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ON EVRARD’S HOMOTOPY FIBRANT REPLACEMENT
OF A FUNCTOR

BORIS SHOIKHET

Abstract. We provide a more economical refined version of Evrard’s categorical co-
cylinder factorization of a functor [Ev1,2]. We show that any functor between small
categories can be factored into a homotopy equivalence followed by a (co)fibred functor
which satisfies the (dual) assumption of Quillen’s Theorem B.

Introduction

The problem treated here is how to replace a functor f : C→ D between small categories
with a “homotopy fibration of categories”. By latter we mean a functor fulfilling the
assumption of Corollary to Quillen Theorem B [Q, Section 1], see Proposition 1.18 for
several equivalent formulations.

Such a replacement of a functor f : C → D between small categories by a homotopy
fibration is a commutative diagram

C
i //

f !!

H(f)

fh
��
D

where i is a weak equivalence of categories, and fh is a homotopy fibration.
There are apparently many different explicit constructions for that. We consider here

a construction of Marcel Evrard [Ev1,Ev2], which mimics the cocylinder factorization of
a continuous map of topological spaces. His construction is based on a specific categorical
model ΛD of the topological cocylinder Y [0,1]. We shall review Evrard’s construction
and study in parallel a more economical version thereof. Our proof of its homotopical
properties is completely new. We use on one side Rezk’s notion of a sharp map of simplicial
sets [Re], which we rename simplicial h-fibration, and on the other side Grothendieck-
Maltsiniotis’ theory of aspherical functors, cf. [Ma].
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Then the category H(f), for f : C→ D, is defined as the following pullback diagram

H(f) //

��

ΛD

p0
��

C
f // D

where the functor p1 gives the functor fh : H(f) → D, the “fibrant replacement” of f ,
and Λ(D) is the categorical analogue of the topological path space, see Section 2.1 for its
definition. Here p0, p1 : Λ(D)→ D are the functors of the left and right ends of a path.

Recall the classical topological construction mentioned above. Let f : X → Y be
a continuous map. Consider the free path space Y [0,1], and the two projections p0, p1 :
Y [0,1] → Y , assigning to a path its left and right ends. Define Xh as the following pullback
diagram

Xh
//

��

Y [0,1]

p0
��

X
f // Y

where the projection p1 defines a map fh : Xh → Y known to be a Serre fibration.
The paper contains three Sections.
Section 1 contains categorical preliminaries, and the material here is fairly standard.

The exception is Section 1.13 providing a characterization of the nerve of a homotopy
fibrant functor via Rezk’s sharp maps. The more classical topics recalled here include
Quillen Theorem B and the Corollary to it, and the categorical Grothendieck construction.

In Section 2 we recall Evrard’s constructions of the free path category Λ(D) and of
the functor fh : H(f)→ D, and discuss different weak homotopy equivalence relations on
functors between small categories. We prove that Λ(D) is weakly homotopy equivalent
to D, and that the corresponding map C → H(f) is a week homotopy equivalent. Then
we formulate the main result Theorem 2.11.

Section 3 is devoted to a proof of the remaining part of Theorem 2.11, that fh : H(f)→
D is a homotopy fibration. We study simultaneously two versions: Evrard’s original
construction as well as our refined version thereof.

.
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1. Categorical preliminaries

In Sections 1.1-1.13 we recall basic facts on homotopy theory of small categories, including
Quillen’s Theorem B and its interpretation in terms of Rezk’s sharp maps of simplicial
sets, followed by the Grothendieck construction in Section 1.20.

1.1. The basic principles of the homotopy theory of categories. Here we
recall some elementary facts about the homotopy theory of categories, following the first
few pages of [Q2, Section 1].

The theory starts with the classifying space functor B : Cat → Top from small cate-
gories to topological spaces, introduced by G.Segal in [Seg1].

Firstly one defines the nerve NC of a small category C, which is the simplicial set
whose n-simplices are chains of n composable morphisms:

X0
f1−→ X1

f2−→ X2 · · ·Xn−1
fn−→ Xn (1.1)

The i-th face map δi : NCn → NCn−1 is obtained by deleting of Xi in (1.1), and if
i 6= 0, n, by replacing the maps fi and fi+1 by their composition. The i-th degeneracy
map εi : NCn → NCn+1 is obtained by inserting of another copy of Xi at the i-th position,
and inserting the identity map between the two copies Xi.

It is a simplicial set, functorially depending on C. The geometric realization of NC is
a topological space, called the classifying space of C. It is denoted by BC:

BC = |NC| (1.2)

Any functor f : C1 → C2 defines a map of topological spaces B(f) : BC1 → BC2. For
three categories C1,C2,C3 and functors f : C1 → C2, g : C2 → C3 one has:

B(g ◦ f) = B(g) ◦B(f) (1.3)

as the nerve enjoys this property, and the geometrical realization is a functor.

1.2. Definition.

(i) Two functors f, g : C1 → C2 are said to be homotopic (in the sense of Quillen) if the
corresponding maps Bf,Bg : BC1 → BC2 are homotopic maps of topological spaces;

(ii) A functor f : C1 → C2 is called a weak homotopy equivalence if the corresponding
map Bf : BC1 → BC2 is a homotopy equivalence of topological spaces;
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(iii) A functor f : C1 → C2 is called a homotopy equivalence if there is a functor g : C2 →
C1 such that Bf : BC1 → BC2 and Bg : BC2 → BC1 are homotopy inverse maps of
topological spaces;

(iv) Two small categories C1 and C2 are called weakly homotopy equivalent (respectively,
homotopy equivalent) if there is a functor f : C1 → C2 which is a weak homotopy
equivalence (correspondingly, a homotopy equivalence).

The data consisting of two functors f, g : C1 → C2 and a natural transformation h : f →
g can be interpreted in the following way. Denote by I the category with two objects 0
and 1 and the only non-identity morphism i : 0 → 1. Then the above data is the same
that a single functor Ff,g,h : C1 × I→ C2. It results in a map:

BC1 × I ∼ BC1 ×BI→ B(C1 × I)→ BC2 (1.4)

where I is the closed interval, I = BI.
We have:

1.3. Proposition.

(i) Let C1,C2 be two small categories, f, g : C1 → C2 two functors, and h : f → g a map
of functors. Then h defines a homotopy between B(f), B(g) : BC1 → BC2;

(ii) let C and D be small categories, and

F : C� D : G

a pair of adjoint functors. Then BC and BD are homotopy equivalent topological
spaces;

(iii) suppose a small category C has an initial (resp., a final object). Then BC is con-
tractible.

Proof. We have just shown (i). The claim (ii) follows immediately from (i) and from
(1.3), as there are adjunction maps of functors F ◦ G → id and G ◦ F → id. For (iii),
if C has an initial (resp., a final) object, the projection functor of C to the category ∗
with a single object and with the only (identity) morphism, admits a left (resp. a right)
adjoint.

For further references, recall here the following

1.4. Proposition. The geometric realization functor | | : SSets → Top commutes with
arbitrary colimits and with finite limits.

Proof. For the first statement, the geometric realization is left adjoint to the singular
complex functor, see e.g. [GJ, Prop.2.2]. For the second statement, see [May, Theorem
14.3].
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1.5. Quasi-fibrations and h-fibrations. Here we recall a weaker version of the con-
cepts of a Serre fibration in the category of topological spaces, and of a Kan fibration in
the category of simplicial sets. This material will be used later in Section 1.13 to give a ho-
motopy theoretical description of the map Nf : NC1 → NC2, where a functor f : C1 → C2

satisfies the assumption of Quillen Theorem B (correspondingly, the assumption of the
Corollary to Quillen Theorem B), see Proposition 1.18 below.

The following definition (for the topological case) was introduced in [DT].
Let f : X → Y be a map of topological spaces, y ∈ Y . The fiber f−1(y) is defined by

the following pullback diagram

f−1(y) //

��

X

f

��
{y} // Y

The homotopy fiber f−1
h (y) is the homotopy limit of the same diagram. There is a natural

map of topological spaces
iy : f−1(y)→ f−1

h (y)

1.6. Definition. A map of topological spaces f : X → Y is called a quasi-fibration if for
any point y ∈ Y the map iy is a weak homotopy equivalence.

It was shown in [DT] that a topological quasi-fibration gives rise to a long exact
sequence in homotopy groups, in the same way as a Serre fibration does.

It is known that the pullback of a topological quasi-fibration f : X → Y along a map
Y ′ → Y is not, in general, a quasi-fibration. In the same time, quasi-fibrations “patch”
in the following sense: if for a map of topological spaces f : X → Y each point y ∈ Y has
a neighbourhood Uy such that the restriction of f to Uy is a quasi-fibration, then f also
is a quasi-fibration. The reader is referred to [DT] and to the letter of Goodwillie [G] for
further detail and proofs.

For any closed model category M [Q1,Hi], Rezk [R] defines a class of sharp maps. In
the category of topological spaces with Quillen’s model structure, this class is contained
in the class of quasi-fibrations of Dold-Thom, but has the advantage over the latter of
being closed under base-change.

Let us recall the definition.

1.7. Definition. A map f : X → Y in a closed model category M is called sharp if for
each diagram

A
i //

��

A′ //

��

X

f
��

B
j // B′ // Y

in which each square is a pullback square, j is a weak equivalence, the map i is also a
weak equivalence.
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It follows immediately that the class of sharp maps is closed under base change. The
closed model category is right proper [Hi, Sect. 13.1] if and only if each fibration is sharp
[R, Prop.2.2].

In this paper, we call the sharp maps of Rezk homotopy fibrations, or h-fibrations.
Both categories Top of topological spaces and SSets of simplicial sets are right (and

left) proper [Hi, Theorems 13.1.11, 13.1.13]. Therefore, in both categories the fibrations
are h-fibrations, and thus the h-fibrations are considered as “homotopy fibrations”.

For the category Top any h-fibration is clearly a quasi-fibration. Thus, h-fibrations
provide a more rigid concept than quasi-fibrations, and strictly more rigid, as the class
of quasi-fibrations is not closed under base-change. It is likely that the topological h-
fibrations are precisely those quasi-fibrations which remain quasi-fibrations under base-
change, i.e. those which Goodwillie [G] calls universal quasi-fibrations.

For the category Top there is not known any checkable criterion for a map to an
h-fibration.

For the case of category of simplicial sets SSets Rezk proves the following result [R,
Theorem 4.1 and Remark 4.2]:

1.8. Proposition. The following statements are equivalent in SSets:

(1) f : X → Y is an h-fibration,

(2) for each map g : ∆[n]→ Y the pullback square

∆[n]×Y X //

��

X

f

��
∆[n]

g // Y

is homotopy cartesian,

(3) for each diagram of pullback squares of the form

P
h //

��

P ′ //

��

X

f
��

∆[m] δ // ∆[n] // Y

and arbitrary map δ of the standard simplices, the map h is a weak equivalence.

Note that the condition (2) is reminiscent of the definition of quasi-fibration of topo-
logical spaces.

In fact, one has

1.9. Proposition. Let f : X → Y be an h-fibration in SSets. Then the geometric real-
ization |f | : |X| → |Y | is a topological quasi-fibration.
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Proof. We need to prove that for any point y ∈ |Y |, the diagram

|f |−1(y) //

��

|X|
|f |
��

pt
y // |Y |

(1.5)

is homotopy cartesian.
Assume at first that y is a “simplicial” point in |Y |, that is, it comes from a 0-simplex

in Y . Then the fact that (1.5) is homotopy cartesian follows from Proposition 1.8(2) for
n = 0, and from Proposition 1.4. For general, not necessarily simplicial, point y ∈ |Y |, we
find a simplicial point y0 ∈ |Y | and a path connecting y with y0 (such y0 always exists).
This path defines a homotopy between |f |−1(y0) and |f |−1(y), and the homotopy limit
does not change when a map in the diagram is replaced by a homotopic one.

Thus, we have the following implications:

(simplicial h-fibrations)⇒ (topological quasi-fibrations)⇐ (topological h-fibrations)
(1.6)

In the same time, the geometrical realization of a simplicial h-fibration may be not a
topological h-fibration (at least, we do not see any argument which proves the contrary).

1.10. Pre(co-)fibred categories, and Quillen Theorem B. Here we recall the
definitions of (pre-)fibred and of (pre-)cofibred categories (due to Grothendieck [SGA1,
Exposé VI]), and formulate Quillen’s Theorem B and his Corollary to Theorem B [Q2,
Section 1]. In the next Subsection, we discuss the geometrical counter-part of the Corollary
to Quillen Theorem B, and link it with the Rezk’s sharp maps in SSets in Proposition
1.18.

Let f : C→ D be a functor, Y a fixed object of D.
Denote by Y \f the category whose objects are pairs (X, v) where X ∈ C, and v : Y →

f(X) is a morphism in D. A morphism (X, v)→ (X ′, v′) is a morphism w : X → X ′ in C

such that f(w) ◦ v = v′.
As well, denote by f \ Y the category whose objects are pairs (X, v) where X ∈ C,

and v : f(X) → Y is a morphism in D. A morphism (X, v) → (X ′, v′) is a morphism
w : X → X ′ in C such that v′ ◦ f(w) = v.

The Quillen’s Theorem A [Q2, Section 1] says that if, for a functor f : C → D the
category Y \ f (correspondingly, f \ Y ) is contractible for each Y ∈ D then f is a weak
homotopy equivalence (that is, ftop : BC→ BD is a homotopy equivalence).

Along with the comma categories Y \ f and f \ Y , one considers the “set-theoretical
fiber” f−1Y . It is the subcategory of C of objects X such that f(X) = Y and of morphisms
w : X → X ′ such that f(w) = idY .

The comma categories Y \ f and f \ Y are advantageous, comparably with f−1(Y ),
by their functorial behaviour. Let v : Y → Y ′ be a morphism in D. Then one has the
natural functors

[v∗] : Y ′ \ f → Y \ f and [v∗] : f \ Y → f \ Y ′
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However, for existence of base-change functors v∗ : f−1(Y ′)→ f−1(Y ) and v∗ : f
−1(Y )→

f−1(Y ′) one should assume that f is pre-(co)fibred, see below.
We use the notations Y \ D and D \ Y , for Y ∈ D. The category Y \ D has as its

objects the pairs (Y ′, v) where v : Y → Y ′, and a morphism t : (Y ′, v) → (Y ′′, u) is a
morphism t : Y ′ → Y ′′ such that t ◦ v = u, and the category D \ Y is defined accordingly.

The category Y \ D has Y
id−→ Y as its initial object, and the category D \ Y has

Y
id−→ Y as its final object. Therefore, both categories Y \D and D \ Y are contractible,

by Proposition 1.3(iii).

1.11. Theorem. [Quillen Theorem B] Let f : C → D be a functor such that for any
arrow v : Y → Y ′ in D the induced functor [v∗] : Y ′ \ f → Y \ f is a weak homotopy
equivalence. Then for any Y ∈ D the cartesian square of categories

Y \ f j //

[f ]

��

C

f

��
Y \D [j] // D

(1.7)

is homotopy cartesian, where

j(X, v) = X, [f ](X, v) = (f(X), v), [j](Y ′, v) = Y ′ (1.8)

Dually, assume that for any v : Y → Y ′ the induced functor [v∗] is a weak homotopy
equivalence. Then the cartesian diagram

f \ Y j′ //

(f)
��

C

f

��
D \ Y [j′] // D

(1.9)

is homotopy cartesian.

There are the natural imbeddings functor

iY : f−1Y → Y \ f, X 7→ (X, idY ) (1.10)

and
jY : f−1Y → f \ Y, X 7→ (X, idY ) (1.11)

Let f : C → D be a functor. The category C is called pre-fibred over D via f , if for
any Y ∈ D the functor iY has a right adjoint.

As well, the category C is called pre-cofibred over D via f , if for any Y ∈ D the functor
jY has a left adjoint.

The right adjoint functor RY to iY (if it exists) assigns to each (X, v) an object of
f−1Y , which is denoted by v∗X.
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The left adjoint functor LY to jY (if it exists) assigns to each (X, v) an object of f−1Y ,
denoted by v∗X.

Let v : Y → Y ′ be a morphism in D. Then the composition

v∗ := RY ◦ [v∗] ◦ iY ′ : f−1Y ′ → f−1Y (1.12)

is called the base-change functor.
As well, for the same v : Y → Y ′, the composition

v∗ := LY ′ ◦ [v∗] ◦ jY : f−1Y → f−1Y ′ (1.13)

is called the cobase-change functor.
The Corollary of Quillen’s Theorem B says the following:

1.12. Theorem. [Corollary to Quillen Theorem B] Let f : C→ D be a functor. Assume
that C is pre-fibred (corresp., pre-cofibred) over D via f , and that for any morphism
u : Y → Y ′ in D the base change functor u∗ : f−1Y ′ → f−1Y (corresp., the cobase change
functor u∗ : f

−1Y → f−1Y ′) is a weak homotopy equivalence. Then for any Y ∈ D the
category f−1Y is the homotopy fiber of f over Y . More precisely, the cartesian diagram

f−1Y //

��

C

f

��
{Y } // D

(1.14)

is homotopy cartesian, for any object Y ∈ D.

This property on the level of topological spaces just means that Bf : BC→ BD is a
quasi-fibration, with the fibers B(f−1Y ) (see Definition 1.6).

It is clear that the fulfillment of the assumptions of Theorem 1.12 implies the ful-
fillment of the assumptions of Theorem 1.11. Indeed, the functors iY : f−1Y → Y \ f
and jY : f−1Y → f \ Y are homotopy equivalences, as they have adjoints, by Proposition
1.3(ii). Then to say that v∗ (corresp., v∗) is a homotopy equivalence is the same that to
say that [v∗] (corresp., [v∗]) is a homotopy equivalence.

In fact, the assumption of Corollary to Quillen’s Theorem B imply a stronger geomet-
rical property than Bf to be a quasi-fibration. Namely, one proves in Proposition 1.18
that Nf is a simplicial homotopy fibration (a sharp map).

1.13. Quillen Theorem B and homotopy fibrations of simplicial sets. Here
we prove a result1 providing a “geometric interpretation” of the Corollary to Quillen
Theorem B.

In this section, we use the following “categorification” of the simplicial category ∆.
Denote by ∆n the category with n+ 1 objects generated by the linear graph

0→ 1→ 2→ · · · → n

1The author is indebted to the anonymous referee for Proposition 1.18, as well as for its proof.
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We can talk on functors ∆m → ∆n. These functors are in 1-to-1 correspondence with the
morphisms [m]→ [n] in the simplicial category ∆. Thus, we can recover the category ∆
as the smallest full subcategory in Cat, containing all categories ∆n, n ≥ 0.

1.13.1. h-fibred and aspherical functors. We say that a functor f : C → D is
h-fibred if it is pre-fibred, and the base-change functor v∗ : f−1(Y ′) → f−1(Y ) is a weak
equivalence for any arrow v : Y → Y ′ in D.

One has

1.14. Lemma. The class of h-fibred functors is closed under base change.

Proof. One firstly shows that a functor f : C → D is a pre-fibred if and only if any
morphism u : a → b in D has a cartesian lift whose end-point is any given object in
f−1(b), that is, that the original Grothendieck definition [SGA1, Exp. VI], and the Quillen
definition [Q2] of a pre-(co)fibred morphism agree, cf. [Ma, Lemme 1.1.16]. It implies
that pre-fibred (corresp., fibred) functors are stable with respect to arbitrary base change,
see [SGAI, Exp. VI, Cor. 6.9]. The fibers of the base-changed functor are identified with
the fibers of f , as well as the corresponding morphisms u∗.

1.15. Remark. The pre-cofibred functors are also closed under arbitrary base-change,
which is proven similarly. One can define an h-cofibred functor as a pre-cofibred functor
f : C → D such that for any morphism v : Y → Y ′ in D the corresponding functor
v∗ : f

−1(Y )→ f−1(Y ′) is a weak equivalence. Then one shows that the h-cofibred functors
are stable under base-change.

Recall the definition of aspherical functors from [Ma, Section 1.1]. A functor f : C→ D

is called aspherical (resp., coaspherical) if, for each object d ∈ D, the category C/d (resp.
d/C) is contractible.

1.16. Lemma.

(i) Any (co)aspherical functor is a weak equivalence;

(ii) Let f : C → D be a functor, C has initial (resp., final) object ∗C, and f takes the
initial (resp., the final) object in C to an initial (resp., final) object f(∗C) in D.
Then f is aspherical (resp., coaspherical).

Proof. (i): It is Quillen Theorem A, see [Q2]. (ii): The category C/d (resp., d/C) contains
an initial (resp., final) object f(∗C) → d (resp., d → f(∗C)), and the result follows from
Proposition 1.3(iii)

One harder result we use in the proof of Proposition 1.18 below, is

1.17. Lemma. The aspherical (resp., coaspherical) functors are closed under base-change
along pre-fibred (resp., pre-cofibred) functors.

This follows from [Ma, Corollary 3.2.13] and its dual, because any pre-fibred (resp., pre-
cofibred) functor is “smooth” (resp., “proper”) in Grothendieck-Maltsiniotis terminology,
thanks to Proposition 1.3(ii).
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1.17.1. h-fibred functors and Quillen’s Theorem B.

1.18. Proposition. For a pre-fibred (resp., pre-cofibred) functor f : C→ D the following
conditions are equivalent:

(1) f is h-fibred (resp., h-cofibred),

(2) f satisfies the assumption (resp., the dual assumption) of Quillen Theorem B,

(3) Nf is a simplicial h-fibration, see Definition 1.7.

Proof. We establish the Proposition for pre-fibred functors; the dual statement is proved
in a dual manner. Observe that statement (3) is self-dual.

For (1)⇔ (2), consider for a morphism v : Y → Y ′ in D the commutative diagram

f−1(Y ′) v∗ //

iY ′
��

f−1(Y )

Y ′ \ f [v∗] // Y \ f

RY

OO
(1.15)

The vertical functors iY ′ and RY admit adjoints, and thus are (weak) homotopy equiva-
lences by Proposition 1.3(ii). Then v∗ is a weak equivalence iff [v∗] is.

For (3) ⇒ (2), consider, for any objects Y, Y ′ ∈ D, and for a map v : Y → Y ′, the
diagram:

Y ′ \ f [v∗] //

��

Y \ f //

��

C

f

��
Y ′ \D (v∗) // Y \D // D

(1.16)

whose both squares are Cartesian. The category Y \D is the category whose objects are
pairs (X, Y

s−→ X) where X is an object of D and s is a morphism in D; the morphisms are

defined in natural way. This category is contractible by Proposition 1.3(iii), as (Y, Y
id−→ Y )

is its initial object. Thus, the arrow (v∗) is a weak equivalence. Assuming (3), we know
that [v∗] is a weak equivalence, if (v∗) is, what gives (2).

The non-trivial part is (1)⇒ (3). The argument uses Lemma 1.17 of Maltsiniotis.
By Rezk’s result Proposition 1.8(3), it is enough to prove that in any diagram of

simplicial sets

A
h //

��

B //

��

N(C)

N(f)
��

∆[m] // ∆[n] // N(D)

(1.17)

whose squares are Cartesian, the map h is a weak equivalence. By Yoneda lemma,

HomSSets(∆[n], X) = Xn
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Applying it to X = N(D), we see that

HomSSets(∆[n], X) = HomCat(∆n,D)

Thus, we can regard a diagram in Cat, whose both squares are Cartesian:

A
H //

��

B //

��

C

f
��

∆m
σ // ∆n

// D

(1.18)

such that the diagram (1.17) it obtained by the term-wise application of the nerve functor
to the diagram (1.18). It is thus enough to show that the functor H is a weak equivalence
of categories.

The map σ in (1.18) is a map σ : [m] → [n] in the category ∆ (by slight abuse of
notations, we denote both of these maps by σ). We decompose the map σ (on the
categorical level) as the composition of two maps

∆m
σ1−→ σ(0) \∆n

σ2−→ 0 \∆n

where the rightmost category 0 \∆n is the same that ∆n. The first map σ1 is naturally
induced by σ, the second map σ2 is (v∗) for v : 0→ σ(0).

Then our diagram (1.18) becomes one Cartesian square longer:

A1
H1 //

��

A2
H2 //

g1
��

B //

g2

��

C

f

��
∆m

σ1 // σ(0) \∆n
σ2 // ∆n

// D

(1.19)

Here H = H2 ◦H1, and we prove that each of H1 and H2 is a weak equivalence.
We start with the easier case of H2. The maps g1 and g2 in (1.19) are h-fibred, as

f is h-fibred by assumption, and by Lemma 1.14. Both categories σ(0) \ ∆n and ∆n

have initial objects. The initial objects are (σ(0), id) and 0, correspondingly. In the
commutative diagram

A2
H2 // B

g−1
1 (σ(0), id) id //

i1

OO

g−1
2 (σ(0))

[v∗] // g−1
2 (0)

i2

OO (1.20)

the embeddings i1 and i2 are weak equivalences, by Corollary to Quillen Theorem B.
Moreover, [v∗] is also a weak equivalence, as f is h-fibred, and by (2). It implies that H2

is a weak equivalence.
The proof that H1 is also a weak equivalence relies on the theory of aspherical functors,

see Section 1.13.1. The functor σ1 is aspherical by Lemma 1.16, as it takes the initial
object of ∆m to the initial object of σ(0) \∆n.
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As g1 is h-fibred, Lemma 1.17 implies that H1 is also aspherical. Then Lemma 1.16
implies that H1 is a weak equivalence.

1.19. Remark. Proposition 1.18 implies the Corollary to Quillen Theorem B, due to
Proposition 1.9. However, the form given in Proposition 1.18, is stronger than the original
Quillen’s result.

1.20. The fibred and cofibred Grothendieck constructions. The Evrard con-
struction discussed in Section 2 is expressed as the Grothendieck construction in category
theory [SGA1, ExposéVI.8]. Here we recall the fibred and cofibred Grothendieck con-
structions, restricting ourselves to its properties necessary for the sequel. We refer the
reader to loc.cit. and to [Th] for more detail.

Let F : K → Cat be a (strict) functor (an analogous construction also exists for F a
pseudo-functor).

There are two different constructions, both referred to as the Grothendieck construction
of F , which are given as functors

pc : K

∫
c

F → K and pf : K

∫
f

F → Kopp

where pc is cofibred and pf is fibred.
The objects of K

∫
c
F are pairs (K,X) were K ∈ K and X ∈ F (K).

A morphism (k, x) : (K1, X1) → (K0, X0) is given by a morphism k : K1 → K0 in K

and a morphism x : F (k)(X1)→ X0 in F (K0).
The composition is defined as (k, x) q(k′, x′) = (kk′, x qF (k)(x′)).
The map pc is defined as the projection onto the first component. The category K

∫
c
F

is equivalent to the lax colimit of F , see Proposition 1.23.
The objects of K

∫
f
F are pairs (K,X) were K ∈ K and X ∈ F (K).

A morphism (k, x) : (K1, X1) → (K0, X0) is given by a morphism k : K0 → K1 in K

and a morphism x : X1 → F (k)(X0) in F (K1).
The composition is defined as (k, x) q(k′, x′) = (k′k, F (k′)(x) qx′).
The map pf is defined as the projection onto the first component. The category K

∫
f
F

is equivalent to the lax limit of F , which is the statement dual to Proposition 1.23.

1.21. Lemma.

(1) The functor pf : K
∫
f
F → Kopp expresses K

∫
f
F as a fibred category over Kopp, the

functor pc : K
∫
c
F → K expresses K

∫
c
F as a cofibred category over K;

(2) A natural transformation of functors θ : F ⇒ F ′ : K→ Cat induces a functor

[θ]f : K

∫
f

F → K

∫
f

F ′
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of fibred categories over Kopp and a functor

[θ]c : K

∫
c

F ′ → K

∫
c

F

of cofibred categories over K.

Let θ1, θ2 : F ⇒ F ′ : K → Cat be two natural transformations of functors. In this
context, it is possible to define a 3-arrow ξ : θ1 V θ2, conventionally called a modifica-
tion. Indeed, each θi, i = 1, 2 is given by a functor θi(k) : F (k) → F ′(k) such that for
any x : k1 → k the corresponding diagram of functors commutes. Then a modification
ξ : θ1 V θ2 is given, for each k ∈ K, by a map ξ(k) : θ1(k)⇒ θ2(k) : F (k)→ F ′(k) of the
corresponding functors, such that, for any x : k1 → k, and for any t ∈ F (k1), the diagram

θ1(t)
ξ(k1)(t) //

F ′(x)
��

θ2(t)

F ′(x)
��

θ1(F (t))
ξ(k)(F (t)) // θ2(F (t))

(1.21)

commutes.
We can now extend Lemma 1.21 to the action of these modifications:

1.22. Lemma. Let F, F ′ : K → Cat be two functors, θ1, θ2 : F ⇒ F ′ maps of functors,
and let ξ : θ1 V θ2 be a modification. Then ξ induces a natural transformation of functors

[ξ]f : [θ1]f ⇒ [θ2]f : K

∫
f

F → K

∫
f

F ′

and a natural transformation of functors

[ξ]c : [θ2]c ⇒ [θ1]c : K

∫
c

F ′ → K

∫
c

F

The following Proposition (see e.g. [Th, Prop. 1.3.1]) characterizes the Grothendieck
construction category K

∫
c
F as the “lax colimit” of the functor F : K→ Cat.

1.23. Proposition. Let K be a small category, F : K→ Cat a strict functor, C a cate-
gory. Then there is a bijection between the set of functors g : K

∫
c
F → C, and the set of

data consisting of

(1) for each object K ∈ K, a functor g(K) : F (K)→ C,

(2) for each morphism k : K → K ′ in K, a natural transformation

g(k) : g(K)→ g(K ′) ◦ F (k)
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such that g(idK) = id: g(K)→ g(K), and for K ′′
k′←− K ′

k←− K one has

g(k′k) = g(k′) ◦ g(k) (1.22)

See e.g. [Th, Prop. 1.3.1] for a short and direct proof.

There is a similar statement expressing that K
∫
f
F is a lax limit of F , it is left to the

reader.

2. The Evrard construction and its refinement

There is a nice construction due to M.Evrard [Ev1,2] of replacing a functor f : C → D

between small categories by a functor fh : H(f) → D, where H(f) is another category,
such that:

(i) there is a functor i : C→ H(f) which is a homotopy equivalence,

(ii) the nerve N(fh) : N(H(f)) → N(D) is a simplicial h-fibration, see Section 1.13.1
and Proposition 1.18,

(iii) the diagram

C
i //

f !!

H(f)

fh
��
D

(2.1)

commutes.

Here we provide a more economical version of Evrard’s construction enjoying the same
properties (i)-(iii). Our proof applies simultaneously to Evrard’s original construction and
to our refinement.

2.1. A categorical cocylinder. We define a categorical cocylinder ΛD of a category
D which is the analogue of the topological cylinder Y [0,1].

Define the category ΛnD for n ≥ 0. An object of ΛnD is a zig-zag

Ȳ0 → Y1 ← Ȳ1 → Y2 ← Ȳ2 → Y3 ← · · · → Yn ← Ȳn (2.2)

which we denote by Y (n), and a morphism Y (n) → Z(n) is the set of maps ti : Yi →
Zi and t̄i : Ȳi → Z̄i making all squares commutative. Such a morphism is denoted by
t : Y (n)→ Z(n). Note that Λ0D = D.

We discuss simultaneously the original Evrard construction and its refinement, pro-
posed here. For that reason, we use two categories: ∆inj and ∆≤.

The category ∆inj has objects are {[0], [1], [2], . . . } and the morphisms [m] → [n] are
the strictly order-preserving maps from 0 < · · · < m to 0 < · · · < n (that is, such maps φ
that φ(i) < φ(j) for i < j; in particular a morphism exists only when m ≤ n).
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The category ∆≤ has the same objects as ∆inj, and there is a single morphism [m]→ [n]
when m ≤ n, and the empty set of morphisms otherwise. For m ≤ n, we interpret the
single morphism [m]→ [n] as the map φ of ordered sets {0 < 1 < · · · < m} → {0 < 1 <
· · · < n} defined as

φ(i) = n−m+ i

The assignment [n] 7→ Λn(D) gives rise to functors

Finj : ∆inj → Cat and F≤ : ∆≤ → Cat

In both cases, for an order-preserving morphism φ : [m] → [n], and for a Y ∈ ΛmD,
we set

Λ(φ)(Y ) =

Ȳ0
id−→ Ȳ0

id←− Ȳ0
id−→ . . .

id←− Ȳ0
id−→ Ȳ0 ← Y1 → Ȳ1

φ(1)-th
place

id←− Ȳ1
id−→ . . .

id−→ Ȳ1 ← Y2 → Ȳ2
φ(2)-th
place

id←− Ȳ2
id−→ . . .

(2.3)
Finally, we define two categories ΛinjD and Λ≤D as the cofibrant Grothendieck construc-
tions

ΛinjD = ∆inj

∫
c

Finj (2.4)

and

Λ≤D = ∆≤

∫
c

F≤ (2.5)

We use the notation Λ∗D when the statement holds for both of these two categories.
Define two maps p0, p1 : Λ∗D→ D by setting

p0([n], Y ) = Ȳ0, p1([n], Y ) = Ȳn (2.6)

Let Y ∈ ΛnD be a free path. Consider the path p
0
(Y ) which is, in the notations of

(2.2), the following path in ΛnD:

Ȳ0
id−→ Ȳ0

id←− Ȳ0
id−→ Ȳ0

id←− Ȳ0 . . . (2.7)

2.2. Proposition. The functor p
0
: ΛnD→ ΛnD is connected to the identity functor of

ΛnD by a zig-zag of natural transformations of functors.

Proof. For k ≤ n, define the objects Y (k) and Y (k) in ΛnD, as the paths

Ȳ0 → Y1 ← Ȳ1 → · · · ← Ȳk−1 → Yk
id←− Yk

id−→ Yk ← . . . (2.8)

and
Ȳ0 → Y1 ← Ȳ1 → · · · ← Ȳk−1 → Yk ← Ȳk

id−→ Ȳk
id←− Ȳk → . . . (2.9)

correspondingly.
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In these notations, p
0
(Y ) = Y (0), and Y = Y (n).

We claim that there is a zig-zag of natural transformations, from p
0

to id, sending Y
to the path

p
0
(Y ) = Y (0)

α1−→ Y (1) β1←− Y (1)
α2−→ Y (2) β2←− Y (2) → . . .

αn−→ Y (n) βn←− Y (n) = Y (2.10)

where the maps Y (i−1)
αi−→ Y (i) and Y (i) βi←− Y (i) are as follows:

Y (k) : Ȳ0

βk
��

// Y1 . . . //oo Yk−1

id

��

Ȳk−1
oo a //

id
��

Yk

id

��

Ȳk
boo id //

b

��

Ȳk

b

��

. . .oo

Y (k) : Ȳ0
// Y1 . . . //oo Yk−1 Ȳk−1

oo a // Yk Yk
idoo id // Yk . . .oo

Y (k−1) : Ȳ0

αk

OO

// Y1 . . . //oo Yk−1

id

OO

Ȳk−1
oo id //

id

OO

Ȳk−1

a

OO

Ȳk−1
idoo id //

a

OO

Ȳk−1

a

OO

. . .oo

(2.11)
We are done.

2.3. Corollary. The categories ΛnD, n ≥ 0, are homotopy equivalent to the category
D.

(Note that there is a dual construction Λ∗(D) obtained by reversing of the orientation
of all arrows, and two maps q0, q1 : Λ∗(D)→ D, for which the analogs of Proposition 2.2
and Corollary 2.3 hold. We leave the detail the details to the interested reader.)

We want to deduce that Λ∗D is as well homotopy equivalent to D. This point requires
some accuracy, as what we get is the following.

For each n ≥ 0, k ≤ n, and Y ∈ ΛnD, the functors P n,k : Y 7→ Y (k) and Pn,k : Y → Y (k)

are compatible with the action of ∆inj (correspondingly, ∆≤), and, by Lemma 1.21(2),
give rise to functors

P k, Pk : Λ∗D→ Λ∗D

Now maps of functors αk, βk give rise, by Lemma 1.22, to maps of functors

P0
[α1]c←−− P 1 [β1]c−−→ P1

[α2]c←−− P 2 [β2]c−−→ P2 ← . . . (2.12)

such that, for any fixed Ω = ([n], Y ) ∈ Λ∗D there exists N(n) such that

Ps(Ω) = Ω and P s(Ω) = Ω

for any s ≥ N(n) = N(n(Ω)). (Whence P0(n, Y ) = Y (0) independently on n). To
conclude that the map (n, Y ) 7→ Y (0) is homotopic to the identity map of Λ∗D, we recall
some results of [Mi] in the next Subsection.
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2.4. Different homotopy relations. We have at least two different concepts of
“homotopy of functors” between small categories.

Let C1,C2 be two small categories, f, g : C1 → C2 two functors.
We write f ' g if there is a zig-zag of maps of functors

f0 → f1 ← f2 → · · · → fn

with f0 = f , fN = g. In that case we say that f and g are homotopic functors.
We say that f and g are B-homotopic functors if the maps Bf,Bg : BC1 → BC2 are

homotopic maps of topological spaces. In that case we write f 'B g.
It follows from Proposition 1.3(i) that f ' g implies f 'B g.
It turns out that there is another homotopy relation between functors, denoted f 'E g

and called Evrard homotopy relation such that one has

f ' g ⇒ f 'E g ⇒ f 'B g

and both implications are strict [Mi, Remark 2.9].
We follow [Mi] (where the author uses the notation f 'H g for our f 'E g, and call

it Hoff homotopy relation).
Denote by In the category with objects 0, 1, . . . , n defined by the graph

0→ 1← 2→ 3← · · · → n

(for n odd, when n is even the rightmost arrow is directed leftward).
Let N be the category with objects 0, 1, 2, . . . given by the graph

0→ 1← 2→ 3← . . .

Alternatively, one can define

N = ∆≤

∫
c

I∗

2.5. Definition. A functor f : N → C is finite if there exists m such that f(m) = f(n)
for all n ≥ m, and the corresponding morphisms in N are mapped to idf(m).

We denote by N(C) the category of all finite functors N→ C.

For any functor h : N→ C we denote by α(h) ∈ C the composition {0} → N
h−→ C.

For any finite functor h ∈ N(C) the “end-value” ω(h) ∈ C is defined as h(m) ∈ C

where m is the number in the definition of a finite functor.

2.6. Definition. Two functors f, g : C → D are called Evrard homotopic if there is a
functor H : C→ N(D) such that α(H) : C→ D is equal to f , and ω(H) : C→ D is equal
to g.

It is clear that f ' g ⇒ f 'E g. This implication is strict [Mi, Remark 2.9]. The
matter is that for each object c ∈ C the “length” (the minimal number m in Definition
2.5 applied to H(c) is a function on C. If C has infinitely many objects, this function may
be not bounded, considered as a function ObC→ N.

The main result [Mi, Remark 2.11] which we use here is the following:
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2.7. Proposition. For functors f, g : C → D between small categories there are the
following (strict) implications:

f ' g ⇒ f 'E g ⇒ f ⇒B g

The link with our problem is the following.
For any fixed n, Proposition 2.2 gives p

0
' idΛn(D), in the sense of the strongest

homotopy relation '. Then our discussion below Corollary 2.3 shows that the same
construction as in Proposition 2.2 gives a functor

H : Λ∗(D)→ N(Λ∗(D))

such that α(H) = p
0
, ω(H) = idΛ∗(D).

That is, p
0
'E idΛ∗(D), in the sense of the (weaker than ') homotopy relation 'E.

2.8. Theorem. For any small category D, the topological space B(Λ∗(D)) is homotopy
equivalent to the topological space B(D). This homotopy equivalence is induced by the
functor i : D → Λ∗(D) assigning to Y ∈ D the object ([0], Y ) of length 0. Its homotopy
inverse is induced by the functor assigning to ([n], Y ) its 0-component Y0.

Proof. We define embedding i : D→ Λ∗(D) sending Y to ([0], Y ). Denote by p : Λ∗(D)→
D the functor assigning to ([n], Y ) its 0-part Y0. Our previous discussion shows that
idΛ∗(D) 'E (i ◦ p). It implies by Proposition 2.7 that B(id), B(i) ◦ B(p) : B(Λ∗(D)) →
B(Λ∗(D)) are homotopic maps of topological spaces. But p ◦ i = idD, what gives another
(identical) homotopy.

2.9. The Evrard homotopy fibrant replacement of a functor. For a functor
f : C→ D, define the category H∗(f) by the following pullback diagram:

H∗(f)
f̂ //

��

Λ∗D

p0
��

C
f // D

(2.13)

(Recall that the subscript ∗means either inj or≤, see Section 2.1). The functor p1 : Λ∗D→
D defines the composition H∗(f)→ Λ∗D

p1−→ D which is denoted by fh.
Explicitly, an object of H∗(f) is a triple (X, [n], Y ) with X ∈ C, Y ∈ ΛnD, and with

Ȳ0 = f(X). Then p1 assigns to (X, [n], Y ) the rightmost object Ȳn in the string Y .
There are functors q : H∗(f)→ C, which assigns to (X, Y ) the object X, and i : C→

H(f), which assigns to X the pair (X, f(X)), where f(X) is of length 0 whose only
component is f(X).

(There is a dual construction defined as the composition H∗(f)→ Λ∗(D)
q0−→ D, which

is denoted by fh).
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2.10. Proposition. Let f : C → D be a functor. Then the functors i and q induce
homotopy equivalences B(C) � B(H∗(f)), homotopy inverse to each other. Therefore,
the categories C and H(f) are 'B-homotopy equivalent, see Section 2.4.

Proof. We have q◦ i = id, and the composition i◦q is the functor assigning to (X, [n], Y )
the object (X, [0], f(X)). We prove that it is Evrard homotopic to the identity functor of
H∗(f), following the same line as in Proposition 2.2. Then we apply Proposition 2.7, as
in the proof of Theorem 2.8.

Consider the functor fh : H∗(f)→ D defined above.
The case ∗ = inj of the following Theorem is partially contained in the Thesis of

Evrard [Ev1]. Our proof works simultaneously for both cases and yields a more precise
homotopical information than Evrard’s treatment [Ev1, Ev2].

2.11. Theorem. Any functor f : C → D admits a (natural) factorization into a homo-
topy equivalence if : C→ H∗(f) followed by an h-fibred functor fh : H∗(f)→ D.

Dually, the functor f also admits a (natural) factorization into a homotopy equivalence
jf : C→ H∗(f) followed by an h-cofibred functor fh : H∗(f)→ D.

In particular, the functor fh (resp., fh) fulfills the assumption (resp. the dual assump-
tion) of Quillen Theorem B (cf. Theorem 1.11 and Proposition 1.18).

We prove Theorem 2.11 in the next Section.

2.12. Remark. In the extended electronically available version of [Ma], Maltsiniotis
proves the existence of factorization which is different but related to ours, see [Ma, The-
orem 3.2.45].

3. Proof of Theorem 2.11

We provide a proof for the case of fh, the interested reader is invited to carry out the
dual part of Theorem 2.11 just by dualizing the proofs involving fh.

In Section 3.1, we prove that fh is a fibred functor. Then in Section 3.2 we show that
fh is h-fibred, i.e. the induced base-change functors are weak homotopy equivalences.

We discuss in parallel the cases ∗ = inj and ∗ =≤, though in a few place we omit some
detail for ∗ = inj to avoid long routine but straightforward computations.

3.1. fh is a fibred functor. Let f : C→ D be a functor. Consider fh : H∗(f)→ D.

3.2. Lemma. The functor fh is pre-fibred (and fibred).

Proof. Recall the natural embedding iY : f−1
h (Y )→ Y \fh, see Section 1.10. To see that

fh is pre-fibred, we need to show that iY admits a right adjoint.
An element of the category Y \ fh, Y ∈ D is a tuple

ω = (X, Y n, σ) where X ∈ C, Y n ∈ Λn(D), Ȳ0 = f(X), σ : Y → Ȳn = fh(Y n)
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We use notations as in (2.2) for an element in Λn(D), that is, Y n is of the form

Ȳ0 → Y1 ← Ȳ1 → Y2 ← Ȳ2 → Y3 ← · · · → Yn
a←− Ȳn (3.1)

Define the right adjoint RY to iY on the object ω as RY (ω) = (X,Zn) where Zn ∈ Λn(D)
is the following string:

Ȳ0 → Y1 ← Ȳ1 → Y2 ← Ȳ2 → Y3 ← · · · → Yn
a◦σ←−− Y (3.2)

To define RY on morphisms, let Φ: ω → ω′ be a morphism in Y \ fh. It means that we
are given another object

ω′ = (X ′ ∈ C, Y ′m ∈ Λm(D), Ȳ ′0 = f(X ′), σ′ : Y → Ȳ ′m)

in Y \ fh, and morphisms

s : X → X ′, w : Λ(φ)(ω)→ ω′

such that w0 = f(s) and
w̄m ◦ σ = σ′ (3.3)

Note that in general m 6= n, φ : [n]→ [m] is a morphism in ∆inj for ∗ = inj and in ∆≤ for
∗ =≤; one always has m ≥ n. Here w : Λ(φ)(ω)→ ω′ is a morphism in Λm(D).

The corresponding morphism RY (s, w) : RY (ω)→ RY (ω′) is defined as

(s : X → X ′, RY (w) : Λ(φ)(RY (ω))→ RY (ω′))

To simplify the notations, we construct RY (w) only for the case ∗ =≤; the case ∗ = inj is
similar and is left to the reader. So we let ∗ =≤, m−n = k ≥ 0, there is only one morphism
n→ m in ∆≤. We use the following notations for the morphism w : Λ(φ)(ω)→ ω′:

. . . Ȳn−1
//

w̄n−1

��

Yn

wm

��

Ȳn
aoo

w̄m

��
. . . Ȳ ′m−1

// Y ′m Ȳm
a′oo

(3.4)

Define RY (w) : Λ(φ)(RY (ω))→ RY (ω′)) as

. . . Ȳn−1
//

w̄m−1

��

Yn

wm

��

Ya◦σoo

id

��
. . . Ȳm−1

// Y ′m Y
a′◦σ′oo

(3.5)

To see that the definition is correct, we only need to check that the rightmost square in
(3.5) is commutative. It follows from the commutativity of the rightmost square in (3.4)
and from (3.3).



1010 BORIS SHOIKHET

Now check that the functor RY is right adjoint to iY (again in the case ∗ =≤).
Let ω ∈ Y \ fh as above, and let η = (X,Z`), Z0 = f(X), Z̄` = Y , be an element in

f−1
h (Y ). We need to bi-functorially identify

Homf−1
h (Y )(η,RY (ω)) ' HomY \fh(iY (η), ω) (3.6)

We have n ≥ `, otherwise both sides of (3.6) are empty sets. We track the rightmost
square in both sides. They are

. . . Z`

wn

��

Y
boo

id
��

. . . Yn Ya◦σoo

(3.7)

for the l.h.s. of (3.6), and

. . . Z`

wn

��

Y
boo

w̄n

��
. . . Yn Ȳn

aoo

(3.8)

with
w̄n = w̄n ◦ idY = σ (3.9)

for the r.h.s. of (3.6).
It is clear that there is 1-to-1 correspondence between diagrams (3.7) and diagrams

(3.8) with σ = w̄n.
It proves that the functor fh is pre-fibred. In fact, it is fibred (though we don’t use

it), see Section 3.3 below.

3.3. The base-change functor. With any morphism v : Y → Y ′ in D is associated
the base-change morphism

v∗ = RY ◦ [v∗] ◦ iY : f−1
h (Y ′)→ f−1

h (Y )

see (1.12).
In our case, the base-change morphism is just the pre-composition of the rightmost

map a : Y ′ = Ȳn → Yn in the string (3.1) with v : Y → Y ′. Thus, it sends ω = (X, Y n)
with Y n as

Ȳ0 → Y1 ← Ȳ1 → Y2 ← Ȳ2 → Y3 ← · · · → Yn
a←− Y ′

to
Ȳ0 → Y1 ← Ȳ1 → Y2 ← Ȳ2 → Y3 ← · · · → Yn

a◦v←−− Y

and is extended to morphisms in a natural way.
Note that for two composable morphisms v1 and v2 in D, one has

(v2 ◦ v1)∗ = v∗1 ◦ v∗2 (3.10)
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what can be seen from the description of v∗ given above. In general, the two sides of
(3.10) are only isomorphic; a pre-fibred functor for which one can choose representatives
for all right adjoints RY (any two representatives are isomorphic) such that (3.10) holds
on the nose (not just up to an isomorphism) is called fibred.

We have:

3.4. Lemma. In the notations as above, any base-change functor v∗ : f−1
h (Y ′)→ f−1

h (Y )
is a weak homotopy equivalence of categories.

Proof of the Lemma:
With a morphism v : Y → Y ′, we associated the base-change functor v∗ : f−1

h (Y ′) →
f−1
h (Y ). Note that v∗ is well-defined as well on the strings Y n of fixed length n. Our

strategy is as follows:

(i) We construct a functor v† : f
−1
h (Y )→ f−1

h (Y ′), associated with the same morphism
v : Y → Y ′ in D. It increases the length of string Y n by 1, so it can not be specified
for fixed n, but it is defined as a functor between the corresponding Grothendieck
constructions;

(ii) We construct a shift functor T : f−1
h (Y )→ f−1

h (Y ) increasing the length of a string
Y n by 1. We prove that T is weak homotopy equivalent to the identity functor, on
the level of Grothendieck constructions;

(iii) We construct natural transformations

A : T → v∗v†

and
B : v†v

∗ → T

Then Theorem 3.4 will follow, by Proposition 1.3.

3.4.1. The shift functor. Define the functor Tn : Λn(D)→ Λn+1(D) as

Tn(Y ) = · · · ← Yn−1 → Ȳn−1 ← Yn → Ȳn
id←− Ȳn

id−→ Ȳn (3.11)

where Y ∈ Λn(D).
The functors Tn define a functor T : Λ∗(D) → Λ∗(D), for both cases ∗ = inj and

∗ =≤, by Lemma 1.21(2). For a functor f : C → D, the functors Tn define a functor
T : H∗(f)→ H∗(f), by

T (X, [n], Y ) = (X, [n+ 1], Tn(Y )) (3.12)

The functor T preserves the category f−1
h (Y ) for any Y ∈ D. We denote the restriction

of T to f−1
h (Y ) by TY . One has
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3.5. Proposition. Let f : C→ D be a functor. Then T : H∗(f)→ H∗(f) is a weak ho-
motopy equivalence, and is homotopy equivalent to the identity functor. The corresponding
functor TY : f−1

h (Y )→ f−1
h (Y ) as well is a homotopy equivalence, homotopy equivalent to

the identity functor.

Proof. Let Y n ∈ Λn(D), consider T (Y n) ∈ Λn+1(D). Denote by j : n → n + 1 the
morphism in ∆≤. We construct functors

T0, T1, . . . , T2n : Λn(D)→ Λn+1(D)

with
T0 = Λ(j), T2n = T

and a zig-zag of maps of functors

T0
θ0−→ T1

θ1←− T2
θ2−→ T3 . . . T2n−2

θ2n−2−−−→ T2n−1
θ2n−1←−−− T2n

For even i = 2k, T2k(Y n) ∈ Λn+1(D) is

Ȳ0 → Y1 ← Ȳ1 → · · · → Yk ← Ȳk
id−→ Ȳk

id←− Ȳk → Yk+1 ← Ȳk+1 → · · · → Yn ← Ȳn

(that is, two extra Ȳk are inserted to the string, and the new arrows are the identity
maps).

For odd i = 2k + 1, T2k+1(Y n) ∈ Λn+1(D) is

Ȳ0 → Y1 ← Ȳ1 → · · · ← Ȳk → Yk+1
id←− Yk+1

id−→ Yk+1 ← Ȳk+1 → Yk+2 ← · · · → Yn ← Ȳn

(that is, two extra Yk+1 are inserted to the string, and the two new arrows are the identity
maps).

We construct the two “rightmost” maps of functors, θ2n−1 and θ2n−2, the remaining
maps are similar. These two rightmost maps are:

T2n

θ2n−1

��

. . . // Yn−1

id

��

Ȳn−1
b //coo

id
��

Yn

id

��

Ȳn
id //aoo

a

��

Ȳn

a

��

Ȳn
idoo

id
��

T2n−1 . . . // Yn−1 Ȳn−1
coo b // Yn Yn

idoo id // Yn Ȳn
aoo

T2n−2

θ2n−2

OO

. . . // Yn−1

id

OO

Ȳn−1
coo id //

id

OO

Ȳn−1

b

OO

Ȳn−1

b

OO

idoo b // Yn

id

OO

Ȳn
aoo

id

OO

(3.13)
The same formulas define a zig-zag of homotopy equivalences for H∗(f).

We also have a morphism Λ(j)(Y ) → Y in the cofibrant Grothendieck construction,
which gives rise to a map of functors T0 → id in ∆∗

∫
c
Λ, and to a map of functors T0 → id

in H∗(f).
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That is, we have the following zig-zag of maps of functors in H∗(f):

id← T0
θ0−→ T1

θ1←− T2
θ2−→ T3 . . . T2n−2

θ2n−2−−−→ T2n−1
θ2n−1←−−− T2n

Now the argument analogous to the one in Section 2.4 shows that T is 'E-homotopic to
the identity functor. It implies, by Proposition 2.7, that T and id define homotopic maps
on B(H∗(f)).

3.5.1. The functor v†. Let v : Y → Y ′ be a morphism in D. We construct a functor

v† : f
−1
h (Y )→ f−1

h (Y ′)

on an object

· · · → Zn−1 ← Z̄n−1 → Zn
b←− Z̄n

=Y

as
· · · → Zn−1 ← Z̄n−1 → Zn

b←− Z̄n
=Y

v−→ Y ′
id←− Y ′

The Grothendieck construction gives then a functor v†.

3.6. Proposition. Let v : Y → Y ′ be a morphism in D. There are maps of functors

A : T ⇒ v∗v† : f
−1
h (Y )→ f−1

h (Y )

and
B : v†v

∗ ⇒ T : f−1
h (Y ′)→ f−1

h (Y ′)

Proof. Denote by f−1
h (Y )[n] be the category of the corresponding strings of length n,

thus

fh(Y ) = ∆∗

∫
c

f−1
h (Y )[n]

We construct maps of functors

A[n] : T ⇒ v∗v† : f
−1
h (Y )[n]→ f−1

h (Y )[n+ 1]

and
B[n] : v†v

∗ ⇒ T : f−1
h (Y ′)[n]→ f−1

h (Y ′)[n+ 1]

Then the result will follow from Lemma 1.22.
For fixed n, A[n] and B[n] are given by the following diagrams, correspondingly:

. . . // Zn
=Y

Z̄n
boo v // Y ′ Y

voo

. . . // Zn

id

OO

Z̄n
=Y

boo

id

OO

id // Y

v

OO

Y
idoo

id

OO (3.14)
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. . . // Yn

id

��

=Y ′

Ȳn
avoo

v

��

v // Y ′

id

��

Y ′idoo

id

��
. . . // Yn Ȳn

=Y ′

aoo id // Y ′ Y ′idoo

(3.15)

One easily checks that both A[n] and B[n] form a 3-arrow, when n runs through the
objects of the category ∆∗ (see the definition just before Lemma 1.22), thus Lemma 1.22
applies.

We are done.

Lemma 3.4 is proven.

Now Theorem 2.11 follows from Propositions 2.7, 3.5, and 3.6.
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