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COEXPONENTIABILITY AND PROJECTIVITY:
RIGS, RINGS, AND QUANTALES

S.B. NIEFIELD AND R.J. WOOD

Abstract. We show that a commutative monoid A is coexponentiable in CMon(V) if
and only if −⊗A:V //V has a left adjoint, when V is a cocomplete symmetric monoidal
closed category with finite biproducts and in which every object is a quotient of a free.
Using a general characterization of the latter, we show that an algebra over a rig or ring
R is coexponentiable if and only if it is finitely generated and projective as an R-module.
Omitting the finiteness condition, the same result (and proof) is obtained for algebras
over a quantale.

1. Introduction

Recall that an object A of a category A with finite products is exponentiable if and only
if −×A:A //A has a right adjoint. In [Niefield, 1982], the first author showed that for
an algebra A over a commutative ring R, the spectrum Spec(A) is exponentiable in the
category of affine schemes over Spec(R) if and only if A is finitely generated and projective
as an R-module, and later showed in [Niefield, 2016] that essentially the same proof
gave a characterization of coexponentiable morphisms of quantales (with the finiteness
condition omitted). After a presentation of the latter, Lawvere and Menni asked if this
characterization also generalized to rigs and, in particular, idempotent rigs.

A rig (or “ring without negatives”) is another name for a commutative semiring, and
an idempotent rig is one in which 1+1 = 1. See, for example [Schanuel, 1991], where the
Burnside rig of a distributive category is introduced, [Lawvere/Schanuel] for the study
of rigs in “Objective Number Theory,” or more recently [Castiglioni et al]. Note that
idempotent rigs are 2-rigs (i.e., rigs under 2), or alternately, commutative monoids in the
category of join-semilattices with 0.

Since rigs, rings, and quantales are commutative monoids in an appropriate monoidal
category, such a generalization seemed reasonable. However, the proof for quantales
(respectively, rings) used a property of modules that does not appear to hold for modules
over a rig, namely, every flat (respectively, finitely presented flat) module is projective
(respectively, finitely generated projective). After consulting the vast semiring literature,
the ring/quantale approach did not seem feasible for rigs. Then, a 1981 letter from the
second author surfaced including an alternate proof that for a module M over a ring R,
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the endofunctor −⊗RM has a left adjoint if and only if the canonical morphism

M ⊗R HomR(M,R) // HomR(M,M)

is an isomorphism, and that this is equivalent to M being finitely generated and projective.
In this paper, we show that the above property (and the construction of coexponen-

tials of rings) generalizes to any cocomplete symmetric monoidal closed category with
finite biproducts and in which every object is a quotient of a free, and hence gives a
characterization of coexponentiable rigs.

2. Left Adjoints to Tensor

Throughout this section, we assume (V , I,⊗, [·, ·], . . .) is a symmetric monoidal closed
category in which every object is a quotient of a free, i.e., for every V there is a regular
epimorphism of the form ⊕αI //V , where the domain is a coproduct of copies of the unit
I indexed by α.

2.1. Proposition. The following are equivalent for an object V of V.

(a) The functor −⊗ V :V // V has a left adjoint.

(b) The functor −⊗ V :V // V preserves limits.

(c) The canonical morphism θV :V ⊗ [V, I] // [V, V ] is an isomorphism.

(d) The functor −⊗ V is left and right adjoint to −⊗ [V, I].

Proof. Clearly, (d)⇒ (a)⇒ (b). To show that (b)⇒ (c), suppose ⊕βI //// ⊕α I // V is
a coequalizer, and consider the commutative diagram

[V, V ] [⊕αI, V ]//

V ⊗ [V, I]

[V, V ]

θV ��

V ⊗ [V, I] V ⊗ [⊕αI, I]// V ⊗ [⊕αI, I]

[⊕αI, V ]

θα��

////

////

V ⊗ [⊕βI, I]

[⊕βI, V ]

θβ
��

where the rows are equalizers, since [−,W ] takes coequalizers to equalizers, for all W , and
V ⊗− preserves equalizers by assumption (b). Since [−, V ] takes coproducts to products,
the canonical morphism [⊕αI, V ] //

∏
α[I, V ] ∼=

∏
α V is an isomorphism. Likewise,

for [⊕αI, I] //
∏

α I, and so θα is an isomorphism, since − ⊗ V preserves products by
assumption. Similarly, θβ is an isomorphism, and it follows that θV is, as well.

For (c)⇒ (d), we will show that−⊗V is left adjoint to−⊗[V, I]. The other adjunction

follows by symmetry of ⊗. Consider εI : [V, I]⊗V
εV,I // I, the counit of −⊗V a [V,−], and

ηI : I
ι // [V, V ]

θ−1
V // V ⊗ [V, I], where ι is the transpose of the identity map on V . Tensoring

on the left with W , we get

εW :W ⊗ [V, I]⊗ V //W and ηW :W //W ⊗ V ⊗ [V, I]
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To see that the adjunction identities hold, it suffices to show they do when W = I. Since

V ⊗ [V, I]⊗ V [V, V ]⊗ VθV ⊗V //V ⊗ [V, I]⊗ V

V

V⊗εV,I
��

[V, V ]⊗ V

V

εV,V
wwooo

ooo
ooo

ooo
ooo

o

commutes, by definition of θV , it follows that

[V, V ]⊗ V V ⊗ [V, I]⊗ V
θ−1
V ⊗V //[V, V ]⊗ V

V

εV,V

&&MM
MMM

MMM
MMM

MMM
MMM

MM
V ⊗ [V, I]⊗ V

V

V⊗εV,I

��

V [V, V ]⊗ Vι⊗V //V

V

idV

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T

commutes, and so (V ⊗ εI)(ηI ⊗ V ) = idV . Also,

[V, I]⊗ V ⊗ [V, I] [V, I]⊗ [V, V ]
[V,I]⊗θV //[V, I]⊗ V ⊗ [V, I]

[V, I]

εV,I⊗[V,I]
��

[V, I]⊗ [V, V ]

[V, I]

◦
uullll

lll
lll

lll
lll

ll

commutes, by definition of ◦ and θV . Thus, we get a commutative diagram

[V, I]⊗ [V, V ] [V, I]⊗ V ⊗ [V, I]
[V,I]⊗θ−1

V //[V, I]⊗ [V, V ]

[V, I]

◦

''OO
OOO

OOO
OOO

OOO
OOO

OO
[V, I]⊗ V ⊗ [V, I]

[V, I]

εV,I⊗[V,I]

��

[V, I] [V, I]⊗ [V, V ]
[V,I]⊗ι //[V, I]

[V, I]

id[V,I]

**VVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV
VVVV

VVVV

and it follows that (εI ⊗ [V, I])([V, I]⊗ ηI) = id[V,I], as desired.

Proposition 2.1 applies when V is the category Ab of abelian groups, the category
Sup of sup lattices, the category CMon of commutative monoids, and more generally in
each case, the category RMod(V) of modules over a commutative monoid R in V (i.e.,
a ring, quantale, or rig). Taking R = I, we get IMod(V) = V , and so the latter case
includes each of the first three. Note that the tensor product ⊗ in CMon is similar to
that of Ab and Sup.

Suppose θV :V ⊗ [V, I] // [V, V ] is an isomorphism, and write

θ−1V (idV ) =
∑
α∈S

vα ⊗ ϕα
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where S is finite in all cases but V = Sup. Applying θV , we see that
∑

α φα(v)vα = v,
for all v ∈ V . Thus, the vα generate V and we get a morphism r : ⊕αI // V . Since
⊕αI ∼=

∏
α I, in each case, the φα induce a morphism i:V // ⊕α I such that ri = idV ,

and it follows that V is projective.

Conversely, suppose F oo
i

r
// V is a retraction of F onto V , where F = ⊕αI ∼=

∏
α I,

indexed by a finite set A in all cases but V = Sup, and consider the diagram

F⊗ [F, I]

[F, F ]

θF

��

oo //

//oo

V ⊗ [V, I]

[V, V ]

θV

��

where the horizontal morphisms are the retractions induced by i and r, and the squares
commutes. Since F = ⊕αI ∼=

∏
α I, it follows that θF is an isomorphism, and so θV is as

well.
Thus, we get the following corollaries which are well known when V is Ab and Sup

(see [Niefield, 1982], [Joyal/Tierney, 1984]).

2.2. Corollary. Suppose V is CMon or Ab, and R is a commutative monoid in V,
i.e., a rig or ring. Then the following are equivalent for an R-module M in V.

(a) The functor −⊗RM :RMod //RMod has a left adjoint.

(b) M is finitely generated and projective.

(c) The functor −⊗RM is left and right adjoint to −⊗R HomR(M,R).

Since the category of 2-modules in CMon is isomorphic to the category Semi of
join-semilattices (with 0), Corollary 2.2 becomes:

2.3. Corollary. The following are equivalent for X in Semi.

(a) The functor −⊗X:Semi // Semi has a left adjoint.

(b) X is finitely generated and projective.

(c) The functor −⊗X is left and right adjoint to −⊗ Semi(X, 2).

2.4. Corollary. Suppose Q is a commutative quantale. Then the following are equiva-
lent for a Q-module M .

(a) The functor −⊗QM :QMod //QMod has a left adjoint.

(b) M is projective

(c) The functor −⊗QM is left and right adjoint to −⊗Q HomQ(M,Q).
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3. Coexponentiable Commutative Monoids

Throughout this section, we assume V is a cocomplete symmetric monoidal closed category
with finite biproducts (in the sense of [Mac Lane, 1971]) and in which every object is a
quotient of a free. To simplify notation, let C denote the category of commutative monoids
in V . Then C has finite coproducts given by the tensor ⊗ of V , and so one can consider
coexponentiable commutative monoids V .

Every object V of V gives rise to two objects of C. In addition to the free commutative
monoid SV (see below), there is a monoid structure on I × V defined as follows. Take
η: I // I × V to be the morphism whose first projection is the identity on I and second
projection is the composite I // 0 // V , where 0 is the initial and terminal object of V ,
and let µ: (I × V )⊗ (I × V ) // I × V denote the morphism with first projection given by

(I × V )⊗ (I × V )
π1⊗π1 // I ⊗ I ∼= I

and second projection by

(I × V )⊗ (I × V )
(π1⊗π2,π2⊗π1) // (I ⊗ V )× (V ⊗ I) ∼= (I ⊗ V )⊕ (V ⊗ I)

(λρ )
// V

where λ and ρ are the structure isomorphism in V . Then, one can show that I × V is a
commutative monoid in V , and every morphism f :V //W of V induces a homomorphism
I × f : I × V // I ×W . The operation µ can be thought of as a “generalized derivation”
since for modules over a ring or rig R, it is defined by (r, v)(s, w) = (rs, rw + sv).

Recall that the free commutative monoid SV (with unit i:V //SV ) is defined via the
coequalizer

TV ⊗ TV //// TV // SV

imposing commutativity on the free monoid TV = ⊕n≥0V ⊗n. One can show that the
counit ε:SC // C is a regular epimorphism in C, since it is a retraction in V which
induces a coequalizer

SC
iε //

idSC
// SC

ε // C

in V and, since the tensor product of coequalizers of this form is a coequalizer in V , the
corresponding diagram

S(SC) //// SC ε // C

is a coequalizer in C.

3.1. Theorem. Let C be a commutative monoid in V. Then C is coexponentiable in C
if and only if −⊗ C:V // V has a left adjoint.
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Proof. By Proposition 2.1 it suffices to show that C is coexponentiable in C if and only
if −⊗ C preserves limits in V .

Suppose C is coexponentiable in C. Given a diagram {Vα} in V , there is a retraction

I × Vα oo
i2

π2
// Vα in V , for each α, and thus we get a commutative diagram

(limα Vα)⊗ C

limα(Vα ⊗ C)
��

oo //

//oo

(limα(I × Vα))⊗ C

limα((I × Vα)⊗ C)

θ

��

where the horizontal morphisms are retractions in V . Since C is coexponentiable and θ
is a homomorphism, we know that θ is an isomorphism in C, and it follows that − ⊗ C
preserves limits in V .

Conversely, suppose − ⊗ C preserves limits in V . Then − ⊗ [C, I] a − ⊗ C in V , by
Proposition 2.1. Then we have the following bijections, natural in V and B,

C(SV,B ⊗ C) ∼= V(V,B ⊗ C) ∼= V(V ⊗ [C, I], B) ∼= C(S(V ⊗ [C, I]), B)

Given A in C, there is a coequalizer S(SA)
f //
g
// SA // A in C, and so defining LCA to be

the coequalizer in C
S(SA⊗ [C, I]) //// S(A× [C, I]) // LCA

of the morphisms induced by f and g, yields the desired natural bijection

C(A,B ⊗ C) ∼= C(LCA,B)

Theorem 3.1 applies when V = RMod, where R is a commutative ring, rig, or quan-
tale. In each case, C is the category RAlg of (commutative) R-algebras. Thus, by the
corollaries to Proposition 2.1 we get:

3.2. Corollary. Suppose R is a commutative ring or rig. Then A is coexponentiable
in RAlg if and only if A is finitely generated and projective as an R-module.

3.3. Corollary. Suppose Q is a commutative quantale. Then A is coexponentiable in
QAlg if and only if A is projective as a Q-module.

Recall that C is a monoid in V , then CAlg is isomorphic to the category of commuta-
tive monoids under C in V , and so these corollaries become the following characterizations
of coexponentiable morphisms in C. Note that, since every rig under an idempotent rig
R is again idempotent, the category of rigs under such an R is isomorphic to the full
subcategory of idempotent ones.
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3.4. Corollary. A morphism R //A of commutative rings, rigs, or idempotent rigs is
coexponentiable if and only if A is finitely generated and projective as an R-module.

3.5. Corollary. A morphism Q // A of commutative quantales is coexponentiable if
and only if A is projective as a Q-module.
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