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BUILDING A MODEL CATEGORY OUT OF MULTIPLIER IDEAL
SHEAVES

SEUNGHUN LEE

Abstract. We will construct a Quillen model structure out of the multiplier ideal
sheaves on a smooth quasi-projective variety using earlier works of Isaksen and Barnea
and Schlank. We also show that fibrant objects of this model category are made of
kawamata log terminal pairs in birational geometry.
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1. Introduction

In this note, we begin a homotopical study of multiplier ideal sheaves. Our guiding
principle is not new: To understand a multiplier ideal sheaf, we try to understand a
category built of multiplier ideal sheaves. Hence the homotopy theory we are aiming at
is categorical; more precisely, we use Quillen’s framework of (closed) model categories
([Quillen, 1967]). We will construct a model structure using the multiplier ideal sheaves
on a smooth quasi-projective variety using earlier works of Isaksen [Isaksen, 2004] and
Barnea and Schlank [Barnea and Schlank, 2016]. Interestingly, fibrant objects of this
model category are made of kawamata log terminal pairs in birational geometry.

Now let us recall the multiplier ideal sheaves. Multiplier ideal sheaves can be cre-
ated from effective divisors, non-zero ideal sheaves, and linear systems. Because of the
motivation discussed below we explain the multiplier ideal sheaves of effective divisors.
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Let X be a smooth projective variety defined over the set of complex numbers. Let
D be an effective Q-divisor on X, i.e., a formal finite linear combination of reduced and
irreducible codimension one subvarieties of X with non-negative rational coefficients. Let
f : Y → X be a projective birational morphism from a smooth variety Y such that the
support of the exceptional locus Ex(f) of f on Y is a divisor on Y and the components of
the pullback f ∗D of D and Ex(f) intersect transversally. Then the multiplier ideal sheaf
I (X,D) of the pair (X,D) is defined by

I (X,D) = f∗OY (KY/X − bf ∗Dc). (1)

It is an ideal sheaf on X and does not depend on the choice of f . For more than the last
two decades, many applications of multiplier ideal sheaves have been found in algebraic
geometry. We refer to the book [Lazarsfeld, 2004] for a comprehensive introduction to
this subject and some applications. For a later development we refer to [Ein an Mustata,
2006].

One important property of multiplier ideal sheaves is the vanishing of higher cohomol-
ogy groups

H i(X,I (X,D)⊗ OX(KX + L)) = 0 for i > 0 (2)

where L is an ample divisor on X such that L−D is an ample Q-divisor and KX is the
canonical divisor on X. A (Q-)divisor on X is ample if the numbers produced by the
intersections with all the subvarieties including X itself are positive. The vanishing (2)
was first proved by Nadel in the analytic setting. When D = 0, hence I (X,D) = OX , it
is the classical Kodaira vanishing theorem. The vanishing property (2) played a key role
in providing a partial answer to a conjecture raised by Takao Fujita.

In [Fujita, 1987], Fujita raised two conjectures on adjoint line bundles on smooth
projective varieties. One of them says that if X is a smooth projective variety defined
over the set of complex numbers and L is an ample divisor on X, the adjoint line bundle
associated with KX+mL is globally generated for all integer m > dimX. The adjoint line
bundle is globally generated if for every point p ∈ X, there is a section s ∈ H0(X,OX(KX+
mL)) such that s(p) 6= 0, or equivalently there is a divisor D ∈ |KX + mL| such that
p 6∈ D. Thus if the conjecture is true, the associated rational map φKX+mL : X → PN
is in fact a morphism defined on every point of X. The conjecture is known for small
dimensions ([Reider, 1988], [Ein and Lazarsfeld, 1993], [Kawamata, 1997], [Ye and Zhu,
2015]). One of the motivations for this project is to understand the conjecture in terms
of homotopy theory.

As we mentioned in the beginning, the homotopy theory that we want to build is
a model category. To build such a category, we will define a category M(X) for every
smooth quasi-projective variety X that may be considered as the category of all multiplier
ideal sheaves (1) on X with the resolutions f associated with them. However the category
M(X) has a rather simple structure. It is a preorder, i.e. the hom-sets have at most one
morphism. It does not have enough morphisms for the lifting axiom or the factorization
axiom of model categories. To remedy this, we will consider the pro-category, introduced
by Grothendieck in [Grothendieck, 1960] and developed in [Artin, Grothendieck, and



BUILDING A MODEL CATEGORY OUT OF MULTIPLIER IDEAL SHEAVES 439

Verdier, 1972], of M(X) and apply the results of Isaksen [Isaksen, 2004] and Barnea and
Schlank [Barnea and Schlank, 2016].

Based on the earlier works [Grossman, 1975] and [Edwards and Hastings, 1976], Isaksen
introduced strict model structures for the pro-categories of model categories in [Isaksen,
2004]. Recently, Barnea and Schlank generalized his result by introducing weak fibration
categories in [Barnea and Schlank, 2016]. A weak fibration structure on a category with
finite limits consists of two sets of morphisms. One is a set of weak equivalences and
the other is a set of fibrations. In [Barnea and Schlank, 2016] the authors show that
the pro-category of a weak fibration category has three sets of morphisms that satisfy
all the axioms (Definition 7.34) of the model category once they have the two out of
three property. The weak equivalences and the fibrations in a weak fibration category
generate the weak equivalences and the fibrations in the model structure of the associated
pro-category respectively. We will show that M(X) is a weak fibration category.

Our view on multiplier ideal sheaves is that they are tools that help us to understand
birational morphisms. In other words, what is really important is birational morphisms.
With this in mind, we will define a weak fibration structure on M(X) as in the following
paragraph. However, because we want our construction to have wider applications, we
treat weighted ideal sheaves instead of effective Q-divisors. A weighed ideal sheaf Ic for
a non-negative rational c can be thought of taking c-th power of I. The multiplier ideal
sheaf of an effective Q-divisor D is the multiplier ideal sheaf of the associated weighted
invertible ideal sheaf.

We denote by B the category of normal quasi-projective varieties and projective bi-
rational morphisms. The category M is built on B with an additional structure. Its
objects (Y, Ic) consist of a normal quasi-projective variety Y and a reduced finite set of
weighted ideal sheaves Ic = {Ic11 , . . . , Icmm } on Y (Definition 4.6, Definition 4.7). The hom-
set M((Y, Ic), (Z, Jd)) consists of morphisms f : Y → Z in B such that Ic ≤ f ∗Jd where

f ∗Jd is the pullback of Jd on Y (Definition 4.6, Definition 4.14). Then, given a smooth
quasi-projective variety X, M(X) is defined to be the comma category of M over (X,O0

X).

M(X) = (M ↓ (X,O0
X)) (3)

In Section 5, we will define the multiplier ideal sheaf (Definition 5.14)

I (f) ⊆ OX (4)

of an object f of M(X) generalizing (1).
In Section 6, we will show that the category M(X) has finite limits and a weak

fibration structure (W(X),F(X)) where W(X) is the set of all morphisms in M(X) whose
underlying morphisms are isomorphisms in B and F(X) consists of all morphisms in M(X)
whose domains and codomains produce the same multiplier ideal sheaves.

In Section 7, we will prove the main theorem, Theorem 1.1, after reviewing some well-
known facts for pro-categories and model categories. Let Pro(X) be the pro-category
(Definition 7.3) of the weak fibration category M(X)

Pro(X) = Pro(M(X)) (5)
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and define three sets

WPro(X) = Lw
∼=(W(X)) (6)

FPro(X) = Sp
∼=(F(X)) (7)

CPro(X) = �(W(X) ∩ F(X)) (8)

of morphisms in Pro(X). Given a non-empty set S of morphisms in M(X), Lw
∼=(S) is the

set of all morphisms isomorphic to the morphisms associated with natural transformations
whose components are in S. Sp

∼=(S) is similar to Lw
∼=(S), but its elements have an

additional property that enables us to control their behavior inductively (Definition 7.42).
�S is the set of all morphisms in Pro(X) satisfying the left lifting property with respect
to every morphism in S. Given two morphisms f and g in Pro(X), f satisfies the left

lifting property with respect to g if every commutative diagram
• •

• •
f g in Pro(X)

of solid arrows has a lifting of dotted arrow (Definition 7.31).
In Section 7.50, we will show that WPro(X) has the two out of three property by

slightly modifying the argument in [Isaksen, 2004]. Then by Theorem 4.18 in [Barnea
and Schlank, 2016] (Theorem 7.46), we have two functorial weak factorization systems
(Definition 7.32)

(WPro(X) ∩ CPro(X),FPro(X)) (9)

and
(CPro(X),WPro(X) ∩ FPro(X)) (10)

on the pro-category Pro(X). Hence (WPro(X),CPro(X),FPro(X)) provides a functorial
model structure (Definition 7.34) on Pro(X). The following is our main theorem.

1.1. Theorem. Let X be a smooth quasi-projective variety. Then

1. Pro(X) is a preorder.

2. Pro(X) has small limits and small colimits.

3. (WPro(X),CPro(X),FPro(X)) is a functorial model structure on Pro(X).

4. WPro(X) ∩ CPro(X) = �F(X).

5. WPro(X) ∩ FPro(X) = Sp
∼=(W(X) ∩ F(X)).

There is a different model structure on Pro(X) with the same set of weak equivalences,
hence with the same homotopy category. See Proposition 3.1 in [Droz and Zakharevich,
2015]. However, these two are quite different in that every morphism is a cofibration in
the Droz-Zakharevich model structure on Pro(X). It seems that cofibrant objects and
cofibrations in general are rather special in our model structure. For example, no object
of M(X) is cofibrant in Pro(X). See Proposition 8.2.
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Contrary to the cofibrant objects, the fibrant objects have an explicit description in
terms of kawamata log terminal pairs in birational geometry. Given an object f : (Y, Ic)→
(X,O0

X) of M(X), we will say that f is klt (kawamata log terminal) if

I (f) = OX (11)

holds. If Ic = {Ic11 , . . . , Icmm }, then f is klt iff f : (Y, Icii ) → (X,OX) is klt for every
i = 1, . . . ,m. See Lemma 8.5. We call an object F : I → M(X) of Pro(X) klt if every
component of F is klt, i.e. F (i) is klt for every i ∈ I. It is a natural generalization of the
original klt pairs to our setting. See the discussion in the beginning of Section 8.3. We
will prove the following result in Section 8.

1.2. Theorem. Let X be a smooth quasi-projective variety. Then for every object F of
Pro(X), the following are equivalent.

1. F is a fibrant object in Pro(X).

2. F is klt.

Later in Section 9, we will reformulate the conjecture of Fujita using a variant (The-
orem 9.5) of Theorem 1.2 discussed in Section 9.1.

Before we close the introduction, we make two remarks. First, there is a variant of
the model structure in Theorem 1.1. Altering the multiplier ideal sheaves of objects in
M(X) slightly, we get another weak fibration structure (Wlc(X),Flc(X)) on M(X), hence
another model structure

(Wlc
Pro(X),Clc

Pro(X),Flc
Pro(X)) (12)

on Pro(X). The set Wlc(X) of weak equivalences is W(X). But Flc(X) is different from
F(X).

Let f : (Y, Ic) → (X,O0
X) be an object of M(X). Let Ic = {Ic11 , . . . , Icmm }. For any

positive rational number ε, we denote by Iε·c the finite set {Iε·c11 , . . . , Iε·cmm }. The new
multiplier ideal sheaf I lc(f) of f is

I lc(f) = I ((Y, I(1−ε)·c)
f−→ (X,O0

X)) (13)

where ε is a positive rational number such that

I ((Y, I(1−η)·c)
f−→ (X,O0

X)) = I ((Y, I(1−ε)·c)
f−→ (X,O0

X)) (14)

holds for every 0 < η < ε.
There are other singularities important in birational geometry. One of them is log

canonical singularities. Kawamata log terminal singularities are log canonical singularities
and the set of log canonical singularities forms a largest class where the discrepancies make
sense.

We can define log canonical objects in Pro(X) just as we define kawamata log terminal
objects in Pro(X). Then with a little change in the proof of Theorem 1.2, it can be shown
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that the fibrant objects in the new model structure (12) are determined by log canonical
objects in the same way that the fibrant objects in the model category of Theorem 1.1
are determined by kawamata log terminal objects by Theorem 1.2.

Finally, the results in this paper can be extended from a smooth quasi projective
variety X to a pair (X,B) of a normal quasi-projective variety X with an effective Q-
divisor B on X such that KX + B is Q-Cartier, i.e., some integral multiplier of KX + B
is Cartier.

Acknowledgment
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helpful comments, which lead to substantial improvements of the contents.

2. Conventions

2.1. Categories. Throughout this note, we will work with a fixed Grothendieck universe
U (cf. Chapter I.6 in [Mac Lan, 1998]).

A small set is an element of U. We will use the term set to include small sets, subsets
of U, and other sets such as {U}.

A category C is locally small if for every object a, b of C, the hom-set C(a, b) is a
small set.

In this note, we will assume that every category is locally small. It enables us to contain
the hom-sets of pro-categories within U: the pro-category of a locally small category is
again locally small. However, we do not assume that the set of objects of a category is
small.

A category is small if both the set of objects and the set of arrows are small sets.
Since the set of integers is a small set and the power set of a small set is again a small

set by axioms of the universe U, both the set of quasi-projective varieties defined over the
field of complex numbers and the set of all morphisms between them are small sets.

A preorder is a category in which, given any two objects a and b, there is at most
one morphism a→ b. In any preorder P , we define a binary relation ≥ on the set of the
objects of P with

a ≥ b iff there is a morphism a→ b in P . (15)

Note that following [Barnea and Schlank, 2016], we are using ≥ instead of ≤.
A poset is a preorder such that a ≥ b and a ≤ b imply a = b.

2.2. Varieties. In this note, the varieties are reduced and irreducible, of dimension
greater than one, and defined over the field C of complex numbers.
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3. Review on Basic Notions in Birational Geometry

Here we collect basic notions in birational geometry and well-known properties of bira-
tional morphisms. We refer to [Kollár and Mori, 1998] for a comprehensive introduction
on this subject.

3.1. Definition. Let X be a variety. A prime divisor on X is a reduced and irre-
ducible subvariety of X with codimension 1. A Q-divisor on X is a formal finite linear
combination

D =
∑
i

aiDi (16)

of distinct prime divisors with ai ∈ Q. A Q-divisor D on X is Q-Cartier if mD is a
Cartier divisor for some m ∈ N.

3.2. Definition. Let X be a variety. The support of a divisor
∑

i diDi on X is the
subset ∪iDi of X. A divisor

∑
i diDi has simple normal crossings if every Di is

smooth and they intersects transversally. A Q-divisor
∑

i aiDi has a simple normal
crossing support if

∑
iDi has simple normal crossings.

3.3. Definition. Let X be a variety. Let D =
∑

i aiDi be a Q-divisor on X. We define

bDc =
∑
i

baicDi (17)

where baic is the round-down of ai for every i, and

dDe =
∑
i

daieDi (18)

where daie is the round-up of ai for every i.

3.4. Definition. Let X be a variety. Let P =
∑

i aiDi and N =
∑

i biDi be two Q-
divisors on X. We write

P ≥ N (19)

if ai ≥ bi holds for every i. A Q-divisor D is called effective if

D ≥ 0 (20)

holds where 0 is the zero divisor on X. In other words, a Q-divisor
∑

i aiDi on X is
effective iff ai ≥ 0 for every i.

3.5. Definition. Let f : Y → X be a projective birational morphism between quasi-
projective varieties. A Q-divisor

∑
i aiDi on Y is called f -exceptional if

dim f(Di) < dimX − 1 (21)

holds for every i.
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3.6. Definition. Let f : Y → X be a projective birational morphism between quasi-
projective varieties. We denote by Ex(f) the exceptional locus of f .

Ex(f) = {y ∈ Y | dim f−1(f(y)) ≥ 1} (22)

We remark that if X is normal, f is not an isomorphism near a point y of Y iff y ∈ Ex(f)
holds. See (3.20) and the following remark in [Mumford 95].

3.7. Definition. Let f : Y → X be a projective birational morphism between smooth
varieties. We denote by KY/X the relative canonical divisor of f .

KY/X = KY − f ∗KX (23)

We remark that KY/X is defined naturally as an effective divisor on Y supported on Ex(f).
In particular, KY/X is an f -exceptional divisor on Y .

Below we collect some properties of birational morphisms.

3.8. Lemma. Let f, g : X → Y be morphisms between varieties.

1. If there exists a dominant morphism h : W → X such that fh = gh then f = g
holds.

2. If f and g are birational and there exists a birational morphism h : Y → Z such
that hf = hg then f = g holds.

Proof. We will prove (1). The proof of (2) is similar. So we will omit it.
Since fh = gh holds and h is dominant, there exists a Zariski open subset U of X

such that f |U = g|U . Then f = g holds because Y is separated over C (Exercise 4.2 on
Chapter II in [Hartshorne, 1977]).

3.9. Lemma. Given two projective birational morphisms f1 : Y1 → X and f2 : Y2 → X
between quasi-projective varieties, there exists an unique irreducible component of Y1×XY2
dominating Y1 and Y2.

Proof. Because f1 and f2 are birational, there are open subsets U of Y1 and V of Y2 such
that f1(U) = f2(V ) holds and f1|U and f2|V are isomorphisms. Consider the following
pullback diagram.

Y1 ×X Y2 Y2

Y1 X

π2

π1 f2

f1

(24)

By the universal property of the pullback, we have

U ×f1(U) V ∼= π−11 (U) ∩ π−12 (V ). (25)
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So π−11 (U)∩π−12 (V ) is reduced and irreducible. Let W be the Zariski closure of π−11 (U)∩
π−12 (V ) in Y1×X Y2. Then W is an irreducible component of Y1×X Y2 dominating Y1 and
Y2.

Let W ′ be an irreducible component of Y1 ×X Y2 dominating Y1 and Y2. Since U is
dense in Y1, W

′ ∩ π−11 (U) is dense in W ′. Similarly W ′ ∩ π−12 (V ) is dense in W ′. Then
W ′ ∩W is dense in W ′. Hence W = W ′. Thus W is the unique irreducible component of
Y1 ×X Y2 dominating Y1 and Y2.

3.10. Lemma. Given two projective birational morphisms f1 : Y1 → X and f2 : Y2 → X
between quasi-projective varieties, there exist projective birational morphisms g1 : Z → Y1
and g2 : Z → Y2 from a smooth quasi-projective variety Z such that f1 · g1 = f2 · g2.

Z Y2

Y1 X

g2

g1 f2

f1

(26)

Proof. There exists an irreducible component W of Y1 ×X Y2 dominating Y1 and Y2 by
Lemma 3.9. Then we may obtain Z by resolving the singularities of W .

3.11. Remark. The diagram (26) is called a common resolution of f1 and f2.

3.12. Notation. Let X be a variety and Y be a subscheme of X. Given a Cartier divisor
D on X, we denote the sheaf OY ⊗ OX(D) by OY (D) for simplicity.

OY (D) = OY ⊗ OX(D) (27)

3.13. Lemma. [Lemma 1.3.2 in [Kawamata, Matsuda, and Matsuki, 1987]] Let f : Y →
X be a proper birational morphism from a smooth variety Y onto a variety X. If P is an
effective f -exceptional divisor on Y then

f∗OP (P ) = 0 (28)

holds.

3.14. Lemma. Let f : Y → X be a proper birational morphism from a smooth variety Y
onto a variety X. Let P and N be effective divisors on Y without common component.
If P is a f -exceptional divisor on Y then

f∗OY (−N) = f∗OY (P −N) (29)

holds.

Proof. Consider the following short exact sequence.

0→ OY (−N)→ OY (P −N)→ OP (P −N)→ 0 (30)

Since P is a f -exceptional divisor, we have f∗OP (P ) = 0 by Lemma 3.13. Since P and
N have no common component, OP (P −N) is a subsheaf of OP (P ). Therefore, we have
f∗OP (P −N) = 0, hence the equality (29).



446 SEUNGHUN LEE

3.15. Lemma. Let f : Y → X be a proper birational morphism from a smooth variety Y
onto a normal variety X. If N is an effective divisor on Y then

f∗OY (−N) ⊆ OX (31)

holds.

Proof. Since X is normal, we have f∗OY = OX , hence f∗OY (−N) ⊆ OX .

3.16. Lemma. Let f : Y → X be a proper birational morphism from a smooth variety Y
onto a normal variety X. If P is an effective f -exceptional divisor on Y then

f∗OY (P ) = OX (32)

holds.

Proof. Consider the following short exact sequence.

0→ OY → OY (P )→ OP (P )→ 0 (33)

Since X is normal, f∗OY = OX holds. We have f∗OP (P ) = 0 by Lemma 3.13. Therefore
f∗OY (P ) = OX holds.

4. The Category M(X)

Here we introduce categories B, M, and M(X). We also study their finite limits and finite
colimits.

4.1. Category B. Even though we are mainly interested in the category M and its
comma categories M(X), the category B is of the fundamental importance. Our view on
multiplier ideal sheaves is that they aid us to understand the category B by capturing a
part of information on birational morphisms, which will be encoded as fibrations in our
weak fibration structure, Definition 6.9, on M(X).

4.2. Definition. We denote by B the category of normal quasi-projective varieties and
projective birational morphisms between them.

4.3. Remark. Proper morphisms between quasi-projective varieties are projective. See
Chapter II.5 in [Grothendieck, 1961].

In model categories, one often needs to construct pullbacks and pushouts. The cate-
gory B does not have pushouts in general, but it has pullbacks.

4.4. Lemma. The category B has pullbacks.
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Proof. Let f : X → Z and g : Y → Z be morphisms in B. By Lemma 3.9, there exists
an unique irreducible component W ′ of X ×Z Y dominating X and Y . Let W be the
normalization of W ′. Then we have the following commutative diagram

W Y

X Z

p2

p1 g

f

(34)

where p1 and p2 are the canonical projections.
Now by the universal property of the fiber product, a pair of birational morphisms

q1 : N → X and q2 : N → Y from a variety N satisfying f · q1 = g · q2 induces a morphism
q : N → X ×Z Y such that q1 = p1 · q and q2 = p2 · q hold. Since W ′ is the unique
component of X ×Z Y dominating X and Y , q factors through W ′. If N is normal, q
factors through W by the universal property of the normalization W → W ′. Therefore,
the diagram (34) is the pullback of (f, g) in B.

4.5. Category M. Here we define a category M and show that M has finite limits. An
object of M is a pair of a normal quasi-projective variety and a finite set of weighted ideal
sheaves on it. One can associate with a Q-divisor an weighted invertible ideal sheaf. In
this sense, weighted ideal sheaves are generalizations of Q-divisors.

4.6. Definition. Let X be a variety.

1. A weighted ideal sheaf on X is a pair (I, c) of a nonzero ideal sheaf I on X and a
non-negative rational number c ∈ Q≥0. For simplicity, we write

Ic (35)

instead of (I, c). Ic should be thought of taking c-th power of I.

2. We define a binary relation ≤ on the set of weighted ideal sheaves on X by

Ic ≤ Jd iff I ⊆ J and c ≥ d. (36)

3. We define a binary relation ≤ on the set of finite sets of weighted ideal sheaves on
X by

{Ic11 , . . . , Icmm } ≤ {J
d1
1 , . . . , J

dn
n } iff

{
for every Jj there exists Ii

such that Icii ≤ J
dj
j .

(37)

We realize that (36) is a rather crude way to compare weighted ideal sheaves. For

example (I2)
1
2 and I are not comparable with this relation even though they will produce

the same multiplier ideal sheaf. But (36) is a partial ordering and it seems suitable for
our purpose. See Lemma 4.21.
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4.7. Definition. Let X be a variety.

1. A finite set {Ic11 , . . . , Icmm } of weighted ideal sheaves on X is called reduced if for
every 1 ≤ i 6= j ≤ m,

Icii 6≤ I
cj
j (38)

holds.

2. Let {Ic11 , . . . , Icmm } be a finite set of weighted ideal sheaves on X. The reduction

{Ic11 , . . . , Icmm }red (39)

of {Ic11 , . . . , Icmm } is the reduced subset of {Ic11 , . . . , Icmm } such that for every Icii in
{Ic11 , . . . , Icmm } there exists I

cj
j in {Ic11 , . . . , Icmm }red satisfying

I
cj
j ≤ Icii . (40)

4.8. Remark. If {Ic11 , . . . , Icmm } is a finite set of weighted ideal sheaves on a variety then
{Ic11 , . . . , Icmm }red is the subset consisting of the minimal elements in {Ic11 , . . . , Icmm } with
respect to the relation (36).

4.9. Remark. If {Ic11 , . . . , Icmm } is a finite set of weighted ideal sheaves on a variety then

{Ic11 , . . . , Icmm } is reduced iff {Ic11 , . . . , Icmm }red = {Ic11 , . . . , Icmm } (41)

holds.

4.10. Lemma. For every finite set {Ic11 , . . . , Icmm } of weighted ideal sheaves on a variety

{Ic11 , . . . , Icmm } ≤ {I
c1
1 , . . . , I

cm
m }red (42)

and
{Ic11 , . . . , Icmm } ≥ {I

c1
1 , . . . , I

cm
m }red (43)

hold.

Proof. The inequalities hold by the definition.

4.11. Remark. The relation (37) is preserved under reductions. In fact, if we have two
finite sets {Ic11 , . . . , Icmm } and {Jd11 , . . . , Jdnn } of weighted ideal sheaves on a variety then

{Ic11 , . . . , Icmm } ≤ {J
d1
1 , . . . , J

dn
n } iff {Ic11 , . . . , Icmm }red ≤ {J

d1
1 , . . . , J

dn
n }red (44)

holds by Lemma 4.10.
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4.12. Remark. Lemma 4.10 shows that the relation (37) is not antisymmetric in general.
However, if {Ic11 , . . . , Icmm } and {Jd11 , . . . , Jdnn } are finite sets of weighted ideal sheaves on a
variety then

{Ic11 , . . . , Icmm } ≤ {J
d1
1 , . . . , J

dn
n }

{Ic11 , . . . , Icmm } ≥ {J
d1
1 , . . . , J

dn
n }

}
iff {Ic11 , . . . , Icmm }red = {Jd11 , . . . , Jdnn }red (45)

holds by Remark 4.11. So, the relation is antisymmetric among the reduced finite sets of
weighted ideal sheaves.

4.13. Notation. Given a birational morphism f : X → Y and an ideal sheaf I on Y ,
we will use both of

f ∗I and I · OX (46)

to denote the ideal sheaf on X generated by I. The notation f ∗I is used to denote the
pullback of I as an OX-module in some literature. However, we never use f ∗I to denote
the OX-module in this note.

4.14. Definition. Let f : X → Y be a projective birational morphism between quasi-
projective varieties.

1. Let Jd be a weighted ideal sheaf on Y . We define a weighted ideal sheaf f ∗(Jd) on
X by

f ∗(Jd) = (f ∗J)d (47)

where f ∗J is the ideal sheaf (46) on X generated by J. For simplicity we omit the
parenthesis and write

f ∗Jd. (48)

2. Let {Jd11 , . . . , Jdnn } be a finite set of weighted ideal sheaves on Y . We define a finite
set f ∗{Jd11 , . . . , Jdnn } of weighted ideal sheaves on X by

f ∗{Jd11 , . . . , Jdnn } = {f ∗Jd11 , . . . , f ∗Jdnn }. (49)

4.15. Remark. The relation (37) is preserved under projective birational morphisms,
but the reducedness of finite sets of weighted ideal sheaves is not.

4.16. Notation. Let {Ic11 , . . . , Icmm } be a finite set of weighted ideal sheaves on a variety.
We will often write Ic instead of {Ic11 , . . . , Icmm }.

Ic = {Ic11 , . . . , Icmm } (50)

4.17. Definition. We define a category M as follows.

1. The set of objects consists of all the pairs (X, Ic) of a normal quasi-projective variety
X and a reduced finite set Ic of weighted ideal sheaves on X.

2. The hom-set M((X, Ic), (Y, Jd)) consists of all projective birational morphisms f :
X → Y satisfying

Ic ≤ f ∗Jd. (51)
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4.18. Remark. M is a small category. See Section 2.1.

4.19. Notation. If Ic contains only one weighted ideal sheaf Ic11 , we write (X, Ic11 ) instead
of (X, Ic).

(X, Ic11 ) = (X, {Ic11 }) (52)

4.20. Remark. If (Y, Ic) and (Z, Jd) are objects of M and f : Y → Z is a projective
birational morphism then (51) holds iff

Ic ≤ (f ∗Jd)red (53)

holds by Lemma 4.10.

The next lemma shows that isomorphisms in M have the expected characteristic.

4.21. Lemma. Let f : (X, Ic) → (Y, Jd) be a morphism in M. Then the following three
properties are equivalent.

1. f is an isomorphism in M.

2. There is a morphism g : (Y, Jd)→ (X, Ic) in M such that

gf = 1X (54)

holds in B.

3. f is an isomorphism as a morphism in B and Ic = f ∗Jd.

Proof. We will show (2⇒ 3). (1⇒ 2) and (3⇒ 1) are clear.
First, because f is birational, fgf = f implies that

fg = 1Y (55)

holds in B by Lemma 3.8.(1).
Let Ic = {Ic11 , . . . , Icmm } and Jd = {Jd11 , . . . , Jdnn }. Given Ii, there is Jj and Ik such that

J
dj
j ≤ g∗Icii and Ickk ≤ f ∗J

dj
j . Hence Ickk ≤ Icii by (54). Because Ic is reduced, i = k. Then

Icii = f ∗J
dj
j , and

J
dj
j = g∗Icii (56)

because of (55). Now (54) implies that Ic and g∗Ic has the same cardinality and (56)
implies that g∗Ic is a subset of Jd.

Thus by symmetry, Jd and Ic have the same cardinality and Ic = f ∗Jd holds.
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4.22. Limits and Colimits in M. Here we consider pullbacks and pushouts in M.

4.23. Definition. Let Ic = {Ic11 , . . . , Icmm } and Jd = {Jd11 , . . . , Jdnn } be two sets of weighted

ideal sheaves on a variety. We define a reduced finite set Ic ∗ Jd by

Ic ∗ Jd = {Ic11 , . . . , Icmm , Jd11 , . . . , J
dn
n }red. (57)

4.24. Lemma. The category M has pullbacks.

Proof. Let f : (X, Ic) → (Z,Ke) and g : (Y, Jd) → (Z,Ke) be morphisms in M. Let W
be the normalization of the unique irreducible component of X ×Z Y dominating X and
Y in (34). Let

Hb = p∗1I
c ∗ p∗2J

d (58)

where p1 and p2 are the canonical projections in (34). Then the diagram

(W,Hb) (Y, Jd)

(X, Ic) (Z,Ke)

p2

p1 g

f

(59)

is the pullback of (f, g) in M.

One may want to make the category M simpler by working with a single weighted ideal
sheaf instead of a finite set. But it seems unsuitable to form a category with pullbacks.
Let us consider the following example.

4.25. Example. Let T be the full subcategory of M consisting of objects

(X, Ic11 ) = (X, {Ic11 }). (60)

We will show that T does not have pullbacks.
Let X be a smooth quasi-projective surface and p be a point of X. Let C1 and C2 be

two distinct smooth irreducible curves on X containing p. Let

D1 = 2C1 + C2, (61)

D2 = C1 + 2C2, (62)

and
D = 2C1 + 2C2. (63)

Let π : X̃ → X be the blowing up at p with the exceptional divisor E. Let C̃i be the
proper transformation of Ci in X̃ for i = 1, 2.

Consider two morphisms in T

f : (X,OX(−D1)
1)→ (X,O0

X) (64)
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and
g : (X,OX(−D2)

1)→ (X,O0
X) (65)

where f and g are induced by 1X . Suppose that we have the following pullback of (f, g)
in T.

(Y, Ic) (X,OX(−D2)
1)

(X,OX(−D1)
1) (X,O0

X)

p2

p1 g

f

(66)

Since we also have the following commutative diagram in T

(X,OX(−D)1) (X,OX(−D2)
1)

(X,OX(−D1)
1) (X,O0

X)

q2

q1 g

f

(67)

where q1 and q2 are induced by 1X , the diagram (67) must factor through the diagram (66).
So we have the following commutative diagram in T.

(X,OX(−D)1) (X,OX(−D2)
1)

(X,OX(−D1)
1) (Y, Ic)

q2

q1 h p2

p1

(68)

Then c = 1 and

OX(−D) ⊆ h∗I ⊆ OX(−D1) ∩ OX(−D2) = OX(−D). (69)

Hence OX(−D) = h∗I. Since p1 ·h = 1X in B, h·p1 = 1Y also holds in B by Lemma 3.8.(1).
Then h is an isomorphism in T by Lemma 4.21. Hence the diagram (67) also provides the
pullback of (f, g) in T.

On the other hand, we have another commutative diagram in T

(X̃,OX̃(−2C̃1 − 2C̃2 − 3E)1) (X,OX(−D2)
1)

(X,OX(−D1)
1) (X,O0

X)

r2

r1 g

f

(70)

where r1 and r2 are induced by π. Hence the diagram (70) must factor through the
diagram (67).

(X̃,OX̃(−2C̃1 − 2C̃2 − 3E)1) (X,OX(−D2)
1)

(X,OX(−D1)
1) (X,OX(−D)1)

r2

r1 k q2

q1

(71)
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However such a morphism k in T does not exist because

OX̃(−2C̃1 − 2C̃2 − 3E) 6⊆ OX̃(−π∗D). (72)

Hence T does not have pullbacks.

The category M does not have pushouts in general. But the following special case will
be enough for us.

4.26. Lemma. Let f : (W,Hb)→ (X, Ic) and g : (W,Hb)→ (Y, Jd) be morphisms in M.
If f is an isomorphism as a morphism in B then the pushout of (f, g) exists in M.

Proof. We may assume that W = X and f is induced by the identity 1X on X. Let
Ic = {Ic11 , . . . , Icmm } and let {Ĩc11 , . . . , Ĩcmm } be the finite set of the ideal sheaves on Y such that

Ĩi is the intersection of all ideal sheaves Î on Y satisfying Ii ⊆ g∗Î. Let Jd = {Jd11 , . . . , Jdnn }.
For every 1 ≤ i ≤ m and 1 ≤ j ≤ n, let Kij = Ĩi + Jj and eij = min{ci, dj}. Let
Ke = {Ke11

11 , . . . ,K
emn
mn }red. Then (Y,Ke) is the pushout of (f, g) in M.

4.27. Category M(X). Here we introduce our main object of study, the category M(X).
It is a small category with finite limits. As we will see in Section 7.21, these two properties
will ensure that the pro-category of M(X) has small colimits and small limits.

4.28. Definition. Let X be a normal quasi-projective variety. We define a category
M(X) by the comma category of M over (X,O0

X).

M(X) = (M ↓ (X,O0
X)) (73)

So an object of M(X) is a morphism f : (Y, Ic) → (X,O0
X) in M, and a morphism in

M(X) is a commutative diagram

(Y, Ic) (Z, Jd)

(X,O0
X)

h

f g
(74)

in M. We will often denote the morphism (74) with h.

The proof of the following lemma is a simple diagram chasing. So we omit it.

4.29. Lemma. Let K be a category with finite limits. Let f : a→ z and g : b→ z be two
morphisms in K. Assume that the following diagram is the pullback of (f, g) in K.

c a

b z

p

q f

g

(75)

Let h = f · p. Then h : c → z together with the morphisms p : h → f and q : h → g in
the comma category (K ↓ z) is the product of f and g in (K ↓ z).
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4.30. Lemma. Let X be a normal quasi-projective variety.

1. M(X) is a preorder, i.e. for every f and g in M(X), M(X)(f, g) has at most one
element.

2. M(X) has finite limits.

Proof. (1) It follows from Lemma 3.8.(2).
(2) First, M(X) has the canonical terminal object 1(X,O0

X) : (X,O0
X) → (X,O0

X).
Second, products in M(X) are pullbacks in M by Lemma 4.29, which exist by Lemma
4.24. Finally, M(X) has equalizers because of (1) for a trivial reason.

We will use the following lemma to calculate finite limits in M(X).

4.31. Lemma. Let F : D → K be a functor. If K is a preorder then the following
properties hold.

1. The limit limF exists in K iff the product
∏

d∈D F (d) exists in K iff the product∏
d∈Dmax

F (d) exists in K where Dmax is the subset of obD consisting of the maxi-
mal elements in obD with respect to d ≥ d′ which is defined by the existence of a
morphism d→ d′ in D.

2. If the limit of F exists in K then

limF =
∏
d∈D

F (d) (76)

=
∏

d∈Dmax

F (d) (77)

hold.

Proof. Since K is a preorder, every diagram in K commutes. Hence the results hold.

4.32. Definition. By an abuse of notation, we use the same letter U to denote the
forgetful functors

U : M→ B (78)

and
U : M(X)→ B. (79)

Finally, just like Lemma 4.26, we have pushouts in M(X) too if one of the morphisms
is an isomorphism in B.

4.33. Lemma. Let f : α → β and g : α → γ be morphisms in M(X). If U(f) is an
isomorphism then the pushout

α γ

β δ

g

f u

v

(80)

of (f, g) exists in M(X) and U(u) is an isomorphism.
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Proof. It follows from Lemma 4.26 and the general fact that the projection (K ↓ z)→ K

from a comma category of a category K over z ∈ K creates pushouts. See Exercise V.1.1
in [Mac Lan, 1998].

5. The Multiplier Ideal Sheaf: A Generalization

5.1. Review on Multiplier Ideal Sheaves. Here we recall some basic facts on mul-
tiplier ideal sheaves on smooth varieties.

5.2. Definition. Let X be a smooth quasi-projective variety. Let I be a non-zero ideal
sheaf on X and c ∈ Q≥0 be a non-negative rational number. A log resolution of (X, Ic)
is a projective birational morphism f : Y → X from a smooth quasi-projective variety Y
such that

1. I · OY = OY (−D) for some effective Cartier divisor D on Y ,

2. Ex(f) is a divisor on Y (See Definition 3.6), and

3. Ex(f) +D has a simple normal crossing support (See Definition 3.2).

5.3. Remark. A log resolution of (X, Ic) always exists by the theorem of Hironaka
(cf. Theorem 0.2 in [Kollár and Mori, 1998], Theorem 3.26 in [Kollar, 2007]).

5.4. Definition. Let X be a smooth quasi-projective variety. Let I be a non-zero ideal
sheaf on X and c ∈ Q≥0 be a non-negative rational number. Let f : Y → X be a log
resolution of (X, Ic). The multiplier ideal sheaf I (X, Ic) of (X, Ic) is defined by

I (X, Ic) = f∗OY (KY/X − bcDc) (81)

(See Definition 3.3 and Definition 3.7).

5.5. Remark. In Definition 5.4 we write

KY/X − bcDc = P −N (82)

where P and N are effective divisors without common component. Then

I (X, Ic) = f∗OY (−N) (83)

holds by (29), so I (X, Ic) is an ideal sheaf on X by (31).

It is well-known that the multiplier ideal sheaf (81) does not depend on the choice of
the log resolution f . The key point is the following result.
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5.6. Lemma. [Lemma 9.2.19 in [Lazarsfeld, 2004]] Let Y be a smooth quasi-projective
variety. Let µ : Z → Y be a projective birational morphism from a smooth variety Z. Let
D be an effective Q-divisor on Y with a simple normal crossing support. Then

KZ/Y − bµ∗Dc+ µ∗bDc ≥ 0 (84)

and
OY (bDc) = µ∗OZ(KZ/Y − bµ∗Dc) (85)

hold.

5.7. Remark. The assertion (84) is proved during the proof of Lemma 9.2.19 in [Lazars-
feld, 2004].

5.8. A Generalization. Here we define the multiplier ideal sheaf of an object of the
category M(X). However the reducedness of Ic in Definition 4.17 is not required to define
it. So here we will work with a larger category N(X) defined below instead of M(X).

5.9. Definition. We define a category N as follows.

1. The set of objects consists of all the pairs (X, Ic) of a normal quasi-projective variety
X and a (not necessarily reduced) finite set Ic of weighted ideal sheaves on X.

2. The hom-set N((X, Ic), (Y, Jd)) consists of all projective birational morphisms f :
X → Y satisfying

Ic ≤ f ∗Jd. (86)

5.10. Definition. Let X be a normal quasi-projective variety. We define a category
N(X) by the comma category of N over (X,O0

X).

N(X) = (N ↓ (X,O0
X)) (87)

5.11. Remark. Clearly M and M(X) are full subcategories of N and N(X) respectively.

5.12. Definition. Let X be a smooth quasi-projective variety. Let f : (Y, Ic)→ (X,O0
X)

be an object of N(X). Let Ic = {Ic11 , . . . , Icmm }. A projective birational morphism µ : Z → Y
from a smooth quasi-projective variety Z is called a log resolution of f if

1. for every Ii, there exists an effective Cartier divisor Di in Z such that Ii · OZ =
OZ(−Di),

2. Ex(f · µ) is a divisor on Z, and

3. Ex(f · µ) +
∑m

i=1Di has a simple normal crossing support.

5.13. Remark. Again a log resolution of f exists by the theorem of Hironaka.
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5.14. Definition. Let X be a smooth quasi-projective variety. Let f : (Y, Ic)→ (X,O0
X)

be an object of N(X). Let Ic = {Ic11 , . . . , Icmm }. Let µ : Z → Y be a log resolution of f .
Let Di ⊂ Z be an effective Cartier divisor in Z such that Ii · OZ = OZ(−Di). We write
ciDi =

∑l
k=1 a

k
iEk where Ek’s are prime divisors and aki ∈ Q≥0. Then we define

Df,µ =
l∑

k=1

max{ak1, . . . , akm}Ek (88)

and
Iµ(f) = (f · µ)∗OZ(KZ/X − bDf,µc). (89)

Again the right hand side of (89) is an ideal sheaf on X. Just like the usual multiplier
ideal sheaf (81), the following Lemma 5.17 will show that Iµ(f) does not depend on the
choice of µ. So we will write I (f) instead of Iµ(f).

5.15. Remark. If m = 1 and f = 1X then I (f) is the usual multiplier ideal sheaf
I (X, Ic11 ) in (81).

5.16. Remark. This relative view on multiplier ideal sheaves is not new. See for example
[Ein and Lazarsfeld, 1993]. I learned an explicit treatment from [Ein, 1995].

The proof of the following lemma has little difference with that of the usual multiplier
ideal sheaves. We provide the proof for the convenience of the reader.

5.17. Lemma. [cf. Theorem 9.2.18 in [Lazarsfeld, 2004]] The ideal sheaf Iµ(f) in (89)
does not depend on the choice of the log resolution µ of f .

Proof. Let µ′ : Z ′ → Y be another log resolution of f . By taking a common resolution
(Lemma 3.10) of µ and µ′ we may assume that µ′ factors through µ. Let µ′ = µ · ρ for
some ρ : Z ′ → Z. For simplicity, we denote Df,µ and Df,µ′ with Dµ and Dµ′ respectively.

Since Dµ′ ≤ ρ∗Dµ holds by definition, the following calculation and (84) show that
the Q-divisor (90) is effective.

KZ′/X − bDµ′c − ρ∗(KZ/X − bDµc) (90)

=KZ′/Z − bDµ′c+ ρ∗bDµc (91)

≥KZ′/Z − bρ∗Dµc+ ρ∗bDµc (92)

The divisor (91) is ρ-exceptional. By Lemma 3.16

ρ∗OZ′(KZ′/X − bDµ′c − ρ∗(KZ/X − bDµc)) = OZ (93)

holds. Therefore the projection formula (Exercise 5.1 on Chapter II in [Hartshorne, 1977])
implies that

ρ∗OZ(KZ′/X − bDµ′c) = OY (KZ/X − bDµc) (94)

holds, hence Iµ′(f) = Iµ(f).
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5.18. Lemma. Let X be a smooth quasi-projective variety. Let f : (Y, Ic) → (X,O0
X) be

an object of N(X). Let µ : Z → Y be a projective birational morphism from a smooth
variety Z. Then

I (f) = I ((Z, f ∗Ic)
f ·µ−−→ (X,O0

X)) (95)

holds.

Proof. It follows from Lemma 5.17.

5.19. Lemma. Let X be a smooth quasi-projective variety. Let f and g be objects of
N(X). If there is a morphism h : f → g in N(X) then

I (f) ⊆ I (g) (96)

holds.

Proof. We write f : (Y, Ic)→ (X,O0
X) and g : (Z, Jd)→ (X,O0

X). Let µ : W → Y be a

log resolution of (Y, Ic ∗ h∗Jd) f−→ (X,O0
X). Then Df,µ ≥ Dg,h·µ holds by definition. So the

inclusion (96) holds by Lemma 5.17.

5.20. Lemma. Let X be a smooth quasi-projective variety. Let f : (Y, Ic) → (X,O0
X) be

an object of N(X). Then

I (f) = I ((Y, (Ic)red)
f−→ (X,O0

X)) (97)

holds.

Proof. It follows from Lemma 4.10 and Lemma 5.19.

6. Weak Fibration Structure on M(X)

In [Quillen, 1967] Quillen introduced model categories as a general setting in which one
can do homotopy theory. A modern definition of a (closed) model structure on a category
M with finite limits and finite colimits consists of three sets W, C, F of morphisms in M

such that

1. W satisfies the two out of three property (Definition 6.2) and

2. (W ∩ C,F) and (C,W ∩ F) are weak factorization systems (Definition 7.32).

In [Barnea and Schlank, 2016], the authors introduce weak fibration categories and
show that the pro-category of a weak fibration category has three sets W, C, F of mor-
phisms such that (W ∩ C,F) and (C,W ∩ F) are weak factorization systems. They call a
weak fibration category pro-admissible if W satisfies the two out of three property.

Here we will recall the definition of the weak fibration structure and show that M(X)
has such a structure.

The dual notions are weak cofibration categories and their ind-categories. Our choice
of fibration over cofibration was to take advantage of the existence of pullbacks in the
category B.
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6.1. Weak Fibration Structures. If one wants to treat a certain set of morphisms
in a category as isomorphisms then one can form its homotopy category by inverting the
elements in the set. The essence of such a set is captured by the following property.

6.2. Definition. [Definition 14.1.4 in [May and Ponto, 2012]] Let K be a category. Let
W be a nonempty set of morphisms in K. We say that W satisfies the two out of
three property if the following three conditions hold: For every g, h ∈ Mor(K) with
dom(h) = cod(g),

(M) g ∈W and h ∈W imply hg ∈W.

(L) hg ∈W and h ∈W imply g ∈W.

(R) hg ∈W and g ∈W imply h ∈W.

6.3. Definition. Let K be a category. Let L and R be two sets of morphisms in K.
Then we write

Mor(K) = R ◦ L (98)

if every morphism a→ c in K can be factored as a
f−→ b

g−→ c where f ∈ L and g ∈ R.

6.4. Definition. [Definition 1.2 in [Barnea and Schlank, 2016]] A weak fibration
structure on a category K with finite limits consists of two sets W and F of morphisms
in K satisfying the following four properties.

1. W satisfies the two out of three property and contains all the isomorphisms.

2. F is closed under composition and contains all the isomorphisms.

3. F and F ∩W are closed under base change.

4. Mor(M) = F ◦W holds.

For simplicity, we denote W∩F with Ft. We call an element of W a weak equivalence
and call an element of F a fibration. An element of Ft is called a trivial fibration. An
object of K is called fibrant if the unique morphism to the terminal object is a fibration.

6.5. Definition. A category with finite limits and a weak fibration structure is called a
weak fibration category.

6.6. Example. For every model category (M;W,C,F), (M;W,F) is a weak fibration
category and (M;W,C) is a weak cofibration category.

6.7. Example. Let (K;W,F) be a weak fibration category. Let Kf be the full subcate-
gory of the fibrant objects. Then (Kf ;W∩Kf ,F ∩ Ff ) is a category of fibrant objects in
the sense of K. Brown ([Brown, 1973]).
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6.8. Weak Fibration Structure on M(X). Here we will construct a weak fibration
structure on M(X).

6.9. Definition. Let X be a smooth quasi-projective variety. We defined two sets W(X)
and F(X) of morphisms in M(X) as follows: Let h : f → g be a morphism in M(X).

(Y, Ic) (Z, Jd)

(X,O0
X)

h

f g
(99)

1. h belongs to W(X) iff U(h) is an isomorphism where U is the forgetful functor (79).

2. h belongs to F(X) iff I (f) = I (g).

For simplicity, we denote W(X) ∩ F(X) with Ft(X).

6.10. Remark. In Definition 6.9, the condition imposed on the weak equivalences is
perhaps too strong and the set W(X) is too small. Of course the choice should be made
by the application in mind. Because here we want to build a general theory, we take the
set of weak equivalences as above.

6.11. Remark. If we consider I as a functor from M(X) to the category of ideal sheaves
on X (Lemma 5.19), then the condition (2) says that h ∈ F(X) iff I (h) is an identity.

6.12. Lemma. If X is a smooth quasi-projective variety then the following two properties
hold.

1. W(X) is stable under base change.

2. All the cobase changes of elements of W(X) exist and belong to W(X).

Proof. (1) The projection M(X)→M preserves pullbacks. Hence the forgetful functor
U : M(X) → B also preserves pullbacks. On the other hand, a morphism f in M(X) is
in W(X) iff U(f) is an isomorphism in B, and all the isomorphisms in B are preserved
by base change. Hence (1) holds.

(2) holds by Lemma 4.33.

6.13. Definition. Let X be a normal quasi-projective variety. Let f and g be two objects
of M(X). We denote the product of f and g with

f ∗ g. (100)

Recall that the product f ∗ g can be obtained from the pullback of (f, g) in M. See
Lemma 4.29.
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6.14. Definition. Let Y be a smooth variety. Let D1 and D2 be Q-divisors on Y . We
define a Q-divisor D1 ∗D2 on Y with

D1 ∗D2 =
∑
l

max{al1, al2}El (101)

where D1 =
∑

l a
l
1El, D2 =

∑
l a

l
2El, and El’s are prime divisors on Y .

6.15. Lemma. Let X be a smooth quasi-projective variety. Let f and g be two objects of
M(X). Let p : f ∗ g → f and q : f ∗ g → g be the canonical projections. If µ is a log
resolution of f ∗ g then p · µ and q · µ are log resolutions of f and g respectively and

Df∗g,µ = Df,p·µ ∗Dg,q·µ (102)

holds.

Proof. It easily follows from definitions.

6.16. Proposition. If X is a smooth quasi-projective variety then M(X) is a category
with finite limits and (W(X),F(X)) is a weak fibration structure for M(X).

Proof. M(X) has finite limits by Lemma 4.30.(2).
Lemma 4.21 implies that Iso(M(X)) ⊆ W(X) ∩ F(X). The rest of (1) and (2) in

Definition 6.4 follows from the definitions.
Let h : f → g be a morphism in M(X).

(Y, Ic) (Z, Jd)

(X,O0
X)

h

f g
(103)

As a morphism in M, h : (Y, Ic)→ (Z, Jd) can be factored as

(Y, Ic)
h1−→ (Y, (f ∗Jd)red)

h2−→ (Z, Jd) (104)

where U(h1) = 1Y and U(h2) = U(h). The morphism h1 is in M by (42). The morphism
h2 is in M by (43). Let f ′ : (Y, (f ∗Jd)red) → (X,O0

X) be the object of M(X) satisfying
U(f ′) = U(f). Then we have morphisms h1 : f → f ′ and h2 : f ′ → g in M(X). By the
definition h1 ∈W(X) holds. By (95) and (97) h2 ∈ F(X) holds. Therefore, (4) holds.

W(X) is stable under base change by Lemma 6.12.(1). So to verify the property (3)
we only need to show that F(X) is stable under base change. Consider the following
pullback diagram of (g, h) in M(X).

f4 f2

f3 f1

p1

p2 g

h

(105)
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where fi : (Yi, I
ci
i )→ (X,O0

X) for i = 1, 2, 3, 4 and g ∈ F(X). By (77)

f4 = f2 ∗ f3 (106)

holds. Then by Lemma 4.29 we have Ic44 = p∗1I
c2
2 ∗p∗2I

c3
3 . Let µ : Y → Y4 be a log resolution

of
f : (Y4, I

c4
4 ∗ (g · p1)∗Ic11 )→ (X,O0

X) (107)

where U(f) = U(f4). µ is also a log resolution of f4, and induces log resolutions of f1, f2,
and f3. By (102)

D(f4,µ) = D(f2,p1·µ) ∗D(f3,p2·µ) (108)

holds. Then the following Lemma 6.17 implies that F(X) is closed under base change.

6.17. Lemma. Let f : Y → X be a projective birational morphism between smooth quasi-
projective varieties. Let D1, D2, and D3 be effective Q-divisors on Y satisfying D2 ≥ D1

and D3 ≥ D1. Let D4 = D2 ∗D3. Then

f∗OY (KY/X − bD1c) = f∗OY (KY/X − bD2c) (109)

implies
f∗OY (KY/X − bD3c) = f∗OY (KY/X − bD4c). (110)

Proof. Let A1 and A2 be effective Q-divisors such that D3 = A1+D1 and D4 = A2+D2.
By definition we have A1 ≥ A2. We want to use the induction on the number of the
irreducible components of A1.

Let E be an irreducible component of A1. Let c1 and c2 be the coefficients of E in
A1 and A2 respectively. Then we can write A1 = c1E + B1 and A2 = c2E + B2 for some
effective Q-divisors B1 and B2 such that ordE(B1 + B2) = 0. From A1 ≥ A2, we have
c1 ≥ c2. Consider the following inequalities.

D4 ≥ B2 +D2 ≥ D2≥ ≥ ≥

D3 ≥ B1 +D1 ≥ D1

(111)

Since D4 = D3 ∗D2, we have D4 = D3 ∗ (D2 + B2). Since ordE(B1 + D1) = ordE(D1) ≤
ordE(D2), we have ordE((B1+D1)∗D2) = ordED2 = ordE(B2+D2). So, (B1+D1)∗D2 =
(B2 + D2). Therefore, by the induction hypothesis, we may assume that B1 = B2 = 0
and

D3 = c1E +D1 and D4 = c2E +D2 (112)

hold. In particular, we may assume that

c2 + a2 = max{c1 + a1, a2} (113)

where a1 = ordED1 and a2 = ordED2.
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If c2 + a2 = a2 holds in (113) then D4 = D2. Therefore,

f∗OY (KY/X − bD1c) = f∗OY (KY/X − bD4c) (114)

by (109), hence
f∗OY (KY/X − bD3c) = f∗OY (KY/X − bD4c).

So from now on, we assume that

c2 + a2 = c1 + a1 (115)

holds.
We write, as in (82),

KY/X − bDic = Pi −Ni (116)

where Pi and Ni are effective divisors on Y without common component for i = 1, 2, 3, 4.
We have

f∗OY (KY/X − bDic) = f∗OY (−Ni) (117)

by (29). Hence
f∗OY (−N1) = f∗OY (−N2) (118)

holds by (109). Let F be a prime divisor on Y . Then

ordFN1 = ordFN3 if F 6= E (119)

ordFN1 ≤ ordFN3 if F = E (120)

and

ordFN2 = ordFN4 if F 6= E (121)

ordFN2 ≤ ordFN4 if F = E (122)

hold by (112). Let b = ordEKY/X . Then because of (115), we have

db− (c1 + a1)e = db− (c2 + a2)e. (123)

We denote this common integer with d. Then

ordE(P3 −N3) = d = ordE(P4 −N4) (124)

holds.
Assume that d ≥ 0. Since P3 (resp. P4) and N3 (resp. N4) have no common compo-

nent,
ordEN3 = 0 = ordEN4 (125)

by (124). So
ordEN1 = 0 = ordEN2 (126)
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by (119) and (121). Then
N1 = N3 and N2 = N4 (127)

by (120) and (122). Therefore,

f∗OY (KY/X − bD3c) =f∗OY (−N3) (128)

=f∗OY (−N1) (129)

=f∗OY (−N2) (130)

=f∗OY (−N4) (131)

=f∗OY (KY/X − bD4c) (132)

by (117), (118), and (127).
Assume that d < 0. We have

OY (−N3) = OY (−N1) ∩ OY (dE) (133)

and
OY (−N4) = OY (−N2) ∩ OY (dE) (134)

by (119) - (122). Then

f∗OY (KY/X − bD3c) =f∗OY (−N3) (135)

=f∗(OY (−N1) ∩ OY (dE)) (136)

=f∗(OY (−N1)) ∩ f∗(OY (dE)) (137)

=f∗(OY (−N2)) ∩ f∗(OY (dE)) (138)

=f∗(OY (−N2) ∩ OY (dE)) (139)

=f∗OY (−N4) (140)

=f∗OY (KY/X − bD4c) (141)

by (117), (118), (133), and (134).

7. Model Structure on Pro(X)

Here we will prove Theorem 1.1 after recollecting some well known notions and facts.
We review pro-categories in Section 7.1, and recall their basic properties including the
uniform approximation theorem in Section 7.12 and completeness and cocompleteness of
pro-categories in Section 7.21. Next we recall model categories in Section 7.28 and review
a result of Barnea and Schlank [Barnea and Schlank, 2016] in Section 7.38. The proof of
Theorem 1.1 will be given at the end of this section after we establish in Section 7.50 the
two out of three property of WPro(X) by slightly modifying the original proof of Isaksen
in [Isaksen, 2004].
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7.1. Pro-Categories. Here and the following three subsections, we will recall some
properties of pro-categories. Our main reference is the appendix of [Artin and Mazur,
1969]. One can also consult the original [Artin, Grothendieck, and Verdier, 1972] or
[Kashiwara and Schapira, 2006].

7.2. Definition. A non-empty category I is called cofiltering if

1. for every i, j ∈ I, there are an object k ∈ I and morphisms k → i and k → j in I.

2. for every i, j ∈ I and f, g : i ⇒ j, there is a morphism h : k → i in I such that
fh = gh.

In [Artin and Mazur, 1969], the authors define a pro-object as a contravariant functor
from a small filtering category. In this note, a pro-object is a covariant functor from a
small cofiltering categories.

7.3. Definition. Given a category K, we define a category Pro(K) as follows.

1. Objects are functors X : I→ K from a small cofiltering category I.

2. Given two objects X : I→ K and Y : J→ K, the hom-set Pro(K)(X, Y ) is

Pro(K)(X, Y ) = lim
J

colim
Iop

K(Xi, Yj). (142)

We call Pro(K) the pro-category of K. Objects of Pro(K) are called pro-projects of
K.

7.4. Remark. Pro(K) is again a (locally small) category.

7.5. Remark. Pro(K) depends on the choice of the universe U that we made at the
beginning of Section 2.1.

7.6. Remark. To give a morphism f : X → Y in Pro(K) is to specify

fj ∈ colim
I

K(Xi, Yj) (143)

for every j ∈ J satisfying certain compatibility conditions.

7.7. Remark. A category K can be considered as a full subcategory of its pro-category
Pro(K) by considering an object X ∈ K as a functor from an one object category without
non-identity morphisms.

7.8. Definition. Let X : I → K be a pro-object of a category K. For every i ∈ I, we
call Xi the i-th component of X.

7.9. Definition. Let f : X → Y be a morphism in Pro(K) given by a compatible set
of elements {fj}j∈J where fj ∈ colimJop K(Xi, Yj). We call fj the j-th coordinate of
f . We will say a morphism fij : Xi → Yj in K represents f if the image of fij in
colimIop K(Xi, Yj) is fj, the j-th coordinate of f .
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7.10. Pro-Category of Preorder. Here we will show that if K is a preorder then
the pro-category of K is also a preorder.

7.11. Lemma. Let K be a preorder.

1. Every diagram in K commutes.

2. For every pro-object X : I → K and Y ∈ K, colimIop K(Xi, Y ) has at most one
element.

3. Let X : I → K and Y : J → K be objects of Pro(K). Then to give a morphism
f : X → Y in Pro(K) is equivalent to specify, for every j ∈ J, an object i ∈ I and
a morphism fij : Xi → Yj (without worrying about the compatibilities).

4. Pro(K) is a preorder.

5. A morphism f : X → Y in Pro(K) is an isomorphism iff there exists a morphism
g : Y → X.

Proof. (1) follows from K being a preorder.
(2) Assume that there exist i1, i2 such that K(Xi1 , Y ) and K(Xi2 , Y ) are non-empty.

Let f1 ∈ K(Xi1 , Y ) and f2 ∈ K(Xi2 , Y ). Since I is cofiltering, there exist an object i ∈ I

with morphisms u1 : i→ i1 and u2 : i→ i2 in I. Since every diagram commutes in K by
(1), following diagram commutes.

Xi Xi1

Xi2 Y

Xu1

Xu2 f1

f2

(144)

Therefore, colimIop K(Xi, Y ) has at most one element.
(3) Assume that for every j ∈ J we have an object i ∈ I and a morphism fij : Xi → Yj

in K. We want to show that they are compatible.
Let us choose two of them: f1 : Xi1 → Yj1 and f2 : Xi2 → Yj2 . Let v : j1 → j2 be a

morphism in J. Then, f2 and Yv · f1 represent the same element in colimIop K(Xi, Yj2) by
(2). Hence fij’s are compatible.

(4) follows from (2).
(5) follows from (4).

7.12. Uniform Approximation. Now we want to recall from [Artin and Mazur, 1969]
the uniform approximation of loopless finite diagrams in pro-categories. Here the loopless
means that the beginning and the end of a chain of morphisms in the diagram are always
distinct. Later in Section 7.50, it is used to prove the two out of three property for the
weak equivalences in the pro-category of M(X). The uniform approximation theorem is
also useful in dealing with finite limits and finite colimits (Lemma 7.22).
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From the definition (142) one might think that morphisms in Pro(K) are difficult
to handle. But, up to isomorphism, one can replace them with natural transformations
between functors with the same index categories. More precisely, the uniform approxima-
tion theorem in [Artin and Mazur, 1969] for diagrams with finite loopless index categories
can be stated elegantly as follows ([Meyer, 1980], See Theorem 3.3 in [Isaksen, 2002] for
a generalization). Given a finite loopless category D, there is an essentially surjective
functor

Pro(KD)→ Pro(K)D. (145)

In particular, the calculation of pullbacks and pushouts can be done level-wise up to
isomorphism. However, we will need a bit more explicit statement, Lemma 7.20, to prove
the two out of three property for the set of weak equivalences in Pro(X).

First we recall the cofinal functor.

7.13. Definition. [Definition 2.8 in [Barnea and Schlank, 2016]] A functor P : I→ J is
called cofinal if for every j ∈ J, the comma category (P ↓ j) is non-empty and connected,
i.e., the following two conditions hold.

1. There exist i ∈ I and a morphism P (i)→ j in J.

2. For every i1, i2 ∈ I and morphisms f : P (i1) → j and g : P (i2) → j, there exist
i ∈ I and morphisms u : i→ i1 and v : i→ i2 such that f · P (u) = g · P (v).

7.14. Remark. In Appendix (1.5) in [Artin and Mazur, 1969], the authors give a defi-
nition of cofinal functor slightly different from the above. However if I is cofiltering then
these two definitions coincide.

7.15. Remark. The compositions of cofinal functors are cofinal.

7.16. Remark. If P : I → J is a cofinal functor and I is cofiltering then J is also
cofiltering.

7.17. Lemma. [Appendix (1.8) and (2.5) in [Artin and Mazur, 1969]] Let P : I → J

be a cofinal functor between small cofiltering categories. Let X : J → K be an object of
Pro(K). Then the canonical morphism

X → P ∗X (146)

in Pro(K) is an isomorphism.

A natural transformation between functors X, Y : I → K from a small cofiltering
category I naturally produces a morphism in Pro(K). The next lemma shows that every
morphism in Pro(K) can be transformed into such a morphism by re-indexing the domain
categories. But first, we recall two definitions from [Isaksen, 2004].
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7.18. Definition. Let K be a category. A level presentation of a morphism f : X →
Y in Pro(K) consists of

1. a small cofiltering category I,

2. two objects X̃, Ỹ : I→ K of Pro(K),

3. a natural transformation f̃ : X̃ → Ỹ , and

4. isomorphisms X → X̃ and Y → Ỹ in Pro(K)

such that the diagram

X Y

X̃ Ỹ

f

∼= ∼=

f̃

(147)

in Pro(K) commutes. For simplicity, we will denote the level presentation of f by the

morphism f̃ .

The previous notion generalizes to diagrams in Pro(K).

7.19. Definition. Let K be a category. Let X : D → Pro(K) be a functor from a
category D. A level presentation of X in Pro(K) consists of

1. a small cofiltering category I,

2. a functor X̃ : D× I→ K, and

3. an isomorphism τa : Xa → X̃a in Pro(K) for every object a of D

such that for every morphism φ : a→ b in D, the diagram

Xa Xb

X̃a X̃b

Xφ

τa∼= τb∼=

X̃φ

(148)

in Pro(K) commutes.

The level presentation is a flexible notion. But we will need a bit more stronger
statement as in the following lemma.
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7.20. Lemma. [Appendix (3.3) in [Artin and Mazur, 1969] “uniform approximation”] Let
K be a category. Let D be a finite loopless category. Then for every functor X : D →
Pro(K), there exist

1. a small cofiltering category I,

2. a functor X̃ : D× I→ K, and

3. a cofinal functor Pa : I→ dom(Xa) for every object a of D

such that

(4) for every object a of D

X̃a = P ∗aXa (149)

holds,

(5) for every morphism φ : a→ b in D the diagram

Xa Xb

X̃a X̃b

Xφ

∼= ∼=

X̃φ

(150)

in Pro(K) commutes where the vertical morphisms are the canonical isomorphisms
in Lemma 7.17, and

(6) for every morphism φ in D and every object i of I X̃φ,i represents Xφ.

In particular, every finite loopless diagram in Pro(K) has a level presentation.

7.21. Limits and Colimits in Pro-Categories. Here we recall from [Artin and
Mazur, 1969] that if a category is small and has finite limits then its pro-category has
small limits and small colimits.

First, we discuss finite limits in pro-categories. Let K be a category with finite
(co)limits and I be a small cofiltering category. The Proposition (4.1) in [Artin and
Mazur, 1969] says that the functor

KI → Pro(K) (151)

associating X : I→ K with the corresponding pro-object in Pro(K) commutes with finite
(co)limits. In fact the proof of the proposition shows how to compute (co)limits of finite
diagrams in Pro(K) when their level presentations exist.
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7.22. Lemma. [Proposition (4.1) in [Artin and Mazur, 1969]] Let K be a category. Let

X : D→ Pro(K) be a finite diagram in Pro(K) and X̃ : D×I→ K be a level presentation
of X in Definition 7.19.

1. If the colimit colimd X̃d,i exists for every i ∈ I then the object {colimd X̃d,i}i∈I of
Pro(K) is the colimit of X.

2. If the limit limd X̃d,i exists for every i ∈ I then the object {limd X̃d,i}i∈I of Pro(K)
is the limit of X.

Finite limits exist if finite products and equalizers exist by Corollary 1 on Chapter 5.2
in [Mac Lan, 1998]. So the following lemma follows from Lemma 7.20 and Lemma 7.22.(2).

7.23. Lemma. [Appendix (4.2) in [Artin and Mazur, 1969]] If a category K has finite
limits then so does Pro(K).

If a category is small and has finite limits then its pro-category has small colimits.

7.24. Lemma. [Appendix (4.3) in [Artin and Mazur, 1969]; cf. Proposition 11.1 in [Isak-
sen, 2001]] If K is a small category with finite limits then Pro(K) has small colimits.

7.25. Remark. Lemma 7.24 also follows from the well-known special adjoint functor
theorem (cf. Corollary on Chapter V.8 in [Mac Lan, 1998]) and the following Lemma 7.27.
Again the smallness of K is essential in verifying the assumptions in the special adjoint
functor theorem.

By Theorem 2 on Chapter 5.2 in [Mac Lan, 1998] and the dual of Theorem 1 on
Chapter 9.1 in [Mac Lan, 1998], a (small) limit can be decomposed into a (small) cofiltering
limit and finite limits.

7.26. Lemma. [Appendix (4.4) in [Artin and Mazur, 1969]; cf. Theorem 4.1 in [Isaksen,
2002]] For any category K, its pro-category Pro(K) has small cofiltering limits.

7.27. Lemma. If K is a category with finite limits then Pro(K) has small limits.

Proof. By Theorem 2 on Chapter 5.2 in [Mac Lan, 1998] and the dual of Theorem 1 on
Chapter 9.1 in [Mac Lan, 1998], Pro(K) has small limits if it has small cofiltering limits
and finite limits. Hence Pro(K) has small limits by Lemma 7.23 and Lemma 7.26.

Lemma 7.27 can also be proved as in the proof of Proposition 11.1 in [Isaksen, 2001].
There only the finite limits are used during the proof of the completeness of the pro-
category.

7.28. Model Structures. Here we recall model categories. For our purpose, the con-
tent of Chapter 14 in [May and Ponto, 2012] is sufficient. For a comprehensive reference
we refer to [Hirschhorn, 2003] or [Hovey, 1999], or the original [Quillen, 1967].
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7.29. Definition. Let M be a category. Let S be a set of morphisms in M.

1. Let f and g be two morphisms in M. If there is a commutative diagram

• • •

• • •
f g f (152)

where the compositions of the horizontal morphisms are identities then we say that
f is a retract of g.

2. We denote by R(S) the set of morphisms in M that are retracts of morphisms in S.
We call it the retract closure of S.

3. We say that S is closed under retracts if R(S) = S.

7.30. Remark. We note that S ⊆ R(S) and R(R(S)) = R(S) hold.

7.31. Definition. Let M be a category. Let L and R be two sets of morphisms in M.

1. Let f and g be morphisms in M. We write f � g iff for every commutative square

• •

• •
f g (153)

of solid arrows there is a lifting of the dotted arrow making the whole diagram com-
mutes. If f � g holds, we say that f has the left lifting property with respect to
g and g has the right lifting property with respect to f .

2. We write L � R iff for every f ∈ L and g ∈ R f � g holds.

3. We define two sets

L� = {g ∈ Mor(M) | f � g for every f ∈ L} (154)

and
�R = {f ∈ Mor(M) | f � g for every g ∈ R}. (155)

of morphisms in M.

7.32. Definition. [Definition 14.1.11 in [May and Ponto, 2012]] Let M be a category. A
weak factorization system on M is a pair (L,R) of two sets of morphisms in M such
that the following three conditions hold.

1. R(L) = L and R(R) = R.

2. L � R.

3. Mor(M) = R ◦ L (Definition 6.3).

A weak factorization systems is called functorial if the factorization in (3) is functorial.
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7.33. Lemma. [Proposition 14.1.13 in [May and Ponto, 2012]] Let M be a category. Let
(L,R) be a pair of sets of morphisms in M such that Mor(M) = R ◦L. Then (1) and (2)
in Definition 7.32 hold iff L� = R and L = �R hold.

7.34. Definition. Let M be a category. A (functorial) model structure on M con-
sists of three sets W, C, and F of morphisms in M satisfying the following two conditions.

1. W satisfies the two out of three property (Definition 6.2).

2. (W ∩ C,F) and (C,W ∩ F) are (functorial) weak factorization systems on M.

We call an element of W a weak equivalence, an element of C a cofibration, and an
element of F a fibration. An element of W ∩ C is called a trivial cofibration. An
element of W∩F is called a trivial fibration. An object of M is called cofibrant if the
unique morphism from the initial object is a cofibration. An object of M is called fibrant
if the unique morphism to the terminal object is a fibration.

7.35. Remark. It is well known that the condition (2) implies C and F are closed under
composition and Iso(M) = W∩C∩F holds. In particular, C and F form subcategories of
M. In general, (2) does not imply that W is closed under composition. But the condition
(1) does.

7.36. Definition. A category M is called a (functorial) model category if the fol-
lowing two conditions hold.

1. M has small colimits and small limits.

2. M has a (functorial) model structure.

7.37. Remark. Quillen’s original definition of the (closed) model category does not as-
sume the functoriality and assumes only the existence of finite limits and finite colimits.

7.38. Barnea-Schlank Model Structure. Here we will state a result of Barnea and
Schlank in [Barnea and Schlank, 2016] on the existence of a pair of weak factorization
systems on Pro(K).

First, we need some definitions. Recall from (15) that a morphism a → b in a poset
T is denoted by a ≥ b.

7.39. Definition. A poset T is called cofinite if the subset {b ≤ a | b ∈ T} of T is
finite for every a ∈ T .

7.40. Definition. [Definition 2.11 in [Barnea and Schlank, 2016]] Let K be a category
with finite limits. Let S be a non-empty set of morphisms in K.

1. We denote by Lw(S) the set of natural transformations f : X → Y between functors
X, Y : I→ K from a small category I such that fi is in S for every i ∈ I.
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2. We denote by Sp(S) the set of natural transformations f : X → Y between functors
X, Y : I→ K from a small cofinite poset I such that the natural map

Xt → Yt ×
lims<t Ys

lim
s<t

Xs (156)

is in S for every t ∈ I.

7.41. Remark. The second conditions (2) implies that if t ∈ I is a minimal object of I,
that is there is no non-trivial morphism from t, then ft is in S.

7.42. Definition. [Definition 2.12.(4) and (5) in [Barnea and Schlank, 2016]] Let K be
a category with finite limits. Let S be a non-empty set of morphisms in K.

1. We denote by Lw
∼=(S) the set of all morphisms f in Pro(K) that has a level presen-

tation (Definition 7.18) f̃ in Lw(S).

2. We denote by Sp
∼=(S) the set of all morphisms f in Pro(K) that has a level presen-

tation f̃ in Sp(S).

7.43. Remark. Note that in Definition 7.40, I is not required to be cofiltering. But the
index category of the level presentation f̃ in Definition 7.42 is cofiltering.

Finally, we define a model structure on Pro(K) when K is a weak fibration category.

7.44. Definition. Let K be a category with finite limits. Given a weak fibration structure
(W,F) on K, we define three sets WPro, CPro, and FPro of morphisms in Pro(K) as follows.

WPro = Lw
∼=(W) (157)

CPro = �(W ∩ F) (158)

FPro = R(Sp
∼=(F)) (159)

7.45. Definition. Let K be a category with finite limits. Then a weak fibration structure
(W,F) on K is called pro-admissible if WPro has the two out of three property.

The following theorem of Barnea and Schlank is one of the key ingredients in the
construction of a model structure on Pro(X).

7.46. Theorem. [Theorem 4.18 in [Barnea and Schlank, 2016], Proposition 3.18 in
[Barnea and Schlank, 2016]] Let K be a small category with finite limits. Let (W,F)
be a pro-admissible weak fibration structure on K. Then the following properties hold.

1. The following are functorial weak factorization systems in Pro(K).

(CPro,WPro ∩ FPro) (WPro ∩ CPro,FPro) (160)

2. WPro ∩ CPro = �F.

3. WPro ∩ FPro = R(Sp
∼=(W ∩ F)).
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7.47. Remark. In Theorem 4.18 in [Barnea and Schlank, 2016], the above theorem
is stated without the functoriality condition in (1) under a weaker assumption that K

is homotopically small (Definition 4.12 in [Barnea and Schlank, 2016]). The proof of
Theorem 4.18 in [Barnea and Schlank, 2016] relies on Proposition 3.17 in [Barnea and
Schlank, 2016]. However, as explained in Remark 2.19 in [Barnea and Schlank, 2014], if
we use Proposition 3.18 in [Barnea and Schlank, 2016] instead and assume that K is small
then we have the functoriality as stated above.

The follows lemma shows that we do not need to take retract closures in (159) and
Theorem 7.46.(3).

7.48. Lemma. Let K be a category with finite limits. Let S be a set of morphisms in K.
If K is a preorder then

R(Sp
∼=(S)) = Sp

∼=(S) (161)

holds.

Proof. It follows from Lemma 7.11.(5).

7.49. Lemma. [Corollary 2.20 in [Barnea and Schlank, 2016]] Let K be a category with
finite limits. Let S be a set of morphisms in K such that S contains the set of all isomor-
phisms and is closed under composition. If S is closed under base change then

Sp
∼=(S) ⊆ Lw

∼=(S) (162)

holds.

7.50. Two out of Three Property for Pro(X). Recall that Pro(X) is the category
Pro(M(X)) of pro-objects in M(X) defined in (5) and WPro(X) is the set Lw

∼=(W(X))
of weak equivalences in Pro(M(X)) defined in (6). Here we prove the two out of three
property (Definition 6.2) for WPro(X). It is essentially done in [Isaksen, 2004]. All we
need is to modify the proof slightly and use Lemma 4.33.

In [Isaksen, 2004], the author assumes that the base category is a proper model cate-
gory. What is relevant to the proof of the two out of three property is the properness. In
our case, a much stronger condition holds: all elements in W(X) are stable under base
change and cobase change.

7.51. Lemma. If X is a smooth quasi-projective variety then Lw
∼=(W(X)) satisfies the

two out of three property.

Proof. Since W(X) has the two out of three property, the result follows from Lemma 6.12
and the following Lemma 7.52.
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7.52. Lemma. [Lemma 3.5 and Lemma 3.6 in [Isaksen, 2004]] Let K be a category. Let
W be a non-empty set of morphisms in K. If W satisfies the following three properties
then Lw

∼=(W) has the two out of three property.

1. W has the two out of three property.

2. All the base changes of elements of W exist and belong to W.

3. All the cobase changes of elements of W exist and belong to W.

Proof. Let f : X → Y and g : Y → Z be two morphisms in Pro(K).
(M) Assume that f, g ∈ Lw

∼=(W). Then by definition, gf is isomorphic in Pro(K) to
the following diagram

X̃
f̃−→ Ỹ1

λ←− Ỹ2
g̃−→ Z̃ (163)

where f̃ and g̃ in Lw(W) are level presentations of f and g respectively, and λ is an iso-
morphism in Pro(K). Using Lemma 7.20, we we may replace λ with its level presentation
and still assume that

f̃ , g̃ ∈ Lw(W) (164)

holds. In particular, every pro-object in diagram (163) has the same index category.
Now let

W Ỹ2

X Ỹ1

pr1

pr2∼= λ∼=

f̃

(165)

be the level-wise pullback diagram provided by Lemma 7.22.(2). The morphism pr2 is an

isomorphism in Pro(K) because it is a base change of an isomorphism λ. Since f̃ belongs
to Lw(W),

pr1 ∈ Lw(W) (166)

holds by the assumption (2). Then, since W is closed under composition, g̃ · pr1 belongs
to Lw(W). Hence gf belongs to Lw

∼=(W).
(L) Assume that gf, g ∈ Lw

∼=(W). Then by definition, there is the following commu-
tative diagram in Pro(K)

X Y

X̃ Ỹ

Z̃1 Z̃2

f

∼= λ ∼= ρ

ρfλ−1

g̃f g̃

∼=
τ

(167)
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where g̃f and g̃ in Lw(W) are level presentations of gf and g respectively. By applying
Lemma 7.20 to the lower square in diagram (167), we may replace τ and ρ · f · λ−1 with
their level presentation and still assume that

g̃f , g̃ ∈ Lw(W) (168)

holds. In particular, the pro-objects in the lower square have the same index category.
Now consider the pullback of the lower right corner of diagram (167) which we also

calculate level-wise by Lemma 7.22.(2).

X̃ Ỹ

Z̃1 ×Z̃2
Ỹ

Z̃1 Z̃2

ρfλ−1

g̃f

h

g̃

∼=
pr1

pr2

∼=
τ

(169)

Since τ is an isomorphism in Pro(K), pr1 is also an isomorphism in Pro(K). Since g̃ is in
Lw(W),

pr2 ∈ Lw(W) (170)

holds by the assumption (2). Then by the two out of three property for W, h also belongs
to Lw(W). Hence f has a level presentation h in Lw(W) and belongs to Lw

∼=(W).
(R) The proof of (R) is dual to (L). So we omit it.

7.53. Proof of Theorem 1.1. Let X be a smooth quasi-projective variety. First,
Pro(X) is a preorder by Lemma 7.11.(4). The pro-category Pro(X) has small limits and
small colimits by Lemma 7.24 and Lemma 7.27.

The category M(X) is a weak fibration category by Proposition 6.16 with the weak
fibration structure (W(X),F(X)). Furthermore the weak fibration category

(M(X);W(X),F(X)) (171)

is pro-admissible by Lemma 7.51. Then, the remaining properties (3), (4), and (5) follow
from Theorem 7.46 and Lemma 7.48

8. Cofibrant Objects and Fibrant Objects

Here we make some remarks on fibrant objects and cofibrant objects in Pro(X). We will
see that the cofibrant objects should have many components (Definition 7.8). And the
fibrant objects are determined by klt pairs in birational geometry.
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8.1. Cofibrant Objects. Let f : (Y, Ic) → (X,O0
X) and g : (Y, Ic+ε) → (X,O0

X)
be objects of M(X) satisfying U(f) = U(g) where Ic = {Ic11 , . . . , Icmm } and Ic+ε =
{Ic1+ε1 , . . . , Icm+ε

k } for some positive rational ε. Then for a sufficiently small ε, the mor-
phism

h : g → f (172)

in M(X) satisfying U(h) = 1Y belongs to Ft(X), hence to FPro(X) ∩WPro(X). But the
following lifting problem can not be solved in M(X), hence in Pro(X).

g

f f

h

1

Therefore we observe the following property.

8.2. Proposition. Let X be a smooth quasi-projective variety. Then there is no object
in M(X) cofibrant in Pro(X).

On the other hand, let F : 2→M(X) be a functor such that

1. F (0) = g and F (1) = f and

2. F (0→ 1) = h

hold where 2 is the category with two objects 0 and 1 and one non-identity morphism
0→ 1. Then the following diagram in Pro(X) has a lifting h0

g

F f

h

h1

h0

where h0 ∈ Pro(X)(F, g) and h1 ∈ Pro(X)(F, g) are induced by 1g and 1f respectively.
So considering every possible f , it seems reasonable to expect that the cofibrant objects

in Pro(X) have many components (Definition 7.8).

8.3. Fibrant Objects. There is an interpretation of fibrant objects using a concept in
birational geometry. In birational geometry, certain singularities play an important role.
One of them is the klt singularities.

Recall that a pair (X,D) of a smooth quasi-projective variety and an effective Q-divisor
D on X is klt (kawamata log terminal) if there exists a log resolution µ : Y → X of
(X,D) such that

KY/X − bµ∗Dc ≥ 0. (173)

From the decomposition of KY/X−bµ∗Dc in (82), we know that the inequality (173) holds
iff N = 0. Thus (173) is equivalent to

I (X,D) = OX (174)

by (29). Let us generalize it to M(X).
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8.4. Definition. Let X be a smooth quasi-projective variety.

1. Let f : (Y, Ic)→ (X,O0
X) be an object of M(X). We say that f is klt if

I (f) = OX (175)

holds.

2. Let F : I→M(X) be an object of Pro(X). We say that F is klt if every component
Fi, i ∈ I, of F is klt.

First, we will show that fibrant objects in M(X) are made up of the klt pairs. Recall
that an object of M(X) is fibrant if the unique map to the terminal object belongs to
F(X).

8.5. Lemma. Let X be a smooth quasi-projective variety. Then for every object

f : (Y, {Ic11 , . . . , Icmm })→ (X,O0
X) (176)

of M(X), the following are equivalent.

1. f is fibrant in M(X).

2. f is klt.

3. For every i = 1, . . . ,m, the object

fi : (Y, Icii )→ (X,O0
X) (177)

of M(X) is klt where U(fi) = U(f).

Proof. (1)⇔(2) f is fibrant in M(X) iff I (f) = I (1(X,O0
X)). But I (1(X,O0

X)) = OX .
(2)⇔(3) Let µ : Z → Y be a log resolution of f . Let Di be a Cartier divisor in Z such

that Ii · OZ = OZ(−Di). We write ciDi =
∑l

k=1 a
k
iEk where Ek’s are prime divisors and

aki ∈ Q≥0. Then by definition (88),

Df,µ =
l∑

k=1

max{ak1, . . . , akm}Ek. (178)

Now I (f) = OX iff KZ/Y − bDf,µc is effective iff KZ/Y − bciDic is effective for all i.
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The following two lemmas are general results on small pro-admissible weak fibration
categories that are preorders. Recall that given a small pro-admissible weak fibration
category (K;W,F), we have the model structure

(WPro,CPro,FPro) (179)

on Pro(K) by Theorem 7.46.
The first lemma shows that, in contrast to cofibrant objects in Pro(X), an object f of

M(X) is fibrant in Pro(X) iff f is fibrant in M(X).

8.6. Lemma. Let (K;W,F) be a small pro-admissible weak fibration category. Then the
following properties hold.

1. F ⊆ FPro.

2. If K is a preorder then F = FPro ∩Mor(K) holds.

Proof. Assume that f is a fibration in K, i.e., f ∈ F. Clearly, F ⊆ (�F)�. Since
(�F)� = (WPro ∩ CPro)

� = FPro by Theorem 7.46.(2) and Lemma 7.33, f is a fibration in
Pro(K).

Let f be a morphism in K. Assume that f is a fibration in Pro(K). Then f ∈ Sp
∼=(F),

hence f ∈ Lw
∼=(F) by Lemma 7.49. Let f̃ in Lw(F) be a level presentation of f as in (147)

and I be the index category of X̃ and Ỹ .

X Y

X̃ Ỹ

f

∼= α ∼= β

f̃

(180)

We will show that f is isomorphic to one of the components of f̃ .
First, for every i ∈ I, we have the following commutative diagram in K

X Y

X̃i Ỹi

f

αi βi

f̃i

(181)

where αi and βi are morphisms representing α and β respectively. Since f̃ ∈ Lw(F),

f̃i ∈ F.
On the other hand, since I is cofiltering, there is i ∈ I such that the following diagram

in K commutes

X Y

X̃i Ỹi

f

f̃i

(α−1)i (β−1)i (182)
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where (α−1)i and (β−1)i are morphisms representing α−1 and β−1 respectively.

Then since K is a preorder, αi and βi are isomorphisms in K. Hence f̃i ∈ F implies
f ∈ F.

The second lemma shows that an object F : I→M(X) of Pro(X) is fibrant iff every
component Fi, i ∈ I, of F is fibrant.

8.7. Lemma. Let (K;W,F) be a small pro-admissible weak fibration category. We assume
that K is a preorder. Let F : I→ K be an object of Pro(K).

1. Assume that F has the following property: for every g, h ∈ F with dom(h) = cod(g),
hg ∈ F implies h ∈ F. Then, Fi is a fibrant object in Pro(K) for every i ∈ I if F is
a fibrant object in Pro(K).

2. If Fi is a fibrant object in Pro(K) for every i ∈ I then F is a fibrant object in
Pro(K).

Proof. (1) First we make observations on terminal objects of Pro(K). Let ∗ be a terminal
object of K. Then ∗ is also a terminal object in Pro(K). Furthermore if T is a terminal
object in Pro(K) then every component of T is isomorphic to ∗. This is because a
morphism in K that has a left or right inverse is already an isomorphism, which is a
consequence of K being preorder.

Since F is fibrant, the unique morphism F → ∗ belongs to Lw
∼=(F) by Lemma 7.49. So

there is a level presentation G→ T in Lw(F) of F → ∗ where G, T : J→ K. In particular,
every component of G is fibrant in K because every component of T is isomorphic to ∗.

Since there is a (iso)morphism f : G → F , for every i ∈ I, there exist j ∈ J and a
morphism fji : Gj → Fi representing f . Then since Gj is fibrant, Fi is also fibrant by our
assumption.

(2) Let f : A→ B be a trivial cofibration. Let g : A→ F be a morphism in Pro(K).
We want to find a lifting h of the following diagram

A F

B

g

f
h

(183)

Since Fi is fibrant in Pro(K) for every i ∈ I, there is a lifting hi of the following diagram

A F Fi

B

g

f
hi

(184)

where the second horizontal morphism is represented by the identity on Fi. Then {hi}i∈I
form a morphism h : B → F by Lemma 7.11.(3). Since Pro(K) is a preorder by
Lemma 7.11.(4), hf = g holds.
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8.8. Remark. If K is a preorder, limits of fibrant objects are again fibrant in Pro(K).
And if F : I → K is a pro-object then F is the limit of Fi’s considered as objects of
Pro(K). In this way one can also show that if Fi’s are fibrant then F is fibrant. However,
to show these we again need Lemma 7.11.(3) and (4).

8.9. Proof of Theorem 1.2. Note that F(X) satisfies the hypothesis in Lemma 8.7.(1).
So the theorem follows from Lemma 8.5, Lemma 8.6, and Lemma 8.7.

9. A Reformulation of the Conjecture of Fujita

In this final section, we will introduce a variant of the model category constructed in
Section 7, and use it to give a model theoretic reformulation of the conjecture of Fujita.

Throughout this section, we fix a smooth projective variety X and an ample divisor
L on X.

9.1. Model Category Pro(U,L)q. In this subsection, we fix an open subvariety U of
X and a positive rational number q ∈ Q>0. Here we will construct a model category
Pro(U,L)q. The proof is similar to that of the model category Pro(X). So we will omit
it.

9.2. Definition. We denote by
M(U,L)q (185)

the full subcategory of M(U) consisting of objects

α : (Y, {OY (−f ∗(D1|U))c1 , . . . ,OY (−f ∗(Dm|U))cm})→ (U,O0
U) (186)

where f is the underlying morphism of α and Di is an effective divisor on X such that

Di ∈ |diL| (187)

for some di ∈ Z≥0 satisfying
cidi < q (188)

for i = 1, . . . ,m.

9.3. Definition. We denote Mor(M(U,L)q) ∩ W(U) and Mor(M(U,L)q) ∩ F(U) by
W(U,L)q and F(U,L)q respectively.

W(U,L)q = Mor(M(U,L)q) ∩W(U) (189)

F(U,L)q = Mor(M(U,L)q) ∩ F(U) (190)

Then one can show that

(M(U,L)q;W(U,L)q,F(U,L)q) (191)
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is a pro-admissible weak fibration category. Let us denote the pro-category of M(U,L)q
by

Pro(U,L)q (192)

and denote the three sets of morphisms in Pro(U,L)q produced by Definition 7.44 by

(WPro(U,L)q,CPro(U,L)q,FPro(U,L)q). (193)

Now, as before, we have the following result by Theorem 7.46.

9.4. Theorem. Let X be a smooth projective variety. Let L be an ample divisor on X.
Let U be an open subvariety of X. Let q be a positive rational number. Then

1. Pro(U,L)q is a preorder.

2. Pro(U,L)q has small limits and small colimits.

3. (WPro(U,L)q,CPro(U,L)q,FPro(U,L)q) is a functorial model structure on Pro(U,L)q.

4. WPro(U,L)q ∩ CPro(U,L)q = �F(U,L)q.

5. WPro(U,L)q ∩ FPro(U,L)q = Sp
∼=(W(U,L)q ∩ F(U,L)q).

We also have the following Theorem 9.5 analogous to Theorem 1.2. The proof of The-
orem 1.2 is based on Lemma 8.5 and the two general lemmas, Lemma 8.6 and Lemma 8.7.
So the same proof works for the following theorem and we will omit it.

Note that Pro(U,L)q is a subcategory of Pro(U) because M(U,L)q is a subcategory of
M(U). So it makes sense to say that an object of Pro(U,L)q is klt.

9.5. Theorem. Let X be a smooth projective variety. Let L be an ample divisor on X.
Let U be an open subvariety of X. Let q be a positive rational number. Then for every
object F of Pro(U,L)q, the following are equivalent.

1. F is a fibrant object of Pro(U,L)q.

2. F is klt.

Finally, the following lemma connects the klt objects in M(U,L)q and the multiplier
ideal sheaves of Q-divisors in (1).

9.6. Lemma. For every object

α : (Y, {OY (−f ∗(D1|U))c1 , . . . ,OY (−f ∗(Dm|U))cm})→ (U,O0
U) (194)

of M(U,L)q, the following are equivalent.

1. α is klt.
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2. For every i = 1, . . . ,m, the object

αi : (Y,OY (−f ∗(Di|U))ci)→ (U,O0
U) (195)

of M(U,L)q is klt.

3. For every = 1, . . . ,m, the multiplier ideal sheaf

I (X,OX(−Di)
ci) (196)

of the weighted ideal sheaf OX(−Di)
ci defined in (81) satisfies

I (X,OX(−Di)
ci)|U = OU . (197)

4. For every = 1, . . . ,m, the multiplier ideal sheaf

I (X, ciDi) (198)

of the Q-divisor ciDi defined in (1) satisfies

I (X, ciDi)|U = OU . (199)

Proof. (1) and (2) are equivalent by Lemma 8.5.
(2) and (3) are equivalent by Lemma 5.17.
(3) and (4) are equivalent by definition.

9.7. A Reformulation. First, we explain the well-known connection ([Ein, 1997],
[Lazarsfeld, 2004]) between the conjecture of Fujita and multiplier ideal sheaves.

As we mentioned in the introduction multiplier ideal sheaves have a strong vanishing
property. Let m be a positive integer. Let D be an effective Q-divisor on X. If D is

Q-linearly equivalent to cL (D
Q∼ cL) for some rational c < m, i.e., there is an integer k

such that kD and kcL are divisors (with integral coefficients) and kD is linearly equivalent
to kcL, then

H i(X,I (X,D)⊗ OX(KX +mL)) = 0, for i > 0. (200)

So in terms of multiplier ideal sheaves, the conjecture is reduced to proving the following
statement. If m ≥ dimX+1 then for every point p of X there exists an effective Q-divisor
D on X such that

1. D is Q-linearly equivalent to cL for some c < m,

2. I (X,D) ⊆ mp where mp is the maximal ideal sheaf of X at p, and

3. I (X,D)|U = OU where U is a punctured neighborhood of X at p.
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If such a D exists, we have the following exact sequence by (200)

H0(X,OX(KX +mL))→ H0(Z,OZ(KX +mL))→ 0 (201)

where Z is the subscheme of X defined by I (X,D). Since {p} ⊆ Z is a connected
component of Z by (2) and (3), we can find a section in H0(Z,OZ(KX + mL)) non-
vanishing at p. Then the exactness of the sequence (201) guarantees that KX + mL has
a section non-vanishing at p.

Using a general property of ample divisors, it is easy to show that such a D indeed
exists for a sufficiently large but inexplicit m. In fact, there is an explicit bound for all
dimensions. In [Angehrn and Siu, 1995], the authors prove that if m ≥ (dimX+1)(dimX)

2
+ 1

then such a D exists. This bound was improved by Helmke in [Helmke, 1997]. However
to create a Q-divisor D satisfying (2) and (3), we in general need to create intermediate
effective Q-divisors

D1, . . . , Dk = D (202)

on X such that the sequence of the dimensions at p of the schemes Zi

Zi = ZI (X,Di) (203)

associated with the multiplier ideal sheaves I (X,Di) converges to zero. If it is inevitable
to work with several Q-divisors, it may be worthwhile to work simultaneously with the
set of all the Q-divisors more consciously.

Consider the set S of all effective Q-divisors D on X, Q-linearly equivalent to qL for
some q ∈ Q≥0.

S =
∐
q∈Q≥0

{D | D is an effective Q-divisor on X satisfying D
Q∼ qL} (204)

Given a positive rational q ∈ Q>0, we let

Sq = {D ∈ S | D Q∼ cL for some 0 ≤ c < q}. (205)

Then the existence of a Q-divisor satisfying the above three conditions is equivalent to
the following statement.

{D ∈ Sm | (2) and (3) hold for D} 6= ∅ (206)

Given an inclusion i : V → W of two open subvarieties of X we have the induced functor

i∗ : Pro(W,L)m → Pro(V, L)m (207)

by restriction. Then the condition (206) is equivalent to the existence of an open subva-
riety W of X containing p and a non-fibrant object of Pro(W,L)m that is mapped to a
fibrant object of Pro(W−{p}, L)m by Theorem 9.5 and Lemma 9.6. So we can reformulate
the conditions (1), (2), and (3) as follows.

If m ≥ dimX + 1 then for every point p of X there exist a open subvariety W of
X containing p and a fibrant object of Pro(W − {p}, L)m having a non-fibrant lifting in
Pro(W,L)m.
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de Jean Dieudonné) : II. Étude globale élémentaire de quelques classes de morphismes,
Publications Mathématiques de l’IHÉS 8 (1961), 5–222.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
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