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THE CATEGORICAL THEORY OF SELF-SIMILARITY

This paper is dedicated to Joachim Lambek,
whose work was the inspiration for the following results.

PETER HINES

ABSTRACT. We demonstrate how the identity N 
N �= N in a monoidal category
allows us to construct a functor from the full subcategory generated by N and 
 to
the endomorphism monoid of the object N . This provides a categorical foundation for
one-object analogues of the symmetric monoidal categories used by J.-Y. Girard in his
Geometry of Interaction series of papers, and explicitly described in terms of inverse
semigroup theory in [6, 11].

This functor also allows the construction of one-object analogues of other categorical
structures. We give the example of one-object analogues of the categorical trace, and
compact closedness. Finally, we demonstrate how the categorical theory of self-similarity
can be related to the algebraic theory (as presented in [11]), and Girard's dynamical
algebra, by considering one-object analogues of projections and inclusions.

1. Introduction

It is well-known, [12], that any one-object monoidal category is an abelian monoid with
respect to two operations that satisfy the interchange law (a � b) Æ (c � d) = (a Æ c) � (b Æ d);
that is, all the canonical isomorphisms for the tensor are identities. However, non-trivial
one-object analogues of the canonical associativity and commutativity morphisms for
symmetric monoidal categories have been implicitly constructed by Girard for his work
on linear logic, [4, 5], and have been studied in terms of inverse semigroups in [6] and [11].
The absence of a unit allows for a more interesting theory.

We demonstrate in section 2 how these examples arise naturally from the assumption
of self-similarity. This is motivated by the examples of either the intuitive construction
of the Cantor set, or bijections between N and N � N. We de�ne a self-similar object of a
symmetric monoidal category to be an object N satisfying N �= N
N . In the categorical
case, this gives rise to examples of structure-preserving maps between categories and
monoids. In section 3, we then demonstrate how these maps allow us to construct one-
object analogues of the categorical trace and compact closedness. Finally, in section
4, these categorical constructions are related to the algebraic approach to self-similarity
described in [11], and Girard's dynamical algebra, by considering one-object analogues of
projections and inclusions.
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2. Self-similarity and tensors

2.1. Definition. Let (M;
) be a symmetric monoidal category and denote the associa-
tivity, commutativity, and left and right unit isomorphisms by tA;B;C ; sA;B; �A; �A respec-
tively. We say that an object N of M is self-similar if N �= N 
 N ; that is, there exist
morphisms c : N 
 N ! N and d : N ! N 
 N that satisfy dc = 1N
N and cd = 1N .
We call these morphisms the compression and division morphisms of N .

For the purposes of this paper, we will require the additional condition that the tensor

 is not strict at N , so tN;N;N is not the identity map. We also assume that the commu-
tativity is not strict, to avoid studying degenerate cases. We study the full subcategory of
M given by all objects constructed from N and 
, which we refer to as N
. We assume
throughout that N 6= I.

The subcategory N
 has all the structure of a monoidal category apart from the unit
object; we use the awkward term unitless monoidal categories1 for structures of this form.
The following is then immediate:

2.2. Lemma. All objects of N
 are isomorphic to N , by maps dX : N ! X and cX :
X ! N .

Proof. We (inductively) de�ne the isomorphisms by:

� dN = 1N = cN : N ! N ,

� dU
V = (dU 
 dV )d : N ! U 
 V

� cU
V = c(cU 
 cV ) : U 
 V ! N .

First note that c = cN
N and d = dN
N . The uniqueness of these maps then follows from
the requirement that 
 is not strict at N , and hence that tX;Y;Z is never the identity map,
for any X; Y; Z 2 Ob(N
). This ensures that the set of objects is in direct correspondence
to the set of (non-empty) binary bracketings of a single symbol, and the tensor corresponds
to bracketing two objects together. This can be compared to the objects and tensor of
MacLane's free monoidal category on one generator, as used in the proof of his celebrated
coherence theorem. We refer to [12] for this construction and proof.

Let U and V be objects of N
 satisfying dUcU = 1U and dV cV = 1V . (This holds
trivially for U = V = N). Then

dU
V cU
V = (dU 
 dV )dc(cU 
 cV ) = (dU 
 dV )1N
N(cU 
 cV )

= (dUcU 
 dV cV ) = (1U 
 1V ) = 1U
V :

Therefore, by induction, dXcX = 1X for all objects X. Similarly, cXdX = 1N .

1This is admittedly an abuse of notation, inasmuch as a monoid without an identity is a semigroup.
However, the natural alternatives, `multiplicative category', or `semigroup category' have already been
used in the work of Hyland and DePaiva, and Lawson respectively.
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This allows us to construct a functor from the category N
 to the endomorphism monoid
of N (considered as a one-object category), as follows:

2.3. Proposition. Let N be a self-similar object of a symmetric monoidal category,
(M;
). The map � : N
 !M(N;N), de�ned by �(f) = cY fdX for all f : X ! Y and
�(X) = N for all X 2 Ob(N
) is a functor.

Proof. For all f : X ! Y and g : Y ! Z in N
, by de�nition,

�(g)�(f) = cZgdY cY fdX = cZg1Y fcX = �(gf):

Therefore, � preserves composition, and it is immediate from the de�nition that �(1X) =
1N for all objects X. Hence � is a functor.

These de�nitions allow us to construct a monoid homomorphism that has a very close
connection with the tensor, as follows:

2.4. Lemma. Let N be a self-similar object of a symmetric monoidal category (M;
),
and let � : M(N;N) �M(N;N) ! M(N;N) be de�ned by f � g = c(f 
 g)d, for all
f; g : N ! N . Then
(i) � is a monoid homomorphism,
(ii) �(f 
 g) = �(f)� �(g) for all f : U ! X and g : V ! Y , for U; V;X; Y 2 Ob(N
).

Proof.
(i) By de�nition, (1� 1) = cd = 1N , and

(f � g)(h� k) = c(f 
 g)dc(h
 k)d = c(fh
 gk)d = fh� gk:

Hence � is a monoid homomorphism.
(ii) By de�nition �(f)� �(g) = c(�(f)
 �(g))d. Hence, by de�nition of �,

�(f)� �(g) = c(cXfdU 
 cY gdV )d = c(cX 
 cY )(f 
 g)(dU 
 dV )d

and so, by de�nition of cX
Y and dU
V ,

�(f)� �(g) = cX
Y (f 
 g)dU
V = �(f 
 g):

Our claim is that this monoid homomorphism (which, in [6], is referred to as the internal-
isation of the tensor) gives the endomorphism monoid of N the structure of a one-object
(unitless) symmetric monoidal category, with � as the tensor.

2.5. Definition. The one-object analogues of the axioms for a tensor are as follows:
There exist special elements s and t (the analogues of the commutativity and associativity
elements respectively) that satisfy:

1. s(u� v) = (v � u)s,



Theory and Applications of Categories, Vol. 6, No. 3 36

2. t(u� (v � w)) = ((u� v)� w)t,

3. t2 = (t� 1)t(1� t),

4. tst = (s� 1)t(1� s),

5. s2 = 1,

6. t has an inverse, t�1, satisfying tt�1 = 1 = t�1t.

These are just the axioms for a (unitless) symmetric monoidal category with the object
subscripts erased.

The homomorphism � satis�es the above conditions, as follows:

2.6. Theorem. Let N be a self-similar object of a symmetric monoidal category (M;
),
and let � be as de�ned in Lemma 2.4 of Section 2. Then there exist distinguished elements
s and t of the endomorphism monoid of N satisfying 1. to 6. above.

Proof. De�ne s = �(sNN), where sX;Y is the family of commutativity morphisms for
(M;
). Similarly, de�ne t = �(tN;N;N) and t

�1 = �(t�1N;N;N). Note that, for the isomor-
phisms of Lemma 1 to be well-de�ned, we require that tN;N;N 6= 1N
(N
N)

Then �(tX;Y;Z) = �(tN;N;N) = t, by the naturality of tX;Y;Z, and the fact that �(1X) =
1, for all X; Y; Z 2 Ob(N
). Similarly, �(sX;Y ) = s, for all X; Y 2 Ob(N
).

The conditions 1. to 4. follow immediately, by applying � to the axioms 1. to 4.
respectively.

1. s(b
 a) = (a
 b)s,

2. t(a
 (b
 c)) = ((a
 b)
 c)t,

3. The MacLane Pentagon:

t(A
B);C;DtA;B;(C
D) = (tA;B;C 
 1D)tA;(B
C);D(1A 
 tB;C;D):

4. The Commutativity Hexagon:

tC;A;Bs(A
B);CtA;B;C = (sA;C 
 1B)tA;C;B(1A 
 sB;C);

and by the naturality of the canonical isomorphisms for a symmetric monoidal category.
For example, applying � to the MacLane pentagon gives

�(t(A
B);C;DtA;B;(C
D)) = �((tA;B;C 
 1D)tA;(B
C);D(1A 
 tB;C;D));

and so

�(t(A
B);C;D)�(tA;B;(C
D)) = (�(tA;B;C)� �(1D))�(tA;(B
C);D)(�(1A)� �(tB;C;D)):

Therefore, tt = (t� 1)t(1� t), which is condition 3. above. Conditions 5. and 6. follow
by applying � to the equations sA;BsB;A = 1 and tX;Y;Zt

�1
X;Y;Z = 1, which follow from the

de�nition of a symmetric monoidal category.
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Hence, the endomorphism monoid of a self-similar object of a symmetric monoidal cate-
gory is a unitless one-object symmetric monoidal category.

2.7. Definition. We de�ne a monoidal functor between unitless symmetric monoidal
categories (C;
) and (D;�) to be a pair (F;m), where F : C! D is a functor, and m
is a natural transformation with components mA;B : F (A)� F (B)! F (A
 B).

With this terminology, the following is immediate

2.8. Corollary. Let N be a self-similar object of a symmetric monoidal category M.
Then � is a monoidal functor from N
 to M(N;N), considered a one-object unitless
symmetric monoidal category.

MonoidsM that have monoid homomorphisms fromM�M toM , together with analogues
of the associativity and commutativity elements satisfying 1. to 6. above have already
been constructed, under the name (strong) M{monoids in [6] and Girard Monoids in [11].
We demonstrate how the two examples given are examples of this construction in the
category of partial injective maps.

2.9. Examples of self-similarity. Any in�nite object in the category Set is self-
similar with respect to two distinct tensors; Set is a symmetric monoidal category with
respect to both the Cartesian product of sets, X � Y = f(x; y) : x 2 X; y 2 Y g and the
coproduct, A t B = f(a; 0) : a 2 Ag [ f(b; 1) : b 2 Bg. This then gives us the following:

2.10. Proposition. The set of natural numbers, N is a self-similar object of Set, with
respect to both � and t.

Proof. The elementary theory of in�nite sets gives the existence of bijections N ! N � N,
and N ! N t N. Therefore, our result follows.

M-monoid structures can then be derived from speci�c examples of bijections ' : NtN ! N

and  : N � N ! N. The examples given in [6, 11] are constructed from the function

'(n; i) = 2n+ i n 2 N ; i 2 f0; 1g

which is a bijection from N t N to N This is then used to construct a bijection from N � N

to N by denoting '(n; i) by 'i(n), and de�ning

 (x; y) = '
y
1('0(x)):

Similar results hold for the category of relations, and the category of partial injective maps
{ interestingly, algebraic representations of these M-monoid structures are given in terms
of inverse semigroup theory and polycyclic monoids (see Section 4 for the constructions
of these). We refer to [11] for the algebraic theory of inverse semigroups, and to [6, 11]
for explicit descriptions of M-monoids in terms of the inverse monoid of partial injections
on the natural numbers.
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3. Monoid analogues of other categorical structures

A functor from a symmetric monoidal category to the endomorphism monoid of an object
(viewed as a unitless one-object symmetric monoidal category), that preserves both the
category structure and the symmetric monoidal structure, might be expected to preserve
other categorical properties. We demonstrate how the assumption of self-similarity allows
us to construct one-object analogues of the categorical trace (as described by Joyal, Street,
and Verity in [8]) and, in some cases, one-object analogues of compact closedness.

These speci�c examples were motivated by Abramsky's analysis of the Geometry of
Interaction, [1], and the paper of Abramsky and Jagadeesan, [2], where it is demonstrated
that the system of [1] is equivalent to the construction of [8] | hence demonstrating that
the dynamics of the Geometry of Interaction system is given by a categorical trace, and
compact closedness. The motivation for constructing one-object analogues of compact
closedness and the categorical trace then comes from Girard's comment in [4] where he
states that his system `forgets types' | the usual representation of types being objects
in a category.

3.1. The categorical trace.

3.2. Definition. Let (M;
; s; t; �; �; I) be a symmetric monoidal category. A trace on
it is de�ned in [8] to be a family of functions, TrUA;B :M(A
U;B
U)!M(A;B), that
are natural in A;B and U , and satisfy the following:

1. Given f : X 
 I ! Y 
 I, then TrIX;Y (f) = �f��1 : X ! Y .

2. Given f : A
 (U 
 V )! B 
 (U 
 V ), then

TrU
VA;B (f) = TrUA;B(Tr
V
A
U;B
U(tB;U;V ft

�1
A;U;V )):

3. Given f : A
 U ! B 
 U , and g : C ! D, then

TrUA;B(f)
 g = TrUA
C;B
D(tBDU(1B 
 sD;U)t
�1
BUD(f 
 g)tAUC(1A 
 sC;U)t

�1
ACU)

4. TrUU;U(sU;U) = 1U .

Let N be a self-similar object of a symmetric monoidal category. Then N
 is a traced
symmetric monoidal category (although axiom 1 is not applicable, due to the absence
of the unit object). We can use the functor � to construct one-object analogues of the
categorical trace, as follows:

3.3. Lemma. Let N be a self-similar object of a traced symmetric monoidal category
(M;
), and denote the compression and division morphisms by c and d respectively.
Then the map trace : M(N;N) ! M(N;N) de�ned by trace(f) = TrNN;N(dfc) satis�es
trace(�(F )) = �(TrUX;Y (F )) for all F 2 N
(X 
 U; Y 
 U).
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Proof. trace(�(F )) = TrNN;N(d�(F )c) = TrNN;N(dcY
UFdX
Uc) by de�nition of trace and
�. However, cY
U = c(cY 
 cU) and dX
U = (dX 
 dU)d, by de�nition of the division and
compression morphisms. Therefore

trace(�(F )) = TrNN;N(dc(cY 
 cU)F (dX 
 dU)dc)

= TrNN;N((cY 
 cU)F (dX 
 dU)) = cY (Tr
N
X;Y ((1Y 
 cU)F (1X 
 dU)))dX ;

by the naturality of the trace in X and Y , and so

trace(�(F )) = cY Tr
U
X;Y (F (1X 
 dUcU))dX

= cY Tr
U
X;Y (F (1X 
 1U))dX = cY Tr

U
X;Y (F )dX;

by the naturality of the trace in U . Therefore trace(�(F )) = �(TrUX;Y (F )), by the de�ni-
tion of �.

This then satis�es one-object analogues of the categorical trace, as follows:

3.4. Theorem. Let N be a self-similar object of a traced symmetric monoidal category
(M;
), let �; s; t; t�1 be as de�ned in Theorem 2.6 of Section 2, and let the map trace
be as de�ned above. Then
(i) trace(f) = trace(trace(tft�1)),
(ii) trace(f)� g = trace(t(1� s)t�1(f � g)t(1� s)t�1),
(iii) trace(s) = 1,
(iv) trace((h� 1)f(g � 1)) = h(trace(f))g,
(v) trace(f(1� g)) = trace((1� g)f).

Proof. These follow immediately from the above Lemma, the axioms for the categorical
trace, and the fact that � is a monoid homomorphism.

Speci�c examples can be constructed at any countable set, in both the category of relations
(which is demonstrated in [8] to be a traced symmetric monoidal category), and in the
sub-category of partial injective maps (which is demonstrated in [6] to be closed under
the same categorical trace).

3.5. compact closedness.

3.6. Definition. A compact closed categoryM is a symmetric monoidal category where
for every object A, there exists a left dual, A_. The left dual has the following properties:
For every A 2 Ob(M), there exist two morphisms, the counit map �A : A_ 
 A! I, and
the unit map �A : I ! A
 A_, that satisfy the following coherence conditions:

1. �A(1A 
 �A)t
�1
AA_A(�A 
 1A)�

�1
A = 1A

2. �A_(�A 
 1A_)tA_AA_(1A_ 
 �A)�
�1
A_ = 1_A
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We refer to [9] for the details of the coherence theorem for compact closed categories.
The point of the main construction of [8] was to show that every traced symmetric

monoidal category is a monoidal full subcategory of a compact closed category, which
gives a structure theorem for traced symmetric monoidal categories. In light of this, we
would again expect that the assumption of self-similarity at an object (together with
possible extra conditions) should allow us to construct one-object analogues of compact
closedness. However, this raises the following problem: the distinguished maps that make
a symmetric monoidal category into a compact closed category (the units and counits) are
de�ned in terms of the unit object. However the � functor of Proposition 2.3 of Section 2
gives one-object analogues of unitless symmetric monoidal categories. This motivates an
alternative characterisation of compact closed categories.

In many applications of compact closed categories (for example, the construction of
a canonical trace on a compact closed category, [8]), the � and � maps always appear in
conjunction with the unit isomorphisms �; � and ��1; ��1 respectively. For example, [8]
uses morphisms between X and X 
 (A
 A_) for all X and A de�ned by (1X 
 �A)�

�1
X ,

and similarly for � and �. We take maps of this form as primitive; this gives the following
alternative set of axioms for a compact closed category:

3.7. Definition. For every object A 2 Ob(M), there exists a dual object A_, together
with morphisms

� �XA : X ! (A
 A_)
X,

� ÆXA : X 
 (A_ 
 A)! X,

that are natural in X and satisfy the following axioms

1. ÆAAt
�1
AA_A�AA = 1A,

2. ÆA_AsA_
A;A_tA_AA_sA
A_;A_�A_A = 1A_,

3. (�A
A_�IA 
 1X)�
�1
X = �XA,

4. �X(1X 
 ÆIA�
�1
A_
A) = ÆXA.

The naturality of �XA and ÆXA inX can be written explicitly as, ((1A
1A_)
f)�XA =
�Y Af and fÆXA = ÆY A(f 
 (1A_ 
 1A)) for all f : X ! Y .

The proof of the equivalence of this set of axioms with the usual set is postponed
until the Appendix. However, note that the unit element is not central to the above
characterisation of compact closedness. This allows us to de�ne one-object (unitless)
analogues of these axioms for M-monoids, as follows:

3.8. Definition. An M-monoid is said to satisfy the one-object analogues of compact
closedness if there exist distinguished elements �; ��1 and Æ; Æ�1 that satisfy

1. Æt�1� = 1,
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2. Æsts� = 1,

3. (1� a)� = �a,

4. aÆ = Æ(a� 1).

Axioms 1. and 2. are one-object analogues of axioms 1. and 2. of De�nition 3.7, and
axioms 3. and 4. are one-object analogues of the naturality conditions.

3.9. Theorem. Let (M;
) be a compact closed category, and let N be a self-dual self-
similar object ofM. Then there exist elements � and Æ that satisfy the one-object analogues
of the alternative axioms for a compact closed category.

Proof. De�ne � = �(�NN) and Æ = �(ÆNN). The naturality of �XN and ÆXN in X

allows us to deduce that �(�XN) = �(�NN), and similarly, �(�XN ) = �(�NN ). Then, as
N_ = N , applying � to the alternative axioms for a compact closed category will give 1.
and 2. of the above De�nition, and applying � to the explicit description of the naturality
conditions (and using the fact that (1 � 1) = 1), will give us 3. and 4. of the above
De�nition.

4. Relating the categorical and algebraic theories of self-similarity

We relate the categorical approach to self-similarity given above to the inverse semigroup
theoretic approach given in [11], where self-similarity is studied algebraically in terms of
polycyclic monoids. These were introduced in [13], as follows:

4.1. Definition. PX, the polycyclic monoid on the set X, is de�ned to be the inverse
monoid (with a zero, for n � 2) generated by a set of countable cardinality, X, say
fp0; : : : pn�1g, in case jXj = n, or fp0; p1; : : :g for countably in�nite X, subject to the
relations pip

�1
j = Æij, where p

�1 is the generalised inverse2 of pi.

It will be convenient to denote the polycylic monoid on the set fp; qg by P2 { this is
following the convention of Girard, who uses elements of a C� algebra satisfying the above
axioms (which he refers to as the dynamical algebra) in his work on linear logic, [4, 5]. In
[3], this is demonstrated to be a representation of the free contracted semigroup ring over
a monoid, which is trivially the polycyclic monoid on two generators

The polycyclic monoids appear to be the algebraic representation of self-similarity.
It is demonstrated in [11] that the polycyclic monoid on two generators can also be
constructed in terms of the inverse monoid of partial isomorphisms of the Cantor set, and
in [7] that an embedding of a polycyclic monoid into a ring R gives the ring isomorphism
Mn(R) �= R, for all n 2 N. They also have a close connection with the algebraic theory
of tilings; we again refer to [11].

2Note that the existence of generalised inverses is a signi�cantly weaker condition than group-theoretic
inverses. In the inverse semigroup theoretic case, for every element a, there exists a unique generalised
inverse, which satis�es aa�1a = a and a�1aa�1 = a

�1. However, we cannot, in general, deduce aa�1 =
1 = a

�1
a. We refer to [11] for a comprehensive account of the theory of inverse semigroups.
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4.2. Definition. Let N be a self-similar object of a symmetric monoidal category (M;
),
and letM(N;N) have a zero, which we denote 0. We say that maps �1; �2 2M(N
N;N)
are left and right projection maps and i1; i2 2M(N;N 
N) are their inclusion maps, if
they satisfy

1. �1i1 = 1N and �2i2 = 1N ,

2. i1�1 = 1N 
 0 and i2�2 = 0
 1N .

4.3. Theorem. Let N be a self-similar object of a symmetric monoidal category (M;
).
If N has projection and inclusion maps, then there exists an embedding of P2 intoM(N;N).

Proof. As � preserves composition, �(�1)�(i1) = 1N = �(�2)�(i2). Similarly, �(i1)�(�1) =
1�0, and �(i2)�(�2) = 0�1, since �(0) = 0. Hence, as � is a semigroup homomorphism,

�(i1)�(�1)�(i2)�(�2) = 0 = �(i2)�(�2)�(i1)�(�1):

Therefore, �(�1)�(i2) = 0 = �(�2)�(i1), and so �(�1); �(�2) satisfy the axioms for the
generators of P2, and �(i1); �(i2) satisfy the conditions for their generalised inverses. Also,
by [13], the polycyclic monoids are congruence-free, hence the only quotient of P2 is the
trivial monoid. Therefore, these elements generate an embedding of P2 into M(N;N).

From the above, we are in a position to prove the converse to the main result of [7],
where it is proved that an embedding of P2 into the multiplicative monoid of a ring R
de�nes a family of isomorphisms R �=Mn(R) for all positive integers n. For a unital ring
R, we de�ne the category MatR that has natural numbers as objects, and b� a matrices
as morphisms from a to b. It is immediate that this category is a symmetric monoidal

category, with the tensor t given by A tB =

 
A 0
0 B

!
.

4.4. Theorem. Let R be a unital ring, and assume there exists c 2 MatR(2; 1), d 2
MatR(1; 2) such that the map � :MatR(2; 2)! R, de�ned by �(X) = cXd, is an injective
ring homomorphism. Then P2 is embedded in R.

Proof. First note that the condition on R is equivalent to stating that 1 is a self-similar
object of the categoryMatR. We demonstrate thatMatR has inclusions and projections.
De�ne

�1 = (1 0) ; �2 = (0 1) ; i1 =

 
1
0

!
; i2 =

 
0
1

!
:

Then it is immediate from the de�nition of composition in MatR that �1i1 = 1R = �2i2,
and

i1�1 =

 
1 0
0 0

!
; i2�2 =

 
0 0
0 1

!
:

Therefore, i1�1 = 1 t 0 and i2�2 = 0 t 1, and so MatR has projections and inclusions.
Therefore, by Theorem 4.3 above, there exists an embedding of P2 into the multiplicative
monoid of R.
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5. Research questions

This paper is by no means a complete account of the theory of self-similarity. The following
points are among the many it raises:

� Although we have concentrated on practical applications, presumably there is a
reasonable de�nition of the free self-similar monoidal category, analogously to the
Mac Lane de�nition of the free monoidal category on one generator [12]. This should
allow for the formulation and proof of a coherence theorem for self-similar categories.
This is related to the second point:

� The requirement that the tensor 
 is not strictly associative at the object N is not
needed - in [6], self-similarity is used to construct one-object analogues of monoidal
categories in the strictly associative case. However, this is done in an ad hoc way. It
is also curious that the monoid at N satis�es one-object analogues of the axioms for
a non-strict monoidal category. Clearly there is some underlying theory that covers
all cases.

� In at least some of [4], Girard uses a weaker condition to our self-similarity that is
equivalent to maps c : N 
N ! N and d : N ! N 
N satisfying dc = 1N
N and
cd < 1N . Although this does not allow the de�nition of a functor from a category
to a monoid, it allows a function that preserves composition and maps identities at
objects to idempotents of a monoid. This clearly de�nes a functor from the category
N
 to the Karoubi envelope of the monoid at N . However, the computational or
logical interpretation of this remains unclear.

� The construction of a compact closed category from a traced symmetric monoidal
category, as a `dualising' process is given in [8], and the logical and computational
signi�cance of this has been well studied. It would be interesting to be able to use a
similar process to go from traced M-monoids to compact closed M-monoids, without
passing though a many-object category in an intermediate stage.

� For monoidal categories with additional categorical structure X, we would like to
say that the functor � allows us to de�ne one-object analogues of X-categories. The
problem is to make this precise, and relate it to the direct limit construction used
to construct one-object analogues of Cartesian closed categories, as found in [10].
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Appendix: Equivalence of axioms for compact closedness

We demonstrate that the alternative axioms for compact closed categories given in Def-
inition 3.7 are equivalent to the usual set. We refer to the usual set of axioms, as found
in De�nition 3.6, as A1 and the alternative set of axioms as A2.

6.1. Theorem. A symmetric monoidal category that satis�es the axioms A1 also satis-
�es the axioms A2, and vice versa.

Proof. ()) Let (M;
; �; �) be a symmetric monoidal category satisfying A1. For all
X;A 2 Ob(M), we de�ne �XA = (�A 
 1X)�

�1
X and ÆXA = �X(1X 
 �A). Consider

arbitrary f : X ! Y . By the de�nition of �, and the naturality of �X in X, we can
deduce that (1A
A_
f)�XA = �Y Af , and so �XA is natural in X. Similarly, by de�nition
of Æ, and the naturality of �X in X, ÆXA is natural in X.
Also, by de�nition of � and Æ,

1. ÆAAt
�1
AA_A�AA = �A(1A 
 �A)t

�1
AA_A(�A 
 1A)�

�1
A = 1A, by axiom 1 of A1.

2. By de�nition, ÆA_AsA_
A;A_tA_AA_sA
A_;A_ÆA_A =

�A_(1A_ 
 �A)sA_
A;A_tA_AA_sA
A_;A_(�A 
 1_A)�
�1
A_:

By the naturality of sXY in X and Y this is equal to

�A_sI;A_(�A 
 1A_)tA_AA_(1A_ 
 �A)sA_;I�
�1
A_:

Also, as �XsIX = �X , this is equal to �A_(�A 
 1A_)tA_AA_(1A_ 
 �A)�
�1
A_, which is

1A_, by axiom 2 of A1.

3. By the naturality of �Z in Z, and the de�nition of �XA,

(�A
A_ 
 1X)(�IA 
 1X)�
�1
X = (�A
A_ 
 1X)(�A 
 1I)(�

�1
I 
 1X) =

(�A 
 1X)(�I�
�1
I 
 1X)�

�1
X = (�A 
 1X)(1I 
 1X)�

�1
X = (�A 
 1X)�

�1
X = �XA

4. In a similar way to 3,

�X(1X 
 ÆIA)(1X 
 ��1A_
A) = �X(1X 
 �A) = ÆXA

by the de�nition of � and the naturality of �Z in Z.

Therefore, �AX and ÆAX are morphisms that are natural in X, and satisfy the axioms A2.
Therefore, every symmetric monoidal category satisfying A1 also satis�es A2.
(() Let (M;
; �; Æ) be a symmetric monoidal category satisfying A2. We de�ne mor-
phisms

�A : (A_ 
 A)! I ; �A : I ! (A
 A_)

by �A = �A
A_�IA and �A = ÆIA�
�1
A_
A. We now check the that these morphisms satisfy

the axioms A1:
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1. �A(1A 
 �A)t
�1
AA_A(�A 
 1A)�

�1
A = �A;At

�1
AA_AÆAA = 1A, by axiom 1 of A2.

2. By de�nition of � and �,

�A_(�A_ 
 1A_)tA_AA_(1A_ 
 �A)�
�1
A_ =

�A_(ÆIA_�
�1
A
A_ 
 1A_j)tA_AA_(1A_ 
 �A
A_�IA)�

�1
A_:

However, �A_ = �A_sIA_ and ��1A_ = sIA_�
�1
A_. Therefore, this is equal to

�A_sIA(ÆIA_�
�1
A
A_ 
 1A_j)tA_AA_(1A_ 
 �A
A_�IA)sIA_�

�1
A_;

and by the naturality of sXY in X and Y , the above is equal to

�A_(1A_ 
 ÆIA_�
�1
A
A_)sA_
A;A_tA_AA_sA
A_;A_(�A
A_�IA 
 1A_)�

�1
A_:

Then by axioms 3 and 4 of A2, this is ÆA_AsA_
A;A_tA_AA_sA
A_;A_�A_A, which is
1A_, by axiom 2 of A2.

Therefore, the axioms A1 are satis�ed, and this completes our proof.
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