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CORELATIONS ARE THE PROP FOR EXTRASPECIAL
COMMUTATIVE FROBENIUS MONOIDS

BRANDON COYA AND BRENDAN FONG

Abstract. Just as binary relations between sets may be understood as jointly monic
spans, so too may equivalence relations on the disjoint union of sets be understood as
jointly epic cospans. With the ensuing notion of composition inherited from the pushout
of cospans, we call these equivalence relations corelations. We define the category of
corelations between finite sets and prove that it is equivalent to the prop for extraspecial
commutative Frobenius monoids. Dually, we show that the category of relations is
equivalent to the prop for special commutative bimonoids. Throughout, we emphasise
how corelations model interconnection.

1. Introduction

It is well-known that the category of relations between finite sets may be obtained as the
category of isomorphism classes of jointly monic spans in the category of finite sets and
functions. In this paper we investigate the dual notion: isomorphism classes of jointly
epic cospans. These are known as corelations, and corelations from a set X to a set Y
are characterised as partitions of the disjoint union X + Y .

Our slogan is ‘corelations model connection’. We understand a corelation as a partition
of two sets into connected components, depicting examples as follows

X Y

Here we have a corelation from a set X of five elements to a set Y of six elements. Elements
belonging to the same equivalence class of X + Y are grouped (‘connected’) by a dashed
line.
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Composition of corelations takes the transitive closure of the two partitions, before
restricting the partition to the new domain and codomain. For example, suppose in
addition to the corelation α : X → Y above we have another corelation β : Y → Z

Y Z

Then the composite β ◦ α of our two corelations is given by

X Z

Y

= X Z

Informally, this captures the idea that two elements of X + Z are ‘connected’ if we may
travel from one to the other staying within connected components of α and β.

Another structure that axiomatises interconnection is the extraspecial commutative
Frobenius monoid. An extraspecial commutative Frobenius monoid in a symmetric mon-
oidal category is an object equipped with commutative monoid and cocommutative comon-
oid structures that together obey additional laws known as the Frobenius, special, and
extra laws. Special commutative Frobenius monoids are well-known; the additional ax-
iom here, the so-called extra law, requires that the unit composed with the counit is the
identity on the unit for the monoidal product. We write this in string diagrams as

=

Together, these axioms express the idea that connectivity is all that matters: not pairwise
clustering, not multiple paths, not ‘extra’, interior components.

Corelations and extraspecial commutative Frobenius monoids are intimately related.
To explicate this relationship, we will use the language of props. Recall that a prop1 is a
symmetric strict monoidal category with the natural numbers as objects and addition as
the monoidal product. Also recall that a prop T is termed the prop for an algebraic struc-
ture if, given another symmetric monoidal category C, the symmetric monoidal functor
category CT is isomorphic to the category of the chosen algebraic structure in C.

Considered as symmetric monoidal categories with monoidal product the disjoint
union, Lack proved that the category of spans in the category of finite sets and functions

1Also stylised PROP, for PROduct and Permutation category.
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is equivalent as a symmetric monoidal category to the prop for bicommutative bimonoids,
and that the category of cospans is equivalent as a symmetric monoidal category to the
prop for special commutative Frobenius monoids [Lac04]. Note that the disjoint union of
finite sets also gives a monoidal product on the category of corelations. Our main theorem
is:

1.1. Theorem. The category of corelations is equivalent, as a symmetric monoidal cat-
egory, to the prop for extraspecial commutative Frobenius monoids.

Corelations and extraspecial commutative Frobenius monoids have been observed to
play a key role in many frameworks relying on the interconnection of systems, includ-
ing electrical circuits [BF], signal flow graphs [BE15, BSZ14], bond graphs [BC], linear
time-invariant systems [FRS16], automata [RSW08], proofs [DP03], and matrices and
other linear systems [Zan15]. The mutual characterisation of these structures provided
by our main theorem clarifies and streamlines arguments in many of these applications.
For example, the use of corelations provides a precise extraspecial commutative Frobenius
monoid extension of the well-known ‘spider theorem’ characterising morphisms between
tensor powers of a special commutative Frobenius monoid [CK16, CPP09]. Equivalently,
this main theorem extends to the extraspecial case the characterisation of separable Frobe-
nius monoidal functors as those that preserve connectivity of progressive plane string
diagrams [MS10].

In independent but related work, Zanasi proves in his recent thesis [Zan15, §2.5] that
the so-called prop of equivalence relations is the free prop on the theory of extraspecial
commutative Frobenius monoids. As we do, Zanasi builds on Lack’s observation that
category of cospans in the category of finite sets and functions is equivalent to the prop
for special commutative Frobenius monoids [Lac04], as well as the observation of Bruni
and Gadducci that cospans are related to equivalence relations [BG01]. Zanasi argues via
a so-called ‘cube construction’, or fibred sum of props.

Similar results can also be found in [DP13] and [BGM02]. Došen and Petrić [DP13, §9]
prove that the category of ‘split equivalences’ is isomorphic to the ‘equivalential Frobenius
monad freely generated by a single object’. They argue this by constructing an auxiliary
syntactic category isomorphic to the equivalential Frobenius monad freely generated by a
single object, and then inducting on the terms of this new category. Bruni, Gadducci, and
Montanari [BGM02, §5.1] sketch a slightly more general result relating so-called partition
spaces and p-monoidal categories by exhibiting a normal form for morphisms in free p-
monoidal categories.

Our novel approach through the understanding of corelations as jointly epic cospans
permits a significantly simpler argument than the related three above, via a coequalizer
of props. In doing so, our proof provides a clear narrative for the origin of the extra law
and its relationship with other fundamental axioms. Moreover, such an approach is philo-
sophically well motivated, and provides easy generalisation, such as the characterisation
of linear relations as jointly epic cospans in the category of matrices over a field [Fon16],
or linear time-invariant systems as jointly epic cospans in the category of matrices over a
relevant Laurent polynomial ring [FRS16].



THE PROP FOR EXTRASPECIAL COMMUTATIVE FROBENIUS MONOIDS 383

Ultimately, our work completes the beautiful picture

spans cospans
bicommutative bimonoids special commutative Frobenius monoids

relations corelations
special bicommutative bimonoids extraspecial commutative Frobenius monoids

pairing constructions on the category of finite sets and functions with important algebraic
structures. Recall that the bimonoid laws and the Frobenius law describe the two major
ways that a monoid and comonoid can interact. Their duality was proved by Lack [Lac04]:
the bimonoid laws are derived from pullbacks of functions, while the Frobenius law is
derived from pushouts. In this paper we move to the level of relations, demonstrating the
importance of the heretofore overlooked extra law as the dual version of the special law.

1.2. Outline. In the next two sections we introduce corelations and extraspecial com-
mutative Frobenius monoids respectively. These are the stars of this paper, and our task
will be to understand their relationship. To this end, in Section 4 we review the idea of a
prop for an algebraic structure, and note that the category of corelations between finite
sets is equivalent to a prop Corel. In Section 5, we then construct a prop Th(ESCFM)
whose algebras are extraspecial commutative Frobenius monoids. We show in Section 6
that Corel and Th(ESCFM) are isomorphic, proving the main theorem. Finally, in
Section 7 we outline the dual characterisation of the category of relations, and summarise
the algebraic theories corresponding to spans, cospans, relations, and corelations.

2. Corelations

First we define corelations. Corelations arise as the dual of relations: recall that a binary
relation from a set X to a set Y is a subset of the product X × Y . A corelation is a
quotient of the coproduct X + Y .

2.1. Definition. A corelation α : X → Y between sets X and Y is a partition of X+Y .
Given another corelation β : Y → Z, the composite β ◦ α : X → Z is the restriction

to X + Z of the finest partition on X + Y + Z that is coarser than both α and β when
restricted to X + Y and Y + Z respectively.

This composition is associative as both pairwise methods of composing corelations
α : X → Y , β : Y → Z, and γ : Z → W amount to finding the finest partition on X+Y +
Z + W that is coarser than each of α, β, and γ when restricted to the relevant subset,
and then restricting this partition to a partition on X + W ; reference to the motivating
visualization makes this clear. Moreover, this composition has an identity: it is the
partition of X + X such that each equivalence class comprises exactly two elements, an
element x ∈ X considered as an element of both the first and then the second summand
of X +X.

This allows us to define a category. We restrict our attention to corelations between
finite sets.
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2.2. Definition. Let Corel be the symmetric monoidal category with objects finite sets,
morphisms corelations between finite sets, and monoidal product disjoint union.

We shall freely abuse the notation Corel to refer to an equivalent skeleton. This is
key for our main theorem: in Section 4 we show this skeleton is strict, and hence a prop.

Ellerman gives a detailed treatment of corelations from a logic viewpoint in [Ell14],
while basic category theoretic aspects can be found in Lawvere and Rosebrugh [LR03].
Note that neither binary relations nor corelations are a generalisation of the other. A key
property of corelations is that they form a compact category with the disjoint union of
sets as monoidal product. This is not true of the category of relations.

Another way of visualising corelations and their composition is as terminals connected
by junctions of ideal wires. We draw these by marking each equivalence class with a point
(the ‘junction’), and then connecting each element of the domain and codomain to their
equivalence class with a ‘wire’. Composition then involves collapsing connected junctions
down to a point. The example from the introduction is represented as follows.

X Z

Y

= X Z

Again, the composition law captures the idea that connectivity is all that matters: as
long as the wires are ‘ideal’, the exact path does not matter. The application to electrical
circuits is discussed in detail in [BF].

This visualisation mimics the string diagrams defining extraspecial commutative Frobe-
nius monoids.

3. Extraspecial commutative Frobenius monoids

We introduce extraspecial commutative Frobenius monoids in some detail, writing our
axioms using the string calculus for monoidal categories introduced by Joyal and Street
[JS91]. Diagrams will be read left to right, and we shall suppress the labels as we deal with
a unique generating object and a unique generator of each type. While we expect that the
algebraic structures below—monoids, comonoids, and so on—are familiar to most readers,
we include the additional detail to underscore the similarity between the wire diagrams for
corelations and string diagrams for extraspecial commutative Frobenius monoids. Again,
we shall see that the laws defining this structure express the principle that connectivity
is all that matters.

Recall that a commutative monoid (X,µ, η) in symmetric monoidal category (C,⊗)
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is an object X of C together with maps

µ : X ⊗X → X η : I → X

obeying

= = =

(associativity) (unitality) (commutativity)

where is the symmetry on X ⊗X. In addition to the ‘upper’ unitality law above, the
mirror image ‘lower’ unitality law also holds, due to commutativity and the naturality of
the symmetry.

Dually, a cocommutative comonoid (X, δ, ε) in C is an object X together with maps

δ : X → X ⊗X ε : X → I

obeying

= = =

(coassociativity) (counitality) (cocommutativity)

Given a monoid and comonoid on the same object, there are two well-known ways for
them to interact: the bimonoid laws and the Frobenius law. We shall discuss both in this
paper, but for now we restrict our attention to Frobenius structure.

3.1. Definition. An extraspecial commutative Frobenius monoid (X,µ, η, δ, ε) in
a monoidal category (C,⊗) comprises a commutative monoid (X,µ, η) and a cocommuta-
tive comonoid (X, δ, ε) that further obey

= = = =

(the Frobenius law) (the special law) (the extra law)

While we write two equations for the Frobenius law, this is redundant: the equality
of any two of the expressions implies the equality of all three. Note that a monoid and
comonoid obeying the Frobenius law is commutative if and only if it is cocommutative.
Thus while a commutative and cocommutative Frobenius monoid might more properly
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be called a bicommutative Frobenius monoid, there is no ambiguity if we only say com-
mutative.

The Frobenius law and the special law go back to Carboni and Walters, under the
names S=X law and the diamond=1 law respectively [CW87]. The extra law is a more
recent discovery, appearing first under this name in the work of Baez and Erbele [BE15],
as the ‘bone law’ in [BSZ14, FRS16], and as the ‘irredundancy law’ in [Zan15].

Observe that each of these equations equate string diagrams that connect precisely
the same elements of the domain and codomain. To wit, the associativity, coassociativ-
ity, and Frobenius laws show that the order in which we build a connected component
through pairwise clustering is irrelevant, the special law shows that having multiple con-
nections between points is irrelevant, and the extra law shows that ‘extra’ components
not connected to the domain or codomain are irrelevant.

Our main theorem will show that these equations are exactly those required to have
the converse: two morphisms built from the generators of an extraspecial commutative
Frobenius monoid are equal and if and only if their diagrams impose the same connectivity
relations on the disjoint union of the domain and codomain. This formalises an extension
of the well-known spider theorem for special commutative Frobenius monoids [CK16,
CPP09].

The tight relationship between Frobenius structure and connectivity was also explored
by McCurdy and Street [MS10]. Note, however, that in their work the connectivity
preserved by separable Frobenius monoidal functors is the topological connectedness of
the string diagram, whereas here connectivity refers to the equivalence relation imposed on
the elements of the domain and codomain by the string diagram. The difference between
these two perspectives, in algebraic terms, is the extra law.

4. Props for theories

Introduced by Mac Lane [Mac65] to generalise Lawvere’s algebraic theories approach to
universal algebra [Law63], the theory of props provides a framework to discuss algebraic
structures with multi-input multi-output operations.

4.1. Definition. A prop is a symmetric strict monoidal category having the natural
numbers as objects and monoidal product given by addition. A morphism of props is a
symmetric strict identity-on-objects monoidal functor.

If T is a prop and C is a symmetric monoidal category, we define an algebra of T
in C to be a symmetric monoidal functor T → C. A morphism of algebras of T in C is a
monoidal natural transformation between them.

Props allow us to study (one-sorted) symmetric monoidal theories, like those of monoids,
commutative monoids, bimonoids, and Hopf monoids: models for these theories arise as
algebras of certain props.

4.2. Definition. A symmetric monoidal theory T = (Σ, E) comprises a signature
Σ and a set of equations E. A signature is a set of generators, where a generator is
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a formal symbol σ : n → m. From a signature Σ, we may formally construct the set of
Σ-terms. Defined inductively, a Σ-term takes one of the following forms:

• the empty term ∅ : 0→ 0, the unit id : 1→ 1, the symmetry : 2→ 2;

• the generators α : n→ m in Σ;

• β ◦ α : n→ p, where α : n→ m and β : m→ p are Σ-terms; or

• α + γ : n+ p→ m+ q, where α : n→ m and γ : p→ q are Σ-terms.

We call (n,m) the type of a Σ-term τ : n → m. An equation is then a pair of two
Σ-terms with the same type.

A model for a symmetric monoidal theory in a symmetric strict monoidal category
(C,⊗) is an object X together with morphisms σX : X⊗n → X⊗m for every generator
σ : n → m in Σ, such that for every equation the two Σ-terms are equal interpreted as
morphisms in C. To be more precise, by interpret a Σ-term as a morphism in C, we mean
that we replace each generator σ in the Σ-term with the corresponding σX , each instance
of + with ⊗, and take ◦ to be composition in C. Thus each Σ-term τ of type (n,m) is
interpreted as a morphism X⊗n → X⊗m in C.

Given a model on an object X and one on an object Y , a morphism of models from
the former to the latter is a morphism f : X → Y in C such that for every generator
σ : n→ m we have f⊗m ◦ σX = σY ◦ f⊗n : X⊗n → Y ⊗m.

If (C,⊗) is an arbitrary symmetric monoidal category, to talk of models in C we may
simply replace it with an equivalent symmetric strict monoidal category.

Many common algebraic structures can be expressed as symmetric monoidal theories,
including all those discussed in the previous section. For example, the symmetric monoidal
theory of commutative monoids has signature {µ : 2→ 1, η : 0→ 1} and three equations:
precisely those pairs of terms depicted in Section 3. Commutative monoids in a symmetric
monoidal category are then models of this symmetric monoidal theory.

4.3. Definition. We say that a prop T is the prop for a symmetric monoidal theory T
if for all symmetric monoidal categories C the category of algebras of T in C is equivalent
to the category of models of T in C.

4.4. Example. Write FinSet for the category of finite sets and functions, and also for
its equivalent skeleton. This category inherits symmetric monoidal structure from the
existence of finite coproducts, in this case the disjoint union of sets. Fixing a skeleton
and, for example, utilising a total order on each set, one may choose the unitors and
associator to be the identity, resulting a symmetric strict monoidal category [Bur93].
Thus we may consider FinSet to be a prop.

It is known that FinSet is the prop for commutative monoids [Gra01, Pir02]. Indeed,
write m : 2 → 1 and e : 0 → 1 for the unique maps of their type in FinSet. Then given
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a symmetric monoidal functor F : FinSet → C, the tuple (F1, Fm, Fe) is a commuta-
tive monoid. Conversely, any commutative monoid (X,µ, η) in C gives rise to a functor
FinSet→ C mapping 1 to X, m to µ, and e to η.

We may bootstrap on this construction to show that Corel has a strict skeleton, and
so too may be considered a prop. First, recall that in any finitely cocomplete category C
we may construct a symmetric monoidal bicategory with the same objects and monoidal
product, with morphisms cospans in C, composition of morphisms given by pushout, and
with 2-morphisms maps between apexes of cospans that commute over the feet [Ben67].
Decategorifying, we obtain a monoidal category Cospan(C), where morphisms are iso-
morphism classes of cospans in C.

Next, call a cospan X → N ← Y jointly epic if the induced morphism X + Y →
N is an epimorphism. If monomorphisms in C are preserved under pushout, we may
construct a symmetric monoidal category Corel(C) with objects again those of C, but
this time morphisms isomorphism classes of jointly epic cospans in C, and composition
taking the pushout of representative cospans, before corestricting to the jointly epic part
[Mil00, JW96].2 The unitors, associator, and symmetry are inherited from C.

Our category Corel can be constructed in this way.

4.5. Proposition. The category Corel is isomorphic as a symmetric monoidal category
to Corel(FinSet).

Proof. By the universal property of the coproduct, corelations X + Y → A are in one-
to-one correspondence with jointly epic cospans X → A ← Y . It is straightforward to
check the notions of composition agree: consider the wire diagrams for corelations.

As equivalences preserve colimits, replacing FinSet with its strict skeleton thus shows
that Corel also has a strict skeleton. We henceforth use Corel to refer to this equivalent
prop. This allows us to restate our main theorem as follows.

4.6. Theorem. Corel is the prop for extraspecial commutative Frobenius monoids.

To prove this theorem, we begin by giving a more explicit construction of the prop for
extraspecial commutative Frobenius monoids.

5. Props from theories

If we consider the set N×N as a discrete category, then a signature is a functor from N×N
to the category Set of sets and functions. Note that to each prop we may associate the
so-called underlying signature hom(·, ·) : N × N → Set. The following important result

2 More generally, a category of corelations may be constructed from any finitely cocomplete category
equipped with a (E ,M)-factorisation system such thatM is preserved under pushout [JW96]. In related
papers, we have shown that this construction can be used to model interconnection of ‘black-boxed’
systems; that is, to model systems in which only the internal structure is obscured, leaving only the
external behaviour [BF, FRS16, Fon16].
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allows us to understand the category PROP of props; proofs can be found in both Baez,
Coya, and Rebro [BCR] and Trimble [Tri14].

5.1. Proposition. The underlying signature functor U : PROP→ SetN×N is monadic.

We write the left adjoint of this functor U as F : SetN×N → PROP, and call FΣ
the free prop on the signature Σ. There is a surjection from the set of Σ-terms onto
morphisms in the free prop [BCR].

Another important corollary of this theorem is that the category of props is cocomplete.
In particular, this allows us to take coequalizers in the category of props. We use this to
give an explicit construction of the prop for a symmetric monoidal theory.

Let (Σ, E) be a symmetric monoidal theory. Recall that each equation has a type, and
abuse notation to write E also for the resulting signature. Then, as the morphisms in FΣ
are Σ-terms and as U and F are adjoint, we may define functors λ, ρ : FE → FΣ mapping
each equation to the first element and the second element of the pair respectively. This
allows us to build the prop for the theory.

5.2. Proposition. The prop for a symmetric monoidal theory (Σ, E) is the coequalizer
of the diagram

FE
ρ
//

λ // FΣ.

The intuition is that the coequalizer is the weakest prop that forces the ‘left-hand
side’ (given by λ) of each equation in E to equal the ‘right-hand side’ (given by ρ). This
implies an equivalence between algebras of the coequalizer prop and models of (Σ, E).

Write Th(ESCFM) for the prop for extraspecial commutative Frobenius monoids
constructed in this way. It remains to prove that this prop is isomorphic to Corel.

6. Corelations are the prop for extraspecial commutative Frobenius monoids

In the influential paper [Lac04], Lack develops the theory of distributive laws for props,
and proves the following as an example. Note we write Cospan for Cospan(FinSet).

6.1. Proposition. Cospan is isomorphic to the prop Th(SCFM) for special commu-
tative Frobenius monoids.

As the name suggests, a special commutative Frobenius monoid is a commutative
monoid and cocommutative comonoid that further obey the Frobenius and special laws.
Note that in FinSet there are unique maps 0→ 1, 1→ 1, and 2→ 1. The isomorphism
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acts as follows on the generators of Th(SCFM):

α : Th(SCFM) −→ Cospan(FinSet);

7−→
(
2→ 1← 1

)
7−→

(
0→ 1← 1

)
7−→

(
1→ 1← 2

)
7−→

(
1→ 1← 0

)
.

We use this to prove the main theorem. The guiding intuition is that to corestrict cospans
to corelations is to impose the ‘extra’ condition upon a special commutative Frobenius
monoid.

Our strategy will be to prove that Th(ESCFM) and Corel are coequalizers of iso-
morphic diagrams, and hence themselves isomorphic. First, we show how to construct
Th(ESCFM) as a coequalizer of props.

6.2. Lemma. The following is a coequalizer diagram:

FEEx

λ //

ρ
// Th(SCFM) // Th(ESCFM).

Proof. Let (Σ, ESCFM) and (Σ, EESCFM) be the theories of special commutative Frobenius
monoids and extraspecial commutative Frobenius monoids respectively—note that they
have the same set of generators, Σ. Write also (Σ, EEx) for the theory of the ‘extra law’,
so EEx contains just a single element • : 0 → 0. This has image λEx(•) = and
ρEx(•) = ∅ under the two canonical maps FEEx ⇒ FΣ.

Now, by construction we have a map FΣ→ Th(SCFM), and composing this with λEx
and ρEx gives λ and ρ respectively. Since an extraspecial commutative Frobenius monoid
is a fortiori a special commutative Frobenius monoid, by construction we also have a
map Th(SCFM) → Th(ESCFM); this is the unlabelled map above. As EESCFM =
ESCFM + EEx, it is straightforward to verify that the above diagram is a coequalizer
diagram.

Next, we construct Corel as a coequalizer.

6.3. Lemma. The following is a coequalizer diagram:

FEEx

α◦λ //

α◦ρ
// Cospan // Corel

Proof. The map Cospan→ Corel is the canonical one corestricting each cospan to its
jointly epic part. It is straightforward to check this is indeed a map of props; details can
be found in [Fon16]. Now (α ◦ λ)(•) = (0 → 1 ← 0), while (α ◦ ρ)(•) = (0 → 0 ← 0).
This implies the above diagram commutes from FEEx to Corel. It remains to check the
universal property.
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Suppose that we have a prop T such that the diagram

FEEx

α◦λ //

α◦ρ
// Cospan A // T

commutes from FEEx to T . We must show there is a unique map A′ : Corel→ T .

As the map Cospan→ Corel is full, it is enough to show that each cospan (n
f→ a

g←
m) has the same image as its jointly epic part (n

f ′→ im[f, g]
g′← m) under A—we then

have a unique and well-defined map A′ sending each corelation to its image as a cospan
under A. But this is straightforward:

A
(
n

f→ a
g← m

)
= A

(
n

f ′→ im[f, g]
g′← m

)
+ A

(
0→ (a− im[f, g])← 0

)
= A

(
n

f ′→ im[f, g]
g′← m

)
+ (A ◦ α ◦ λ)

(
•+(a−im[f,g])

)
= A

(
n

f ′→ im[f, g]
g′← m

)
+ (A ◦ α ◦ ρ)

(
•+(a−im[f,g])

)
= A

(
n

f ′→ im[f, g]
g′← m

)
.

This proves the lemma.

Proof of Theorem 4.6. More explicitly now, our strategy is to show both Corel and
Th(ESCFM) are coequalizers in the diagram

Th(SCFM)

α

��

// Th(ESCFM)

��

FEEx

λ 33

ρ
33

α◦λ
++

α◦ρ ++ Cospan // Corel

Lemma 6.2 shows the upper row is a coequalizer diagram, while Lemma 6.3 shows the
lower row is too. As the two relevant triangles commute and the first vertical map is
an isomorphism, Th(ESCFM) and Corel are coequalizers of isomorphic diagrams, and
hence themselves isomorphic.

The so-called spider theorem is an immediate corollary.

6.4. Corollary. Two morphisms in an extraspecial commutative Frobenius monoid are
equal if and only if they map to the same corelation.

7. Spans, cospans, relations, corelations

Lastly, we return to the big picture. The dual theorems are known for spans and relations
[Lac04, WW], but the above method of proof provides a novel argument, and illuminates
the duality. Recall bimonoids, sometimes also called bialgebras.



392 BRANDON COYA AND BRENDAN FONG

7.1. Definition. A bicommutative bimonoid (X,µ, η, δ, ε) in a monoidal category
(C,⊗) comprises a commutative monoid (X,µ, η) and a cocommutative comonoid (X, δ, ε)
that further obey the extra law and the bimonoid laws

= = =

(the bimonoid laws)

Bimonoids can be understood as dual to Frobenius monoids: Span(FinSet) is the
prop for bicommutative bimonoids. This fact goes back to Lack [Lac04]. Wadsley and
Woods provide an alternative proof, via the fact that the category of matrices over a
rig3 R is the prop for bicommutative bimonoids equipped with an action of the rig R
[WW, Theorem 5]. Choosing the rig of booleans, this also implies that Rel, the prop
equivalent to the category of finite sets and relations, is the prop for special bicommutative
bimonoids. The techniques of this paper can be co-opted to provide an alternative proof
of this fact.

7.2. Theorem. Rel is isomorphic to the prop for special bicommutative bimonoids.

Proof. To sketch: Lack has already shown, using the distributive law arising from pull-
backs in FinSet, that Span(FinSet) is isomorphic to the prop for bicommutative bi-
monoids. We may use this to set up isomorphic coequalizer diagrams in the category
PROP to obtain both the prop for special bicommutative bimonoids and the prop Rel.
The isomorphism arises from the observation that taking the jointly monic part of a span
is equivalent to iteratively asserting that the span (1 ← 2 → 1) may be replaced by the
identity (1← 1→ 1), and that this manifests as the special law.

We conclude by displaying our table once again, bringing out the symmetry by anno-
tating names with the suppressed aspects of their structure.

spans cospans
extra bicommutative special bicommutative

bimonoids Frobenius monoids
relations corelations

extraspecial bicommutative extraspecial bicommutative
bimonoids Frobenius monoids
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