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ON THE REPRESENTATIONS OF 2-GROUPS IN BAEZ-CRANS
2-VECTOR SPACES

BENJAMÍN A. HEREDIA AND JOSEP ELGUETA

Abstract. We study the theory of representations of a 2-group G in Baez-Crans 2-
vector spaces over a field k of arbitrary characteristic, and the corresponding 2-vector
spaces of intertwiners. We also characterize the irreducible and indecomposable repre-
sentations. Finally, it is shown that when the 2-group is finite and the base field k is
of characteristic zero or coprime to the orders of the homotopy groups of G, the theory
essentially reduces to the theory of k-linear representations of the first homotopy group
of G, the remaining homotopy invariants of G playing no role.

1. Introduction

In the last two decades there have been a few attempts to generalize the representation
theory of groups to the higher dimensional setting of categories. See Baez et al [2], Bartlett
[4], Crane and Yetter [6], Elgueta [8, 9], Ganter and Kapranov [12], and Ganter [11].

By analogy with the classical setting, it is natural to represent 2-groups in a suitable
categorification of the category Vectk of (finite dimensional) vector spaces over a ground
field k, often called the 2-category of 2-vector spaces over k.

One of the first proposals of definition of 2-vector space is that of Baez and Crans
[3]. According to these authors, a 2-vector space over k is an internal category in Vectk,
and they proved that this is the same thing as a 2-term chain complex of vector spaces
over k, i.e. a k-linear map d : V1 → V0. To our knowledge, the unique existing work
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on the representation theory of 2-groups in these 2-vector spaces is the very preliminary
presentation by Forrester-Barker [10].

The purpose of this paper is to further develop the representation theory of a 2-group
G in the 2-category of Baez-Crans 2-vector spaces over a field k (or more generally, in
Ch2(A) for any k-linear abelian category A such that all short exact sequences split). As
it should be expected, the theory strongly depends on the characteristic of k. However,
in sharp contrast to what happens in the classical representation theory of finite groups,
when the characteristic of k is zero or coprime to the orders of the homotopy groups of
G the resulting theory is not rich enough to make it possible to recover the 2-group from
the corresponding 2-category of representations. In fact, we shall see that in this case the
theory essentially reduces to the representation theory of the group of isomorphism classes
of objects in G, the remaining homotopy information about the 2-group being completely
lost.

The paper is organized as follows. In Section 2, we briefly recall the definition of
the 2-category Ch2(A) of 2-term chain complexes of objects in any abelian category A,
and we discuss how this 2-category simplifies when A is split, i.e. such that every short
exact sequence splits. In Section 3, we give a detailed description of the 2-category of
representations of a 2-group G in Ch2(A), and we study some features of this 2-category
when A is a split k-linear category. In particular, we describe the 2-vector spaces of
intertwiners between any representations, we introduce two notions of monomorphisms
and characterize them, and we identify the corresponding irreducible objects as well as the
indecomposable representations. Finally, in Section 4 we prove that the theory ”collapses”
for finite 2-groups and in characteristic zero (or coprime to the orders of the homotopy
groups of G).

To avoid writing a too long paper, we will assume the reader is familiar with the notions
of 2-group and 2-category, and with the corresponding notions of morphism, which are
understood in the weak sense, including the notions of pseudonatural transformation and
modification. We refer the reader to Leinster [13] or Borceux [5] for an introduction to
2-categories, and to Baez and Lauda [1] for an introduction to 2-groups.

Notation. We will use letters like A,B, C, ... to denote categories, and A,B,C, ... to
denote 2-categories. Vertical composition of 2-cells will be denoted by juxtaposition, and
composition of 1-cells and horizontal composition of 2-cells by ◦.

Note. After finishing the first draft of this paper and uploading it to the arXiv, we
were informed that N. Gurski and J. Copeland already proved a result similar to our
Theorem 4.3 and presented it at the International Category Theory Conference 2008, but
they never published it.

2. The 2-category of Baez-Crans 2-vector spaces

Let us start by describing the 2-category Ch2(A) of 2-term chain complexes (i.e. chain
complexes concentrated in degrees 1 and 0) in any abelian category A. We will be mainly
concerned with the case A = Vectk, the category of finite dimensional vector spaces over a
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field k. Ch2(k) is short notation for Ch2(Vectk). We will refer to Ch2(k) as the 2-category
of Baez-Crans 2-vector spaces over k.

2.1. Let A be an arbitrary abelian category. An object of Ch2(A) is a morphism of A,
that is dV = d : V1 → V0, denoted by V•. The morphism d is called the differential.

A 1-cell f• = (f1, f0) : V• → W• is a commutative square

V1
dV //

f1
��

V0

f0
��

W1
dW //W0,

and a 2-cell σ : f• ⇒ g• : V• → W• is a morphism σ : V0 → W1 in A such that

dW ◦ σ = g0 − f0
σ ◦ dV = g1 − f1.

The composition of 1-cells is given by the composition in A, that is, given (f1, f0) : U• →
V• and (g1, g0) : V• → W• the composite is

(g1, g0) ◦ (f1, f0) = (g1 ◦ f1, g0 ◦ f0) : U• → W•,

and the identity morphisms are given by 1V• = (1V1 , 1V0).
The vertical composite of σ : f• ⇒ g• and τ : g• ⇒ h• is given by the addition in A,

that is
τσ = τ + σ : f• ⇒ h•,

while horizontal composite of σ : f• ⇒ g• : U• → V• and σ′ : f ′• ⇒ g′• : V• → W• is given
by the map

σ′ ◦ σ = f ′1 ◦ σ + σ′ ◦ g0
= g′1 ◦ σ + σ′ ◦ f0.

Finally, identity 2-cells are given by 1f• = 0 : V0 → W1 for any 1-cell f• : V• → W•. In
particular, whiskerings are given by

σ ◦ 1f• = σ ◦ f0, 1f ′• ◦ σ = f ′1 ◦ σ.

It is straightforward to check that Ch2(A) is a strict 2-category. In fact, it is a category
enriched in groupoids. Each 2-cell τ is invertible with inverse −τ .

2.2. Lemma. A 2-term chain complex d : V1 → V0 is equivalent in Ch2(A) to the zero
complex 0• = 0→ 0 if and only if the differential d is an isomorphism in A.

Proof. It readily follows from the definitions that V• ' 0• if and only if there exists a
2-cell 1V• ⇒ 0V• , and this happens if and only if d is an isomorphism.



910 BENJAMÍN A. HEREDIA AND JOSEP ELGUETA

2.3. Lemma. For any object W of A and any object V• of Ch2(A), the 2-term chain
complexes d : V1 → V0 and d⊕ 1W : V1 ⊕W → V0 ⊕W are equivalent in Ch2(A).

Proof. Let πi : Vi ⊕ W → Vi, ιi : Vi → Vi ⊕ W be the canonical projections and
injections for i = 0, 1. Then the 1-cell ι• = (ι0, ι1) : V• → V• ⊕W is an equivalence with
π• = (π0, π1) : V•⊕W → V• as a pseudoinverse. Indeed, π•◦ι• = 1V• while ι•◦π• ∼= 1V•⊕W
via the 2-isomorphism 0⊕ 1W : V0 ⊕W → V1 ⊕W .

2.4. Let Ch′2(A) be the full sub-2-category of Ch2(A) with objects the zero morphisms
0 : V1 → V0 in A. The significance of Ch′2(A) comes from the fact that all objects in
Ch2(A) are equivalent to an object in Ch′2(A) when A is such that each short exact
sequence splits, for instance when A is Vectk. Such an A will be called a split abelian
category. More precisely, we have the following result, already implicit in [7, Proposition
305].

2.5. Proposition. Let A be a split abelian category. Then Ch′2(A) is biequivalent to
Ch2(A).

Proof. It is enough to see that each object of Ch2(A) is equivalent to a zero morphism
in A. In fact, an object d : U1 → U0 of Ch2(A) is equivalent to the zero morphism

ker d
0→ coker d. Indeed, we have the short exact sequences

0→ ker d→ U1 → coker (ker d)→ 0
0→ ker(coker d)→ U0 → coker d→ 0,

and coker (ker d) ∼= ker(coker d). As usual we identify both objects and denote them by
im d. It follows that we have a commutative square of the form

U1
d //

∼=
��

U0

∼=
��

ker d⊕ im d
0⊕1
// coker d⊕ im d.

In particular, the top and the bottom morphisms are equivalent as objects in Ch2(A) (in
fact, isomorphic). The result now follows from Lemma 2.3.

3. Representations in Baez-Crans 2-vector spaces

In this section we describe the 2-category of representations of a 2-group G in the 2-
category of Baez-Crans 2-vector spaces over a field k (or more generally, in Ch2(A) for
any split k-linear abelian category A).

Without loss of generality, we assume that G is the (non-strict) skeletal 2-group π1[1]oz

π0[0] for some group π0 (with unit element e), left π0-module π1, and normalized 3-
cocycle z : π3

0 → π1. This is the 2-group with the elements of π0 as objects, the pairs
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(a, x) ∈ π1 × π0 as morphisms, with (a, x) : x → x, composition given by the sum in π1,
and the tensor product by the product in π0 on objects and by

(a, x)⊗ (b, y) = (a+ xB b, xy)

on morphisms (B stands for the left action of π0 on π1). The associator is given by
αx1x2x3 = (z(x1, x2, x3), x1x2x3) and the left and right unit isomorphisms are trivial. By
Sinh’s theorem [14], any 2-group is of this type up to equivalence (see also Baez and Lauda
[1]).

We start by describing the 2-category of representations of G in Ch2(A) for an arbi-
trary abelian category A, and we next focus on the split k-linear case.

3.1. Description of the generic 2-category of representations. Let G[1] be
the one-object 2-groupoid with G as 2-group of self-equivalences of the unique object.
By definition, RepCh2(A)(G) is the (strict) 2-category of (normal) pseudofunctors from
G[1] to Ch2(A), pseudonatural transformations between them, and modifications between
these. 1 When unpacked, this definition leads to the 2-category with the following cells
in each dimension and composition laws for the 1- and 2-cells.

3.1.1. An object in RepCh2(A)(G) is given by the following data:

(O1) a 2-term chain complex d : V1 → V0, also denoted by V•;

(O2) a map (ρ1, ρ0) : π0 → A(V1, V1)×A(V0, V0) such that for each x ∈ π0 the square in
A

V1
d //

ρ1(x)
��

V0

ρ0(x)
��

V1 d
// V0

commutes;

(O3) a map τ : π1 × π0 → A(V0, V1) such that

d ◦ τ(a, x) = τ(a, x) ◦ d = 0

for each (a, x) ∈ π1 × π0;

(O4) a map σ : π2
0 → A(V0, V1) such that

ρ0(xy)− ρ0(x) ◦ ρ0(y) = d ◦ σ(x, y), (1)

ρ1(xy)− ρ1(x) ◦ ρ1(y) = σ(x, y) ◦ d (2)

for each x, y ∈ π0;

1For the sake of simplicity, we restrict to normal pseudofunctors, i.e. such that the identity 1-cells are
strictly preserved. Any pseudofunctor is equivalent to a normal one.
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Moreover, these data must satisfy the following axioms:

(AO1) τ(a′ + a, x) = τ(a′, x) + τ(a, x) for every composable 1-cells x
(a,x)→ x

(a′,x)→ x;

(AO2) τ(0, x) = 0 for each object x ∈ π0;

(AO3) ρ1(x) ◦ τ(b, y) + τ(a, x) ◦ ρ0(y) = τ(a+ xB b, xy) for every 1-cells (a, x) : x→ x and
(b, y) : y → y in G;

(AO4) ρ1(e) = 1V1 and ρ0(e) = 1V0 ;

(AO5) τ(z(x1, x2, x3), x1x2x3)+σ(x1, x2x3)+ρ1(x1)◦σ(x2, x3) = σ(x1x2, x3)+σ(x1, x2)◦ ρ0(x3)
for every objects x1, x2, x3 ∈ π0;

(AO6) σ(x, e) = σ(e, x) = 0 for each object x ∈ π0.

Data (O1)-(O3) give the action on 0-, 1- and 2-cells, respectively, of the pseudofunctor
from G[1] to Ch2(A), and (O4) gives the pseudofunctorial structure. Axioms (AO1)-
(AO2) correspond to the functoriality of the assignments (a, x) 7→ τ(a, x), axiom (AO3)
to the naturality of σ(x, y) in x, y, axiom (AO4) to the normal character of the pseudo-
functor, and (AO5)-(AO6) to the coherence conditions. We will denote such an object by
(V•, ρ, τ, σ) or just V• when the action of G on V• is implicitly understood.

3.1.2. Given objects (V•, ρ, τ, σ) and (V ′• , ρ
′, τ ′, σ′), a 1-cell or 1-intertwiner from the first

to the second consists of the following data:

(I1) a pair (r1, r0) ∈ A(V1, V
′
1)×A(V0, V

′
0) which makes the square

V1
d //

r1
��

V0

r0
��

V ′1 d′
// V ′0

commute;

(I2) a map µ : π0 → A(V0, V
′
1) such that

ρ′1(x) ◦ r1 − r1 ◦ ρ1(x) = µ(x) ◦ d, (3)

ρ′0(x) ◦ r0 − r0 ◦ ρ0(x) = d′ ◦ µ(x) (4)

for each x ∈ π0.

Moreover, these data must satisfy the following axioms:

(AI1) τ ′(a, x) ◦ r0 = r1 ◦ τ(a, x) for each morphism (a, x) ∈ π1 × π0;

(AI2) r1 ◦ σ(x, y) + µ(xy) = µ(x) ◦ ρ0(y) + ρ′1(x) ◦ µ(y) + σ′(x, y) ◦ r0 for every objects
x, y ∈ π0;
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(AI3) µ(e) = 0.

Data (I1)-(I2) give the (unique) 1-cell and the invertible 2-cells, respectively, of the corre-
sponding pseudonatural transformation. Axiom (AI1) is the naturality of µ(x) in x, and
axioms (AI2)-(AI3) are the coherence conditions.

3.1.3. Given 1-cells (r1, r0, µ), (s1, s0, ν) between two representations V• and V ′• , a 2-cell
or 2-intertwiner from (r1, r0, µ) to (s1, s0, ν) consists of a morphism ω : V0 → V ′1 such that

s1 − r1 = ω ◦ d,
s0 − r0 = d′ ◦ ω

and satisfying the following naturality axiom:

(A2I) ρ′1(x) ◦ ω + µ(x) = ν(x) + ω ◦ ρ0(x) for each object x ∈ π0.

3.1.4. Composition of 1-cells corresponds to the vertical composition of pseudonatural
transformations, and it is given by

(r′1, r
′
0, µ

′) ◦ (r1, r0, µ) = (r′1 ◦ r1, r′0 ◦ r0, µ′ ∗ µ) (5)

for 1-cells (r1, r0, µ) : V• → V ′• and (r′1, r
′
0, µ

′) : V ′• → V ′′• , with µ′ ∗ µ : π0 → A(V0, V
′′
1 )

defined by
(µ′ ∗ µ)(x) = r′1 ◦ µ(x) + µ′(x) ◦ r0, x ∈ π0. (6)

Vertical and horizontal composition of 2-cells correspond to the appropriate compositions
of modifications, and they are respectively given by the sum and composition of morphisms
in A. More precisely, for 2-cells ω : (r1, r0, µ) ⇒ (s1, s0, ν) and η : (s1, s0, ν) ⇒ (t1, t0, ξ),
with (r1, r0, µ), (s1, s0, ν), (t1, t0, ξ) : V• → V ′• , their vertical composite is

ηω = η + ω, (7)

and for ω as before and ω′ : (r′1, r
′
0, µ

′)⇒ (s′1, s
′
0, ν
′) : V ′• → V ′′• their horizontal composite

is
ω′ ◦ ω = ω′ ◦ s0 + r′1 ◦ ω = ω′ ◦ r0 + s′1 ◦ ω. (8)

Notice that RepCh2(A)(G) is locally a groupoid because Ch2(A) is so.

3.2. Case of a split k-linear abelian category. From now on, A stands for a
split k-linear abelian category. In this case, RepCh2(A)(G) is biequivalent to RepCh′2(A)(G)
because of Proposition 2.5 and the general fact that for any biequivalent 2-categories C,C′

the representation 2-categories RepC(G) and RepC′(G) are biequivalent. Therefore we
may restrict to representations of G in Ch′2(A). The above general descriptions of the 0-,
1- and 2-cells reduce then to the following data and axioms.
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3.2.1. A representation of G in Ch′2(A) consists of

(O1′) two representations of π0 in A, denoted by ρi : π0 → AutA(Vi), i = 0, 1;

(O2′) a morphism of (left) π0-modules β : π1 → A(V0, V1)
ρ0
ρ1

, where A(V0, V1)
ρ0
ρ1

stands for
the abelian group A(V0, V1) equipped with the (left) π0-action given by x B f =
ρ1(x) ◦ f ◦ ρ0(x−1), and

(O3′) a normalized 2-cochain c : π2
0 → A(V0, V1)

ρ0
ρ1

such that ∂c = β∗(z).

The representations ρ1, ρ0 are the maps in (O2) (equations (1)-(2) together with axiom
(AO4) ensure that they are indeed representations of π0). The morphism β is the restric-
tion of τ to π1 × {e}. This restriction completely determines τ . Indeed, it follows from
(AO3) that τ(a, x) = β(a) ◦ ρ0(x). The fact that β is a morphism of (left) π0-modules
follows from axioms (AO1)-(AO3). Finally, c is given by

c(x, y) = σ(x, y) ◦ ρ0(xy)−1,

and the conditions on c follow from axioms (AO5)-(AO6). The representation so de-
fined will be denoted by (ρ1, ρ0, β, c), or (V1, V0, β, c) if the actions of π0 are implicitly
understood.

3.2.2. Given two representations (ρ1, ρ0, β, c), (ρ′1, ρ
′
0, β

′, c′) as in § 3.2.1, on objects
(V1, V0) and (V ′1 , V

′
0) of Ch′2(A), respectively, a 1-cell between them is given by

(I1′) two intertwiners ri : Vi → V ′i , i = 0, 1, which make the diagram

π1
β //

β′

��

A(V0, V1)

r1∗
��

A(V ′0 , V
′
1)

r∗0

// A(V0, V
′
1)

commute, and

(I2′) a normalized 1-cochain u : π0 → A(V0, V
′
1)ρ0ρ′1

such that the diagram

π2
0

c //

c′

��

A(V0, V1)

r1∗
��

A(V ′0 , V
′
1)

r∗0

// A(V0, V
′
1)

commutes up to the coboundary of u.
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The intertwiners r0, r1 are the maps in (I1) (equations (3)-(4) ensure that they are indeed
interwiners). As for the 1-cochain u, it is given by

u(x) = µ(x) ◦ ρ0(x)−1. (9)

The condition (I1′) on r0, r1 follows from (AI1) and condition (I2′) on u from (9) and
(AI2). The 1-cell so defined will be denoted by (r1, r0, u).

In particular, for any representations ρ1, ρ0, ρ
′
1, ρ
′
0 of π0, a 1-cell from (ρ1, ρ0, 0, 0) to

(ρ′1, ρ
′
0, 0, 0) simply amounts to two arbitrary intertwiners ri : Vi → V ′i , i ∈ {0, 1}, together

with an arbitrary normalized 1-cocycle u : π0 → A(V0, V
′
1)ρ0ρ′1

.

It easily follows from (9) that the composition of 1-cells is given by the same formulas
as in § 3.1.4 with u, u′ instead of µ, µ′.

3.2.3. Given two 1-cells (r1, r0, u), (s1, s0, v) : (ρ1, ρ0, β, c) → (ρ′1, ρ
′
0, β

′, c′) as before, a
2-cell between them exists only when ri = si, for i = 0, 1, and if so it is given by a
0-cochain ω : 1→ A(V0, V

′
1)ρ0ρ′1

as in § 3.1.3 such that ∂ω = v − u. This condition follows

readily from (A2I). Vertical and horizontal compositions of 2-cells are given by the same
formulas as in § 3.1.4.

3.3. Proposition. A 1-intertwiner (r1, r0, u) : (ρ1, ρ0, β, c)→ (ρ′1, ρ
′
0, β

′, c′) is an equiv-
alence if and only if r1 and r0 are isomorphisms.

Proof. Suppose (r1, r0, u) is an equivalence with pseudo-inverse (r1, r0, u). Then we have
2-cells (r1 ◦ r1, r0 ◦ r0, u ∗ u) ⇒ (1V1 , 1V0 , 0) and (r1 ◦ r1, r0 ◦ r0, u ∗ u) ⇒ (1V ′1 , 1V ′0 , 0). It
follows from § 3.2.3 that ri ◦ ri = 1Vi and ri ◦ ri = 1V ′i for i = 0, 1 and hence, r1, r0 are
isomorphisms.

Conversely, let us assume that r1 and r0 are isomorphisms. Then it is easy to check
that (r−11 , r−10 , u), with u defined by

u : π0
−u // A(V0, V

′
1)

(r−1
1 )∗◦(r−1

0 )∗
// A(V ′0 , V1),

is a 1-cell from (ρ′1, ρ
′
0, β

′, c′) to (ρ1, ρ0, β, c) and a pseudo-inverse of (r1, r0, u).

It follows that a necessary condition for (ρ1, ρ0, β, c) and (ρ′1, ρ
′
0, β

′, c′) to be equivalent
representations is that V1 ∼= V ′1 and V0 ∼= V ′0 as representations of π0. However, this
condition is far from being sufficient, as it is made clear in the next concrete cases.

3.4. Corollary. Let ρ1, ρ0, β, c, c
′ be as before. If c, c′ differ by a coboundary the repre-

sentations (ρ1, ρ0, β, c) and (ρ1, ρ0, β, c
′) are equivalent.

Proof. If c′ − c = ∂u, then (1V1 , 1V0 , u) is an equivalence between (ρ1, ρ0, β, c) and
(ρ1, ρ0, β, c

′).
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3.5. Corollary. A representation (ρ1, ρ0, β, c) is equivalent to a representation of the
form (ρ′1, ρ

′
0, 0, 0) if and only if β = 0 and c = ∂u for some 1-cochain u.

Proof. Let (ρ1, ρ0, β, c) be equivalent to (ρ′1, ρ
′
0, 0, 0). Then there exists isomorphisms of

representations ri : Vi → V ′i , i = 0, 1, and a normalized 1-cochain ũ : π0 → A(V0, V
′
1) such

that (1) r1 ◦β(a) = 0 for each a ∈ π1, and (2) c(x, y) = r−11 ◦ (∂ũ)(x, y) for each x, y ∈ π0.
Condition (1) clearly implies β = 0, and (2) implies that c = ∂u with u the normalized
1-cochain defined by u(x) = r−11 ◦ ũ(x). The converse is a consequence of Corollary 3.4.

3.6. The Baez-Crans 2-vector spaces of intertwiners. Let us fix two represen-
tations (ρ1, ρ0, β, c) and (ρ′1, ρ

′
0, β

′, c′). Then it follows from § 3.2.2 that the set of 1-cells
between them has a natural structure of k-vector space induced by the k-linear enrichment

of A. Let us call this space H1

(
ρ1 ρ0 β c
ρ′1 ρ′0 β′ c′

)
, or just H1. Similarly, we can consider

the set of all 2-cells between these 1-cells. To make explicit the involved 1-cells, we shall
denote such a 2-cell by

(r1, r0, u, ω) : (r1, r0, u)⇒ (r1, r0, u+ ∂ω).

Then the set of these 2-cells is also a k-vector space H2

(
ρ1 ρ0 β c
ρ′1 ρ′0 β′ c′

)
, or just H2,

with k-linear structure induced again by the k-linear enrichment of A. Moreover, the
source and target maps s, t : H2 → H1 are k-linear, and the same is true of the identity-
assigning map i : H1 → H2, given by (r1, r0, u) 7→ (r1, r0, u, 0), and the composition map
◦ : H2 ×H1 H2 → H2, given by

(r1, r0, u+ ∂ω, η) ◦ (r1, r0, u, ω) = (r1, r0, u, ω + η)

(cf. equation (7)). Therefore the hom-category between any pair of fixed representations
(ρ1, ρ0, β, c) and (ρ′1, ρ

′
0, β

′, c′) is in fact an internal category in Vectk and hence, equivalent
to the Baez-Crans 2-vector space

t| ker(s) : ker(s)→ H1 (10)

(see [3]). Now, since s(r1, r0, u, ω) = (r1, r0, u) we have

ker(s) ∼= A(V0, V
′
1),

and (10) is equivalent to the linear map d : A(V0, V
′
1)→ H1 given by

d(ω) = (0, 0, ∂ω).

In order to identify the equivalent object in Ch′2(k), notice that

ker(d) = H0(π0,A(V0, V
′
1)ρ0ρ′1

) = Homπ0(V0, V
′
1),
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where Homπ0(V0, V
′
1) denotes the k-vector space of intertwiners from ρ0 to ρ′1. Moreover,

the cokernel of d is the k-vector space of all triples

(r1, r0, [u]) ∈ Homπ0(V1, V
′
1)× Homπ0(V0, V

′
0)× H̃1(π0,A(V0, V

′
1)ρ0ρ′1

)

such that r1 ◦ β = β′ ◦ r0 and ∂u = r1 ◦ c− c′ ◦ r0, where H̃1(π0,A(V0, V
′
1)) is the space of

1-cochains modulo coboundaries. We shall denote this space by H(ρ1, ρ0, ρ
′
1, ρ
′
0). Notice

that it depends on β, β′, c, c′ although this is not made explicit. When β, β′, c and c′

are zero, it reduces to the space Homπ0(V1, V
′
1) × Homπ0(V0, V

′
0) × H1(π0,A(V0, V

′
1)ρ0ρ′1

).

Therefore, we have proved the following.

3.7. Theorem. For any fixed representations (ρ1, ρ0, β, c), (ρ
′
1, ρ
′
0, β

′, c′) the hom-category
of intertwiners between them is equivalent to the Baez-Crans 2-vector space

0 : Homπ0(V0, V
′
1)→ H(ρ1, ρ0, ρ

′
1, ρ
′
0).

In particular, when β, β′, c and c′ are all zero, this 2-vector space is

0 : Homπ0(V0, V
′
1)→ Homπ0(V1, V

′
1)× Homπ0(V0, V

′
0)×H1(π0,A(V0, V

′
1)ρ0ρ′1

).

3.8. Monomorphisms of representations. There are various possible notions of
monomorphism in a 2-category C. The most standard ones are perhaps the (repre-
sentably) faithful or fully faithful morphisms. However, all 2-categories we work with have
a zero object and hence, monomorphisms can also be defined in terms of the 2-kernel of
the morphism in question. In this subsection we introduce two such notions of monomor-
phism, and we characterize which 1-cells (r1, r0, u) in RepCh′2(A)(G) are monomorphisms
in each sense. We start by recalling the general notion of 2-kernel in a 2-category with a
zero object.

Let C be a 2-category with a zero object 0, which for the sake of simplicity we will
assume it is strict, i.e. such that for any other object X in C the categories C(0, X) and
C(X, 0) are isomorphic to the terminal category. For instance, for any zero object 0 of A
the zero complex 0• = 0 → 0 is a strict zero object of Ch2(A). For any pair of objects
X, Y of C the (unique) 1-cell X → 0→ Y is denoted by 0 : X → Y .

Then the 2-kernel of a 1-cell f : X → Y in C is the 2-limit of the diagram

X
f //
0
// Y.

This means that it is a triple (K, k, κ), with K an object of C, k : K → X a 1-cell, and
κ : f ◦ k ⇒ 0 : K → Y an invertible 2-cell satisfying the (bi)universal property:

(K1) Any other triple (L, a, α), with a : L → X and α : f ◦ a ⇒ 0 an invertible 2-cell of
C, factors through (K, k, κ), i.e. there exists a pair (a′, α′), with a′ : L → K and
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α′ : a⇒ k ◦ a′, such that

K
0

  
L

a′
??

0 //

a   

∼=
α

Y

X
f

>> =

K

k

��

0

  
∼=
κL

a′
??

a   

∼=
α′

Y

X
f

>>

(K2) The factorization is unique up to a unique invertible 2-cell, i.e. if (a′1, α
′
1) and (a′2, α

′
2)

are two factorizations of (L, a, α) through (K, k, κ), there exists a unique invertible
2-cell γ : a′1 ⇒ a′2 such that

α′2 = (1k ◦ γ)α′1.

As any (bi)universal object, the 2-kernel of a 1-cell is unique up to equivalence.

3.9. Definition. Let f : X → Y be a 1-cell in C.

• f is a monomorphism if its 2-kernel is zero, i.e. (0, 0, 10).

• f is a weak monomorphism if its 2-kernel (K, k, κ) is such that k ∼= 0 (the object K
need not be zero).

Clearly, every monomorphism is a weak monomorphism but the converse is false as it
will become clear below. In fact, it can be shown that the 2-kernel (K, k, κ) of a 1-cell f is
zero if and only if k ∼= 0 and there exists a 2-isomorphism κ′ : k ⇒ 0 such that κ = f ∗ κ′
(see [7, Proposition 90]). It is this last additional condition that should be left out to go
from monomorphisms to the more general notion of weak monomorphism.

3.10. Proposition. Let (r1, r0, u) : (ρ1, ρ0, β, c)→ (ρ′1, ρ
′
0, β

′, c′) be an arbitrary 1-cell in
RepCh′2(A)(G). Then the following are equivalent:

(1) (r1, r0, u) is a monomorphism.

(2) the 2-kernel of the 1-cell (r1, r0) in Ch′2(A) is zero.

(3) r1 is an isomorphism and r0 a monomorphism in A.

Proof. The equivalence of (1) and (2) follows from the fact that 2-limits in 2-categories of
pseudofunctors, and in particular 2-kernels, are computed componentwise, together with
the fact that a representation is a zero object if and only if its underlying Baez-Crans
2-vector space is a zero object.

To prove the equivalence of (2) and (3), we make use of the fact that the 2-kernel of
a 1-cell f• : V• → W• in Ch2(A) is given by the commutative square

V1
d×f1 //

1
��

V0 ×W0 W1

pV0
��

V1
d // V0
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together with the projection pW1 : V0 ×W0 W1 → W1 as 2-cell (f1, f0 ◦ pV0) ⇒ 0 (cf. [7,
6.3.3]). When dV = 0 and dW = 0 we have

V0 ×W0 W1
∼= ker f0 ×W1,

and the 2-term chain complex V1
0×f1→ ker f1 × W1 is equivalent to the zero morphism

0 : ker f1 → ker f0× cokerf1 (cf. proof of Proposition 2.5). Hence the corresponding 1-cell
of the 2-kernel in Ch′2(A) is

ker f1
0 //

ι1
��

ker f0 × cokerf1

ι0×0
��

V1
0 // V0

where ι0, ι1 denote the canonical inclusions. Hence the 2-kernel is 0 if and only if ker f1,
ker f0 and cokerf1 are all zero, i.e. if and only if f1 is an isomorphism and f0 a monomor-
phism.

3.11. Remark. The monomorphisms in RepCh′2(A)(G) as defined above are in fact the
(representably) fully faithful morphisms. This is because in any 2-category the fully
faithful morphisms can also be characterized as the 1-cells f : X → Y such that the
square

X
1 //

1
��

X

f
��

X
f // Y

is a 2-pullback. Since 2-limits in 2-categories of pseudofunctors are computed pointwise,
it follows that a 1-cell in RepCh′2(A)(G) is fully faithful if and only if the underlying
morphism of 2-term chain complexes is fully faithful, and it is easy to check that this
happens if and only if its 2-kernel is zero. More generally, Dupond proved that the fully
faithful morphisms coincide with the morphisms whose 2-kernel is zero in any 2-category
he calls ”2-Puppe exact” (cf. Propositions 90, 180 and 292 in [7]). Both RepCh′2(A)(G)

and Ch′2(A) will be examples of such 2-categories.

Computing explicitly the 2-kernel of an arbitrary 1-cell in RepCh′2(A)(G) looks difficult.
However, in order to identify which 1-cells are weak monomorphisms it is enough to
compute the 2-kernel of a 1-cell (r1, r0, u) : (ρ1, ρ0, β, c)→ (ρ′1, ρ

′
0, β

′, c′) such that r1 and
r0 are monomorphisms.

Let be given such a 1-cell (r1, r0, u). We can decompose the object V ′1 of A as the direct
sum V ′1

∼= V1 ⊕ coker(r1) (we are assuming that A is split). Moreover, the decomposition
is such that the inclusion r1 : V1 → V ′1 and the projection pc : V ′1 → coker(r1) are both
π0-morphisms. We shall denote by ic : coker(r1) → V ′1 and pm : V ′1 → V1 the remaining
inclusion and projection, respectively. Then let û : π0 → A(coker(r1), V1) be the map
defined by

û(x)(k) = −(pm ◦ ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k) (11)
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for all x ∈ π0 and k ∈ coker(r1), where ρ′1 denotes the canonical action of π0 on coker(r1)
induced by the action ρ′1 on V ′1 .

3.12. Proposition. The triple ((0, ρ′1, 0, 0), (0, 0, û), ic) is a 2-kernel of (r1, r0, u), where
ρ′1 is the representation on coker(r1) induced by ρ′1.

In order to prove this result, we shall make use of the following lemma.

3.13. Lemma. Let û be the 1-cochain defined in Eq. (11). Then

(r1)∗ ◦ û = −∂ic.

Proof. Let x ∈ π0 and k ∈ coker(r1). We have

((r1)∗ ◦ û(x))(k) = −(r1 ◦ pm ◦ ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k)

= −(ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k) + (ic ◦ pc ◦ ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k)

= −(ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k) + ic(k)

= −(∂ic)(x)(k),

where we have used that r1 ◦ pm + ic ◦ pc = 1 and that pc is a π0-morphism.

Proof of Proposition 3.12. First, we need to check that

(0, 0, û) : (0, coker(r1), 0, 0)→ (V1, V0, β, c)

is a 1-intertwiner, which in this case reduces to checking that û is a 1-cocycle with values

in A(coker(r1), V1)
ρ′1
ρ1 . Now, Lemma 3.13 and the fact that r1 is a π0-morphisms imply

that
(r1)∗ ◦ (∂û) = ∂((r1)∗ ◦ û) = −∂2ic = 0,

and hence ∂û = 0 because r1 is a monomorphism.
Secondly, ic is a 2-cell (r1, r0, u) ◦ (0, 0, û)⇒ (0, 0, 0) because by Lemma 3.13 again we

have
u ∗ û = (r1)∗ ◦ û = −∂ic.

Now we only need to check that it verifies the universal property.
Suppose that we have a triple ((W1,W0, β̃, c̃), (t1, t0, ũ), χ) as in (K1). The fact that

χ : (r1, r0, u)◦ (t1, t0, ũ)⇒ (0, 0, 0) implies that r1 ◦ t1 = 0 and r0 ◦ t0 = 0 and hence t1 = 0
and t0 = 0 because r1 and r0 are both monomorphisms. Then let s0 : W0 → coker(r1) be
the map given by s0 = pc ◦ χ. It is a π0-morphism because

∂s0 = ∂(pc ◦ χ)

= (pc)∗ ◦ ∂χ
= −(pc)∗ ◦ (u ∗ ũ)

= −(pc)∗ ◦ ((t0)
∗ ◦ u+ (r1)∗ ◦ ũ)

= −(pc ◦ r1)∗ ◦ ũ
= 0.
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Therefore we have a 1-intertwiner (0, s0, 0) : (W1,W0, β̃, c̃) → (0, coker(r1), 0, 0). More-
over, if χ̂ : W0 → V1 is the map given by χ̂ = −pm ◦ χ we have

(r1)∗ ◦ ∂χ̂ = −∂(r1 ◦ pm ◦ χ)

= −∂χ+ ∂(ic ◦ pc ◦ χ)

= (r1)∗ ◦ ũ+ ∂(ic ◦ s0)
= (r1)∗ ◦ ũ+ (s0)

∗ ◦ ∂ic
= (r1)∗ ◦ ũ− (r1)∗ ◦ (s0)

∗ ◦ û,

where we have used that s0 is a π0-morphism and Lemma 3.13. Since r1 is a monomor-
phism this implies that ∂χ̂ = ũ − (s0)

∗ ◦ û and hence, χ̂ : (0, s0, 0) ◦ (0, 0, û) ⇒ (t1, t0, ũ)
is indeed a 2-intertwiner. Furthermore it satisfies the condition in (K1) because

χ+ (r1)∗(χ̂) = χ− r1 ◦ pm ◦ χ = ic ◦ pc ◦ χ = (s0)
∗(ic).

Finally, let ((0, s̄, 0), χ̄) be another factorization of ((W1,W0, β̃, c̃), (t1, t0, ũ), χ). This
means that

(r1)∗(χ̄− χ̂) = (s0)
∗(ic)− (s̄)∗(ic) = ic ◦ (s0 − s̄),

and applying pc to this equality we get s0 = s̄, and hence also χ̄ = χ̂ because r1
is a monomorphism. This proves (K2) with the identity as the unique 2-intertwiner
(0, s0, 0)⇒ (0, s̄, 0).

3.14. Proposition. Let (r1, r0, u) : (ρ1, ρ0, β, c)→ (ρ′1, ρ
′
0, β

′, c′) be an arbitrary 1-cell in
RepCh′2(A)(G). Then the following are equivalent:

1. (r1, r0, u) is a weak monomorphism.

2. Both r1 and r0 are monomorphisms in Rep(π0), with r1 a split one.

Proof. Let us suppose that r1, r0 are monomorphisms in Rep(π0), with r1 split. It
follows that V ′1

∼= V1⊕ coker(r1) in Rep(π0). In particular, the projection pm : V ′1 → V1 is
a π0-morphism. Then using the definition of û in Eq. (11), we have

û(x)(k) = −(pm ◦ ρ′1(x) ◦ ic ◦ ρ′1(x)−1)(k) = −(ρ1(x) ◦ pm ◦ ic ◦ ρ′1(x)−1(k) = 0.

Hence the 2-kernel morphism is 0.
Conversely, let us suppose that the 2-kernel morphism of (r1, r0, u) is isomorphic to

zero. In particular, the 2-kernel morphism of the 1-cell (r1, r0) in Ch′(A) must also be
isomorphic to zero. Now, this morphism is determined by the inclusions ι1 : ker(r1)→ V1
and ι0 : ker(r0) → V0, so that it is isomorphic to zero if and only if both r1 and r0 are
monomorphisms. Hence the 2-kernel of (r1, r0, u) is as described in Proposition 3.12. Let
φ : (0, 0, û)⇒ (0, 0, 0) be the isomorphism given by hypothesis, so that φ : coker(r1)→ V1,
and let be

p̄ = pm + φ ◦ pc : V ′1 → V1.
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It is a π0-morphism since

(r1)∗ ◦ ∂p̄ = (r1)∗ ◦ ∂(pm + φ ◦ pc)
= ∂(r1 ◦ pm) + (pc)

∗ ◦ (r1)∗ ◦ ∂φ
= ∂1V ′1 − ∂(ic ◦ pc)− (pc)

∗ ◦ (r1)∗ ◦ û = 0

and hence ∂p̄ = 0 because r1 is a monomorphism. Finally we have

p̄ ◦ r1 = pm ◦ r1 + φ ◦ pc ◦ r1 = 1V1 ,

and hence, r1 is split.

In the rest of this section we study the irreducible and indecomposable objects in
RepCh′2(A)(G). In fact, we introduce two different notions of irreducible object, both of
them respectively derived in the standard way from the above two notions of monomor-
phism.

3.15. Definition. A representation (ρ1, ρ0, β, c) is called a (weak) subrepresentation of
another one (ρ′1, ρ

′
0, β

′, c′) if it is the zero representation (0, 0, 0, 0) or if there exists a
(weak) monomorphism (r1, r0, µ) : (ρ1, ρ0, β, c) → (ρ′1, ρ

′
0, β

′, c′) in RepCh′2(A)(G). The
representation (ρ1, ρ0, β, c) is called (weakly) irreducible if it has no non-trivial (weak)
subrepresentations.

Let us emphasize that, in spite of the terminology, every weakly irreducible represen-
tation is irreducible because every monomorphism is a weak monomorphism.

3.16. Proposition. The only irreducible representations of G are those of the form
(ρ, 0, 0, 0) for any representation of π0, and (0, ρ, 0, 0) for any irreducible representation
of π0.

The only weakly irreducible representations of G are those of the form (ρ, 0, 0, 0) for
any indecomposable representation of π0, and (0, ρ, 0, 0) for any irreducible representation
of π0.

Proof. It follows from Proposition 3.10 that a representation of any of the forms in the
first statement is irreducible. Conversely, let (ρ1, ρ0, β, c) be an irreducible representation
with V0 6= 0. Then the map (1V1 , 0, 0) : (ρ1, 0, 0, 0) → (ρ1, ρ0, β, c) is a monomorphism
and hence, we necessarily have V1 = 0. This implies β = 0 and c = 0. This proves the
first statement. The second one is shown in a similar way.

There is also a natural notion of (direct) sum of representations induced by the direct
sum we have in Ch2(A), and given as follows.

3.17. Definition. Given (ρ1, ρ0, β, c) and (ρ′1, ρ
′
0, β

′, c′) two representations their sum is
the representation

(ρ1 ⊕ ρ′1, ρ0 ⊕ ρ′0, β ⊕ β′, c⊕ c′),
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where β ⊕ β′ is the composite

π1
β×β′ // A(V0, V1)×A(V ′0 , V

′
1)

⊕ // A(V0 ⊕ V ′0 , V1 ⊕ V ′1)

and c⊕ c′ is the composite

π2
0

c×c′ // A(V0, V1)×A(V ′0 , V
′
1)

⊕ // A(V0 ⊕ V ′0 , V1 ⊕ V ′1).

3.18. Definition. A representation is indecomposable if it is not equivalent to a sum
of two non-zero representations.

Starting with decompositions of ρ1, ρ0 in indecomposable representations of π0, it is
easy to identify the indecomposable representations of G. Thus suppose we are given
decompositions

ρ1 =
⊕

i∈I ρ
1
i ,

ρ0 =
⊕

j∈J ρ
0
j ,

both as a sum of indecomposable representations of π0. If ρ1 = 0 (resp. ρ0 = 0) it is
understood that I = ∅ (resp. J = ∅). Let ιei : ρei → ρe be the corresponding inclusions,
and φei : ρe → ρei the corresponding projections, with e ∈ {0, 1}. Then we have two
families of morphisms {βij}i∈I,j∈J and {cij}i∈I,j∈J defined by

βij : π1
β // A(V0, V1)

(ι0j )
∗(φ1i )∗// A(V 0

j , V
1
i ),

cij : π2
0

c // A(V0, V1)
(ι0j )
∗(φ1i )∗// A(V 0

j , V
1
i ),

Let us consider a bipartite graph G(I, J) whose set of vertices is I
∐
J , and with an edge

{i, j} if and only if βij 6= 0 or cij 6= ∂u for some 1-cochain u : π0 → A(V 0
j , V

1
i ). Then we

have the following.

3.19. Proposition. A representation (ρ1, ρ0, β, c) is indecomposable if and only if for
each pair of decompositions of ρ1 and ρ0 as before, the corresponding graph G(I, J) is
connected.

Proof. Let us suppose that there exists a decomposition such that G(I, J) is discon-
nected. This means that there exist ∅ ( I ′ ( I and ∅ ( J ′ ( J such that βi′,j = 0 and
ci′,j is a coboundary for all i′ ∈ I ′ and j ∈ J \ J ′, and βi,j′ = 0 and ci,j′ is a coboundary
for all i ∈ I \ I ′ and j′ ∈ J ′.

Put ρ′1 =
⊕

i′∈I′ ρ
1
i′ , ρ

′′
1 =

⊕
i∈I\I′ ρ

1
i , ρ

′
0 =

⊕
j′∈J ′ ρ

0
j′ and ρ′′0 =

⊕
j∈J\J ′ ρ

0
j . Then we

have ρ1 = ρ′1 ⊕ ρ′′1 and ρ0 = ρ′0 ⊕ ρ′′0, and by composing with the appropriate projections
and inclusions we can define β′, β′′, c′, c′′ as

β′ : π1
β // A(V0, V1) // A(V ′0 , V

′
1),

β′′ : π1
β // A(V0, V1) // A(V ′′0 , V

′′
1 ),

c′ : π2
0

c // A(V0, V1) // A(V ′0 , V
′
1),

c′′ : π2
0

c // A(V0, V1) // A(V ′′0 , V
′′
1 ).
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It is straightforward to check that β = β′ ⊕ β′′ and that c − c′ ⊕ c′′ is a coboundary.
Therefore

(ρ1, ρ0, β, c) ' (ρ′1, ρ
′
0, β

′, c′)⊕ (ρ′′1, ρ
′′
0, β

′′, c′′).

Conversely, let us now suppose that

(ρ1, ρ0, β, c) ' (ρ′1, ρ
′
0, β

′, c′)⊕ (ρ′′1, ρ
′′
0, β

′′, c′′),

and let ρ′1 =
⊕

i′∈I′ ρ
1
i′ , ρ

′′
1 =

⊕
i′′∈I′′ ρ

1
i′′ and ρ′0 =

⊕
j′∈J ′ ρ

0
j′ , ρ

′′
0 =

⊕
j′′∈J ′′ ρ

0
j′′ . It is

clear that these give decompositions of ρ1 and ρ0 such that the corresponding graph
G(I ′

∐
I ′′, J ′

∐
J ′′) is disconnected.

Notice that, according to this result, a representation (ρ1, ρ0, β, c) can be indecompos-
able even when ρ1 and ρ0 are decomposable.

4. Case π0, π1 finite and char(k) = 0 or coprime to the orders of π0, π1

As mentioned in the introduction, in this case the theory “collapses”. The main reason
is the following.

4.1. Proposition. Let us assume that G is finite (i.e. π0 and π1 are finite), and that A
is k-linear, with k a field whose characteristic is zero or coprime to the orders of π1 and
π0. Then for any representation (ρ1, ρ0, β, c) we have:

(i) β = 0, and

(ii) (ρ1, ρ0, 0, c) is equivalent to (ρ1, ρ0, 0, 0).

In particular, up to equivalence a representation of G in Ch′2(A) is completely given by
two representations of π0 in A.

Proof. If A is k-linear, A(V0, V1) is a k-vector space. Since the characteristic of k is
relatively prime with the order of π1 the only morphism of abelian groups β : π1 →
A(V0, V1) is β = 0. In this case, the 2-cochain is a 2-cocycle, and the second statement
follows then from the next lemma (applied to G-bimodules with trivial right action of G)
together with Corollary 3.4.

4.2. Lemma. Let G be a finite group, and V a k-vector space equipped with a structure
of G-bimodule. If the characteristic of k is zero or coprime to the order of G, then
Hn(G, V ) = 0 for all n ≥ 1.

Proof. Let z : Gn → V be an n-cocycle, with n ≥ 1. Then an n-cochain with boundary
z is given by the map c : Gn−1 → V defined by

c(g1, ..., gn−1) =
(−1)n

|G|
∑
k∈G

z(g1, ..., gn−1, k) · k−1.

The reader may easily check that the cocycle condition ∂z = 0 indeed implies ∂c = z.
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If as usual by the homotopy category of a 2-category K we mean the category with
the same objects as K and with the 2-isomorphism classes of 1-cells in K as morphisms,
the main theorem in this case may be stated as follows.

4.3. Theorem. Let A be a split k-linear abelian category. Then for any finite 2-group
G such that the characteristic of k is zero or coprime to the orders of π0 and π1, the
homotopy category of RepCh2(A)(G) is equivalent to the product category RepA(π0) ×
RepA(π0). Moreover, if (r1, r0), (r

′
1, r
′
0) : (ρ1, ρ0)→ (ρ′1, ρ

′
0), there is a 2-cell between them

in RepCh2(A)(G) only if ri = r′i, i = 0, 1, and in this case a 2-cell is just an intertwiner
from ρ0 to ρ′1.

Proof. By Proposition 4.1, we may restrict to representations (ρ1, ρ0, β, c) with β and c
equal to zero. From Theorem 3.7 together with Lemma 4.2 we can see that the 2-vector
space of intertwiners between two such representations (ρ1, ρ0, 0, 0), (ρ′1, ρ

′
0, 0, 0) is

0 : Homπ0(V0, V
′
1)→ Homπ0(V1, V

′
1)× Homπ1(V0, V

′
0).

The result follows easily from this.

To finish, let us point out that, as it occurs in the classical setting of groups, the
irreducible and indecomposable representations of G in this case coincide.

4.4. Proposition. If the characteristic of the field k does not divide the orders of π1
and π0, then a representation is indecomposable if and only if it is weakly irreducible.

Proof. By Proposition 4.1 any representation of G is equivalent to one of the form
(ρ1, ρ0, 0, 0), and so it is indecomposable if and only if one of the ρi is indecomposable
and the other is 0, which happens if and only if the representation is weakly irreducible
by Proposition 3.16.

As the next examples shows, this is not true in general.

4.5. Example. Let k = F3 be the field with 3 elements, C2 and C3 the cyclic groups of
orders 2 and 3, respectively, and

G = C3[1] o C2[0]

where we are considering C3 = {1, s, s2} as a C2-module with trivial action. Consider F3

as the trivial representation of C2 and let β : C3 → VectF3(F3,F3) = F3 be the map given
by

1 7→ 0, s 7→ 1, s2 7→ 2.

Then it easily follows from Proposition 3.19 that the representation (F3,F3, β, 0) is inde-
composable. However, it is not weakly irreducible by Proposition 3.16.
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5. Final comments

We have shown that the representation theory of a finite 2-group G in Baez-Crans 2-
vector spaces over a field k is a bad one when the characteristic of k is zero because
a lot of information on G gets lost. In fact, a similar result is expected to hold for
compact topological 2-groups and their topological representations in a suitable 2-category
of topological Baez-Crans 2-vector spaces. Thus a topological Baez-Crans 2-vector space
should reasonably be defined as an object in Ch2(A) for some split abelian category A
of topological vector spaces over a suitable topological field. Although the category of all
topological vector spaces over an arbitrary topological field is non abelian (images and
coimages do not necessarily coincide), it will be so if one restricts to finite dimensional
vector spaces over the field of real or complex numbers with the usual topology. Thus
Proposition 2.5 will also hold in this setting. Moreover, if G is a compact topological
2-group, the groups π0 and π1 will be compact topological groups, and in a topological
representation the homomorphism β is expected to be continuous. However, there are no
compact subgroups in the underlying topological abelian group of a finite dimensional real
or complex vector space. Also, the proof of Lemma 4.2 is expected to work for compact
topological groups if one replaces the sum over the elements of G by the corresponding
Haar integral, so that both Lemma 4.2 and Proposition 4.1 are expected to be also true in
this topological setting. However, the question would deserve a more careful study. In fact,
the theory of topological 2-groups may look different to that of 2-groups. For instance, it
is even unclear if any topological 2-group is equivalent to a skeletal topological 2-group
because there is no axiom of choice in the category of topological spaces.

However, things seem to be different in positive characteristic. In this case, the roles
of the second homotopy group of G and its Postnikov invariant are no longer passive,
and we conjecture that the theory is in this case rich enough to be able to prove a
reconstruction theorem of the Tannaka-Krein type. To prove this, it is necessary to study
the representability of the forgetful 2-functor U : RepCh′2(k)

(G) → Ch′2(k). This makes
sense because we already know that the hom-categories in RepCh′2(k)

are indeed objects

in Ch′2(k) (cf. Theorem 3.7). Then the 2-category Yoneda lemma should allows us to
prove that G can indeed be recovered as the 2-group of monoidal automorphism of U.
This is still work in progress.
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