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STRICT ω-CATEGORIES ARE MONADIC OVER POLYGRAPHS

FRANÇOIS MÉTAYER

Abstract. We give a direct proof that the category of strict ω-categories is monadic
over the category of polygraphs.

Introduction

This short note presents a proof of monadicity for the adjunction between the cate-
gory Catω of strict ω-categories and the category Polω of polygraphs (or computads, as
first introduced by Street in [Str76]). Here we follow the presentation and terminology
of [Bur93, Mét03]. The reader may consult [Mét08] for a detailed description of the cate-
gories and functors referred to in this particular case, or [Bat98] for a broader perspective
including generalized “A-computads” for a monad A on globular sets. The latter paper
rightly asserts the monadicity theorem, but some parts of the proof rely on the fact that
the category of A-computads is a presheaf category, which is precisely not true in the
present case, where A is the monad of strict ω-categories [MZ08, Che13]. Since then,
the status of monadicity for Catω has remained somewhat unclear (see e.g the entry
“computad” on the nLab [nLa]). Our proof is based on the same ideas as developed
in [Bat98], except that we avoid the presheaf argument and establish instead a lifting
result (Lemma 2.1), possibly of independent interest.

As for notations, whenever a functor F is a right-adjoint, we denote its left-adjoint by
F ∗. Let us finally mention a small point about terminology. Given a functor F : A→ B,
with left-adjoint F ∗, and T = FF ∗ the associated monad on B, there is a comparison
functor K from A to the category BT of T -algebras: we call F monadic if K is an
equivalence of categories, and strictly monadic if K is an isomorphism. We refer to [ML71,
VI.7] for corresponding variants of Beck’s monadicity criterion.

1. Three adjunctions

In this section, we briefly describe three pairs of adjoint functors between categories Globω
of globular sets, Catω of strict ω-categories and Polω of polygraphs.
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As ω-categories are globular sets with extra structure, there is an obvious forgetful
functor

U : Catω → Globω

This functor U has a left-adjoint U∗ taking a globular set X to the ω-category U∗X it
generates. Moreover this adjunction is strictly monadic.

A second adjunction involves functors V, V ∗ between Catω and Polω. Unlike U ,
the right adjoint V is not quite obvious. Thus, let C be an ω-category, the polygraph
P = V (C) is defined by induction, together with a morphism εC : V ∗(P )→ C:

• For n = 0, P0 = C0 and εC0 is the identity.

• Suppose n > 0, and P , εC have been defined up to dimension n−1. The set of
n-generators of P is then the set Pn of triples p = (z, x, y) where z ∈ Cn, x, y
are parallel cells in P ∗n−1 and z : εCn−1(x) → εCn−1(y). The source and target of
p in P ∗n−1 are x = sn−1(p) and y = tn−1(p) respectively, and εCn (p) = z. By the
universal property of polygraphs, εDn extends uniquely to a map from P ∗n to Cn
preserving compositions and identities. Functoriality of V is immediate and V is in
fact right-adjoint to V ∗ (see [Bat98, Mét03]).

Note that
εC : V ∗V (C)→ C

is the counit of this adjunction and determines the standard polygraphic resolution of C.
We finally describe a functor

G : Polω → Globω

Let P be a polygraph. Let us denote by jn : Pn → P ∗n the canonical inclusion of the set
of n-generators of P into the set of n-cells of P ∗ = V ∗(P ). We define the globular set
X = G(P ) dimensionwise, so that for each n ∈ N, Xn ⊂ Pn:

• For n = 0, X0 = P0.

• Let n > 0 and suppose we have defined Xk ⊂ Pk for all k < n, together with
source and target maps building an n−1-globular set. Let Xn ⊂ Pn be the set of
n-generators a of P such that sn−1(a) and tn−1(a) belong to jn−1(Xn−1) and define
source and target maps sXn−1, t

X
n−1 : Xn → Xn−1 as the unique maps such that

jn−1s
X
n−1(a) = sn−1(a) and jn−1t

X
n−1(a) = tn−1(a) for each a ∈ Xn. This extends X

to an n-globular set.
Xn

tXn−1

��
sXn−1

��

� � // Pn
tn−1

##sn−1 ##
Xn−1

� � // Pn−1 jn−1

// P ∗n−1

(1)
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The previous construction is clearly functorial and defines the required functor G. Remark
that G admits a left adjoint G∗ : Globω → Polω which takes the globular set X to a
polygraph P such that Pn = Xn, in other words G∗ defines a natural inclusion of Globω
into Polω.

Note that G forgets all generators of P that are not “hereditary globular”, so that for
instance G(P ) may have no cells at all beyond dimension 1. However, the following result
shows that the functor G is not always trivial.

1.1. Lemma. There is a natural isomorphism φ : GV → U , that is, the following diagram
commutes up to a natural isomorphism

Catω
V //

U
��

Polω

Gzz
Globω

(2)

Proof. Let C be an ω-category, and X = GV (C). For each n ∈ N, let φCn : Xn → Cn be
the composition of the following maps

Xn
� � // V (C)n

jn // V ∗V (C)n
εCn // Cn

As εC is an ω-morphism and (1) commutes, the family (φCn )n∈N defines a globular mor-
phism φC : GV (C) → U(C), natural in C. Thus we get a natural transformation
φ : GV → U .

Let us now define χCn : Cn → Xn by induction on n such that φCn ◦ χCn = 1Cn :

• For n = 0, X0 = C0 and φC0 = 1C0 = 1X0 , so that χC0 : C0 → X0 is also 1C0 = 1X0 .

• Suppose n > 0 and χCk has been defined up to k = n−1, and let z ∈ Cn. Let
u = sn−1(z) and v = tn−1(z) in Cn−1. By induction hypothesis, χCn−1(u) and χCn−1(v)
belong to Xn−1. Let x = jn−1χ

C
n−1(u), y = jn−1χ

C
n−1(v) in V ∗V (C)n−1 and define

a = χCn (z) = (z, x, y). By construction a ∈ Xn and φCn (a) = z.

It remains to prove that φCn is injective. We reason again by induction on n:

• For n = 0, φC0 is an identity, hence injective.

• Suppose n > 0 and φCn−1 injective. Let ai = (zi, xi, yi) ∈ Xn for i = 0, 1 such that
φCn (a0) = φCn (a1). Thus z0 = z1. Also

φCn−1(s
X
n−1(a0)) = sn−1(φ

C
n (a0))

= sn−1(φ
C
n (a1))

= φCn−1(s
X
n−1(a1))

and because φCn−1 is injective,

sXn−1(a0) = sXn−1(a1)
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Now

x0 = sn−1(a0)

= jn−1s
X
n−1(a0)

= jn−1s
X
n−1(a1)

= sn−1(a1)

= x1

Likewise y0 = y1, and we get a0 = a1. Hence φCn is injective and we are done.

2. Lifting lemma

The forgetful functor U : Catω → Globω is faithful, but clearly not full. However,
globular morphisms lift to ω-morphisms in the sense of the following result:

2.1. Lemma. Let C, D be ω-categories and α : U(C) → U(D) be a globular morphism.
Then there is a unique morphism α : V (C) → V (D) in Polω such that the following
square commutes:

UV ∗V (C)

U(εC)
��

UV ∗(α) // UV ∗V (D)

U(εD)
��

U(C) α
// U(D)

(3)

Proof. We build the required morphism α : V (C)→ V (D) by induction on the dimen-
sion. Note that diagram (3) yields a diagram in Sets at any given dimension n. We may
therefore drop the letter U in the following computations. Also α∗ is short for V ∗(α).

• For n = 0, we have V (C)0 = C0, V (D)0 = D0; also εC0 and εD0 are identities, so that
α0 = α0 is the unique solution.

• Suppose n > 0 and we have defined α satisfying the commutation condition, up
to dimension n−1. Let p = (z, x, y) be an n-generator of V (C). Suppose α(p) =
(z′, x′, y′): the commutation condition implies z′ = α(z), x′ = α∗n−1(x) and y′ =
α∗n−1(x), so that α extends in at most one way to dimension n, and uniqueness
holds. As for the existence, x, y are parallel (n−1)-cells in V ∗V (C)n−1; by induction
hypothesis, their images x′ = α∗n−1(x) and y′ = α∗n−1(x) are (n−1)-parallel cells in
V ∗V (D). Again, by induction hypothesis, (3) commutes in dimension n−1; also α
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is a globular map, hence

sn−1(z
′) = sn−1(αn(z))

= αn−1(sn−1(z))

= αn−1(ε
C
n−1(x))

= εDn−1(α
∗
n−1(x))

= εDn−1(x
′)

and likewise
tn−1(z

′) = εDn−1(y
′)

Therefore p′ = (z′, x′, y′) is an n-generator of V (D). Also sn−1(p
′) = x′ = α∗n−1(x) =

α∗n−1(sn−1(p)) and tn−1(p
′) = y′ = α∗n−1(y) = α∗n−1(tn−1(p)), so that α extends

to a morphism in Polω up to dimension n. Finally the diagram (3) commutes in
dimension n : it is sufficient to check this on generators, but

εDn α
∗
n(p) = εDn (p′)

= z′

= αn(z)

= αnε
C
n (p)

and we are done.

3. Monadicity

We now turn to the main result.

3.1. Theorem. The functor V : Catω → Polω is monadic.

Proof. Recall that monadicity means here that Catω is equivalent to the category of
algebras of the monad V V ∗ on Polω. By using the corresponding version of Beck’s
criterion, this amounts to show that (i) V reflects isomorphisms and (ii) if f , g is a parallel
pair of ω-morphisms such that the pair V (f), V (g) has a split coequalizer in Polω, then f ,
g has a coequalizer in Catω, and V preserves coequalizers of such pairs (see for instance
[ML71, VI.7, exercises 3 and 6]).

First, if f : C → D is an ω-morphism such that V (f) is an isomorphism, then GV (f)
is an isomorphism in Globω and by Lemma 1.1, U(f) is an isomorphism. Now, U reflects
isomorphisms, hence f is an isomorphism. Therefore V reflects isomorphisms as required.

Now, let f, g : C → D be a pair of ω-morphisms and suppose

V (C)
V (f) //
V (g)

// V (D)
k
//

b

}}
P

a

��
(4)
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is a split coequalizer in Polω where k ◦ a = 1P , V (f) ◦ b = 1V (D) and V (g) ◦ b = a ◦ k. By
applying the functor G to (4), we get a split coequalizer in Globω:

GV (C)
GV (f)//
GV (g)

// GV (D)
G(k)

//

G(b)

{{
G(P )

G(a)

||
(5)

Then, by using the natural isomorphism φ of Lemma 1.1, we obtain the following diagram

GV (C)
GV (f)//
GV (g)

//

φC

��

GV (D)

G(k)
$$

G(b)

{{

φD

��
U(C)

U(f) //
U(g)

// U(D) l //

β

cc
G(P )

G(a)mm

α

bb

(6)

where α = φD◦G(a), l = G(k)◦(φD)−1 and β = φC◦G(b)◦(φD)−1. Therefore l◦α = 1G(P ),
U(f) ◦ β = 1U(D) and

U(g) ◦ β = U(g) ◦ φC ◦G(b) ◦ (φD)−1

= φD ◦GV (g) ◦G(b) ◦ (φD)−1

= φD ◦G(a) ◦G(k) ◦ (φD)−1

= α ◦ l

and the bottom line of (6) is a split coequalizer diagram in Globω. Now the functor U is
strictly monadic, so that there is a unique ω-morphism h : D → E such that U(E) = G(P )
and U(h) = l and moreover this unique morphism makes

C
f //
g
// D h // E (7)

a coequalizer diagram in Catω. Note that, by construction, U(E) = G(P ).
It remains to show that V (h) : V (D)→ V (E) is a coequalizer of the pair V (f), V (g)

in Polω. By applying Lemma 2.1 to α : U(E) → U(D) and to β : U(D) → U(C), we
get unique morphisms α : V (E) → V (D) and β : V (D) → V (C) satisfying the required
commutation condition. Consider the following diagram:

UV ∗V (E)

U(εE)
��

UV ∗(α) // UV ∗V (D)

U(εD)
��

UV ∗V (h) // UV ∗V (E)

U(εE)
��

U(E) α
// U(D)

U(h)
// U(E)

(8)

The left-hand square commutes by hypothesis, and the right-hand square commutes by
the naturality of ε, whence the outer square also commutes. As U(h) ◦ α = 1U(E), the
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uniqueness of the lifting in Lemma 2.1 implies that V (h) ◦ α = 1V (E). By the same

uniqueness argument, we get V (f) ◦ β = 1V (D) and V (g) ◦ β = α ◦ V (h). Therefore the
following diagram is a split coequalizer in Polω

V (C)
V (f) //
V (g)

// V (D)
k
//

β

}}
V (E)

α

}}

and we are done.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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