ if either ux is
surjective on objects for all x ∈ R or u is surjective on objects and full.

2.2. Lemma. Let S ∈ Ob(E) and S be a collection of objects of E/S. Then uS(S ) =

uS(S ) if either uT is surjective on objects for all T ∈ Ob(E) or uS is surjective on objects
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and full. In particular, let R be a sieve of E/S. Then uS(R) is a sieve of E ′/u(S) if either

uT is surjective on objects for all T ∈ Ob(E) or uS is surjective on objects and full.

Let R′ be a sieve of E ′. Let R′u be the collection of objects x of E such that u(x) ∈ R′.
Then R′u is a sieve of E, called the inverse image of R′ [4, page 78].

2.3. Lemma. Let R be a sieve of E and R′ a sieve of E ′. Then u(R′u) ⊆ R′ and R ⊆
u(R)

u
.

Let ∅(E) be the set of sieves of E, ordered by inclusion. The functor u induces a
map of posets ∅(u):∅(E ′)→ ∅(E) given by ∅(u)(R′) = R′u. This data defines a functor
∅: CAT op → POSET , where POSET is the full subcategory of CAT consisting of posets.
From now on we shall write (−)u instead of ∅(u). It follows from Lemma 2.3 that

2.4. Corollary. The functor (−)u:∅(E ′) → ∅(E) has a left adjoint u(−) given by
u(−)(R) = u(R).

We call u(R) the direct image of R. From Lemma 2.3 and Corollary 2.4 it follows that

the functor u(−) is full and faithful if and only if for all R ∈ ∅(E) one has u(R)
u
⊆ R

and that the functor (−)u is full and faithful if and only if for all R′ ∈ ∅(E ′) one has
R′ ⊆ u(R′u).

2.5. Lemma.

1. If u is full then u(−) is full and faithful.

2. Suppose that for all R′ ∈ ∅(E ′) and all y ∈ R′ there are S ∈ Ob(E) and arrows
u(S)→ y and y → u(S). Then (−)u is full and faithful.

In particular, if u is surjective on objects and full then (u(−), (−)u) is an adjoint equiva-
lence between ∅(E) and ∅(E ′).

2.6. Corollary. Let S ∈ Ob(E). Suppose that uS is surjective on objects. Then
the functor (−)uS is full and faithful. If, moreover, (−)uS is full, then the adjoint pair
(uS(−), (−)uS) is an adjoint equivalence between ∅(E/S) and ∅(E ′/u(S)).

2.7. Example. Here is an example of a functor that is surjective on objects and full.
Let ∆ be the category whose objects are the ordered sets [n] = (0, 1, ..., n), for every

n > 0, and whose maps are the order-preserving functions. Let
−→
∆ be the full subcategory

of ∆ consisting of the injective maps and
←−
∆ be the full subcategory of ∆ consisting of

the surjective maps. Every map α of ∆ has a unique functorial factorization α = −→α←−α ,
where ←−α is in

←−
∆ and −→α is in

−→
∆ [10, Chapter 15]. For all objects [n] of ∆ the inclusion

−→
∆/[n] ⊂ ∆/[n] has a left adjoint

−→
(−): ∆/[n] →

−→
∆/[n]

that sends an object α to −→α . The functor
−→
(−) is surjective on objects and full.
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2.8. Remark. To complete somewhat Corollary 2.4, we recall that the inverse image
functor (−)u has also a right adjoint, which we denote by (−)u

∅(E)
(−)u

// ∅(E ′)
(−)u
oo

One has that Ru is the union of all sieves R′ such that R′u ⊆ R. However, we shall not
use this functor.

2.9. The fibred topology on a fibred category over a site. Let f :F → E be
a fibration. We recall that every map y → x of F factorizes into a vertical map y → x′

followed by a cartesian map x′ → x.

2.10. Definition. Let f :F → E be a fibration and x ∈ Ob(F ). A sieve R of F/x has
property C if for all elements y → x of R, the cartesian morphism in the factorization of
y → x belongs to R.

2.11. Lemma.

1. For all sieves R′ of E/f(x), R
′fx has property C.

2. If f is a fibration in groupoids then every sieve of F/x has property C.

3. Every sieve of F/x that is generated by a collection of cartesian morphisms of F has
property C.

Proof. Part 2 is clear since all maps of F are cartesian. We prove part 3. Let S =
(xi → x)i∈I be a collection of cartesian morphisms of F . We show that the sieve S has
property C. Let α: y → x be a map of S . Then there are i ∈ I and y → xi such that
the composite y → xi → x is α. The map y → xi factorizes into a vertical map y → yi
followed by a cartesian map yi → xi. The composite yi → xi → x is cartesian and in S ,
so S has property C.

2.12. Lemma. Let f :F → E be a fibration, x ∈ Ob(F ) and R a sieve of F/x. Then
R has property C if and only if fx(R)fx ⊆ R. Consequently, if R has property C, then
fx(R)fx = R.

Proof. We recall that we always have R ⊆ fx(R)fx (Lemma 2.3 and before it). Suppose
that R has property C. Let α: y → x be a map such that f(α) ∈ fx(R). Then there is
r: z → x in R such that f(α) = f(r). The map r factorizes into a vertical map z → x′

followed by a cartesian map c:x′ → x. Since c is cartesian and f(α) = f(c), there is a
unique β: y → x′ such that cβ = α and f(β) is the identity. By assumption the map c is
in R, therefore α is in R since R is a sieve.

Conversely, let α: y → x be an element of R. We factorize α into a vertical map
y → x′ followed by a cartesian map c:x′ → x. We have f(c) = f(α) ∈ fx(R), therefore
c ∈ fx(R)fx ⊆ R, so R has property C.
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We denote by ∅(F/x)C the subset of ∅(F/x) consisting of those sieves that have prop-
erty C. Lemma 2.12 says that (fx(−), (−)fx) is an adjoint equivalence between ∅(F/x)C
and ∅(E/f(x)).

2.13. Corollary. Let f :F → E be a fibration and S = (xi → x)i∈I a collection of
cartesian morphisms of F . Then fx(S )fx = S .

Proof. This follows from Lemmas 2.11(3) and 2.12.

2.14. Lemma. Let E be a category and u:F → G a map of Fib(E). Let x ∈ Ob(F ) and
R be a sieve of F/x. If R has property C, then the natural functor R→ ux(R) is final.

Proof. Let k:w → u(x) be an element of ux(R). Consider the category F(k) whose
objects are factorizations k = u(α)l:w → u(y) → u(x), where α: y → x is an element of
R, and whose morphisms (l1, α1) → (l2, α2) are maps δ: y1 → y2 such that α2δ = α1 and
u(δ)l1 = l2 We have to show that F(k) is connected. The category F(k) is not empty
since k ∈ ux(R). Consider the commutative diagram

w
l1

zz

l2

$$

k

��

u(y1)

u(α1) ##

u(y2)

u(α2){{

u(x)

in which αi ∈ R. Let f :F → E be the structure map of F and g:G → E the structure
map of G. Let ci: zi → yi be a cartesian morphism over g(li). Then f(α1c1) = f(α2c2).
The map αici factorizes into a vertical map ti: zi → wi followed by a cartesian morphism
di:wi → x. Since R has property C, the map di is in R. Since u(ci) is cartesian, there is a
vertical morphism pi:w → u(zi) such that u(ci)pi = li. Thus, in the previous commutative
diagram we may assume that α1 and α2 are cartesian over the same map. Then, there is
a vertical isomorphism δ: y1 → y2 such that α2δ = α1. Since u(α2) is cartesian it follows
that u(δ)l1 = l2. This completes the proof.

For convenience we recall from [5, 0, Définition 1.2] the notion of site. Let E be
a category. A topology on E is an application which associates to each S ∈ Ob(E) a
non-empty collection J(S) of sieves of E/S that satisfies the following axioms:

(TI) for each morphism f :T → S and each R ∈ J(S) we have Rf ∈ J(T );

(TII) for each object S of E, each R ∈ J(S) and each sieve R′ of E/S, we have that
R′ ∈ J(S) as soon as for each element f :T → S of R we have R′f ∈ J(T ).

The elements of J(S) are called refinements of S. A site is a category endowed with a
topology.
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2.15. Definition. Let E be a site. Let f :F → E be a fibration and x ∈ Ob(F ). A sieve
R of F/x is said to be a refinement of x if there is R0 ∈ J(f(x)) such that Rfx

0 ⊆ R.

We shall show in Proposition 2.20 that the application that associates to an object x
of F the collection J(x) of refinements of x defines a topology on F .

2.16. Corollary. Let E be a site, f :F → E a fibration, x ∈ Ob(F ) and R a sieve of
F/x.

1. If R is refinement of x, then fx(R) is a refinement of f(x). The converse holds
provided that R has property C.

2. Suppose that the topology on E is generated by a pretopology. Then R is a refinement
of x if and only if R contains a collection of cartesian morphisms (xi → x)i∈I such
that (f(xi)→ f(x))i∈I is a covering family.

Proof. (1) Let R0 ∈ J(f(x)) be such that Rfx
0 ⊆ R. We have R0 ⊆ fx(R

fx
0 ) ⊆ fx(R) so

fx(R) is a refinement. The converse follows from Lemma 2.12.
(2) Suppose that R is a refinement of x. Let R0 ∈ J(f(x)) be such that Rfx

0 ⊆ R.
Let S0 = (Si → f(x))i∈I be a covering family such that S0 ⊆ R0. For each i ∈ I, let
xi → x be a cartesian morphism over Si → f(x). We put S = (xi → x)i∈I . Then we

have S = fx(S )fx = fx(S )
fx ⊆ Rfx

0 , where the first equality holds by Corollary 2.13.
The converse is proved along the same lines.

2.17. Proposition.

1. (Refinement preservation) Let E be a site and u:F → G a map of Fib(E). Let
x ∈ Ob(F ) and R be a refinement of x. Then ux(R) is a refinement of u(x).

2. (Cocontinuity) Let E be a site and u:F → G a map of Fib(E). Then for all
x ∈ Ob(F ) and all refinements R′ of u(x), R′ux is a refinement of x.

3. (Transitivity) Let E be a site and g:G→ E, f :F → G be fibrations. Let x ∈ Ob(F )
and R be a sieve of F/x. If R is a refinement of x with respect to gf then fx(R) is
a refinement of f(x). The converse holds provided f is a fibration in groupoids.

Proof. (1) Let f :F → E be the structure map of F and g:G → E the structure map
of G. Let R0 ∈ J(f(x)) be such that Rfx

0 ⊆ R. We claim that R
gu(x)
0 ⊆ ux(R). Let

β: z → u(x) be an element of R
gu(x)
0 . Let α: y → x be a cartesian morphism over g(β).

Then f(α) = g(β) ∈ R0, so α ∈ R and therefore u(α) ∈ ux(R). Since u(α) is cartesian,
there is a unique γ: z → u(y) such that u(α)γ = β and g(γ) is the identity. In particular
β ∈ ux(R).

(2) Let R0 ∈ J(f(x)) be such that R
gu(x)
0 ⊆ R′. We have Rfx

0 = R
gu(x)ux
0 ⊆ R′ux , so

R′ux is a refinement of x.
(3) Let R0 ∈ J(gf(x)) be such that R

(gf)x
0 ⊆ R. We have

R
gf(x)
0 ⊆ fx((R

gf(x)
0 )fx) ⊆ fx(R)
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so fx(R) is a refinement of f(x). Conversely, let R0 ∈ J(gf(x)) be such that R
gf(x)
0 ⊆

fx(R). We have R
(gf)x
0 ⊆ fx(R)fx ⊆ R, where the last inclusion holds by Lemmas 2.11(2)

and 2.12. Therefore R is a refinement of x.

Let now f :F → E be a functor such that fx is surjective on objects for all x ∈
Ob(F ). Let α: y → x be a map of F . Then α induces natural functors α:F/y → F/x and
f(α):E/f(y) → E/f(x). We have the following diagram of adjunctions (Lemma 2.2 and
Corollary 2.4)

∅(F/y)
α(−)

//

fy(−)

��

∅(F/x)
(−)α
oo

fx(−)

��

∅(E/f(y))

(−)fy

OO

f(α)(−)
//
∅(E/f(x))

(−)f(α)
oo

(−)fx

OO

in which (−)fy(−)f(α) = (−)α(−)fx . Therefore there is an induced natural transformation

[α]:α(−)(−)fy → (−)fxf(α)(−):∅(E/f(y))→ ∅(F/x)

In other words, for all sieves R of E/f(y), one has α(Rfy) ⊆ f(α)(R)fx .

2.18. Lemma. The natural transformation [α] is the identity if and only if for all sieves
R of E/f(y), every diagram

y

α

��
z // x

such that the diagram
f(y)

f(α)
��

f(z) // f(x)

has a diagonal filler that belongs to R, has itself a diagonal filler d such that f(d) belongs
to R.

Proof. The proof is straightforward.

2.19. Corollary. Suppose that α is a cartesian morphism. Then the natural transfor-
mation [α] is the identity.

Proof. This follows from Lemma 2.18.
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2.20. Proposition. Let E be a site and f :F → E a fibration. The application that
associates to an object x of F the collection J(x) of refinements of x defines a topology
on F . We call this topology the fibred topology.

Proof. First of all, if x ∈ Ob(F ) then J(x) is non-empty since J(f(x)) is so. Let α: y → x
be a map of F and R be a refinement of x. Then there is R0 ∈ J(f(x)) such that Rfx

0 ⊆ R.

We have (R
f(α)
0 )fy = (Rfx

0 )α ⊆ Rα so Rα is a refinement of y. Finally, let x ∈ Ob(F ) and
R,R′ be sieves of F/x such that R is a refinement of x. Moreover, assume that for all
elements α: y → x of R, R′α is a refinement of y. We have to prove that R′ is a refinement
of x.

By assumption, for all objects α: y → x of R there is a refinement Rα of f(y) such

that R
fy
α ⊆ R′α. Therefore

α(Rfy
α ) ⊆ α(R′α) ⊆ R′

Let R0 be a refinement of f(x) such that Rfx
0 ⊆ R. We put

S =
⋃

α∈Rfx0 ,α cartesian

f(α)(Rα)

Then S is a sieve of E/f(x). We claim that S is a refinement of f(x) and that Sfx ⊆ R′.
We have

Sfx =
⋃

α∈Rfx0 ,α cartesian

f(α)(Rα)fx =
⋃

α∈Rfx0 ,α cartesian

α(Rfy
α ) ⊆ R′

where the second equality holds by Corollary 2.19. Let now S → f(x) be an element of
R0. Let α0: y → x be a cartesian map over S → f(x). Then we have

Rα0 ⊆ f(α0)(Rα0)
f(α0) ⊆

⋃
α∈Rfx0 ,α cartesian

f(α)(Rα)f(α0) = Sf(α0)

Therefore Sf(α0) is a refinement since it contains a refinement, hence S is a refinement.

In Proposition 2.20, if E has the discrete topology then the fibred topology on F is
the discrete topology, and if E has the coarse topology then the fibred topology on F is
the coarse topology provided E has pullbacks or F is fibred in groupoids.

2.21. Example. Let E be a site and A a category. The projection A × E → E is a
fibration. The refinements of (a, S) ∈ Ob(A × E) are of the form A/a × R, where R is a
refinement of S. Every refinement of (a, S) has property C.

Let E be a site whose topology is generated by a pretopology. Let f :F → E be a
fibration. We recall [11, 3.1], [14, Tag 06NT] that F becomes a site with the inherited
topology from E. A family (xi → x) of maps of F is covering for the inherited topology
from E if and only if each xi → x is cartesian and the family (f(xi)→ f(x)) is covering
for the topology on E.
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2.22. Lemma. Let E be a site whose topology is generated by a pretopology and F → E
a fibration. Then the fibred topology on F coincides with the inherited topology from E.

Proof. This follows from Corollary 2.16(2).

2.23. Lemma. Let E be a category and J, J ′ be two topologies on E. Suppose that J is
finer than J ′. Let F → E be a fibration. Then the fibred topology on F with respect to J
is finer than the fibred topology on F with respect to J ′.

Proof. The proof is straightforward.

In light of Corollary 2.31, the next result extends [1, III, Proposition 5.2(3)].

2.24. Lemma. Let E be a site and g:G → E, f :F → G be fibrations. Suppose that f is
a fibration in groupoids. Then the fibred topology on F obtained using gf coincides with
the fibred topology obtained using f and the fibred topology on G.

Proof. This follows from Proposition 2.17(3) and Lemma 2.12.

The next result, partly combined with Corollary 2.31, extends [3, IV, Corollaire 4.5.3];
its proof highlights the role of property C (Definition 2.10).

2.25. Lemma. Let E be a site whose topology is less fine than the canonical topology and
p:F → E a fibration. If the fibred topology on F is less fine than the canonical topology
then F is a prestack. Conversely, suppose that F is a prestack. Then the fibred topology
on F is less fine than the canonical topology in either of the following cases:

(a) the topology on E is generated by a pretopology;

(b) F is fibred in groupoids.

Proof. We prove the Lemma in the case F = ΦX, that is, F is the Grothendieck
construction associated to a functor X:Eop → CAT . The general case follows using the
surjective equivalence ΦSF → F [15, 2.4(4)].

Suppose that the fibred topology on ΦX is less fine than the canonical topology. Let
S ∈ Ob(E), x, y ∈ Ob(X(S)) and R0 be a refinement of S. Then R

p(S,x)
0 is a refinement

of (S, x) ∈ Ob(ΦX). We have to prove that the natural map

X(S)(x, y)→ lim
Rop

0

[(T, f :T → S) 7→ X(T )(f ∗(x), f ∗(y))]

is bijective. Let α, β:x→ y be such that f ∗(α) = f ∗(β) for each f ∈ R0. By assumption,
the natural map

ΦX(−, (S, y))(S, x)→ lim
(R
p(S,x)
0 )op

[((f, u): (T, z)→ (S, x)) 7→ ΦX((T, z), (S, y))]

is a bijection. Since the elements (IdS, α), (IdS, β) of ΦX((S, x), (S, y)) are sent to the
same element (f, f ∗(α)u), it follows that α = β. Let now vf : f

∗(x) → f ∗(y), where
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f :T → S is an element of R0, be a compatible family, in the sense that whenever we have
a commutative diagram

U

g
��

h // T

f
��

S

with f, g ∈ R0, then h∗(vf ) = vg. Consider the commutative diagram

(U, t)

(g,ω) ##

(h,w)
// (T, z)

(f,u){{

(S, x)

where (f, u) and (g, ω) are elements of R
p(S,x)
0 , so that fh = g and h∗(u)w = ω. Then

(g, vgω) = (h,w)∗((f, vfu)). In other words the family (f, vfu): (T, z) → (S, y) indexed
over (f, u): (T, z)→ (S, x), with (f, u) ∈ Rp(S,x)

0 , is compatible. Therefore there is a unique
element (a, α): (S, x)→ (S, y) such that (af, f ∗(α)u) = (f, vfu) for each element (f, u) of
R
p(S,x)
0 . In particular, (af, f ∗(α)) = (f, vf ) for each f ∈ R0. By considering the bijection

E(−, S)(S)→ lim
Rop

0

[(T, f :T → S) 7→ E(T, S)]

it follows that a = 1S, therefore α:x→ y and f ∗(α) = vf for each f ∈ R0.
We now prove the converse. Let us assume for the moment that the topology on E is

an arbitrary one and that ΦX is an arbitrary prestack. Let (T, y), (S, x) be two objects
of ΦX and R a refinement of (S, x). We prove that the natural map

ΦX(−, (T, y))(S, x)→ lim
Rop

(ΦX(−, (T, y))|R)

is bijective. We first show that the map is injective. Let (f, u), (g, u′): (S, x) → (T, y) be
such that (f, u)(h, v) = (g, u′)(h, v) for each element (h, v): (U, z) → (S, x) of R. Since
there is a refinement R0 of S such that R

p(S,x)
0 ⊆ R, we have in particular that fh = gh for

each element h of R0. Since E(−, T ) is a sheaf, it follows that f = g. So we have that the

composite (fh)∗(y)
h∗(u)→ h∗(x)

v→ z is equal to the composite (fh)∗(y)
h∗(u′)→ h∗(x)

v→ z.
Choosing (h, v) to be (h, 1h∗(x)): (U, h∗(x))→ (S, x), where h:U → S is an element of R0,
we have that h∗(u) = h∗(u′) for each element h of R0. Since ΦX is a prestack, the natural
map

X(S)(f ∗(y), x)→ lim
Rop

0

[(h:U → S) 7→ X(U)(h∗(f ∗(y)), h∗(x))]

is bijective. Therefore u = u′. We now wish to show the surjectivity of our original natural
map. Let (h(f,u), v(f,u)): (U, z)→ (T, y) be a compatible family indexed over the elements
(f, u): (U, z) → (S, x) of R, so that h(f,u):U → T , v(f,u):h

∗
(f,u)(y) → z, and compatibility
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means that whenever we have a commutative diagram

(U ′, z′)

(f ′,u′) $$

(g,w)
// (U, z)

(f,u){{

(S, x)

with (f, u), (f ′, u′) elements of R, then (h(f ′,u′), v(f ′,u′)) = (h(f,u)g, wg
∗(v(f,u))). We have

to produce a map h:S → T and map v:h∗(y) → x of X(S) such that (hf, uf ∗(v)) =
(h(f,u), v(f,u)) for each element (f, u) of R. Since E(−, T ) is a sheaf and p(S,x)(R) is a
refinement of S (Proposition 2.17(1)), the natural map

E(−, T )(S)→ lim
p(S,x)(R)op

(E(−, T )|p(S,x)(R))

is bijective. The family (h(f,u)) is compatible by the above, therefore there is a unique
h:S → T such that hf = h(f,u) for each element (f, u) of R. Consider now the bijection

X(S)(h∗(y), x)→ lim(p(S,x)(R)op → SET )

where the functor p(S,x)(R)op → SET sends (f :U → S), for (f, u) ∈ R, to the set
X(U)(f ∗(h∗(y)), f ∗(x)) = X(U)(h∗(f,u)(y), f ∗(x)). The family (v(f,1f∗(x)):h

∗
(f,u)(y)→ f ∗(x))

is compatible provided (f, u) ∈ R implies (f, 1f∗(x)) ∈ R, in other words provided R has
property C, for then the diagram

(U ′, f ′∗(x))

(f ′,1f ′∗(x)) &&

(g,1g∗(f∗(x)))
// (U, f ∗(x))

(f,1f∗(x))yy

(S, x)

is commutative whenever (g, w): (f ′, u′)→ (f, u) is a map in R as in the previous triangle
diagram above, and so in this case v(f ′,1f ′∗(x))

= g∗(v(f,1f∗(x))). But then we have a map

(U, z)

(f,u) ##

(1U ,u)
// (U, f ∗(x))

(f,1f∗(x))yy

(S, x)

in R, so in particular v(f,u) = uv(f,1f∗(x)). Therefore, if R has property C, there is a unique
v:h∗(y)→ x such that f ∗(v) = v(f,1f∗(x)) for each element (f, u) of R, and so v(f,u) = uf ∗(v)
in this case. This finishes the proof that our original natural map is surjective. Finally,
by Lemma 2.11 we know that R has property C in the cases (a) and (b).
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2.26. Functoriality of the fibred topology. Let E,E ′ be sites and u:E → E ′

a functor. We recall some definitions from [1, III]. One says that u is continuous if the

composition with u functor u∗: Ê ′ → Ê sends sheaves to sheaves. One says that u is
cocontinuous if for all S ∈ Ob(E) and all refinements R′ of u(S), R′uS is a refinement of
S. This is equivalent to saying that for all S ∈ Ob(E) and all refinements R′ of u(S), there
is a refinement R of S such that uS(R) ⊆ R′. One says that u is refinement preserving if
for all S ∈ Ob(E) and all refinements R of S, uS(R) is a refinement of u(S).

If u is cocontinuous and refinement preserving, then for all S ∈ Ob(E) the adjoint
pair (uS(−), (−)uS) (Corollary 2.4) restricts to an adjoint pair between the refinements of
S and the refinements of u(S).

In the next result, all fibred categories over a site will be considered as having the
fibred topology. We recall that Fibg(E) is the full subcategory of Fib(E) whose objects
are the categories fibred in groupoids.

2.27. Corollary. Let E be a site.

1. Every arrow of Fib(E) is cocontinuous and refinement preserving. If the topology
on E is generated by a pretopology, then every arrow of Fib(E) is continuous.

2. Every arrow of Fibg(E) is cocontinuous and continuous.

Proof. The first part of part 1 is a consequence of Proposition 2.17((2) and (1)). We
prove the last part. Let u:F → G be a map in Fib(E). Let x ∈ Ob(F ), R be a sieve of
F/x and Z a sheaf on G. Consider the following commutative diagram

Rop //

��

(F/x)
op

��

// F op

��

u∗Z // SET

ux(R)
op

// (G/u(x))
op // Gop

Z

==

We denote by (u∗Z|R) the composite of the top horizontal arrows and by (Z|ux(R)) the
composite of the bottom horizontal arrows followed by Z. We have a natural map

lim
ux(R)

op
(Z|ux(R))→ lim

Rop
(u∗Z|R)

To show that u∗Z is a sheaf we can assume, using Lemma 2.22, that R is generated by a
collection of cartesian morphisms. But then the natural map displayed above is bijective
by Lemmas 2.14 and 2.11(3). We conclude by Proposition 2.17(1). The continuity in
part 2 is proved similarly, using the same diagram. The map R → ux(R) is now an
equivalence.
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2.28. Corollary. Let E be a site and f :F → E a fibration. Then the fibred topology
on F is the least fine topology for which f is cocontinuous.

For the next results we need to fix some notation. Let E be a category. We denote
by Ê the category of presheaves on E and by η:E → Ê the Yoneda embedding. For
S ∈ Ob(E) and a sieve R of E/S, we denote by Rp the associated subfunctor of η(S).
Let u:E → E ′ be a functor. We denote by u! the left adjoint to the composition with u
functor u∗: Ê ′ → Ê. There is a natural map u!(R

p)→ η(u(S)).

2.29. Lemma. Let S ∈ Ob(E) and R be a sieve of E/S. There is a natural factorization

u!(R
p)

e
$$

// η(u(S))

uS(R)
p

99

with e an epimorphism. If the natural functor R → uS(R) is final, then e is an isomor-
phism.

Proof. Let y ∈ Ob(E ′). Then uS(R)
p
(y) is the set of maps y → u(S) that factorize as

y → u(T )
u(f)→ u(S) for some element f of R, and u!(R

p)(y) is the colimit of the functor
Py: (y ↓ u)op → SET that sends an object (T, α: y → u(T )) to the set of arrows f :T → S
that belong to R. The map that sends f to u(f)α induces a map

ey: colim
(y↓u)op

Py → uS(R)
p
(y)

This map is clearly natural in y, so it induces the map e. Notice that by construction the
map ey is surjective, so e is an epimorphism. We prove that ey is injective. The colimit
of Py is the quotient of the set ∐

(T,α:y→u(T ))

{f :T → S, f ∈ R}

by the following equivalence relation. Two elements (T, α: y → u(T ), f :T → S, f ∈ R)
and (T ′, α′: y → u(T ′), f ′:T ′ → S, f ′ ∈ R) are equivalent when there is a finite sequence
of elements

(T0, α0: y → u(T0), f0:T0 → S, f0 ∈ R), ..., (Tn, αn: y → u(Tn), fn:Tn → S, fn ∈ R)

such that T0 = T, α0 = α, f0 = f, Tn = T ′, αn = α′, fn = f ′ and for all 0 6 i 6 n− 1 there
is gi:Ti+1 → Ti (possibly an identity) such that u(gi)αi+1 = αi and figi = fi+1 or there is
gi:Ti → Ti+1 (possibly an identity) such that u(gi)αi = αi+1 and fi+1gi = fi.

Let (T, α: y → u(T ), f :T → S, f ∈ R) and (T ′, α′: y → u(T ′), f ′:T ′ → S, f ′ ∈ R) be
such that u(f)α = u(f ′)α′. The fact that R→ uS(R) is final implies then that there is a
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diagram

y

α

vv ��yy �� $$

α′

((

u(T )

u(f)
++

u(T1)
u(g1) u(g2)

u(f1)

))

u(T2)
u(f2)

##

u(T3)
u(g3)

u(f3)

��

... u(Tn−1)
u(gn−1) u(gn)

u(fn−1)

vv

u(T ′)

u(f ′)
ss

u(S)

in which each map gi points to the left or to the right, each map fi is an element of R, all
triangles having y as a vertex and one horizontal side commute, and all triangles having
u(S) as a vertex and one horizontal side commute before applying the functor u to them.
In particular, (T, α: y → u(T ), f :T → S, f ∈ R) and (T ′, α′: y → u(T ′), f ′:T ′ → S, f ′ ∈
R) are equivalent, so ey is injective.

The next result is meant to extend [1, III, Proposition 1.6].

2.30. Proposition. Let E,E ′ be sites and u:E → E ′ a functor. If u is continuous
then u is refinement preserving. The converse holds provided for all S ∈ Ob(E) and all
refinements R of S, the natural functor R→ uS(R) is final.

Proof. Suppose that u is continuous. Consider the natural factorization from Lemma
2.29. By [1, III, Proposition 1.2] the map u!(R

p)→ η(u(S)) is a local isomorphism, so the

map uS(R)
p
→ η(u(S)) is a local epimorphism, therefore u is refinement preserving by [5,

0, Proposition 3.5.2(iii)]. The converse proof is similar to the proof of Corollary 2.27(1).
Let S ∈ Ob(E), R be a refinement of S and Z a sheaf on E ′. Consider the following
commutative diagram

Rop //

��

(E/S)op

��

// Eop

��

u∗Z // SET

uS(R)
op

// (E ′/u(S))
op // E ′op

Z

==

We denote by (u∗Z|R) the composite of the top horizontal arrows and by (Z|uS(R)) the
composite of the bottom horizontal arrows followed by Z. The natural map

lim
uS(R)

op
(Z|uS(R))→ lim

Rop
(u∗Z|R)

is bijective by assumption. It follows that u∗Z is a sheaf on E.



344 ALEXANDRU E. STANCULESCU

In Proposition 2.30, the condition ‘for all S ∈ Ob(E) and all refinements R of S, the
natural functor R→ uS(R) is final’ is fulfilled if u has a left adjoint. See Lemma 4.18 for
a result similar to Proposition 2.30.

Let now E ′ be a site and u:E → E ′ a functor. We recall [1, III, 3.1] that the induced
topology on E by the functor u is the finest topology for which u is continuous.

2.31. Corollary. Let E be a site and f :F → E a fibration in groupoids. Then the
fibred topology on F coincides with the induced topology on F by the functor f .

Proof. The functor f is continuous by Corollary 2.27(2). Therefore the fibred topology
is less fine than the induced topology. Conversely, let x ∈ Ob(F ) and R be a refinement
of x for the induced topology. By Proposition 2.30, using Lemmas 2.11(2) and 2.14 and
Proposition 2.17(1), it follows that fx(R) is a refinement of f(x). Since fx(R)fx ⊆ R
(Lemmas 2.12 and 2.11(2)), it follows that R is a refinement of x for the fibred topology.

2.32. Example. Continuing Example 2.21, the projection A × E → E is refinement
preserving, continuous and cocontinuous. The fibred topology on A × E coincides with
the induced topology by the projection. It is well-known that the category of sheaves on
A × E is equivalent to the functor category [Aop , Ẽ], where Ẽ is the category of sheaves

on E, and the former is in turn the category of sheaves on E with values in Â.

2.33. Theorem. [une lemme de comparaison fibrée] Let E be a site and u:F → G a
map in Fib(E). Suppose that:

1. u is continuous;

2. for each object x of F , the map F (−, x)→ G(u(−), u(x)) is a local monomorphism;

3. for each object x of F , the map F (−, x)→ G(u(−), u(x)) is a local epimorphism;

4. each object y of G has a refinement whose objects are of the form y′ → u(x)→ y.

Then the composition with u functor u∗: Ĝ → F̂ induces and equivalence between the
categories of sheaves G̃ and F̃ .

Proof. This follows from Proposition 4.16, using Corollary 2.27.

2.34. Corollary. Let E be a site whose topology is generated by a pretopology and less
fine than the canonical topology. Let F,G be prestacks over E and u:F → G a map in
Fib(E). The composition with u functor u∗: Ĝ → F̂ induces and equivalence between the

categories of sheaves G̃ and F̃ if and only if u is full and faithful and each object y of G
has a refinement whose objects are of the form y′ → u(x)→ y.

Proof. This follows from Proposition 4.17 and Theorem 2.33, using Corollary 2.27 and
Lemma 2.25.
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3. Stacks over stacks in groupoids

Let E be a site and g:G→ E a fibration. Since G is a site (Proposition 2.20), it is natural
to ask: what are the stacks over G? The purpose of this section is to answer this question
in the case G is a stack in groupoids (Proposition 3.1). We give one application to our
result (Theorem 3.4).

For a site E, we denote by Stack(E) the full subcategory of Fib(E) whose objects are
the stacks over E.

3.1. Proposition. Suppose that G is a stack in groupoids. Let (Stack(E)/G)fib be the
full subcategory of Stack(E)/G whose objects are the pairs (F, F → G) with F → G a
fibration. Then we have an isomorphism of categories

Stack(G) ∼= (Stack(E)/G)fib

that is the identity on objects.

Proposition 3.1 can be compared to [14, Tag 06NT] and can be restated as: the
natural functor g•: Fib(G) → Fib(E) preserves and reflects stacks provided G is a stack
in groupoids.

Proof. Let f :F → E be a stack over E and u:F → G a fibration. We shall show that
F is a stack over G. Let z ∈ Ob(G) and R be a refinement of z. We shall show that the
map

CartG(G/z, F )→ CartG(R,F )

is an equivalence. Let g•: Fib(G) → Fib(E) be the natural functor. The natural map
gz:G/z → E/g(z) can be viewed as a map gz: g

•(G/z)→ E/g(z) in Fib(E). Then we have a
commutative diagram

g•(R) //

gz|R
��

g•(G/z)

gz

��

gz(R) // E/g(z)

in which the horizontal arrows are inclusions and the vertical ones are trivial fibrations
since g is a fibration in groupoids. Consider the solid arrow diagram

g•(R)

%%

gz|R

��

g•(G/z)

gz

��

gz(R)

$$

s′

::

gz(R)

%%

E/g(z)

::

E/g(z)
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There is a diagonal filler s′ since gz|R is a trivial fibration. There is then a diagonal filler
s:E/g(z) → g•(G/z) since gz(R) → Eg(z) is a cofibration and gz is a trivial fibration. We
can now define a natural transformation

ν:CartG(G/z,−)→ CartE(E/g(z), g
•(−)): Fib(G)→ CAT

as νF (v) = g•(v)s, and a natural transformation

ν ′:CartG(R,−)→ CartE(gz(R), g•(−)): Fib(G)→ CAT

as ν ′F (v) = g•(v)s′. Since (s′, s) is a diagonal filler, the diagram

CartG(G/z, F )
νF //

��

CartE(E/g(z), g
•(F ))

��

CartG(R,F )
ν′F // CartE(gz(R), g•(F ))

is commutative. Consider the commutative cubic diagram

CartG(G/z, F ) //

++

��

CartG(G/z, G)

++

��

CartE(E/g(z), g
•(F )) //

��

CartE(E/g(z), G)

��

CartG(R,F ) //

++

CartG(R,G)

++

CartE(gz(R), g•(F )) // CartE(gz(R), G)

The two vertical arrows of the front face of the cube are weak equivalences by Corollary
2.16(1) and the fact that F and G are stacks. The map CartG(G/z, G) → CartG(R,G)
is the identity map of the terminal category. To finish the proof it suffices, by [10,
Proposition 13.3.14], to show that the top and bottom faces of the cube are homotopy
fiber squares. The top face is the outer diagram

CartG(G/z, F ) //

��

CartG(G/z, G) = ∗

��

CartE(g•(G/z), g
•(F )) //

��

CartE(g•(G/z), G)

��

CartE(E/g(z), g
•(F )) // CartE(E/g(z), G)

Using the maps u: g•(F ) → G and s:E/g(z) → g•(G/z) it follows from [15, Proposition
4.10] that in the previous diagram the bottom part is a homotopy fiber square. One can
easily check that the top part is a pullback; since it is a pullback along a fibration, it is
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a homotopy fiber square. Therefore the previous diagram is a homotopy fiber square by
[10, Proposition 13.3.15].

The bottom face of the cubic diagram is dealt with similarly, using the maps u: g•(F )→
G and s′: gz(R)→ g•(R). Therefore F is a stack over G.

Conversely, let u:F → G be a stack over G. We shall show that g•(F ) is a stack over
E. Let S ∈ Ob(E) and R be a refinement of S. Consider the solid arrow diagram

CartE(E/S, g
•(F )) //

��

CartE(E/S, G)

��

// GS

CartE(R, g•(F )) // CartE(R,G)

OO

Since G is a stack, the right vertical arrow is a surjective equivalence. The dotted arrow
is a section of it. If GS is the empty category then the left vertical arrow is the identity
arrow of the empty category. Hence we may assume that GS is nonempty. Let z be such
that g(z) = S. Then R = gz(R

gz) (Lemmas 2.11(2) and 2.12) and Rgz is a refinement of
z. Recall from the first part of the proof the diagonal filler (s′, s):

g•(Rgz)

%%
gz|Rgz

��

g•(G/z)

gz

��

R

""

s′

;;

R

&&

E/g(z)

99

E/g(z)

For every fibration H over E we have then a commutative diagram

CartE(E/g(z), H) //

��

CartE(g•(G/z), H)

��

// CartE(E/g(z), H)

��

CartE(R,H) // CartE(g•(Rgz), H) // CartE(R,H)

in which the top horizontal composite and the bottom horizontal composite are the iden-
tity. For H = g•(F ) the middle vertical map in the previous diagram is

CartE(g•(G/z), g
•(F ))→ CartE(g•(Rgz), g•(F ))

which is isomorphic to the map

CartG(G/z, g•(g
•(F )))→ CartG(Rgz , g•(g

•(F )))



348 ALEXANDRU E. STANCULESCU

since the 2-functor g• has a right 2-adjoint g• [15, 2.4]. The object g•(g
•(F )) is calculated

from the pullback diagrams
g•(g

•(F )) //

��

F

u

��

g•(G) //

��

G

g

��

G g
// E

in other words g•(g
•(F )) = g•(G)×F . Since g• preserves stacks [15, Proposition 5.17], it

follows that g•(g
•(F )) is a stack over G. Consequently, the map

CartE(E/S, g
•(F ))→ CartE(R, g•(F ))

is a retract of an equivalence, hence it is an equivalence.

Let now P be a presheaf on E. We denote by E/P the Grothendieck construction
associated to P , often called the category of elements of P . Every map F → E/P of
Fib(E) is an isofibration by [15, Lemma 2.3(1)]. From Lemma 3.3 we deduce that

Fib(E/P ) ∼= Fib(E)/E/P

The next result can be compared with [14, Tag 04WT].

3.2. Corollary. Suppose that P is a sheaf on E. Then we have an isomorphism of
categories

Stack(E/P ) ∼= Stack(E)/E/P

Proof. This is a consequence of Proposition 3.1 and of the above considerations.

3.3. Lemma. Let g:G→ E be a category fibred in groupoids such that for all S ∈ Ob(E)
the fibre category GS is rigid, meaning that the group of automorphisms of every object of
GS is trivial. Then Fib(G) is isomorphic to the full subcategory of Fib(E)/G consisting of
the ‘fibrant’ objects, meaning that the map to G is an isofibration.

Proof. A fibration over G is an isofibration. Conversely, let u:F → G be a map in
Fib(E) that is an isofibration. We show that u is a fibration. Let β: a→ u(x) be a map in
G. Let α: y → x be a cartesian (with respect to gu) map over g(β). Since g is a fibration
in groupoids there is an isomorphism θ: a → u(y) in Gg(a) such that u(α)θ = β. Since
ug(a) is an isofibration there is an isomorphism γ: y′ → y in Fg(a) such that u(γ) = θ.
Therefore u(αγ) = β. We show that αγ is cartesian with respect to u. Let h: z → x
and t:u(z) → u(y′) be such that βt = u(h). Then gu(αγ)g(t) = gu(h) and since αγ is
cartesian there is a unique map δ: z → y′ such that αγδ = h and gu(δ) = g(t). Since
g is a fibration in groupoids there is an isomorphism ξ:u(z) → u(z) in Ggu(z) such that
u(δ)ξ = t. By assumption ξ must be the identity.
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For the next result, recall from [15, Theorem 7.4] the model category Stack(Ê)proj .

3.4. Theorem. Let X:Eop → GRPD be such that its Grothendieck construction ΦX
is a stack. Then the model categories Stack(Φ̂X)proj and (Stack(Ê)proj )/X are Quillen
equivalent.

Before giving the proof we recall the functors that give the Quillen equivalence. Let
E be a category and X:Eop → CAT . There is an adjoint pair

[(ΦX)op ,CAT ]
BX //

[Eop ,CAT ]/X
GX
oo

The functor GX is defined in [12, Definition 4.2]; one has that GX(P, f :P → X) is the
functor (ΦX)op → CAT that sends an object (S, x) to the fibre P (S)x of fS:P (S)→ X(S)
at x. The left adjoint BX to GX is defined as follows. Let Z: (ΦX)op → CAT and

S ∈ Ob(E). We denote by (Z|S) the composite functor X(S)op → (ΦX)op
Z→ CAT . Then

BXZ(S) is the Grothendieck construction associated to (Z|S). Alternatively, BXZ(S)
can be described as the coend of the functor X(S)op ×X(S)→ CAT that sends (x, y) to
(Z|S)(x)×X(S)/y [7, Lemma 3.2]. The description of BXZ(S) as a coend is also present
in [12, Definition 4.1]. For all objects Z of [(ΦX)op ,CAT ], the unit map Z → GXBXZ is
an isomorphism.

3.5. Theorem. Suppose that X:Eop → GRPD. Then the adjoint pair (BX ,GX) is a
Quillen equivalence between [(ΦX)op ,CAT ]proj and ([Eop ,CAT ]proj )/X .

Theorem 3.5 is proved in [12, Theorem 4.4(b)] in the case when [Eop ,CAT ] is regarded
as having the injective model category. For completeness we shall give a simpler proof.
We first recall a few facts about

Fibrations over groupoids. Let E be a groupoid. Then a functor f :F → E is a
fibration if and only if f is an isofibration. In this case F cart is the maximal groupoid
associated to F and Fib(E) is a full subcategory of CAT /E, namely the subcategory of
fibrant objects.

Proof of Theorem 3.5. It is straightforward from the definition that GX preserves
fibrations and trivial fibrations. We claim that BX preserves and reflects weak equiva-
lences. Let u:Z → Z ′ be a map in [(ΦX)op ,CAT ]. For all S ∈ Ob(E) the map (BXu)S is
a map in Fib(X(S)). By [15, Proposition 4.3] (BXu)S is an X(S)-equivalence if and only
if for all x ∈ Ob(X(S)) the map u(S,x) is an equivalence. The claim follows. To complete
the proof it suffices to show that for all fibrant objects (P, f) of ([Eop ,CAT ]proj )/X the
map BXGX(P, f)→ (P, f) is a weak equivalence.

Let (P, f :P → X) be a fibrant object of ([Eop ,CAT ]proj )/X . Since X takes values
in groupoids, this means that for all S ∈ Ob(E) the map fS is a fibration. The map
BXGX(P, f) → (P, f) is a weak equivalence if and only if for all S ∈ Ob(E) the map
Φ(GX(P, f)|S)→ P (S) is an equivalence, where Φ(GX(P, f)|S) is the Grothendieck con-
struction associated to the functor (GX(P, f)|S):X(S)op → CAT that sends x to the
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fibre P (S)x of fS at x. By [15, Proposition 4.3] the map Φ(GX(P, f)|S) → P (S) is an
equivalence if and only if for all x ∈ Ob(X(S)) the map Φ(GX(P, f)|S)x → P (S)x is an
equivalence. But this map is the identity.

Proof of Theorem 3.4. Let m: ΦX → E be the natural map. We have the following
diagram of adjunctions

[(ΦX)op ,CAT ]
BX //

ΦX
��

[Eop ,CAT ]/X
GX
oo

U
��

Fib(ΦX)

SX

OO

m• //
Fib(E)

m•
oo

S(−)×X
OO

The functor U sends an object (P, P → X) to the composite ΦP → ΦX → E. There is
a natural isomorphism UBX

∼= m•ΦX .
We now make visible in the previous diagram the model categories we are interested

in:

Stack(Φ̂X)proj
BX //

ΦX
��

(Stack(Ê)proj )/X
GX
oo

U

��

Champ(ΦX)

SX

OO

m• //
Champ(E)

m•
oo

S(−)×X

OO

We prove that the functor BX preserves weak equivalences. The functor ΦX preserves
weak equivalences. Since (m•,m•) is a Quillen pair, the functor m• preserves weak equiv-
alences. It is clear that U reflects weak equivalences. Therefore BX preserves weak
equivalences. From Theorem 3.5 it follows then that (BX ,GX) is a Quillen pair.

To prove that (BX ,GX) is a Quillen equivalence it suffices to show that BX preserves
fibrant objects. We first notice that an object (P, P → X) of [Eop ,CAT ]/X is fibrant in

(Stack(Ê)proj )/X if and only if ΦP → ΦX is a fibration in Champ(E). Since ΦX is a stack,
this is equivalent to: ΦP is a stack and ΦP → ΦX is an isofibration. Let Z be a fibrant
object in Stack(Φ̂X)proj , meaning that ΦXZ is a stack over ΦX. By construction, BXZ
is fibrant in ([Eop ,CAT ]proj )/X . Notice that ΦXZ is (naturally isomorphic to) ΦBXZ
and that the natural map ΦXZ → ΦX is the Grothendieck construction Φ applied to the
natural map BXZ → X. In particular, ΦBXZ → ΦX is an isofibration. An application
of Proposition 3.1 to the sequence ΦXZ = ΦBXZ → ΦX → E finishes the proof.

4. On the invariance of stacks under change of base

In [5, II, Théorème 3.3.1 (voir aussi Lemme 3.3.2)], Giraud proves that if E ′ → E is
a morphism of sites that induces an equivalence between the associated categories of
sheaves, then the 2-categories stacks over E ′ and E are biequivalent. In this section we
give an alternative version to this result (Theorem 4.7). We first set up the framework.
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Let E,E ′ be sites and u:E → E ′ a functor. Consider the following solid arrow diagram
of adjunctions

Fib(E)
u•=Φ′u!L //

L
��

S

��

Fib(E ′)
u•

oo

S′

��

[Eop ,CAT ]

Φ

OO

u! //
[E ′op ,CAT ]

u∗
oo

Φ′

OO

in which u! is the left adjoint to the composition with u functor u∗, Φ and Φ′ are the
Grothendieck construction functors, L is the left adjoint to Φ and S and S′ are the right
adjoints to Φ and Φ′. We have Φu∗ = u•Φ

′. Let u• = Φ′u!L; then u• is a 2-functor. By
[5, I, Théorème 2.5.2] there is, for all fibrations F over E and all fibrations F ′ over E ′, a
natural equivalence of categories

CartE′(u
•(F ), F ′)

'→ CartE(F, u•(F
′)) (1)

We recall how this is obtained. All the functors in the preceding diagram of adjunctions
are 2-functors, and all the adjunctions are 2-adjunctions. Therefore there is a natural
isomorphism

CartE′(u
•(F ), F ′) ∼= CartE(F,Φu∗S′(F ′))

By [4, Remarque 5.12] there is a natural transformation

ξ:u∗S′ → Su•: Fib(E ′)→ [Eop ,CAT ] (2)

such that for all fibrations F ′ over E ′, ξF ′ is objectwise an equivalence of categories. The
desired natural equivalence is then obtained as the composite

CartE(F,Φu∗S′(F ′))→ CartE(F,ΦSu•(F
′))→ CartE(F, u•(F

′))

where the first arrow is induced by Φ(ξF ′) and the second by vu•(F
′).

4.1. Lemma. Let u:E → E ′ be a functor.

1. For all fibrations F over E there is a natural map F → u•u
•(F ).

2. For all fibrations F ′ over E ′ there is a map u•u•(F
′)→ F ′.

Proof. (1) The natural map is the composite

F → ΦLF → Φu∗u!LF = u•u
•F

(2) The map vu•(F
′): ΦSu•(F

′) → u•(F
′) is a surjective equivalence, hence it has a

section
vu•(F

′)−1:u•(F
′)→ ΦSu•(F

′)
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By [15, Proposition 4.13] the adjunct Lu•(F
′)→ Su•(F

′) to this map is a weak equivalence
in [Eop ,CAT ]proj . Consider the following solid arrow diagram

u∗S′(F ′)

ξF ′
��

Lu•(F
′)

d
99

// Su•(F
′)

in [Eop ,CAT ]. The vertical map is a weak equivalence in [Eop ,CAT ]proj between fibrant
objects and Lu•(F

′) is cofibrant, hence there is a (dotted) map d such that ξF ′d is ho-
motopic to the horizontal map. It follows that d is a weak equivalence. The (composite)
adjunct to d is a map Φ′u!Lu•(F

′)→ F ′, in other words a map u•u•(F
′)→ F ′.

Let E be a category. We recall that η:E → Ê denotes the Yoneda embedding and
that for S ∈ Ob(E) and a sieve R of E/S, Rp denotes the associated subfunctor of η(S).

We denote by D: Ê → [Eop ,CAT ] the functor induced by the discrete category functor
D: SET → CAT . One has R = ΦDRp.

We recall that a functor u:E → E ′ is said to be flat if for all S ′ ∈ Ob(E ′) the category
E\S

′
(whose objects are pairs (S, S ′ → u(S))) is cofiltered. We say that u is flat on sieves

if for all sieves R of E the natural functor R→ u(R) is flat. We say that u is locally flat
on sieves if for all S ∈ Ob(E) the functor uS:E/S → E ′/u(S) is flat on sieves.

4.2. Example. Every flat functor is locally flat on sieves.

The next result is an alternative to [5, II, Proposition 3.1.1] and can be compared to
[14, Tag 04WA].

4.3. Proposition. Let E,E ′ be sites and u:E → E ′ a continuous functor that is locally
flat on refinements. Then the functor u•: Fib(E ′)→ Fib(E) preserves stacks.

Proof. Let F ′ be a stack over E ′, S an object of E and R a refinement of S. Since (Φ, S)
is a 2-adjunction we have a natural isomorphism

CartE(R, u•(F
′)) ∼= Hom(DRp, Su•(F

′))

Using the natural equivalence (1) and the counit map LΦDη(S)→ Dη(S) we have maps

CartE′(Φ
′u!Dη(S), F ′)→ CartE′(Φ

′u!LΦDη(S), F ′)
'→ CartE(E/S, u•F

′)

We claim that the first map is an equivalence. Indeed, the map LΦDη(S) → Dη(S) is a
weak equivalence in [Eop ,CAT ]proj between cofibrant objects, hence the map

Φ′u!LΦDη(S)→ Φ′u!Dη(S)

is an E ′-equivalence. The claim is proved.
Let D′: Ê → [E ′op ,CAT ] be the functor induced by the discrete category functor and

u! be the left adjoint to the composition with u functor Ê ′ → Ê. Then u!D = D′u!. Using
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this and the fact that the composite adjunction (Φ′u!, u
∗S′) is a 2-adjunction, we have

maps

CartE(Φ′u!Dη(S), F ′)→ CartE(Φ′D′u!R
p, F ′) ∼= Hom(DRp, u∗S′(F ′))

with the first map an equivalence by [1, III, Proposition 1.2] since F ′ is a stack.
Putting all of these maps together we see that it remains to prove that the map

Hom(DRp, ξF ′): Hom(DRp, u∗S′(F ′))→ Hom(DRp, Su•(F
′))

is an equivalence. But this follows from Lemma 4.4.

4.4. Lemma. Let u:E → E ′ be a functor that is locally flat on sieves. Then for all
fibrations F ′ over E ′, all S ∈ Ob(E) and all sieves R of E/S, the map

Hom(DRp, ξF ′): Hom(DRp, u∗S′(F ′))→ Hom(DRp, Su•(F
′))

is an equivalence.

Proof. Consider the following commutative diagram

Rop //

uopS
��

(E/S)op

��

// Eop

��

u∗S′(F ′)
// CAT

uS(R)
op

// (E ′/u(S))
op // E ′op

S′(F ′)

<<

We denote by (u∗S′(F ′)|R) the composite of the top horizontal arrows and by (S′(F ′)|uS(R))
the composite of the bottom horizontal arrows followed by S′(F ′). By [15, Proposition
4.13] the object S′(F ′) is fibrant in [E ′op ,CAT ]inj . By Proposition 4.5 the object

u∗S(S′(F ′)|uS(R)) = (u∗S′(F ′)|R)

is fibrant in [Rop ,CAT ]inj , where u∗S is the composition with uopS functor. By [15, Propo-
sition 4.13], the object Su•(F

′) is fibrant in [Eop ,CAT ]inj . We denote by (Su•(F
′)|R) the

composite of Su•(F
′) and Rop → Eop ; then by Proposition 4.5 the object (Su•(F

′)|R) is
fibrant in [Rop ,CAT ]inj . Thus, we have a weak equivalence

(u∗S′(F ′)|R)→ (Su•(F
′)|R)

in [Rop ,CAT ]inj between fibrant objects. Since the limit functor is a right Quillen functor
[Rop ,CAT ]inj → CAT , the result follows.
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4.5. Proposition. Let u:E → E ′ be a functor that is either flat or a discrete fibration.
Then the adjoint pair

[Eop ,CAT ]inj
u! //

[E ′op ,CAT ]inj
u∗
oo

is a Quillen pair.

Proof. We show that u! preserves cofibrations and weak equivalences. Let X be a
presheaf on E with values in CAT and S ′ ∈ Ob(E ′). Then u!X(S ′) is calculated as the
colimit of a presheaf on E\S

′
with values in CAT . Suppose that u is flat. Then the result

follows from the fact that a filtered colimit of monomorphisms of sets is a monomorphism
and that a filtered colimit of equivalences is an equivalence. Suppose that u is a discrete
fibration. Let ES′ be the fibre category of u at S ′. The natural functor ES′ → E\S

′
has

a right adjoint hence it is cofinal. The result follows then from the fact that a coproduct
of monomorphisms of sets is a monomorphism and that a coproduct of equivalences is an
equivalence.

Let u:E → E ′ be a continuous functor between sites. Consider the solid arrow diagram

Fib(E)

L
��

Fib(E ′)
u•oo

L′

��

[Eop ,CAT ]
u! //

Φ

OO

a
��

[E ′op ,CAT ]

a′
��

Φ′

OO

u∗
oo

Cat(Ẽ)

i

OO

Cat(Ẽ ′)
u∗

oo

i′

OO

where u! is the left adjoint to the functor u∗ obtained by composing with u and a and
a′ are induced by the associated sheaf functors. The dotted arrow u∗ is induced by the
composition with u functor since u is continuous. One has Φiu∗ = u•Φ

′i′. This u∗ has the
composite functor a′u!i as left adjoint. Recall from [15, Theorem 7.2] the model category

Stack(Ẽ)proj .

4.6. Corollary. Let E,E ′ be sites and u:E → E ′ a continuous functor that is locally
flat on refinements. Then the functor u∗: Cat(Ẽ ′) → Cat(Ẽ) is the right adjoint of a

Quillen pair between Stack(Ẽ ′)proj and Stack(Ẽ)proj .

Proof. It suffices to show that u∗ preserves trivial fibrations and fibrations between
fibrant objects. From the definition of fibration and weak equivalence of Stack(Ẽ)proj
[15, Theorem 7.2], we see that it suffices to prove that u• preserves trivial fibrations,
isofibrations and stacks. The first two requirements are clear, the last one is Proposition
4.3.
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For the next result we denote by Stack(E) the full sub-2-category of Fib(E) whose
objects are the stacks over E.

4.7. Theorem. Let E,E ′ be sites and u:E → E ′ a continuous functor that is locally
flat on refinements. Suppose that the functor u∗: Cat(Ẽ ′) → Cat(Ẽ) is the right ad-

joint of a Quillen equivalence between Stack(Ẽ ′)proj and Stack(Ẽ)proj . Then the map
u•: Stack(E ′)→ Stack(E) is a biequivalence of 2-categories.

Proof. Let F ′ and G′ be stacks over E ′. We show that the map

CartE′(F
′, G′)→ CartE(u•(F

′), (u•(G
′)) (3)

is an equivalence. Let εF ′ :u
•u•(F

′) → F ′ be the map constructed in Lemma 4.1(2).
Consider the composite

CartE′(F
′, G′)→ CartE′(u

•u•(F
′), G′)

'→ CartE(u•(F
′), (u•(G

′)) (4)

where the first map is induced by εF ′ and the second one by (1). This composite is not
the map (3), but it is homotopic, in other words naturally isomorphic, to it. Hence to
prove that (3) is an equivalence it suffices to prove that the map induced by εF ′ is an
equivalence. To prove this it suffices to prove that εF ′ is a bicovering map, since G′ is a
stack. Going back to the construction of εF ′ in the proof of Lemma 4.1(2), recall that
there is a weak equivalence

d: Lu•(F
′)→ u∗S′(F ′)

in [Eop ,CAT ]proj . By [15, Proposition 4.13] the object Lu•(F
′) is cofibrant in [Eop ,CAT ]proj .

Since F ′ is a stack, the object S′(F ′) is fibrant in Stack(Ê ′)proj [15, Theorem 7.4]. By hy-

pothesis and [15, Theorems 7.2 and 7.4], the model categories Stack(Ê)proj and Stack(Ê ′)proj
are Quillen equivalent, therefore the adjunct of d, which is a map u!Lu•(F

′)→ S′(F ′), is

a weak equivalence in Stack(Ê ′)proj . This implies that εF ′ is a bicovering map.
Let now F be a stack over E. We need to show that there is a stack F ′ over E ′

and an equivalence u•(F
′) ' F in Stack(E). Equivalently, we need to show that there

is a stack F ′ over E ′ and an E-equivalence u•(F
′) → F . The unit F → ΦLF of the

adjunction (L,Φ) is an E-equivalence, therefore LF is fibrant in Stack(Ê)proj [15, Theorem
7.4]. The object LF is also cofibrant. By hypothesis and [15, Theorems 7.2 and 7.4],

the model categories Stack(Ê)proj and Stack(Ê ′)proj are Quillen equivalent. Therefore, if

u!LF → û!LF is a fibrant approximation to u!LF in Stack(Ê ′)proj , then the composite

map LF → u∗u!LF → u∗û!LF is a weak equivalence in Stack(Ê)proj . The composite map
is a weak equivalence between fibrant objects, therefore it is objectwise an equivalence of
categories. It follows that the composite

F → ΦLF → u•(Φ
′û!LF )

is an E-equivalence, with Φ′û!LF a stack over E ′.
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Appendix

On the comparison lemma

Let E and E ′ be two sites. In this section we shall give some sufficient conditions under
which a continuous functor E → E ′ (2.26) induces an equivalence between the categories

of sheaves Ẽ ′ and Ẽ (Proposition 4.16). These are needed in the proof of Theorem 2.33.
The original result of this kind is the so-called comparison lemma [1, III, Théorème 4.1].
To the best of our knowledge, generalizations of the comparison lemma have been given
in [13, page 152], [9, C2.2, Theorem 2.2.3] and [14, Tag 039Z]. Our conditions coincide
with those of [14], but to arrive at them we use a different approach, one that we hope
is ‘plus naturelle’. We also work in full generality, meaning that the topologies are not
necessarily generated by pretopologies. An effort was made to make the presentation less
dependent on the results of [1, III].

We begin by considering the following solid arrow diagram of categories and functors

M
F //

a
��

M′

G
oo

a′
��

N

i

OO

F ′ //
N′

G′
oo

i′

OO

We assume that F is left adjoint to G, a is left adjoint to i, a′ is left adjoint to i′, iG′ = Gi′,
and i, i′ are full and faithful. Then one can easily check that F ′ = a′Fi is left adjoint to
G′. Our goal is to provide some extra assumptions on the categories and functors in the
above diagram that will make the adjoint pair (F ′, G′) an adjoint equivalence (Corollary
4.11).

We say that a map f of M is a local isomorphism/epimorphism/monomorphism if a(f)
is an isomorphism/epimorphism/monomorphism in N. We say the same about a map of
M′.

There is a natural transformation

ν: aG→ G′a′:M′ → N

defined as νY = aG(η′Y ), where η′Y :Y → i′a′(Y ) is the unit of the adjunction.

4.8. Lemma. The natural transformation ν is a natural isomorphism if and only if G
preserves local isomorphisms.

Proof. Suppose that ν is a natural isomorphism. Let Y → Y ′ be a local isomorphism.
From the commutative diagram

aG(Y )
νY //

��

G′a′(Y )

��

aG(Y ′)
νY ′ // G′a′(Y ′)
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it follows that G(Y ) → G(Y ′) is a local isomorphism. Conversely, for each object Y of
M′, the unit map η′Y :Y → i′a′(Y ) is a local isomorphism.

4.9. Lemma. Consider the following two properties:

(u) for each object X of N, the unit map i(X)→ GFi(X) is a local isomorphism, and

(c) for each object Y of N′, the counit map FGi′(Y )→ i′(Y ) is a local isomorphism.

1. If (u) holds and G reflects local isomorphisms then (c) holds.

2. Assume that G preserves local isomorphisms. Then (F ′, G′) is an adjoint equivalence
if and only if both (u) and (c) hold.

Proof. Suppose that (u) holds and that G reflects local isomorphisms. It suffices to
show that the map GFGi′(Y )→ Gi′(Y ) is a local isomorphism. The composite Gi′(Y )→
GFGi′(Y )→ Gi′(Y ) is the identity and the first map in the previous sequence is obtained
by putting X = G′(Y ) in (u), hence the conclusion.

If (F ′, G′) is an adjoint equivalence then clearly (u) and (c) hold. Conversely, let
Y ∈ Ob(N′). The counit map F ′G′(Y )→ Y is the composite

a′FGi′(Y )→ a′i′(Y )→ Y

so it is an isomorphism by (c). Let X ∈ Ob(N). The unit map X → G′F ′(X) is the
composite

X → ai(X)→ aGFi(X)→ G′a′Fi(X)

so it is an isomorphism by (u) and Lemma 4.8.

We recall that a category is said to have kernel (cokernel) pairs when the pullback
(pushout) of any arrow along itself exists.

4.10. Lemma. Assume that:

1. the categories M,M′,N and N′ have kernel pairs and the functors a, a′ preserve
kernel pairs;

2. in N and N′, a morphism is an isomorphism if and only if it is both an epimorphism
and a monomorphism.

If G preserves (reflects) local epimorphisms, then G preserves (reflects) local isomor-
phisms.
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Proof. Let f :X → Y be an arbitrary map in N. We claim that
(i) aG(f) is a monomorphism if and only if G(X → X ×Y X) is a local epimorphism,

and
(ii) a′(f) is a monomorphism if and only if X → X ×Y X is a local epimorphism.
The claims are true since a and a′ preserve kernel pairs.
Suppose that G preserves local epimorphisms. Let f :X → Y be a local isomorphism

of N. Since a′(f) is an epimorphism, so is aG(f). Since a′(f) is a monomorphism, the map
X → X ×Y X is a local epimorphism by the above, therefore G(X → X ×Y X) is a local
epimorphism, so again by the above the map aG(f) is a monomorphism. Therefore G(f)
is a local isomorphism. Suppose now that G reflects local epimorphisms. Let f :X → Y
be a map in N such that G(f) is a local isomorphism. Since aG(f) is an epimorphism, the
map f is a local epimorphism. Since aG(f) is a monomorphism, the map G(X → X×YX)
is a local epimorphism by the above, therefore X → X ×Y X is a local epimorphism, so
again by the above the map a′(f) is a monomorphism.

Summing up the last three Lemmas we obtain

4.11. Corollary. Assume that:

1. the categories M,M′,N and N′ have kernel pairs and the functors a, a′ preserve
kernel pairs;

2. in N and N′, a morphism is an isomorphism if and only if it is both an epimorphism
and a monomorphism;

3. the functor G preserves and reflects local epimorphisms;

4. for each object X of N, the unit map i(X)→ GFi(X) is a local isomorphism.

Then the adjoint pair (F ′, G′) is an adjoint equivalence.

4.12. Lemma. Assume that the categories M,M′,N and N′ have cokernel pairs. Then
G reflects local epimorphisms if and only if for each object Y of M′, the counit map
FG(Y )→ Y is a local epimorphism.

Proof. Suppose that G reflects local epimorphisms. Let Y ∈ Ob(M′). It suffices to
show that the map GFG(Y ) → G(Y ) is a local epimorphism. The composite G(Y ) →
GFG(Y ) → G(Y ) is the identity, hence the map GFG(Y ) → G(Y ) is an epimorphism,
hence a local epimorphism. Conversely, let Y → Y ′ be a map of N such that G(Y ) →
G(Y ′) is a local epimorphism. From the commutative diagram

FG(Y ) //

��

FG(Y ′)

��

Y // Y ′

it suffices to show that F preserves local epimorphisms. But this is true since a′F ∼= F ′a.
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We now return to our original problem. Let u:E → E ′ be a continuous functor. We
denote by Ê and Ê ′ the categories of presheaves on E and on E ′. The composition with
u functor u∗: Ê ′ → Ê sends sheaves to sheaves. The functor u∗ has a left adjoint u! and
a right adjoint u∗. We denote by y both Yoneda embeddings E → Ê and E ′ → Ê ′. For
S ∈ Ob(E) and a sieve R of E/S, we denote by Rp the associated subfunctor of y(S). We
wish to apply Corollary 4.11 to the diagram

Ê
u! //

a
��

Ê ′
u∗
oo

a′
��

Ẽ

i

OO

ũ! //
Ẽ ′

u∗
oo

i′

OO

in which a, a′ are the associated sheaf functors and ũ! = a′u!i. Conditions (1) and (2) are
satisfied. In the next three Lemmas we deal with conditions (3) and (4). Recall from 2.26
the notion of cocontinuous functor.

4.13. Lemma. Let E,E ′ be sites and u:E → E ′ a functor. The following are equivalent:

1. u is cocontinuous;

2. the functor u∗: Ê ′ → Ê preserves local epimorphisms;

3. the functor u∗ preserves sheaves.

Proof. We prove that (1) ⇔ (2). Suppose that u is cocontinuous. Let f :X → Y be

a local epimorphism in Ê ′. Let S ∈ Ob(E) and y ∈ Y (u(S)). There is a refinement
R of u(S) such that for each element α:S ′ → u(S) of R, there is x ∈ X(S ′) such that
α∗(y) = f(x). By assumption, RuS is a refinement of S. It follows that u∗(f) is a
local epimorphism. Conversely, let S ∈ Ob(E) and R′ be a refinement of u(S). Then
R′p → y(u(S)) is a local epimorphism, so u∗(R′p) → u∗(y(u(S))) is a local epimorphism.
Choosing the identity map of S in u∗(y(u(S)))(S), it follows that there is a refinement R
of S such that for each element α:T → S of R, there is β:u(T ) → u(S) in R′ such that
u(α) = β. This means that uS(R) ⊆ R′, so u is cocontinuous.

The equivalence of (1) with (3) is [1, III, Proposition 2.2]. Here is another proof.
Suppose that u is cocontinuous. Let S ′ ∈ Ob(E) and R be a refinement of S ′. Let jR be

the map Rp → y(S ′) and X a sheaf on E. We have a natural bijection Ê ′(jR, u∗(X)) ∼=
Ê(u∗(jR), X). Since u∗(jR) is a local isomorphism, it follows that u∗(X) is a sheaf.
Conversely, let f :X → Y be a local epimorphism. By factoring f into an epimorphism
followed by a monomorphism, we may assume that f is a monomorphism as well. Then
u∗(f) is a local isomorphism if and only if for each sheaf Z on E the map Ê(u∗(f), Z) is

bijective if and only if for each sheaf Z on E the map Ê ′(f, u∗(Z)) is bijective. But this
is true by assumption.
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It follows from Lemma 4.13 that for a continuous and cocontinuous functor u:E → E ′

between sites, the adjoint pair (u∗, u∗) restricts to an adjoint pair between Ẽ ′ and Ẽ.

4.14. Lemma. Let E,E ′ be sites and u:E → E ′ a continuous functor. The following are
equivalent:

1. the functor u∗: Ê ′ → Ê reflects local epimorphisms;

2. for each presheaf Z on E ′, the counit map u!u
∗(Z)→ Z is a local epimorphism;

3. each object S ′ of E ′ has a refinement whose objects are of the form T ′ → u(S)→ S ′.

Proof. By Lemma 4.12 it suffices to prove that (2)⇔ (3). We recall that for an object S ′

of E ′, the counit map u!u
∗(Z)(S ′)→ Z(S ′) sends an equivalence class [S ∈ Ob(E), α:S ′ →

u(S), z ∈ Z(u(S))] to α∗(z). Assume (2). Let S ′ be an object of E ′. Taking Z to be
the representable y(S ′), we have that for each object T ′ of E ′ and each map γ:T ′ → S ′,
there is a refinement R′ of T ′ such that for each element g:T ′′ → T ′ of R′ there is an
element [S ∈ Ob(E), α:T ′′ → u(S), β:u(S) → S ′] such that βα = γg. In particular,
taking T ′ = S ′ and γ to be the identity map of S ′, we obtain the desired refinement of
S ′. Assume (3). Since every presheaf on E ′ is a colimit of representables, the functor u∗

preserves colimits and a colimit of local epimorphisms is a local epimorphism, it suffices
to show that for each object S ′ of E ′, the counit map u!u

∗(y(S ′)) → y(S ′) is a local
epimorphism. Let T ′ be an object of E ′ and γ:T ′ → S ′. There is a refinement R of

T ′ whose objects are of the form T ′′
α→ u(S)

β→ T ′. For each such object we have the
element [S, α:T ′′ → u(S), γβ:u(S)→ S ′] of u!u

∗(y(S ′))(T ′′). This element is sent to γβα,
so u!u

∗(y(S ′))→ y(S ′) is a local epimorphism.

Suppose that in Lemma 4.14 the category E ′ has the discrete topology. Then condition
(3) means ‘every object of E ′ is a retract of an object in the image of u’.

4.15. Lemma. Let E,E ′ be sites and u:E → E ′ a continuous and cocontinuous functor.
Assume that:

1. for each object S of E, the unit map y(S)→ u∗u!(y(S)) is a local monomorphism;

2. for each object S of E, the unit map y(S)→ u∗u!(y(S)) is a local epimorphism.

Then the functor u∗: Ẽ → Ẽ ′ is full and faithful.

Proof. We recall that (1) means that for each pair of maps f, g:T → S of E such that
u(f) = u(g), there is a refinement R of T such that for each element h:U → T of R we
have fh = gh; (2) means that for each map α:u(T ) → u(S) of E ′, there is a refinement
R of T such that for each element f :U → T of R there is a map h:U → S such that
αu(f) = u(h).

To prove the Lemma it suffices to prove that for each sheaf X on E, the counit
map u∗u∗(X) → X is an isomorphism in Ê. Recall that u∗(X)(S ′) is the limit of the
functor (u ↓ S ′)op → SET that sends an object (T, α:u(T ) → S ′) to X(T ). We prove
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that u∗u∗(X) → X is an epimorphism. Let S ∈ Ob(E) and x ∈ X(S). Let us fix
an object (T, α:u(T ) → u(S)) of (u ↓ u(S)). By (2) there is a refinement R(T,α) of
T such that for each element f :U → T of R(T,α) there is a map hf :U → S such that
αu(f) = u(hf ). We claim that the family (h∗f (x))f is an element in the limit of the functor
(X|R(T,α)):R

op
(T,α) → SET . Let g: (U ′, f ′) → (U, f) be a map in R(T,α). We have to show

that g∗(h∗f (x)) = h∗f ′(x) in X(U ′). Since u(hfg) = u(hf ′), there is by (1) a refinement R′

of U ′ such that for each element e:V → U ′ of R′ we have hfge = hf ′e. Since X is a sheaf,
the natural map

X(U ′)→ lim
R′op

(X|R′)

is bijective. It follows that g∗(h∗f (x)) = h∗f ′(x). Again since X is a sheaf there is a
unique x(T,α) in X(T ) such that f ∗(x(T,α)) = h∗f (x). Next, we claim that the family
(x(T,α))(T,α) belongs to u∗(X)(u(S)). Let g: (T ′, α′)→ (T, α) be a map in (u ↓ u(S)). Then
R(T ′,α′) ∩ Rg

(T,α) is a refinement of T ′. For each element e:U ′ → T ′ of R(T ′,α′) ∩ Rg
(T,α) we

have e∗(g∗(x(T,α))) = h∗ge(x) and e∗(x(T ′,α′)) = (h′e)
∗(x) in X(U ′). We have u(hge) = u(h′e)

by construction, so by (1) there is a refinement R′ of U ′ such that for each element
k:V → U ′ of R′ we have hgek = h′ek. Since X is a sheaf it follows that h∗ge(x) = (h′e)

∗(x).
Again since X is a sheaf it follows that g∗(x(T,α)) = x(T ′,α′), and the claim is proved. The
uniqueness of x(T,α) implies that x(S,1u(S)) = x.

We now prove that u∗u∗(X) → X is a monomorphism. Let S be an object of E and
(x(T,α))(T,α), (x

′
(T,α))(T,α) be two elements of u∗(X)(u(S)) such that x(S,1u(S)) = x′(S,1u(S)).

By (2) there is a refinement R(T,α) of T such that for each element f :U → T of R(T,α)

there is a map hf :U → S such that αu(f) = u(hf ). Then, for each element f :U → T
of R(T,α) we have, by naturality, f ∗(x(T,α)) = x(U,u(hf )) = h∗f (x(S,1u(S))) = h∗f (x

′
(S,1u(S))

) =

x′(U,u(hf )) = f ∗(x′(T,α)). Since X is a sheaf it follows that x(T,α) = x′(T,α).

4.16. Proposition. Let E,E ′ be sites and u:E → E ′ a continuous and cocontinuous
functor. Assume that:

1. for each object S of E, the unit map y(S)→ u∗u!(y(S)) is a local monomorphism;

2. for each object S of E, the unit map y(S)→ u∗u!(y(S)) is a local epimorphism;

3. each object S ′ of E ′ has a refinement whose objects are of the form T ′ → u(S)→ S ′.

Then the functor u∗: Ê ′ → Ê induces an equivalence between the categories of sheaves Ẽ ′

and Ẽ.

Proof. We shall use Corollary 4.11. Conditions (1) and (2) are clear. Condition (3)
follows from Lemmas 4.13 and 4.14. Condition (4) follows from Lemma 4.15, using the
fact that if an arbitrary functor has both a left and right adjoint, then the left adjoint is
full and faithful if and only if the right adjoint is so.
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Concerning the assumptions of Proposition 4.16, we recall that there are familiar situa-
tions when u satisfies the conditions (1) to (3) without being continuous and cocontinuous.
For example, E is the category of affine schemes equipped with a topology finer than the
Zariski topology, E ′ is the category of schemes with the Zariski topology, and u is the
inclusion. In these situations one can try to construct a finer topology on E ′ in order to
make u continuous and cocontinuous; this works for schemes [3, IV, Proposition 6.2.1].

The next result is a converse to Proposition 4.16.

4.17. Proposition. Let E,E ′ be sites having topologies less fine than the canonical
topology. Let u:E → E ′ be a continuous and cocontinuous functor. If the functor
u∗: Ê ′ → Ê induces an equivalence between the categories of sheaves Ẽ ′ and Ẽ, then
u is full and faithful and each object S ′ of E ′ has a refinement whose objects are of the
form T ′ → u(S)→ S ′.

Proof. We shall apply the second part of Lemma 4.9. Let S ∈ Ob(E). The unit
map y(S) → u∗u!(y(S)) is a local isomorphism between sheaves, hence an isomorphism,
therefore u is full and faithful. Let S ′ ∈ Ob(E ′). The counit map u!u

∗(y(S ′)) → y(S ′) is
a local isomorphism, hence a local epimorphism, and then we can reason as in the proof
of Lemma 4.14.

4.18. Lemma. Let E,E ′ be sites and u:E → E ′ a functor. Suppose that

1. u is refinement preserving;

2. u is full and faithful;

3. each object S ′ of E ′ has a refinement whose objects are of the form T ′ → u(S)→ S ′.

Then u is continuous.

Proof. Let S ∈ Ob(E) and R be a refinement of S. Consider the natural factorization
from Lemma 2.29

u!(R
p)

e
$$

// y(u(S))

uS(R)
p

99

We will show that the map e is a local monomorphism, and conclude by [1, III, Propo-
sition 1.2] and [5, 0, Proposition 3.5.2(iii)]. Let S ′ ∈ Ob(E ′) and [T ∈ Ob(E), α:S ′ →
u(T ), f :T → S, f ∈ R], [U ∈ Ob(E), α′:S ′ → u(U), g:U → S, g ∈ R] be two elements of
u!(R

p)(S ′) such that u(f)α = u(g)α′. There is a refinement R′ of S ′ whose objects are of
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the form S ′′
ig→ u(V )

ig→ S ′. For each such object we consider the diagram

S ′′

γ

��

u(V )

δ
��

S ′

α

{{

α′

##

u(T )

u(f) ##

u(U)

u(g){{

u(S)

The assumption that u is full and faithful implies that we have a commutative diagram

S ′′

{{ ##

γ

��

u(T )

u(f) ##

u(V )
u(h)
oo

u(h′)
//

��

u(U)

u(g){{

u(S)

This implies that [T ∈ Ob(E), αγδ:S ′′ → u(T ), f :T → S, f ∈ R] = [U ∈ Ob(E), α′γδ:
S ′′ → u(U), g:T → S, f ∈ R] in u!(R

p)(S ′′), so e is a local monomorphism.
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Algébrique du Bois Marie 1960–1961 (SGA 1), Lecture Notes in Mathematics, Vol.
224. Springer-Verlag, Berlin-New York, 1971. xxii+447 pp.

[7] M. Heggie, The left derived tensor product of CAT-valued diagrams, Cahiers Topolo-
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