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SIMPLICIAL NERVE OF AN A∞-CATEGORY

GIOVANNI FAONTE

Abstract. We introduce a functor called the simplicial nerve of an A∞-category
defined on the category of A∞-categories with values in simplicial sets. We show that
the nerve of an A∞-category is an (∞, 1)-category in the sense of J. Lurie [Lur1]. This
construction generalizes the nerve construction for differential graded categories given
in [Lur2]. We prove that if a differential graded category is pretriangulated in the sense
of A.I. Bondal and M. Kapranov [Bo-Ka] then its nerve is a stable (∞, 1)-category in
the sense of J. Lurie [Lur2].

1. Introduction

A∞-algebras were introduced by J.D. Stasheff [Sta] in order to encode the notion of a
binary operation associative up to a coherent system of homotopies. An A∞-algebra is a
Z-graded vector space A over some base field K together with degree 2− k morphisms

mk : A⊗n // A, k ≥ 1

satisfying the equation∑
n=r+t+s

(−1)sr+tmr+t+1(Id⊗
r ⊗ms ⊗ Id⊗

t

) = 0 (1)

for n ≥ 1. This equation for n = 1 tells that m1 is a differential on A and for n = 2
provides the compatibility of the binary operation m2 with the differential m1 in terms of
the Leibniz rule. For n = 3 the equation is

m2(m2 ⊗ Id)−m2(Id⊗m2) = m1(m3) +
∑

2=r+t

m3(Id⊗
r ⊗m1 ⊗ Id⊗

t

)

which expresses the fact that m2 is an associative operation up to the data provided by
m3. Values of n > 3 in equation (1) encode all the coherences needed to be satisfied by
such associativity constraints. Similarly an A∞-morphism is a morphism of differential
graded spaces

f1 : A //B
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which preserves the binary operations only up to the data provided by

f2 : A⊗ A //B

whose coherences are controlled by degree 1−k morphisms fk : A⊗k //B for k > 3. The
notion of a dg-algebra (morphisms of dg-algebras) is recovered by consideringA∞-algebras
with vanishing mk for k > 2 ( A∞-morphisms with vanishing fk for k > 1). K. Fukaya
and M. Kontsevich-Y. Soibelman later considered A∞-categories and A∞-functors as a
natural generalization of these notions which have been essential tools in the formulation
of homological mirror symmetry [Kon-Soi],[Fuk]. Namely the Fukaya category F(X) is
an A∞-category associated to a symplectic manifold X and it corresponds to the A-side
of such symmetry. Similarly to the case of algebras, differential graded categories (dg-
functors) can be identified with A∞-categories (A∞-functors) for which the composition
of morphisms is strictly associative (strictly preserving the composition of morphisms).

In the first part of this paper we define a functor (Definition 2.8) called the simplicial
nerve of an A∞-category

NA∞ : A∞Cat // SSet

defined on the category A∞Cat of A∞-categories with A∞-functors and values in sim-
plicial sets. We prove (Proposition 2.15) that the simplicial nerve of an A∞-category is
an (∞, 1)-category in the sense of J. Lurie [Lur1]. For an A∞-category A its nerve is
the simplicial set of A∞-functors from a certain cosimplicial A∞-category A[∆−], gener-
ated by the standard simplices, into A. The restriction of this functor to dg-categories
provides a functorial description of the differential graded nerve Ndg introduced in [Lur2]
by J. Lurie and earlier defined in [Hin-Sch] by V.A. Hinich and V.V. Schechtman. The
existence of a model category structure without limits on A∞Cat was shown in [Le-Ha]
and the study of its relationships with the nerve construction presented in this paper will
be subject of future work.

In the second part we establish a connection between pretriangulated differential
graded categories in the sense of A.I. Bondal and M. Kapranov [Bo-Ka] and stable
(∞, 1)-categories in the sense of J. Lurie [Lur2]. Pretriangulated dg-categories provide
a natural setting to address the lack of functoriality of the cone construction for trian-
gulated categories following from the axioms of J.-L. Verdier [Ver]. To a dg-category
with a zero object D it is possible to associate the dg-category of twisted complexes of D,
denoted by PreTr(D), whose construction has to be understood as a triangulated hull of
D. PreTr(D) has a shift functor and a functorial notion of cones inducing a triangulated
structure on its homotopy category H0(PreTr(D)). In particular when D is pretriangu-
lated the dg-embedding D //PreTr(D) is a quasi-equivalence of dg-categories and hence
D inherits shift and cones from PreTr(D) making H0(D) into a triangulated category
[Bo-Ka]. On the (∞, 1)-categorical side J. Lurie in [Lur2] introduced the notion of stable
(∞, 1)-category as an axiomatization of the properties of stable homotopy theory. The
relevant feature for our purposes is that in a stable (∞, 1)-category the notion of an exact
triangle is replaced by the one of homotopy fiber of a morphism. Moreover stable (∞, 1)-
categories have canonically defined loop and suspension functors playing the role of the
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shift functor and its inverse for triangulated categories. This data induces a structure of
triangulated category on the homotopy category of a stable (∞, 1)-category [Lur2]. We
give an explicit proof (Theorem 3.18) that if D is a pretriangulated dg-category the nerve
Ndg(D) is a stable (∞, 1)-category and H0(D) is identified, as a triangulated category,
with the homotopy category of Ndg(D). The proof is based on a direct computation per-

formed on an (∞, 1)-category equivalent to Ndg(D), that we call the big dg-nerve N big
dg (D),

defined as the nerve of a certain simplicial category D∆ whose simplicial set of morphisms
is obtained by applying the Dold-Kan correspondence [McL] to a truncation of the cochain
complex of morphisms in D.

1.1. Conventions and notations. From now on we fix a field K of characteristic 0.
The category V ectZ(K) is the category whose objects are Z-graded vector spaces over K

V =
⊕
n∈Z

V n

and morphisms are degree preserving K-linear maps. The tensor product of graded vector
spaces is defined as

(V ⊗W )n =
⊕
p+q=n

V p ⊗W q

and the graded space of morphisms as

Homn
V ectZ(K)(V,W ) =

∏
p∈Z

HomV ect(K)(V
p,W p+n)

We say that a morphism is of degree n if it belongs to such graded component. The tensor
product of two morphisms is defined according to the convention

(f ⊗ g)(x⊗ y) = (−1)deg(x)deg(g)f(x)⊗ g(y) (2)

A cochain complex is an object V ∈ Ob(V ectZ(K)) together with a morphism d ∈
Hom1

V ectZ(K)(V, V ) such that d2 = 0. We call d the differential of the cochain complex. A

morphism of cochain complexes f : V //W is a morphism f ∈ Hom0
V ectZ(K)(V,W ) such

that d ◦ f = f ◦ d. The category Ch•(K) is the category whose objects are cochain com-
plexes and morphisms are morphisms of cochain complex. The cohomology of a cochain
complex (V, d) is the Z-graded vector space defined as

H•(V ) =
Ker(d)

Im(d)

A morphism of cochain complexes f : V // W is called a quasi-isomorphism if the
morphism induced in cohomology H•(f) : H•(V ) // H•(W ) is an isomorphism. The
tensor product of Z-graded vector spaces extends to a functor on Ch•(K) defining a
symmetric monoidal structure (Ch•(K),

⊗
,K) where, for cochain complexes V and W ,

we have
dV⊗W = dV ⊗ IdW + IdV ⊗ dW
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Similarly the category Ch•(K) of chain complexes has objects Z-graded vector spaces
together with a morphism d ∈ Hom−1

V ectZ(K)(V, V ) such that d2 = 0 and analogue notions

of homology and quasi-isomorphism. We denote by op : Ch•(K) // Ch•(K) the functor
associating to a cochain complex the chain complex V op

p = V −p with the same differential
and by τ≥0 : Ch•(K) // Ch≥0

• (K) the truncation functor

τ≥0(V )p =


0 if p < 0

Ker(d|V0
) if p = 0

Vp if p > 0.

For a category C the category of simplicial objects in C, denoted by S(C), is the cate-
gory of functors Fun(∆op, C) where ∆ is the standard simplex category. Similarly, the
category of cosimplicial objects in C is the category of functors Fun(∆, C). We refer to
[Lur1, Chap. 1-2-3] for the theory of (∞, 1)-categories and related constructions. The
smallness assumptions necessary for the consistency of the results presented in this work
are implicitly assumed.

2. The simplicial nerve of an A∞-category

2.1. A∞-categories and A∞-functors. We recall now the notion of A∞-category
and of A∞-functor. We refer to [Le-Ha] for an extensive survey of the subject. For the
purposes of this work we will refer to an A∞-category meaning a strictly unital A∞-
category and to an A∞-functor meaning a strictly unital A∞-functor.

2.2. Definition. [A∞-category] Let K be a field, an A∞-category A is the data of:

• A set of objects Ob(A)

• For every pair of objects x, y ∈ Ob(A) a graded space of morphisms Hom•A(x, y)

• For k ≥ 1 and a sequence of objects x0, x1, . . . , xk, a morphism of degree 2− k

mk : Hom•A(xk−1, xk)⊗ · · · ⊗Hom•A(x0, x1) //Hom•A(x0, xk)

such that, for every n ≥ 1∑
n=r+t+s

(−1)sr+tmr+t+1(Id⊗
r ⊗ms ⊗ Id⊗

t

) = 0 (3)

• For every object x ∈ Ob(A) a degree 0 element 1x ∈ Hom•A(x, x), called the identity
at x, such that

m1(1x) = 0

m2(1x ⊗ a) = a = m2(a⊗ 1x)

mn(a1 ⊗ · · · ⊗ aj−1 ⊗ 1x ⊗ aj+1 ⊗ . . . an) = 0

for n > 2, 1 ≤ j ≤ n.
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2.3. Definition. [A∞-functor] Let A and B be two A∞-categories, an A∞-functor

f : A // B

is the data of:

• A map of sets f0 : Ob(A) //Ob(B)

• For k ≥ 1 and a sequence of objects x0, x1, . . . , xk, a morphism of degree 1− k

fk : Hom•A(xk−1, xk)⊗ · · · ⊗Hom•A(x0, x1) //Hom•B(f0(x0), f0(xk))

such that, for n ≥ 1∑
n=r+t+s

(−1)sr+tfr+t+1(Id⊗
r ⊗ms ⊗ Id⊗

t

) =
∑

1≤r≤n
i1+···+ir=n

(−1)εrm′r(fi1 ⊗ · · · ⊗ fir) (4)

where

εr = εr(i1, . . . , ir) =
∑

2≤k≤r

(
(1− ik)

∑
1≤l≤k−1

il

)
(5)

and satisfying the strict unitality conditions:

f1(1x) = 1f0(x)

fn(a1 ⊗ · · · ⊗ aj−1 ⊗ 1x ⊗ aj+1 ⊗ . . . an) = 0

for n > 1, 1 ≤ j ≤ n.

2.4. Remark. A∞-categories and A∞-functors can be defined in a more canonical way
using the Bar construction [Le-Ha]. The sign convention adopted in Definition 2.2 and
2.3 follows from the convention (2) defining the tensor product of graded morphisms after
considering such construction.

If f : A // B and g : B // C are A∞-functors, their composition g ◦ f : A // C has
graded components given by

(g ◦ f)k =
k∑
r=1

∑
i1+···+ir=k

(−1)εr(i1,...,ir)gr(fi1 ⊗ · · · ⊗ fir) (6)

This composition is strictly associative with unit given by IdA and defines a category
A∞Cat of A∞-categories over K.

A differential graded category (dg-category) over a field K is a category enriched over
the symmetric monoidal category (Ch•(K),

⊗
,K) of cochain complexes and a dg-functor

is a functor of enriched categories (see [Ke] for the notion of enriched category). In
particular dg-categories are identified with A∞-categories having mk = 0, for k > 2, and
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dg-functors with A∞-functors having fk = 0, for k > 1. This means that there exists a
faithful functor

i : dgCat //A∞Cat (7)

where dgCat is the category of differential graded categories over K.
For a dg-category D its underlying K-linear category Dun has the same objects of D

and morphisms

HomDun(x, y) = Ker(d0 : Hom0
D(x, y) //Hom1

D(x, y))

We refer to a morphism in a dg-category, without specifying the degree, meaning a mor-
phism in Dun and we say that a dg-category D is a dg-enhancement of a K-linear category
V if there exists an isomorphism V ' Dun. The homotopy category H0(D) of D is the
K-linear category with the same objects of D and vector space of morphisms given by:

HomH0(D)(x, y) = H0(Hom•D(x, y))

A dg-functor f : D // E is a quasi-equivalence of dg-categories if the induced functor on
the homotopy categories H0(f) : H0(D) //H0(E) is an equivalence and the induced mor-
phisms of cochain complexes f : Hom•D(x, y) //Hom•E(f(x), f(y)) are quasi-isomorphisms
of complexes, for every x, y ∈ Ob(D).

2.5. Construction of the nerve.

2.6. Definition. The A∞-category (in fact dg-category) A∞[∆n] generated by the stan-
dard n-simplex is the A∞-category whose objects are the integers {0, 1, . . . , n}, morphisms
spaces given, for 0 ≤ i, j ≤ n, by

Hom•A∞[∆n](i, j) =

{
K · (i, j) i ≤ j
∅ i > j

with deg((i, j ))=0 and A∞-structure determined by the maps
m1 = 0
m2((j, k), (i, j)) = (i, k), for i ≤ j ≤ k
mn = 0, for n > 2

with identities 1i = (i, i) ∈ Hom•A∞[∆n](i, i), for i = 0, . . . , n.

2.7. Proposition. The construction [n] //A∞[∆n] defines a cosimplicial A∞-category

A∞[∆−] : ∆ //A∞Cat
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Proof. Consider the standard cofaces and codegeneracies morphisms in ∆

δnj : [n− 1] // [n], 0 ≤ j ≤ n

σnj : [n] // [n− 1], 0 ≤ j ≤ n− 1

with

δnj (k) =

{
k, 0 ≤ k ≤ j − 1
k + 1, j ≤ k ≤ n− 1

σnj (k) =

{
k, 0 ≤ k ≤ j
k − 1, j + 1 ≤ k ≤ n

The induced cofaces A∞-functors

(δnj )? : A∞[∆n−1] //A∞[∆n]

are defined by 
(δnj )?,0(k) = δnj (k)
(δnj )?,1(i, k) = (δnj (i), δnj (k))
(δnj )?,p = 0, p > 2

Similarly the codegeneracies A∞-functors

(σnj )? : A∞[∆n] //A∞[∆n−1]

are 
(σnj )?,0(k) = σnj (k)
(σnj )?,1(i, k) = (σnj (i), σnj (k))
(σnj )?,p = 0, p > 2

The fact that this assignment determines a cosimplicial A∞-category follows from the
standard cosimplicial structure of ∆−.

2.8. Definition. [Simplicial Nerve of an A∞-category] For an A∞-category A its sim-
plicial nerve NA∞(A) is the simplicial set whose n-simplices are given by

NA∞(A)n = HomA∞Cat(A∞[∆n],A)

and simplicial structure induced by applying the functor HomA∞Cat(−,A) to the cosim-
plicial A∞-category A∞[∆−].

2.9. Proposition. An n-simplex of the simplicial nerve of an A∞-category A is deter-
mined by n+ 1 objects

xi ∈ Ob(A), i = 0, . . . , n

and by a collection of elements

fi0...ik ∈ Hom1−k
A (xi0 , xik)
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for 1 ≤ k ≤ n and 0 ≤ i0 < i1 < · · · < ik ≤ n, satisfying the conditions

fi0,i0 = Idxi0

fi0,...,ip,ip,...,il = 0, for 2 ≤ l ≤ n

m1(fi0...ik) =
∑

0<j<n

(−1)j−1fi0...îj ...ik +
∑

0<j<n

(−1)1+k(j−1)m2(fij ...ik , fi0...ij)+

+
∑

1≤r≤n
0<j1<···<jr−1<n

(−1)1+εrmr(fijr−1
...ik , . . . , fi0...ij1 )

where εr as in equation (5).

Proof. An n-simplex f ∈ NA∞(A)n is by definition an A∞-functor

f : A∞[∆n] //A

This determines n+ 1 objects of

xi = f0(i) ∈ Ob(A)

and for 1 ≤ k ≤ n a morphism of degree 1− k

fk : Hom•A∞[∆n](xik−1
, xik)⊗ · · · ⊗Hom•A∞[∆n](xi0 , xi1) //Hom•A(f0(xi0), f0(xik))

which corresponds to the choice, for every string 0 ≤ i0 < i1 < · · · < ik ≤ n, of an element

fi0...ik = fk((ik−1, ik)⊗ · · · ⊗ (i0, i1)) ∈ Hom1−k
A (xi0 , xik)

The conditions satisfied by fi0...ik follow from Definition 2.3.

2.10. Corollary. For a dg-category D its differential graded nerve [Lur2, §1.3] equals
the simplicial nerve of i(D)

N sm
dg (D) = NA∞(i(D))

where i is defined in Remark 7.

Proof. The proof follows from Proposition 2.9.
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2.11. Proposition. The simplicial structure of NA∞(A) can be described as follows: for
f ∈ NA∞(A)n the components of j-th face map dnj (f) are given by

dnj (f)i0...ik =

{
fi0...ip−1(ip+1)...(ik+1), j ≤ ip, 0 ≤ p ≤ k
fi0...ik , j > ik

for 1 ≤ k ≤ n − 1 and a string 0 ≤ i0 < i1 < · · · < ik ≤ n − 1. The components of the
j-th degeneracy map snj (f) are

snj (f)i0i1 =


f(i0−1)(i1−1), j ≤ i0 − 1
fi0(i1−1), i0 < j < i1 − 1
Idxi0 , i0 = j, i1 = j + 1
fi0i1 , j ≥ i1

(8)

for 0 ≤ i0 < i1 ≤ n+ 1 and

snj (f)i0...ik =


f(i0−1)...(ik−1), j ≤ i0 − 1
fi0...ip(ip+1−1)...(ik−1), ip < j < ip+1 − 1, 0 < p < k
0, ip = j, ip+1 = j + 1
fi0...ik , j ≥ ik

(9)

for 2 ≤ k ≤ n+ 1, 0 ≤ i0 < i1 < · · · < ik ≤ n+ 1.

Proof. The j-th face map

dnj : NA∞(A)n //NA∞(A)n−1

evaluated on an n-simplex f ∈ NA∞(A) is by definition the A∞-functor

dnj (f) = f ◦ (δnj )?

The composition law for A∞-functors (see Equation (6)) gives

(f ◦ (δnj )?)k = fk((δ
n
j )?,1 ⊗ · · · ⊗ (δnj )?,1)

and hence, for 1 ≤ k ≤ n− 1 and a string 0 ≤ i0 < i1 < · · · < ik ≤ n− 1

dnj (f)i0...ik =

{
fi0...ip−1(ip+1)...(ik+1), j ≤ ip, 0 ≤ p ≤ k
fi0...ik , j > ik

A similar computation shows that the j-th degeneracy map is determined by the formulas
(8) and (9).
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2.12. Proposition. The simplicial nerve construction defines a functor

NA∞ : A∞Cat // SSet

Proof. AnyA∞-functor g : A //B induces a map of simplicial sets (g)? : NA∞(A) //NA∞(B)
by the assignment

(g)?(f) = f ◦ g

where f ∈ HomA∞CatK(A∞[∆n],A) is an n-simplex in NA∞(A). More explicitly, if 1 ≤
k ≤ n and 0 ≤ i0 < i1 < · · · < ik ≤ n, we have from Equation (6)

((g)?(f))i0...ik =
k∑
r=1

∑
j1+···+jr=k

(−1)εr(j1,...,jr)gr(fijr+···+j2
...ik , . . . , fi0...ijr )

The functoriality of NA∞ hence follows from its definition.

2.13. Definition. [Lur1] An (∞, 1)-category (or weak Kan complex) is a simplicial set
X such that, for any 0 < p < n and any map of simplicial sets f : Λn

p
//X, there exists

an extension to the full n-simplex g : ∆n //X

Λn
p X

∆n

i

f

g

where Λn
p is the p-th inner horn.

2.14. Remark. A simplicial category is a category enriched over the symmetric monoidal
category (SSet,×, pt) of simplicial sets where the monoidal structure is the point-wise
cartesian product of simplices. Simplicial categories can be related to simplicial sets
through a pair of adjoint functors

NSCat : SCat� SSet :C[−] (10)

where SCat is the category of simplicial categories with the obvious notion of morphisms
and the functor NSCat is called the nerve of a simplicial category. This adjunction lifts
to a Quillen adjunction of model categories between the Kan model structure on SCat
and the Joyal model structure on SSet whose fibrant objects are (∞, 1)-categories. We
refer to [Lur1, §2.2] for a more detailed discussion about this construction and for the
definition of the homotopy category of an (∞, 1)-category.

2.15. Proposition. For an A∞-category A its simplicial nerve NA∞(A) is an (∞, 1)-
category.
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Proof. Consider a morphism of simplicial sets f : Λn
p

// NA∞(A), where n > 0 and
0 < p < n are fixed. Such morphism can be identified with an n-simplex of NA∞(A)
whose components f0...n and f0...p̂...n are not given. The morphism g : ∆n // NA∞(A)
defined by

g0...n = 0

g0...p̂...n =
∑

0<j<n,j 6=p

(−1)j−1+pf0...ĵ...n +
∑

0<j<n

(−1)1+n(j−1)+pfj...n ◦ f0...j+

+
∑

1≤r≤n
0<j1<···<jr−1<n

(−1)1+εr(j1,...,jr−1)+pmr(fijr−1
...ik , . . . , fi0...ij1 )

g|Λn
p

= f

provides an extension of f .

3. Comparison between pretriangulated dg-categories and stable (∞, 1)-
categories

3.1. Pretriangulated dg-categories.

3.2. Definition. A zero object of a dg-category D is an object 0 ∈ Ob(D) such that for
every X ∈ Ob(D)

Hom•D(X, 0) = 0• = Hom•D(0, X)

where 0• is the cochain complex having 0 in each degree and zero differential.

3.3. Definition. [dg-category of twisted complexes, [Bo-Ka]] Let D be a dg-category with
a zero object 0. A twisted complex of D is the data consisting of a pair K = (Ki, qij)i,j∈Z
where:

• Ki ∈ Ob(D) are equal to 0 for all but a finite number of indices i ∈ Z

• qij ∈ Homi−j+1
D (Ki, Kj) are morphisms satisfying the Maurer-Cartan equation

d(qij) +
∑
k∈Z

qkjqik = 0

for every i, j ∈ Z.

The dg-category PreTr(D) of twisted complexes of D is the differential category whose
objects are twisted complexes of D and cochain complex of morphisms

Homk
PreTr(D)(K,K

′) =
⊕

l+j−i=k

Homl
D(Ki, K

′
j)

with differential d evaluated on f ∈ Homl
D(Ki, K

′
j) given by the expression

d(f) = d(f) +
∑
m

(q′jmf + (−1)l(i−m+1)fqmi)
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3.4. Remark. For a dg-category D the category of dg-functors dgFun(D, Ch•(K)) has a
dg-enhancement (as described in [Bo-Ka]) in such a way that the diagram of dg-functors

D dgFun(D, Ch•(V ectk))

PreTr(D)

ε α

h

is commutative. Here h is the dg-Yoneda functor defined on objects by

h(X)(Y ) = Hom•D(X, Y )

ε is the dg-functor sending an object X ∈ Ob(D) to the twisted complex concentrated in
degree 0 and α is the dg-functor that associates to a twisted complex K = (Ki, qij)i,j∈Z
the dg-functor

α(K)(Y ) =
⊕
i∈Z

Hom•D(Y,Ki)[−i]

with twisted differential d+q. Moreover both dg-categories PreTr(D) and dgFun(D, Ch•(K))
have shift functors and functorial cones which are preserved under the dg-functor α. For
a twisted complex K its shift by 1 is given explicitly by the formula

K[1]i = Ki+1

q[1]ij = qi+1,j+1

and for a morphism of twisted complexes f : K //K ′ its cone is the twisted complex

Cone(f) = (Ki+1

⊕
K ′i, q

′′
ij)

where q′′ij is the matrix

q′′ij =

∣∣∣∣qi+1,j+1 fi+1,j

0 q′ij

∣∣∣∣
This definition of shift functor and cone construction determines a triangulated structure
on the homotopy category H0(PreTr(D)) [Bo-Ka] where exact triangles are given by
sequences in H0(PreTr(D)) of the form

K K ′ Cone(f) K[1]
f

3.5. Definition. [Pretriangulated dg-category, [Bo-Ka]] A dg-category D is called pretri-
angulated if for every twisted complex K ∈ PreTr(D), the dg-functor α(K) is isomorphic
to h(X) for some object X ∈ D.
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3.6. Remark. If D is a pretriangulated dg-category the dg-functor ε : D // PreTr(D)
is a quasi-equivalence of dg-categories [Bo-Ka]. In this situation it is possible to transfer
the shift functor and the cone construction of PreTr(D) to D. Namely the shift by +1
of X ∈ Ob(D) is defined as

X[1] = T (ε(X)[1]) (11)

where T is the inverse equivalence of ε and T (ε(X)[1]) is an object of D representing the
dg-functor α(T (ε(X)[1])). Similarly the cone of a morphism f : X // Y is

Cone(f) = T (Cone(ε(f)))

Moreover there exist canonical quasi-isomorphisms of complexes

Hom•D(X[1], Y ) ' Hom•D(X, Y [−1]) ' Hom•D(X, Y )[−1]

and for a morphism f : X // Y one has

Homk
D(Cone(f), Z) = Homk

D(Y, Z)⊕Homk−1
D (X,Z) (12)

with differential

dk =

∣∣∣∣∣ dk(Y,Z) 0

(−1)k(− ◦ f) dk−1
(X,Z)

∣∣∣∣∣
where dk(X,Y ) = dHomk

D(X,Y ), and

Homk
D(Z,Cone(f)) = Homk

D(Z, Y )⊕Homk+1
D (Z,X) (13)

with differential

dk =

∣∣∣∣∣dk(Z,Y ) (− ◦ f)

0 dk+1
(Z,X)

∣∣∣∣∣
3.7. Proposition. [Bo-Ka] The homotopy category H0(D) of a pretriangulated dg-category
D is triangulated in the sense of [Ver] with shift functor

[1] : H0(D) //H0(D)

defined on objects by Equation (11) and class of exact triangles of the form

K K ′ Cone(f) K[1]
f

where f is a morphism of twisted complexes. Moreover the functor

H0(T ) : H0(PreTr(D)) //H0(D)

is an equivalence of triangulated categories.
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3.8. Stable (∞, 1)-categories.

3.9. Definition. An (∞, 1)-category X is pointed if there exists an object 0 ∈ X0 called
the zero object such that for every A ∈ X0

MapX(A, 0) ' ∗ 'MapX(0, A)

where MapX(−,−) is the Kan complex of morphisms in X (see [Lur1, §2.2]).

3.10. Definition. A triangle in a pointed (∞, 1)-category X is a diagram ∆1×∆1 //X
of the form

C

B

0

A
g

f

We say that a triangle is a fiber sequence (the fiber of g) if it is homotopy cartesian and
is a cofiber sequence (the cofiber of f) if it is homotopy cocartesian.

3.11. Definition. [Stable (∞, 1)-category, [Lur2]] An (∞, 1)-category is stable if

• It is pointed

• Every morphism admits fiber and cofiber

• A triangle is a fiber sequence if and only if it is a cofiber sequence

3.12. Remark. A stable (∞, 1)-category X has canonical constructions of the suspension
and loop functors

Σ,Ω : X //X

which are equivalences of (∞, 1)-categories [Lur2, Chap. 1]. Explicitly these functors are
given on objects by

Σ(A) = 0qhA 0

Ω(A) = 0×hA 0

Moreover its homotopy category h(X) is an additive category and it comes equipped with
a notion of distinguished triangles which are diagrams of the form

A B C A[1] = ΣA
f g h

induced by a diagram ∆1 ×∆2 //X

D

0

C

B

0′

A

h̃

g̃

f̃

where
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• 0 and 0’ are both zero objects

• Both squares are pushout diagrams in X

• The morphisms f̃ an g̃ represent f and g respectively

• The map h is the composition with the homotopy class of h̃ with an equivalence
D ' A[1].

3.13. Proposition. [Lur2] The homotopy category h(X) of a stable (∞, 1)-category X
is a triangulated category in the sense of [Ver] with shift functor induced by the suspension
functor

Σ : h(X) // h(X)

and class of distinguished triangles as described in Remark 3.12.

3.14. The Dold-Kan correspondence and computation of homotopy limits.
Recall that the category S(V ectK) of simplicial vector spaces over K has a model structure
called the Quillen model structure [Qui]. Weak-equivalences and fibrations of simplicial
vector spaces are morphisms inducing weak-homotopy equivalences and Kan fibrations
on the underlying simplicial sets. The category Ch≥0

• (K) of non-negatively graded chain
complexes has a model structure called the projective model structure [Qui]. Weak-
equivalences are quasi-isomorphisms of chain complexes and fibrations are chain maps
which are epimorphisms in each positive degree. Cofibrant objects in this model structure
are retract of complexes of projective K-modules. The Dold-Kan correspondence

DK : Ch≥0
• (K) � S(V ectK) :N (14)

establishes an equivalence of categories between the category Ch≥0
• (K) of positively graded

chain complexes over K and the category S(V ectK) [McL]. According to S. Schwede and
B. Shipley [Sch-Shi] these functors are both left and right adjoint of a Quillen adjunction
between the Quillen model structure on S(V ectK) and the projective model structure on
Ch≥0
• (V ectK). Moreover homology groups and homotopy groups are identified under this

correspondence.
Recall that for a model category C and a Reedy indexing category I, the Reedy model

structure on the category of functors Fun(I, C) (or I-shaped diagrams in C) is the model
structure for which a morphism f : X // Y is a weak-equivalence if it is an object-wise
weak-equivalence in C, a cofibration if the relative latching morphisms at every object of I
are cofibrations in C and a fibration if the relative matching morphisms at every object of
I are fibrations in C. Quillen equivalences of model categories induce Quillen equivalences
in the respective categories of functors with the Reedy model structures [Hir]. We say
that C has I-shaped limits if the functor

(−)const. : C // Fun(I, C)
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taking an object x ∈ C to the constant functor with value x, has a right adjoint

lim : Fun(I, C) // C

If C has I-shaped limits the total right derived functor of lim exists [Hir] and defines the
homotopy limit functor

holim : h(Fun(I, C)) // h(C)

given explicitly on an object X ∈ h(Fun(I, C)) by

holim(X) = R(lim)(X) = lim(P (X))

where P (X) is the fibrant replacement for X in the Reedy model structure on Fun(I, C).
These observations lead to the following lemma.

3.15. Lemma. Let I be a Reedy indexing category and consider the functor

DK∗ : Fun(I, Ch≥0
• (K)) // Fun(I, S(V ectK))

defined by applying object-wise the functor DK of (14) to an I-shaped diagram in Ch≥0
• (K).

For X ∈ Fun(I, Ch≥0
• (K)) we have

holim(DK∗(X)) ' DK(lim(P (X)))

where P (X) is the fibrant replacement ofX in the Reedy model category on Fun(I, Ch≥0
• (K)).

Proof. By definition we have

holim(DK∗(X)) ' lim(P (DK∗(X)))

The functor DK is the right and left adjoint of a Quillen equivalence [Sch-Shi] hence

P (DK∗(X)) ' DK∗(P (X))

Moreover DK preserves limits which implies that

lim(P (DK∗(X))) ' lim(DK∗(P (X))) ' DK(lim(P (X)))
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3.16. Example. We give an explicit construction of the fibrant replacement in the Reedy
model structure in order to compute homotopy limits when the indexing category I is the
category

0

1

2

Given f : X // Y a morphism in Fun(I, C) it is easy to check that relative matching
morphisms are

M0(f) : X0
// Y0

and for i = 1, 2
Mi(f) : Xi

// Yi ×
Y0

X0

In particular a morphism f is a fibrations if the morphisms Mi(f) are fibrations in C, for
i = 0, 1, 2, and an object X ∈ Fun(I, C) is a fibrant object if X0 is a fibrant object in C
and the morphisms X1

//X0, X2
//X0 are fibrations. Hence a fibrant replacement of

a diagram

X0

X1

X2

f10

f20

where X0 fibrant is given by

X0

P (f10)

P (f20)

where

Xi X0

P (fi0)
'

fi1

is a trivial cofibration-fibration factorization of the morphisms fi0, i = 1, 2. In particular
we get the following expression for the homotopy fibre product of X

X2

h
×
X0

X1 := holim(X) ' P (f20) ×
X0

P (f10)

When C = Ch≥0
• (K) with the projective model structure a trivial cofibration-fibration

factorization of a chain map f• : A• //B• is given by

A• B•

P (f•)
i p

f•
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where P (f•) is the chain complex in degree n > 0

P (f•)n = An
⊕

Bn+1

⊕
Bn

and in degree 0

P (f•)0 = A0

⊕
B1

⊕
D0

with D0 ⊆ B0 defined by the equation b0 = d(b1) +f0(a0), with b1 ∈ B1 and a0 ∈ A0. The
differential is

dn =

∣∣∣∣∣∣
dAn 0 0
−fn −dBn+1 IdBn

0 0 dBn

∣∣∣∣∣∣
and the morphisms i and p are

in =
∣∣IdAn 0 fn

∣∣
pn =

∣∣∣∣∣∣
0
0

IdBn

∣∣∣∣∣∣
One can easily check that H∗(P (f•)) ' H∗(A•) and that p is a fibration, being degree-wise
surjective. The fact that i is a cofibration follows from the fact that every K-vector space
is free and hence projective.

3.17. Pretriangulated dg-categories are stable (∞, 1)-categories under
the nerve construction.

3.18. Theorem. For a pretriangulated dg-category D the dg-nerve Ndg(D) is a stable
(∞, 1)-category. Moreover H0(D) is identified with h(Ndg(D)) as triangulated categories.

Proof. Recall that the big dg-nerve N big
dg (D) is the (∞, 1)-category defined as the nerve of

the simplicial category D∆ (see Remark 2.14) having the same objects of D and simplicial
set of morphisms given by

MapD∆
(X, Y ) := DK(τ≥0(HomD(X, Y )op))

where DK is the functor of the Dold-Kan correspondence (14), τ≥0 and (−)op are the
functors defined in Section 1.1. The big dg-nerve and the dg-nerve are equivalent (∞, 1)-
categories [Lur2, §1.3] hence it is enough to show that the big dg-nerve is a stable (∞, 1)-
category. Let 0 be the zero object of D then

MapD∆
(X, 0) ' ∗ 'MapD∆

(0, X)

for every object X of D hence N big
dg (D) is pointed. For a 1-simplex f : X //Y in N big

dg (D)
we show that it admits fiber and cofiber. Consider the case of the cofiber first. Let
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j : Y // Cone(f) be the degree 0 morphism corresponding to (IdY , 0) according to the
equality (see Equation (13))

Hom0
D(Y,Cone(f)) = Hom0

D(Y, Y )⊕Hom1
D(Y,X)

This is a closed morphism because

d(IdY , 0) = (d(IdY ) + f ◦ 0, d(0)) = (0, 0)

hence j identifies a 1-simplex of N big
dg (D). The composition j ◦ f is null-homotopic in the

sense that for

h = (0, IdY ) ∈ Hom−1
D (Y,Cone(f)) = Hom−1

D (Y, Y )⊕Hom0
D(Y,X)

we have
d(h) = (d(0) + f ◦ IdY , d(0)) = (f, 0) = j ◦ f

These data determines a triangle in N big
dg (D)

X Y

0 Cone(f)

j

0

f

0

(15)

In order to show that Cone(f) is the cofiber of f we need to construct a weak-equivalence

MapD∆
(Cone(f), Z) //MapD∆

(Y, Z) ×h
MapD∆

(X,Z)
∗ (16)

for every object Z ∈ Ob(D). According to Lemma 3.15 this is equivalent to exhibit a
quasi-isomorphism of chain complexes

τ≥0(HomD(Cone(f), Z)op) // τ≥0(HomD(Y, Z)op) ×h
τ≥0(HomD(X,Z)op)

0 (17)

Following Example 3.16 the right hand side of Equation (17) can be identified with the
fibre product

P (− ◦ f) ×
τ≥0(Hom•D(X,Z)op)

P (0)

where the chain complex P (− ◦ f) is{
P (− ◦ f)0 = Ker(dHom0

D(Y,Z))⊕Hom−1
D (X,Z)⊕D0, if k = 0

P (− ◦ f)k = Hom−kD (Y, Z)⊕Hom−k−1
D (X,Z)⊕Hom−kD (X,Z), if k > 0.
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withD0 ⊆ Hom0
D(X,Z) defined by the equation g0 = h0◦f+d(g−1), for h0 ∈ Ker(dHom0

D(Y,Z))

and g−1 ∈ Hom−1
D (X,Z). The differential for k > 0 is

dk =

∣∣∣∣∣∣∣
d−k(Y,Z) 0 0

−(− ◦ f) −d−k−1
(X,Z) Id(X,Z)

0 0 d−k(Y,Z)

∣∣∣∣∣∣∣
and for k = 0

d0 =

∣∣∣∣∣∣
d0

(Y,Z) 0 0

−(− ◦ f) −d−1
(X,Z) Id(X,Z)

0 0 d0
(Y,Z)

∣∣∣∣∣∣
where dk(X,Y ) = dHomk

D(X,Y ). The chain complex P (0) is{
P (0)0 = Hom−1

D (X,Z)⊕ Im(dHom−1
D (X,Z)), if k = 0

P (0)k = Hom−k−1
D (X,Z)⊕Hom−kD (X,Z), if k > 0.

with differential for k > 0

dk =

∣∣∣∣∣−d−k−1
(X,Z) Id(X,Z)

0 d−k(Y,Z)

∣∣∣∣∣
and for k = 0

d0 =

∣∣∣∣−d−1
(X,Z) Id(X,Z)

0 d0
(Y,Z)

∣∣∣∣
Hence the right hand side of Equation (17) is computed by the cochain complex having
degree k > 0 component

Hom−kD (Y, Z)⊕Hom−k−1
D (X,Z)⊕Hom−k−1

D (X,Z)⊕Hom−kD (X,Z)

with differential

dk =

∣∣∣∣∣∣∣∣∣
d−k(X,Z) 0 0 0

−(− ◦ f) −d−k−1
(X,Z) 0 0

0 0 −d−k−1
(X,Z) Id(X,Z)

0 0 0 d−k(X,Z)

∣∣∣∣∣∣∣∣∣
and degree 0 component the subspace of the direct sum P (−◦ f)0⊕P (0)0 corresponding
to D0 ⊕ Im(dHom−1

D (X,Z)) via the inclusion in Hom0
D(X,Z). This chain complex is quasi-

isomorphic to the chain complex whose degree k > 0 component is

Hom−kD (Y, Z)⊕Hom−k−1
D (X,Z)

with differential

dk =

∣∣∣∣∣ d−k(X,Z) 0

−(− ◦ f) −d−k−1
(X,Z)

∣∣∣∣∣
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and degree 0 component
Ker(dHom0

D(Y,Z))⊕ E−1

where E−1 ⊆ Hom−1
D (X,Z) is defined by the equation d(g−1) + g0 ◦ f = 0, for g0 ∈

Ker(dHom0
D(Y,Z)). This is quasi-isomorphic to the truncation τ≥0(Hom•D(Cone(f), Z)op)

and hence it provides the weak-equivalence of equation (17). For computing the fiber of
f , a similar computation shows that the morphism i : Cone(f)[−1] //X corresponding
to (IdX , 0) according to the equality (see Equation (12))

Hom0
D(Cone(f)[−1], X) = Hom0

D(X,X)⊕Hom1
D(Y,X)

induces and homotopy cartesian triangle in N big
dg (D)

Cone(f)[1] X

0 Y

f

0

j

0

(18)

We show now that the diagram (15) is also cartesian. Let h and g be the closed degree
0 morphisms corresponding respectively to (0, πX) and (0, (−f) ⊕ iX) according to the
equalities

Hom0
D(X,Cone(j)[−1]) = Hom−1

D (X, Y )⊕Hom0
D(X, Y ⊕X)

Hom0
D(Cone(j)[−1], X) = Hom1

D(Y,X)⊕Hom0
D(Y ⊕X,X)

where πX : Y ⊕ X // X and iX : X // Y ⊕ X are the canonical projection and inclu-
sion morphisms. Let α corresponding to (0,−iY , 0, 0) according to the identification of
Hom−1

D (Cone(j)[−1], Cone(j)[−1]) with

Hom−1
D (Y, Y )⊕Hom0

D(Y, Y ⊕X)⊕Hom−2
D (Y ⊕X, Y )⊕Hom−1

D (Y ⊕X, Y ⊕X)

We have that d(α) = g ◦ h− IdCone(j)[−1] because the differential in degree −1 is given by
(see Equations (12) and (13))

d−1(c−1, c0, c−2, d−1) =

∣∣∣∣∣∣∣∣
d(c−1) + (IdY ⊕ f) ◦ c0

d(c0)
d(c−2) + c−1 ◦ (IdY ⊕ f) + (IdY ⊕ f) ◦ d−1

d(d−1) + c0 ◦ (IdY ⊕ f)

∣∣∣∣∣∣∣∣
On the other hand h ◦ g = IdX which implies that X and Cone(j)[−1] are homotopy
equivalent in N big

dg (D). A similar argument shows that the diagram (18) is also cocartesian.

The fact that H0(D) is equivalent to h(N big
dg (D)) as triangulated categories follows from

the arguments in this proof.
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