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LEVI CATEGORIES AND GRAPHS OF GROUPS

MARK V. LAWSON AND ALISTAIR R. WALLIS

Abstract. We define a Levi category to be a weakly orthogonal category equipped
with a suitable length functor and prove two main theorems about them. First, skeletal
cancellative Levi categories are precisely the categorical versions of graphs of groups
with a given orientation. Second, the universal groupoid of a skeletal cancellative Levi
category is the fundamental groupoid of the corresponding graph of groups. These two
results can be viewed as a co-ordinate-free refinement of a classical theorem of Philip
Higgins.

1. Introduction

In this paper, categories are viewed as generalizations of monoids and then applied to
solving some problems in group theory. This is an extension of the pioneering work to be
found in [Higgins 1971] in which groups and groupoids were studied on an equal footing
with groupoids being seen as generalizations of groups. This enabled some important
theorems about groups to be proved in a particularly elegant way. In our paper, we show
that cancellative categories enable the theory developed in [Higgins 1976] to be described
in a more conceptual way. It arose from our attempt to generalize [Lawson 2008a, Lawson
& Wallis 2015]. We briefly explain that work and why categories are such a natural next
step from monoids.

In [Lawson 2008a], the first author described a correspondence between self-similar
group actions [Nekrashevych 2005] and a class of monoids called left Rees monoids. A self-
similar group action is an action of a group on a free monoid satisfying certain conditions
(which are not relevant here). By using a Zappa-Szép product, a kind of two-sided semidi-
rect product, the data of a self-similar group action can be encoded as a left Rees monoid
and, significantly, conversely. In [Lawson & Wallis 2015], the authors set the above theory
in a wider context. First, they introduced what they called Levi monoids. Left cancellative
Levi monoids are left Rees monoids; Rees monoids are simply cancellative Levi monoids.
They proved that all Levi monoids could be constructed from suitable group biactions.1
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1That is, a given group acting both on the left and the right on a given set in such a way that the
actions associate.
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Second, the relationship between self-similar group actions and left Rees monoids was
investigated in greater detail. Third, and significantly for this paper, so called irreducible
Rees monoids were shown to be constructed from a group and an isomorphism between
two of its subgroups — in other words, from a partial isomorphism. This was proved by
constructing from the partial isomorphism a group biaction whose associated Levi monoid
was, in fact, a Rees monoid. However, a partial isomorphism of a group is just the data
needed to construct an HNN-extension. We proved that this HNN-extension was precisely
the universal group of the corresponding Rees monoid showing that the theory of HNN-
extensions is a part of the theory of Levi monoids. This immediately raised the question
as to whether the free product of groups with amalgamation could be obtained in a similar
way. We realised that the answer would be yes only if Levi monoids could be replaced by
Levi categories but then if HNN-extensions and free products with amalgamation could
be constructed so too could all graphs of groups [Serre 1980, Weidmann 2013]. This paper
develops this idea. We prove two main theorems.

THEOREM 4.17 Skeletal cancellative Levi categories are a categorical way of
describing graphs of groups with a given orientation.

Levi categories are defined in Section 2, whereas in Section 3 and Section 4 the structure
of skeletal cancellative Levi categories is derived and the nature of their connection with
graphs of groups explained.

THEOREM 5.4 A skeletal cancellative Levi category C can be embedded into
its universal groupoid G where G is precisely the fundamental groupoid of the
graphs of groups associated with C.

This is proved in Section 5.
This paper aims to be intelligible to both category theorists and semigroup theorists.

This means that occasionally we will define a term that one camp will find obvious. We
would ask the reader to bear with us, for in those situations it is a member of the other
camp who is being addressed. Although this paper uses both semigroups and categories,
it can hardly be said to use semigroup theory or category theory. Any theory we need
is developed explicitly. Rather, the perspective of the paper is to treat categories as
generalized monoids. Accordingly, we review some basic definitions here which combine
the semigroup and category theory points of view.

The elements of a category C are called arrows and the set of identities of C is denoted
by Co. Each arrow a has a domain identity, denoted by d(a), and a codomain identity
denoted by r(a). The product ab exists, written ∃ab, if and only if r(a) = d(b). Our
products should be conceived of thus

e
a−→ f

b−→ i.

Given identities e and f, the set of arrows eCf is called a hom-set, and eCe is a monoid
called the local monoid at e. Arrows in the same hom-set are said to be parallel. A
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category is called left (resp. right) cancellative if ax = ay (resp. xa = ya) implies that
x = y. A cancellative category is one which is both left and right cancellative. An arrow
a is invertible if there is an arrow a−1, called an inverse, such that aa−1 = d(a) and
a−1a = r(a). A category in which every arrow is invertible is a groupoid. If a groupoid is
the disjoint union of its local groups then it is totally disconnected. The set of invertible
elements G of a category C forms a groupoid with the same set of identities called the
groupoid of invertible elements. The group of invertible elements of the local monoid at e
is called the local group at e, and is denoted by Ge. A category in which the only invertible
elements belong to local monoids is called skeletal. The groupoid of invertible elements
of a skeletal category is totally disconnected.

What gives this paper a semigroup flavour is that we study various kinds of ideals
inside a category. In semigroup theory, ideals lead to Green’s relations [Lallement 1979].
They may also be defined for categories [Margolis & Pin 1987]. We define them from
scratch and will prove any properties we need. No previous exposure to such relations is
necessary to understand this paper. A principal right ideal in a category C is a subset
of the form aC where a ∈ C. We may similarly define principal left ideals and principal
ideals. The Green’s relations for categories needed for this paper are defined as follows.
Define aR b if and only if aC = bC and aJ b if and only if CaC = CbC. Both R and J
are equivalence relations and R ⊆J . These two relations will play an important rôle in
the co-ordinatization results of Section 5. If aC is any principal right ideal in a category C
then aC ⊆ d(a)C. A principal right ideal aC is said to be maximal if aC ⊂ eC, where e is
an identity, and there are no principal right ideals strictly between aC and eC. Likewise,
if CaC is any principal ideal then CaC ⊆ Car(a)C ⊆ Cr(a)C. A principal ideal CaC
is said to be maximal if CaC ⊂ CeC, where e is an identity, and there are no principal
ideals strictly between CaC and CeC.

Finally, our thanks to the referee for prompting us to write a slightly different paper
from the one first submitted.

2. Levi categories

In this section, we define the class of categories that are the subject of this paper.

2.1. Definition. A category C is said to be equidivisible (or weakly orthogonal) if for
every commutative square

c

��

a //

b

��
d

//
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either there exists an arrow, u, making the first diagram below commute or an arrow, v,
making the second diagram below commute

c

��

a //

b

��
d

//

u

??���������������

c

��

a //

b

��

v

����
��
��
��
��
��
��
�

d
//

Next we define an appropriate notion of what it means for an element in a category
to be irreducible.

2.2. Definition. An element a ∈ C of a category is said to be an atom if it is not
invertible and if a = bc then either b or c is invertible.

2.3. Definition. A length functor is a functor λ : C → N from a category C to the
additive monoid of natural numbers satisfying the following two conditions.

(LF1) λ−1(0) consists of all and only the invertible elements of C.

(LF2) λ−1(1) consists of all and only the atoms of C.

2.4. Remark. We have phrased the above two axioms in their most convenient form, but
it’s worth spelling out their actual content. Let λ : C → N be any functor to the additive
monoid of natural numbers. If a ∈ C is an invertible element then λ(a) is invertible and
so λ(a) = 0. Thus the import of (LF1) is that λ−1(0) only contains invertible elements.
Assume now that (LF1) holds and that λ(a) = 1. If a = bc then λ(a) = λ(b) + λ(c). It
follows that either b or c is invertible and so a is an atom. Thus in the presence of (LF1),
the import of (LF2) is that if a is an atom then λ(a) = 1.

2.5. Definition. A Levi category is an equidivisible category equipped with a length func-
tor. It is said to be non-trivial if it contains at least one non-invertible element.

Conceptually, Levi categories should be regarded as N-graded categories.

2.6. Remark. In this paper, we shall only be interested in non-trivial Levi categories.
From now on, all Levi categories will be assumed non-trivial.

2.7. Remark. The term equidivisible comes from semigroup theory and is the one we
prefer in this paper. Free monoids are equidivisible and, in fact, can be characterized as
those equidivisible monoids with a length function that have only trivial units, a theorem
of Friedrich Wilhelm Daniel Levi (1888–1966) [Lallement 1979]. It is for this reason that
‘Levi categories’ are so named.

2.8. Example. Levi categories with one identity are precisely the Levi monoids intro-
duced in [Lawson & Wallis 2015]. The theory of self-similar group actions can be encoded
into suitable Levi monoids.
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2.9. Example. Given any directed graph D, we may construct the free category D∗ on
D. This has one identity for each vertex and consists of all finite directed paths in the
graph. Multiplication is concatenation of paths. A free category with one identity is a
free monoid. Free categories are Levi categories: the atoms are the edges of the graph;
the length functor simply counts the number of edges in a path; the groupoid of invertible
elements is trivial. The precise rôle that free categories play within the theory of Levi
categories is described in Theorem 5.10.

The proofs of the following three lemmas are all trivial.

2.10. Lemma. If a is an atom in an arbitrary category and b = gah exists, where g and
h are invertible, then b is an atom.

The above lemma is the basis of a description of Levi categories described in Section 3.

2.11. Lemma. Let C be a category equipped with a length functor with groupoid of in-
vertible elements G.

1. aR b⇔ aG = bG.

2. aJ b⇔ GaG = GbG.

3. If a is an atom and aJ b then b is an atom.

The proof of the following is immediate by Lemma 2.11.

2.12. Lemma. In a Levi category, the principal ideals generated by identities are precisely
those generated by invertible elements.

We conclude this section with a result that says, in particular, that every element in a
Levi category can be written as a finite product of atoms. It is also a first demonstration
of the importance of the concept of ‘equidivisibility’.

2.13. Proposition. [Atomic factorization] Let C be a Levi category with length functor
λ.

1. The element a is an atom if and only if aC is a maximal principal right ideal if and
only if CaC is a maximal principal ideal.

2. Every non-invertible element a of C can be written as a product of atoms, where the
number of atoms is equal to λ(a).

3. Let x = a1 . . . am and y = b1 . . . bn where the ai and bj are atoms and m,n ≥ 2.
Then x = y if and only if m = n and there exist invertible elements g1, . . . , gn−1

such that
a1 = b1g1, a2 = g−1

1 b2g2, . . . an = g−1
n−1bn.

These equations are more clearly understood by means of the following interleaving
diagram.



LEVI CATEGORIES AND GRAPHS OF GROUPS 785

a2 // a3 // . . .
an−1 //

an

��?
??

??
??

??
??

a1

??�����������

b1

��?
??

??
??

??
??

g1

OO

b2
//

g2

OO

b3
//

g3

OO

. . .

gn−2

OO

bn−1

//

gn−1

OO

bn

??�����������

Proof. (1). Suppose that a is an atom and that aC ⊆ bC. Then a = bc. But a is an atom
and so either b is invertible or c is invertible. If b is invertible then bC = d(b)C whereas
if c is invertible then aC = bC. Hence aC is maximal. Conversely, suppose that aC is
maximal. Let a = bc. Then aC ⊆ bC. It follows that either aC = bC or bC = d(b)C. If
the former occurs then λ(a) = λ(b) and if the latter occurs then b is invertible. It follows
that in either case λ(c) = 0 and so c is invertible.

Suppose that a is an atom and that CaC ⊆ CbC. Then a = cbd. But a is an atom
and so exactly one of c, b, d is an atom and the other two are invertible. Suppose that c is
an atom. Then b is invertible and so by Lemma 2.12 the principal ideal CbC is generated
by an identity. Suppose that b is an atom. Then c and d are invertible and CaC = CbC.
Finally, suppose that d is an atom. Then b is invertible again and so CbC is generated by
an identity. It follows that CaC is a maximal principal ideal. Conversely, suppose that
CaC is maximal. Let a = bc. Then CaC ⊆ CbC. If CaC 6= CbC then CbC is generated
by an identity and so b is invertible be Lemma 2.12. If CaC = CbC then b is an atom
and so c is invertible. It follows that a is an atom.

(2). Let a be a non-invertible element. We prove that either a is an atom or a = a1a
′,

where a1 is an atom, a′ is non-invertible and λ(a′) < λ(a). If a is an atom then we
are done. Otherwise a = b1c1 for some b1 and c1 where neither b1 nor c1 are invertible.
Observe that λ(b1) < λ(a). If b1 is an atom then we are done, otherwise we may write
b1 = b2c2 again where neither b2 and c2 are atoms. Observe that λ(b2) < λ(b1). This
process can only continue in a finite number of steps and so must terminate. It follows
that if a is non-invertible and not itself an atom then we may write a = a1a

′ where a1 is
an atom, λ(a′) < λ(a), and λ(a′) 6= 0. If λ(a′) = 1 then a′ is an atom and we are done.
If not, then we may repeat the above procedure with a′. The length functor ensures that
this process will repeat only a finite number of times and we conclude with the desired
factorization.

(3) Only one direction needs proving. Suppose that x = y. Then by applying the
length functor m = n. We therefore have that

a1(a2 . . . am) = b1(b1 . . . bm).

We now use equidivisibility. Either

a1 = b1u and b2 . . . bm = ua2 . . . am for some u

or
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b1 = a1v and a2 . . . am = vb2 . . . bm for some v.

In either case, u and v are invertible since both a1 and b1 are atoms using the length
functor. Thus a1 = b1g1, where v = g1 is invertible, and g1a2 . . . am = b2 . . . bm. We now
repeat this procedure bracketing thus

g1a2(a3 . . . am) = b2(b3 . . . bm).

By the same argument as above, we get that g1a2 = b2g2 for some g2 invertible and
g2a3 . . . am = b3 . . . bm. The process continues and we obtain the result.

3. The construction of Levi categories

Let C be a Levi category with groupoid of invertible elements G. By Lemma 2.10, the set
of atoms of C is closed under left and right multiplication by G. This simple observation
leads to the definition of what we term a ‘bimodule’. In this section, we describe how Levi
categories can be constructed from bimodules in a way analogous to that in which the
tensor algebra is constructed from a module. See [Lang 1993, Chapter XVI, Section 7] or
[Street 2007, Chapter 6].

3.1. Definition. Let G be a groupoid and let X be a set equipped with two functions

G0
s←− X

t−→ Go.

We suppose that there is a left groupoid action G × X → X, defined by (g, x) 7→ gx
when r(g) = s(x), and a right groupoid action X × G → X, defined by (x, g) 7→ xg
when t(x) = d(g), such that the two actions associate meaning that (gx)h = g(xh) when
defined. We write ∃gx and ∃xg if the actions are defined. We call the structure (G,X,G)
or GXG a (G,G)-bimodule or simply a bimodule2. If ∃xg together with xg = x implies
that g is an identity, then we say the action is right free3. We define left free dually. A
bimodule which is both left and right free is said to be bifree. We define homomorphisms
and isomorphisms between (G,G)-bimodules in the obvious way.

Our first result simply formalizes the observation that began this section. The proof
is a straightforward verification.

3.2. Proposition. Let C be a Levi category with G as its groupoid of invertible elements.
Denote by X the set of all atoms of C equipped with the maps d, r : X → C0. A bimodule
(G,X,G) is defined by the left and right actions of G on X. It is right free bimodule if
and only if C is left cancellative, and bifree if and only if C is cancellative

2We use the terminology bimodule rather than simply module to accord with that used in the theory
of self-similar group actions [Nekrashevych 2005] which this paper is generalizing.

3Such a bimodule would be called a covering bimodule in the theory of self-similar group actions. The
use of the word ‘right’ reminds us that the definition is made with respect to the right groupoid action.
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We call (G,X,G) constructed as in the above proposition, the bimodule associated
with C or the bimodule of atoms of C.

Our goal now is to show that from each bimodule we may construct a Levi category.
We recall the standard definitions and results we need first. Let G be a groupoid that
acts on the set X on the right and the set Y on the left. Define the set X ∗ Y to consist
of those pairs (x, y) where t(x) = s(y). A function α : X ∗ Y → Z to a set Z is called
a bi-map or a 2-map if α(xg, y) = (x, gy) for all (xg, y) ∈ X ∗ Y where g ∈ G. We
may construct a universal such bimap λ : X ∗ Y → X ⊗ Y in the usual way [Elkins &
Zilber 1976]. However, the theory simplifies because groupoids are acting. The element
x ⊗ y in X ⊗ Y is the equivalence class of (x, y) ∈ X ∗ Y under the relation ∼ where
(x, y) ∼ (x′, y′) if and only if (x′, y′) = (xg−1, gy) for some g ∈ G. Observe that we may
define s(x ⊗ y) = s(x) and t(x ⊗ y) = t(y) unambiguously. Suppose now that X is a
(G,G)-bimodule. We may therefore define the tensor product X ⊗X as a set. This set is
equipped with maps s, t : X⊗X → Go. We define g(x⊗y) = gx⊗y and (x⊗y)g = x⊗yg
when this makes sense. Observe that x⊗ y = x′ ⊗ y′ implies that gx⊗ y = gx′ ⊗ y′, and
dually. It follows that X ⊗X is a also a bimodule. Put X⊗2 = X ⊗X. More generally,
we may define X⊗n for all n ≥ 1 using n-maps, and we define X⊗0 = G where G acts on
itself by multiplication on the left and right.

3.3. Lemma. Let n ≥ 2. Then

x1 ⊗ . . .⊗ xn = y1 ⊗ . . .⊗ yn

if and only if there are elements g1, . . . , gn−1 ∈ G such that y1 = x1g1, y2 = g−1
1 x2g2,

y3 = g−1
2 x3g3, . . ., yn = g−1

n−1xn.

Proof. When n = 2 the results follows from the definition of ∼. For n > 2, the proof
follows by induction.

3.4. Remark. Observe that if x1⊗ . . .⊗xn = y1⊗ . . .⊗yn then x1 . . . xn and y1 . . . yn are
parallel. In addition, there is an interleaving diagram between (x1, . . . , xn) and (y1, . . . , yn)
as in part (3) of Proposition 2.13.

3.5. Definition. Let X be a (G,G)-bimodule. Define

T(GXG) =
∞⋃
n=0

X⊗n.

We shall call this the tensor category associated with the bimodule (G,X,G). Observe
that we may regard X as a subset of T(GXG).

The justification for this terminology will follow from (1) below. The next theorem
describes how to construct all Levi categories from bimodules. It will be refined in sub-
sequent sections.
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3.6. Theorem. [Levi categories from bimodules] Let (G,X,G) be a bimodule.

1. T(GXG) is a Levi category whose associated bimodule is (G,X,G).

2. The category T(GXG) is left (resp. right) cancellative if and only if (G,X,G) is
right (resp. left) free.

3. Let C be a category whose groupoid of invertible elements is G. Regard C as a
(G,G)-bimodule under left and right multiplication. Let θ : X → C be any bimodule
morphism to C. Then there is a unique functor Θ: T(GXG)→ C extending θ.

4. Every Levi category is isomorphic to the tensor category of its associated bimodule.

Proof. (1). The identities of the category are the same as the identities of G. The
element x1 ⊗ . . . ⊗ xn has domain d(x1) and codomain r(xn). Define λ(g) = 0, when
g ∈ G, and λ(x1 ⊗ . . .⊗ xn) = n, when n ≥ 1. The elements of length 0 are precisely the
elements of G and so the invertible elements; the elements of length 1 are precisely the
elements of X. Multiplication is tensoring of sequences that begin and end in the right
places and left and right actions by elements of G. Formally, we are using the fact that
there is a canonical isomorphism

X⊗p ⊗X⊗q ∼= X⊗(p+q).

The proof of equidivisibility is essentially the same as that of [Lawson 2008a, Proposi-
tion 5.6]. Let u,v,x,y ∈ T(GXG) be such that

x

��

u //

v

��
y

//

Thus u ⊗ v = x ⊗ y. Let u = u1 ⊗ . . . ⊗ um, v = v1 ⊗ . . . ⊗ vm, x = x1 ⊗ . . . ⊗ xs and
y = y1⊗ . . .⊗ yt where m+n = s+ t. There is an interleaving diagram connecting u⊗v
with x ⊗ y. Suppose that λ(u) < λ(x). Then m < s. Define w = g−1

m xm+1 ⊗ . . . ⊗ xs.
Then x = u ⊗ w and a simple verification shows that v = w ⊗ y. The cases where
λ(u) = λ(x) and λ(u) > λ(x) can be dealt with similarly. The case where some of the
elements are invertible poses no new problems.

(2). Suppose that the category is left cancellative and that xg = x = xd(g) in the
bimodule. But this can also be interpreted as a product in the category and so g = d(g),
as required. Conversely, suppose that the bimodule is right free. Let x⊗y = x⊗z. From
Lemma 3.3 and the fact that lengths match, we have that (x,y) = (xg, g−1z) for some
g ∈ G. But using the fact that the action is right free, we get that g is an identity and so
y = z, as required.

(3). Define Θ(g) = g when g ∈ G and Θ(x1 ⊗ x2 ⊗ . . . ⊗ xn) = θ(x1)θ(x2) . . . θ(xn).
This is well-defined by Lemma 3.3. It is routine to check that this defines a functor.

(4). This now follows from (3) above, Lemma 3.3 and Proposition 2.13.
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3.7. Remark. The construction of the tensor category T(GXG) from a bimodule (G,X,G)
is a generalization of the construction of the free category from a directed graph as we
now explain. Let D be a directed graph and denote by Go the set of vertices of D. There
are two maps

G0
s←− D

t−→ Go

which give the source of an edge and its target, respectively. We now let the groupoid
G = Go, so it just consists of identities. Because the groupoid consists only of identities
it follows that a tensor x ⊗ y can be identified with the product xy. Thus the elements
of T(GDG) are just finite composable paths in D. It is now straightforward to check that
T(GDG) = D∗ as in Example 2.9. In fact, Levi categories were introduced specifically as
the generalizations of free categories that contain invertible elements.

4. Skeletal cancellative Levi categories and graphs of groups

In this section, we shall describe how to construct all skeletal (left) cancellative Levi
categories and, as a result, we shall show that graphs of groups with a given orientation
can be encoded by skeletal cancellative Levi categories. This will prove Theorem 4.17.
We begin by formalizing what we mean by a set of partial homomorphisms between a
collection of groups.

4.1. Definition. Let D be a directed graph. An edge x from the vertex e to the vertex
f will be written e

x→ f . With each vertex e of D we associate a group Ge, called
the vertex group, and with each edge e

x→ f , we associate a surjective homomorphism
φx : (Ge)

+
x → (Gf )

−
x where (Ge)

+
x ≤ Ge and (Gf )

−
x ≤ Gf . More informally, with each edge

e
x→ f , we associate a partial homomorphism φx from Ge to Gf . We call this structure a

diagram of partial homomorphisms. If all the φx are isomorphisms then we shall speak of
a diagram of partial isomorphisms.

4.2. Remark. The identity of the group Ge will often be denoted by e.

4.3. Example. The simplest example of a diagram of partial homomorphisms is where
the directed graph has one vertex and one loop. This means that there is one group G
along with two subgroups G+, G− ≤ G and a surjective homomorphism φ : G+ → G−.

4.4. Example. The next simplest example of a diagram of partial homomorphisms is
where the directed graph has two vertices e and f and one edge x from e to f . In this
case, this means that there are two groups Ge, Gf along with two subgroups G+

e ≤ Ge

and G−f ≤ Gf and a surjective homomorphism φ : G+
e → G−f .

In this section, we shall prove the following.
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4.5. Theorem. Each skeletal cancellative (resp. left cancellative) Levi category may be
constructed from a diagram of partial isomorphisms (resp. homomorphisms).

Because of our work in Section 3, specifically Theorem 3.6, we need only prove the
above theorem at the level of right free bimodules. To do this, we generalize a construction
in [Nekrashevych 2005] from groups to groupoids using an idea of [Cohn 1985].

4.6. Lemma. [From diagrams to bimodules] Let D be a diagram of partial homomor-
phisms with set of edges E, vertices V and groups Ge where e ∈ V . Put G =

⊔
e∈V Ge.

Then G is a totally disconnected groupoid. Define

G ∗ E ∗G = {(g, x, h) : where e
x→ f and g ∈ Ge and h ∈ Gf}.

Define the relation ≡ on the set G ∗ E ∗G by

(g1, x1, h1) ≡ (g2, x2, h2)⇔ x1 = x2 = x(say), g−1
2 g1 ∈ (Ge)

+
x and φx(g

−1
2 g1) = h2h

−1
1 .

Then ≡ is an equivalence relation. Denote the ≡-class containing (g, x, h) by [g, x, h]. De-
fine a left action by g[g1, x, h1] = [gg1, x, h1] when ∃gg1 and a right action by [g1, x, h1]h =
[g1, x, h1h] when ∃h1h. Then the set G ∗ E ∗ G with the above two actions is a right free
bimodule which we denote by B(D). This bimodule is bifree if and only if D is a diagram
of partial isomorphisms.

Proof. The proof is a sequence of routine verifications. We simply prove the last claim.
Suppose that D is a diagram of partial isomorphisms. Then g[g1, x, h] = [g1, x, h] if and
only if φx(g

−1
1 gg1) = 1 which implies that g = 1 as required. Conversely, suppose that

B(D) is bifree. We prove that the diagram D is of partial isomorphisms. Suppose not.
Then for some edge x from vertex e to vertex f the homomorphism φx is not injective.
Let g 6= 1 be such that φx(g) = 1. Observe that g[1, x, 1] = [1, x, 1] which contradicts our
assumption.

4.7. Example. We give an example of the above construction in the case where our graph
has two vertices e and f and one edge x from e to f . This means there are two groups
Ge, Gf along with two subgroups G+

e ≤ Ge and G−f ≤ Gf and a surjective homomorphism

φ : G+
e → G−f . Since G+

e ≤ Ge we can consider left cosets gG+
e and since G−f ≤ Gf we can

consider right cosets G−f h. Because there is only one edge in this graph, the set G ∗X ∗G
is just the set Ge × Gf . Then (g1, h1) ≡ (g2, h2) if and only if g−1

2 g1 = g ∈ G+
e and

h2h
−1
1 = φ(g) ∈ G−f . In particular, g1 and g2 belong to the same left coset of G+

e , and h1

and h2 belong to the same right coset of G−f . Explicitly

[g, h] = {(gk, φ(k−1)h) : k ∈ G+
e }.

We now show how to go in the opposite direction.
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4.8. Definition. Let (G,X,G) be a right free bimodule where G is totally disconnected.4

Define a relation C on X by xC y if and only if y = gxh for some g, h ∈ G.

Clearly, C is an equivalence relation on the set X. Because G is totally disconnected,
if xC y then s(x) = s(y) and t(x) = t(y).

4.9. Lemma. [From bimodules to diagrams] Let (G,X,G) be a right free bimodule where
G is totally disconnected. With each transversal of the C -classes, we may associate a
diagram D(GXG) of partial homomorphisms. This is a diagram of partial isomorphisms
if and only if the bimodule is bifree.

Proof. Choose a transversal E of the C -classes. Define the directed graph D = D(GXG)
to have as vertices the set of identities of G and edges the elements of E where if x ∈ E
then s(x)

x→ t(x). With each vertex e we associate the group Ge. Consider now the edge
e

x→ f . Define
(Ge)

+
x = {g ∈ Ge : gx = xh for some h ∈ Gf},

where the + means right-moving, and

(Gf )
−
x = {h ∈ Gf : gx = xh for some g ∈ Ge},

where the − means left-moving. Define φx(g) = h if g ∈ (Ge)
+
x and gx = xh where

h ∈ Gf . In a right free bimodule the right action is free and so φx is a function. A simple
computation shows that it is, in fact, a homomorphism. We have therefore constructed a
diagram of partial homomorphisms.

Assume the bimodule is bifree. By definition gx = xφx(g) where g ∈ G+
x . Suppose

that g1x = g2x. Then x = (g−1
1 g2)x and so by left freeness we have that g−1

1 g2 is an
identity and so g1 = g2. Thus φx is injective and so an isomorphism. The proof of the
converse is straightforward.

The above construction depends on the choice of transversal E of the C -classes. We
show that this is not really important.

4.10. Definition. Let D1 and D2 be two diagrams of partial homomorphisms having the
same vertex sets, the same vertex groups, and edge sets that differ only in labelling. We
say these two diagrams of partial homomorphisms are conjugate if for each edge e

x→ f in
D1 and corresponding edge e

y→ f in D2 there are inner automorphisms αx,y : Ge → Ge

and βx,y : Gf → Gf such that αx,y((Ge)
+
x ) = (Ge)

+
y and βx,y((Gf )

−
x ) = (Gf )

−
y and βx,yφx =

φyαx,y.

4.11. Lemma. Let GXG be a right free bimodule. Then the diagrams of partial homomor-
phisms associated with two transversals E and E ′ of the C -classes are conjugate.

4This is the case needed in our categorical approach to Bass-Serre theory.
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Proof. We denote the elements of E by xi where i ∈ I and the elements of E ′ by yi
where i ∈ I and assume that xi C yi. Choose gi, hi ∈ G such that xi = giyihi. Let e

xi→ f
and g ∈ (Ge)

+
xi

. Then
(g−1
i ggi)yi = yi(hiφxi(g)h−1

i ).

Thus
hiφxi(g)h−1

i = φyi(g
−1
i ggi).

Define inner automorphisms βi(−) = hi(−)h−1
i and αi(−) = g−1

i (−)gi where αi : Ge →
Ge and βi : Gf → Gf . We therefore have βiφxi = φyiαi and αi((Ge)

+
xi

) = (Ge)
+
yi

and
βi((Gf )

−
xi

) = (Gf )
−
yi

. Thus the two diagrams are conjugate

We have described two constructions

D 7→ B(D) and GXG 7→ D(GXG).

We now describe what happens when they are iterated.

4.12. Proposition. [Diagrams and bimodules]

1. Let GXG be a right free bimodule and let E be a transversal of the C -classes. Then

GXG is isomorphic to B(D(GXG)).

2. Let D be a diagram of partial homomorphisms. Then D is conjugate to D(B(D)).

Proof. (1) Let x ∈ X. Then xC y for a unique y ∈ E. By definition, x = g1yh1 for
some g1, h1 ∈ G. Suppose also that x = g2yh2. Then g−1

2 g1y = yh2h
−1
1 . It follows that

(g1, y, h1) ≡ (g2, y, h2). We may therefore define a function θ : X → B(D) by θ(x) =
[g1, x, h1]. It remains to show that this is a bijection and an isomorphism of bimodules
both of which are now straightforward.

(2) Choose the specific transversal of those elements of the form [e, x, f ] where e
x→ f

is an edge of the diagram D. It is easy to check that we get back exactly the diagram
of partial homomorphisms we started with. If we choose a different transversal then
Lemma 4.11, and what we have just proved, tell us that the corresponding diagram of
partial homomorphisms is conjugate to D.

We shall now show explicitly how to construct a diagram of partial homomorphisms
from a skeletal left cancellative Levi category. The proof of the following is immediate
from the definitions and Lemma 2.11 and simply justifies our use of the J -relation.

4.13. Lemma. Let C be a skeletal left cancellative Levi category. If x and y are atoms
then xJ y if and only if xC y.

4.14. Definition. Let C be a skeletal left cancellative Levi category. Choose a transversal
E of the set of J - classes of the atoms. We call this an atomic J -transversal.



LEVI CATEGORIES AND GRAPHS OF GROUPS 793

4.15. Proposition. [From category to diagram] Let C be a skeletal left cancellative Levi
category with atomic J -transversal E. Construct a diagram D(C) of partial homomor-
phisms from C as follows.

1. The set of identities of C is the set of vertices of D(C).

2. At each vertex e in D(C), we attach the local group Ge of C.

3. The edges of D(C) are the elements x ∈ E.

4. If x ∈ E and e
x→ f define

(Ge)
+
x = {g ∈ Ge : gx = xh for some h ∈ Gf},

and
(Gf )

−
x = {h ∈ Gf : gx = xh for some g ∈ Ge},

and
φx(g) = h if g ∈ (Ge)

+
x and h ∈ (Gf )

−
x and gx = xh.

Then (Ge)
+
x ≤ Ge and (Gf )

−
x ≤ Gf and φx is a surjective homomorphism.

In addition, C is right cancellative if and only if all the homomorphisms φx in D(C)
defined above are also injective and so in fact isomorphisms.

Proof. By Lemma 4.13 and Lemma 4.9, we have therefore defined a diagram D(C) of
partial homomorphisms from C based on our choice of transversal E. By Proposition 4.12
and part (4) of Theorem 3.6, the category C is isomorphic to the category T(B(D(C))).
The proof of the last assertion is immediate by part (2) of Theorem 3.6 and Lemma 4.9.

The following is standard [Higgins 1976, Serre 1980, Weidmann 2013]. A graph of
groups consists of the following data. It is a directed graph with vertices V and edges Y .
If y ∈ Y, we write s(y)

y→ t(y). The set Y is equipped with an involution y 7→ ȳ so that
y 6= ȳ and s(ȳ) = t(y). For each vertex e ∈ V there is a group Ge and for each edge y ∈ E
there is a group Gy such that Gȳ = Gy. For each edge y ∈ Y, there is an injective group
homomorphism µy : Gy → Gt(y), denoted by g 7→ gy for g ∈ Gy. A graph of groups is a
symmetric description of a set of partial isomorphisms between groups. We now break
that symmetry by choosing an orientation X for the set of edges. By this we mean a
subset X ⊆ Y such that Y = X ∪X is a disjoint union. Let x ∈ X where e

x→ f . Define

(Ge)
+
x = µx̄(Gx) and (Gf )

−
x = µx(Gx)

and define
φx : (Ge)

+
x → (Gf )

−
x by φx(g

x̄) = gx.

We have therefore constructed a diagram of partial isomorphisms. It is clear that we can
recapture the original graph of groups from this diagram with the small proviso that the
groups Gy will be replaced by isomorphic copies. We have therefore proved the following.
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4.16. Lemma. A graph of groups with a chosen orientation is just a diagram of partial
isomorphisms.

4.17. Theorem. [Graphs of groups as categories] From a graph of groups equipped with
a chosen orientation we may construct a skeletal cancellative Levi category C and the
original oriented graph of groups may be read off from the structure of C.

Proof. We summarize the steps in this construction below.

1. Input a graph of groups with a given orientation.

2. This is nothing other that a diagram of partial isomorphisms by Lemma 4.16.

3. From the diagram of isomorphisms, we may construct a bifree bimodule whose
acting groupoid is totally disconnected by Lemma 4.6.

4. From the bifree bimodule whose acting groupoid is totally disconnected, we may
construct a skeletal cancellative Levi category by Theorem 3.6.

5. The diagram of partial isomorphisms in step (2) may be constructed from the skeletal
cancellative Levi category constructed in step (4) by Theorem 4.15.

5. The fundamental groupoid of a graph of groups

A necessary condition for a category to be embeddable into a groupoid is that it be can-
cellative. Though sufficient this is far from necessary. However, skeletal cancellative Levi
categories can be embedded into groupoids. To understand why, we need the following
definition.

5.1. Definition. A category C is said to be right rigid if aC ∩ bC 6= ∅ implies that
aC ⊆ bC or bC ⊆ aC.

This notion was defined in [Cohn 1985] in the case of monoids.

5.2. Definition. Let aC ⊆ bC. Denote by [aC, bC] the set of principal right ideals xC
such that aC ⊆ xC ⊆ bC.

5.3. Lemma.

1. A left cancellative category is right rigid if and only if it is equidivisible.

2. In a left cancellative Levi category the set [aC, bC] is linearly ordered by inclusion
and contains only a finite number of elements.
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Proof. (1) Suppose that the category C is right rigid and that ab = cd. Then aC∩cC 6= ∅.
We may assume without loss of generality that aC ⊆ cC. Thus a = cu. But then cub = cd
and ub = d. Thus the category is equidivisible. The proof of the converse is immediate.

(2) The fact that this set is linearly ordered is immediate by part (1). Suppose that
aC ⊆ xC ⊆ yC ⊆ bC. Then λ(a) ≥ λ(x) ≥ λ(y) ≥ λ(b). Suppose that λ(x) = λ(y).
Then x = yu where u is invertible and so xC = yC.

In the light of the above result, it now follows from [von Karger 1997] that every
cancellative Levi category may be embedded in a groupoid.5 This result makes it inter-
esting to characterize what the universal groupoid of a skeletal cancellative Levi category
might be. Associated with a graph of groups is its fundamental groupoid studied in [Hig-
gins 1976]. In this section, we prove the following theorem which is the second main
theorem proved in this paper.

5.4. Theorem. [The universal groupoid] The universal groupoid G of a skeletal can-
cellative Levi category C is the fundamental groupoid of the graph of groups with given
orientation associated with C. The category C is embedded into G.

Our goal, therefore, is to make explicit the theory of skeletal cancellative categories
that is implicit in [Higgins 1976]. To do this, we shall need to refine our result on the
decomposition of the elements of such a category into a product of atoms and we shall
need to study the multiplication in such a category in more detail.

5.5. Definition. Let C be a left cancellative Levi category. A basis B for C is a transver-
sal of the generators of the maximal principal right ideals of C.

5.6. Remark. By part (1) of Proposition 2.13, the elements of a basis are all atoms. Let
C be a left cancellative Levi category with set of atoms X. Then X is a disjoint union
of J -classes by Lemma 2.11. Also using the fact that R ⊆J , it follows that each such
J -class is a union of R-classes. In particular, a basis is a transversal of the R-classes of
X.

In what follows, we fix a basis B. Denote the subcategory of C generated by B
by B∗. The proof of the following is a generalization of the monoid case described in
[Lawson 2008a, Proposition 3.1].

5.7. Theorem. Let C be a left cancellative Levi category with length functor λ, basis B,
and groupoid of invertible arrows G.

1. Each arrow of C can be written uniquely as a finite product of elements from the
basis followed by an invertible element. Thus C = B∗G.

2. B∗ is a free category

5We do not use this result directly in this paper but it did help to motivate the theory.
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Proof. (1) Let a ∈ C which is not invertible. By Lemma 5.3 the set [aC,d(a)C] is
linearly ordered by inclusion and finite. Thus it contains a maximal element bC. By
the definition of the basis B, there is a unique atom a1 ∈ B such that bC = a1C. We
may therefore write a = a1b where λ(b) < λ(a). This process can therefore only continue
a finite number of times until we have written a = a1 . . . amg where g is invertible and
m = λ(a). Suppose now that

a = a1 . . . amg = b1 . . . bmh

where ai, bi ∈ B and g, h ∈ G. Observe that aC ⊆ a1C, b1C. But by Lemma 5.3, the
category C is right rigid and so a1C and b1C are comparable. But both principal right
ideals are maximal and so a1C = b1C. Since a1 and b1 have both been chosen from the
transversal B, we must have that a1 = b1. By left cancellation, a2 . . . amg = b2 . . . bmh.
The above argument may be repeated and so we deduce that a1 = bi for 1 ≤ i ≤ m. It
follows from this that g = h, as well.

(2) Define a directed graph to have vertices the identities of C and directed edges
defined by the elements of the basis B. It is immediate from part (1) that B∗ is the free
category generated by this directed graph.

Let C be a left cancellative Levi category and let B be a basis. We want to calculate
the following product in the category

(a1 . . . amg)(b1 . . . bnh)

where g, h are invertible and ai, bj ∈ B. Clearly, the first step is to calculate gb1. By the
above theorem, this can be written as a unique element in B∗G. However λ(gb1) = 1. It
follows that we can write gb1 = b′g′ for a uniquely determined invertible element g′ and
a uniquely determined element b′ ∈ B. We need better names for b′ and g′. This leads to
the following definition which now makes sense.

5.8. Definition. Let C be a Levi category with basis B and groupoid of invertible ele-
ments G. Let g ∈ G and a ∈ B. Define g · a ∈ B and g|a ∈ G to be the unique elements
such that

ga = (g · a)g|a.

We call the operation · action and the operation | restriction.

5.9. Remark. The properties satisfied by action and restriction are well-known in the
theory of Zappa-Szép products of categories but will be omitted here.

In terms of the above definition, we therefore have that

(a1 . . . amg)(b1 . . . bnh) = a1 . . . am(g · b1)(g|b1b2) . . . bnh

and we need to calculate (g|b1b2). It’s now clear that the two operations of action and
restriction are enough to allow us to compute all products with repeated application
causing changes to ripple through the sequence of symbols.
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This is all we need to know in what follows but for completeness we conclude by
stating a theorem not used in this paper but included for interest. See [Brin 2005] for
the definition of Zappa-Szép products, and [Lawson 2008b] for a proof in a more general
setting. The hard direction of the proof follows from Theorem 5.7, whereas the easy
direction is by direct verification.

5.10. Theorem. A category is a left cancellative Levi category if and only if it is iso-
morphic to the Zappa-Szép product of a free category by a groupoid.

This result enables us to regard left cancellative Levi categories as encoding infor-
mation about self-similar groupoid actions. We shall not pursue this idea here, but see
[Lawson 2008b, Wallis 2013]. The following is now immediate and describes the rôle
played by free categories within the class of Levi categories.

5.11. Corollary. Free categories are the left cancellative Levi categories with trivial
groupoids of invertible elements.

We now describe a co-ordinatization result of a type common in semigroup theory6.
Let C be a skeletal cancellative Levi category with groupoid of invertible elements G. Let
a ∈ C be a non-invertible element where e

a→ f . We shall be interested in the structure
of the J -class Ja containing a. If b ∈ Ja then b = gah for some g, h ∈ G. The
elements g and h need not be unique. Suppose therefore that a = gah = kal. Then
(k−1g)a = a(lh−1). This motivates us to define

H = {g ∈ Ge : ga = ag′ for some g′ ∈ Gf},

a subgroup of Ge.

5.12. Lemma. [Co-ordinatization lemma] With the above definitions, there is a bijection
between the sets Ja/R and Ge/H.

Proof. Let Ge =
⋃
i∈I giH be any coset decomposition. We prove that {gia : ∈∈ I} is

a transversal for Ja/R. Clearly, gia ∈ Ja for all i ∈ I. Suppose that giaR gja. Then
gia = gjag for some g ∈ Gf . Thus (g−1

j gi)a = ag and so by definition g−1
j gi ∈ H. It

follows that gi = gj giving gia = gja. Now let b ∈ Ja. Then b = gah for some g ∈ Ge and
h ∈ Gf . We may write g = gil where l ∈ H. But then

b = gah = (gil)ah = (gia)l′h

for some l′ from the definition of H. We have therefore proved that bR gia.

6The first author is grateful to Stuart Margolis for some email exchanges on this issue.
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Motivated by the above lemma, we now define a special kind of basis for a skeletal left
cancellative Levi category.

5.13. Definition. Let C be a skeletal left cancellative Levi category. We define a basis
B of C, called a co-ordinatization, as follows.

1. Choose an atomic J -transversal Y . By Proposition 4.15, there is a corresponding

diagram of partial homomorphisms such that for each x ∈ Y where e
x→ f , there are

partial homomorphisms φx(g) = g|x where g ∈ (Ge)
+
x for each x ∈ Y .

2. For each x ∈ Y where e
x→ f , choose a coset decomposition Ge =

⋃
i∈I gi(Ge)

+
x .

Denote by T+
x the transversal {gi : i ∈ I}. We shall require that e be an element of

this transversal. Recall that e is to be regarded as the identity of Ge.

3. For each x ∈ Y , we have, by Lemma 2.10, a set of atoms Bx = {kx : k ∈ T+
x }.

Define B =
⋃
x∈Y Bx.

The fact that B is, in fact, a basis for C is immediate by Lemma 5.12.

5.14. Remark. Once we have fixed a basis, there are then well-defined defined operations
of action and restriction as defined in Definition 5.8.

5.15. Lemma. Let C be a skeletal left cancellative Levi category with co-ordinatization
B, atomic J -transversal Y and groupoid of invertible arrows G. Let x ∈ Y where e

x→ f .

1. (Ge)
+
x = {g ∈ Ge : g · x = x}, the stabilizer of x under the ·-action.

2. φx(g) = g|x.

Proof. We use the fact that C = B∗G and the decomposition of elements that arises is
unique. (1) Let g ∈ (Ge)

+
x . Then by definition gx = xh for some h. But gx = (g · x)g|x.

Thus by uniqueness, we have that x = g · x. On the other hand, if g · x = x then
gx = (g · x)gx and so gx = xg|x. Thus g ∈ (Ge)

+
x .

(2) This follows by our calculations in (1).

The significance of our co-ordinatization becomes apparent in our next result.

5.16. Proposition. [Normal forms] Let C be a skeletal left cancellative Levi category
with a co-ordinatization B and associated atomic J -transversal Y .

1. If e
a→ f is an arbitrary element of C, we may write

a = (g1x1) . . . (gmxm)g

uniquely where xi ∈ Y , gi ∈ T+
xi

, and g ∈ Gf . We call this a normal form.

2. The product of two elements in normal form is determined only by the multiplication
in the local groups Ge and the homomorphisms φx.
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Proof. (1) This is immediate by Theorem 5.7 and the definition of a co-ordinatization.
(2) Let

a = (g1x1) . . . (gmxm)g and b = (h1y1) . . . (hmym)h

be elements of a skeletal left cancellative Levi category written as normal forms such that
∃ab. We may calculate the normal form of ab as follows. Since f = d(b), we have that
g ∈ Gf and so we may write gh1 = k1l where k1 ∈ T+

y1
and l ∈ (Gf )

+
y1

. Thus

g(h1y1) = k1ly1 = k1y1l|y1 = k1y1φy1(l)

using the fact that l · y1 = y1 and l|y1 = φy1(l) by Lemma 5.15. This process can now be
repeated with the effect rippling rightwards through the product until we get

ab = (g1x1) . . . (gmxm)(k1y1) . . . (knyn)p

for some invertible arrow p in a local group.

The proposition above leads to the following. Let D be a diagram of partial homo-
morphisms. We shall define a category 〈D〉 by means of a presentation constructed from
D. We first construct a new directed graph D′ from D. This contains the directed graph
D but at each vertex we adjoin additional loops labelled by the elements of Ge. As a
notational device, elements of this graph will be written [a] where a is either an edge of
D or an element of one of the groups Ge. We construct the free category (D′)∗. We now
factor out by two kinds of relations:

1. [g][h] = [gh] if g, h ∈ Ge.

2. [g][x] = [x][φx(g)] where g ∈ (Ge)
+
x .

The resulting category is denoted by 〈D〉. The proof of the following is now immediate
by Proposition 5.16.

5.17. Theorem. [Presentation theorem] Let D be a diagram of partial homomorphisms.
Then 〈D〉 is a skeletal left cancellative Levi category isomorphic to the category T(B(C)).
It is cancellative if and only if D is a diagram of partial isomorphisms.

PROOF OF THEOREM 5.4

Observe that our proof is in all essentials equivalent to the proof of the main theorem
of [Higgins 1976] and we refer to his proof at a number of points below. Recall that we
have to prove that the universal groupoid G of a skeletal cancellative Levi category C is
the fundamental groupoid of the graph of groups with given orientation associated with
C. The category C is embedded into G.

We may assume, without loss of generality, by Section 4 that the category C arises
from a graph of groups. The edges of this graph of groups are Y = X ∪ X where here
X is our chosen orientation7. We construct the fundamental groupoid of this graph of
groups as in [Higgins 1976]. This is the groupoid G freely generated by the arrows in Y
and the elements of the local groups Ge subject to the following relations

7Note that [Higgins 1976] uses X for his set of vertices whereas for us this is the set Co.
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1. [g][h] = [gh] whenever g, h ∈ Ge.

2. If y ∈ Y where e
y→ f then the relation [ȳ][g][y] = [φy(g)] holds for each g ∈ (Ge)

+
y .

In the groupoid G, we have that ȳ is the inverse of y. Thus in G, we also have that

(2)′ [g][y] = [y][φy(g)].

The elements of G are described by normal forms in the same way as described in
Proposition 5.16. By a positive normal form we mean a sequence of the form

a = (g1x1) . . . (gmxm)g

where the xi ∈ X. These are certainly normal forms in the sense of Higgins [Higgins 1976]
and so are pairwise distinct. They form a category isomorphic to C by Theorem 5.17 and
so C is embedded in the groupoid G. But G is the universal groupoid of C because C is
generated by the relations (1) and (2)′ and G arises only by forcing the edges x to become
invertible.

5.18. Remark. We may restate the above theorem in another way. A graph of groups,
considered with a given orientation X, has fundamental groupoid G. The elements of
G that have positive normal forms, in the sense of the above proof, form a subcategory
C of C. Perforce cancellative, C is a skeletal cancellative Levi category whose universal
groupoid is G, and every skeletal cancellative Levi category arises in this way.

The following two examples show that the basic building blocks of graphs of groups fit
comfortably within our theory in that they arise from skeletal cancellative Levi categories
with one identity and two identities, respectively.

5.19. Example. HNN extensions. A Rees monoid is a cancellative Levi category with
one identity. It is automatically skeletal. Such a monoid is said to be irreducible if it has
a single maximal J -class. The universal groups of irreducible Rees monoids are precisely
HNN extensions with one stable letter and was the subject of [Lawson & Wallis 2015] and
motivated the work of the current paper.

5.20. Example. Amalgamated free products. Let X be a bifree (G,H)-bimodule where
both G and H are groups which is irreducible in the sense that GxH = X for some
x ∈ X. Such bimodules correspond to partial isomorphisms from θx from G to H. In
this case, the tensor product construction is degenerate and C = G ∪X ∪H is a skeletal
cancellative Levi category with two identities. The universal groupoid of C is connected
and any local group is isomorphic to G ∗θ H, the amalgamated free product of G and H
via the identifying partial isomorphism θx.

The approach we have adopted to studying graphs of groups in Section 4 might be
termed co-ordinate-free whereas in this section we have shown how to obtain an explicit co-
ordinatization which relates to the choices in the classical theory of coset representatives.
It now remains for later work to investigate the way in which the classical theory of graphs
of groups can be developed from this categorical perspective.
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