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A NOTE ON REWRITING THEORY FOR UNIQUENESS OF
ITERATION

Dedicated to our friend and colleague Jim Lambek

M. OKADA1 AND P. J. SCOTT2

ABSTRACT. Uniqueness for higher type term constructors in lambda calculi (e.g.
surjective pairing for product types, or uniqueness of iterators on the natural numbers) is
easily expressed using universally quanti�ed conditional equations. We use a technique of
Lambek[18] involving Mal'cev operators to equationally express uniqueness of iteration
(more generally, higher-order primitive recursion) in a simply typed lambda calculus,
essentially G�odel's T [29, 13]. We prove the following facts about typed lambda calculus
with uniqueness for primitive recursors: (i) It is undecidable, (ii) Church-Rosser fails,
although ground Church-Rosser holds, (iii) strong normalization (termination) is still
valid. This entails the undecidability of the coherence problem for cartesian closed
categories with strong natural numbers objects, as well as providing a natural example of
the following computational paradigm: a non-CR, ground CR, undecidable, terminating
rewriting system.

1. Introduction

Consider the usual primitive recursion equations of the addition function: x + 0 = x,
x + (Sy) = S(x + y). How do we know these uniquely specify addition? More generally,
consider a possibly higher-order primitive recursor, Rahxy, where a : A ) B; h : A )
N) B ) B, satisfying:

Rahx0 = ax

Rahx(Sy) = hxy(Rahxy)

Again we may ask: how do we know such primitive recursive de�nitions uniquely specify
the intended function?

Such uniqueness questions make sense in many contexts: arithmetic theories [29],
�rst-order term rewriting theories [9] , primitive recursive arithmetics [14], simply and
higher-order typed lambda calculi and related functional languages[13, 20, 29], categor-
ical programming languages [5, 15] and more generally wherever we de�ne a procedure
iteratively on an inductive data type[15, 16]. If mathematical induction is provided ex-
plicitly within the formal theory, the problem of uniqueness often becomes trivial (e.g.
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[20], p.192.) But usual functional programming languages, term rewriting languages,
or categorical languages do not explicitly have induction, hence the uniqueness issue is
more problematic. We should mention that similar problems also appear in the theory of
higher-order matching [10].

The question of (provable) uniqueness of terms also arises quite naturally from the
viewpoint of category theory [20, 21]. For example, whenever we demand that arrows
arise from an associated universal mapping property, then we are immediately led to the
question of the (provable) uniqueness of terms in an appropriate language. Here we are
concerned with the property of being a (strong) natural numbers object in a free cartesian
closed category, equivalently the problem of uniqueness of iteration in G�odel's T [29, 13].

For many equational calculi, a simple-minded solution to the uniqueness problem
involves adding a kind of extensionality or uniqueness rule. This rule says: \any term t
satisfying the same de�ning equations as a given term, must be equal to that term." The
uniqueness rule may be expressed in �rst order logic as a universally quanti�ed conditional
equation, possibly between terms of higher type [22] .

However, in many interesting cases (e.g. product and coproduct types ) we can do
much better: we can present uniqueness equationally and build a terminating (= strongly
normalizing) higher-typed rewrite system for the theory [20]. 1 Here we use a technique
of Lambek[18] involving Mal'cev operations to equationally de�ne uniqueness of iterators
(recursors) in G�odel's T. We then prove this lambda theory is undecidable; thus it is
impossible to simultaneously have conuence (Church Rosser) and termination. In fact,
we show that conuence fails, but give a proof of termination using a re�ned computability
predicate argument (Section 4). This answers a question of J. Lambek. On the other
hand, the theory is ground-CR (= Church-Rosser for closed terms of base type), thus it
forms a natural, undecidable computation theory. This suggests the existence of natural,
strongly normalizing functional languages which are Turing complete and could serve as
the basis of interesting programming languages. Another consequence of this work is the
undecidability of the coherence problem for cartesian closed categories with strong natural
numbers objects. We end with a brief discussion of some extensions of these results, for
example to the data type of Brouwer ordinals.

2. Typed Lambda Calculi

We use the usual explicitly typed lambda calculus (with recursors) and its notational
conventions, cf. [13, 20, 29].

Types

Types are freely generated from a basic type N (for natural numbers) under the operation

1For typed lambda calculi with product types, uniqueness of pairing is given by the surjective pairing

equation [20]. For coproduct types, the dual equation is obvious in a categorical language [20], Part I,
Section 8. Curiously, the associated rewriting theory for typed lambda calculus with coproduct types is
very diÆcult [11].
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) .

Terms

For each type A, there is an in�nite set of variables xAi of type A, as well as speci�ed
constants for primitive recursion, typed as follows:

0 : N S : N) N RA;B : (A) B)) (A) N) B ) B)) A) N) B

Terms are freely generated from the variables and constants by application and �-
abstraction, with the usual typing constraints. In shorthand, terms have the form

variable j constant j M `N j �x : A:'

where M : A) B ; N : A. We usually write MN for M `N .

Equations

We identify terms up to change of bound variables (�-congruence). Equality is the smallest
congruence relation closed under substitution, satisfying �; � and

RA;Bahx0 = ax

RA;Bahx(Sy) = hxy(RA;Bahxy)

for all a : A; h : A) N) B ) B; x : A; y : N.

Lambda Theories

Among standard extensions of lambda calculi to which our methods apply, we mention:

(a) Lambda calculi with product types and surjective pairing [20, 13]. Such systems are
closely connected to cartesian closed categories (= ccc's). However for the purposes
of constructing free ccc's, product types are unnecessary ([25]); cf Section 5 below.
In the presence of product types with surjective pairing, the recursor R may be
de�ned in terms of the simpler notion of iterator IA : A) (A) A)) N) A (cf
[20], p. 259,[13], p. 90 ) The type N with iterators corresponds to the categorical
notion of weak natural numbers object in ccc's [20].

In this paper we shall use recursors R since (i) we do not necessarily assume prod-
uct types, (ii) recursors are necessary for more general type theories (e.g. Girard's
system F) as well as for more general categorical frameworks (e.g. Lambek's mul-
ticategories, [19]).

(b) We may consider extensions of typed lambda calculus by adding �rst-order logic to
the equational theory [23, 22] . This will be discussed in the next section. Finally, we
may extend by additional data types. For example, in the last section we consider
adding the data type of Brouwer ordinals, among others.
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Notation: As usual, the type expression A1 ) A2 ) � � � ) An abbreviates A1 )
(A2 ) � � � (An�2 ) (An�1 ) An)) � � �) , i.e. association to the right. Even if there
are no product types, we sometimes abbreviate A1 ) A2 ) � � � ) An by the Curried
expression (A1 � � � � � An�1) ) An but we still write terms in the usual way without
pairing. The reader can easily add pairing to terms if there are genuine product types.
The term expression a1a2 � � �an abbreviates (� � � ((a1`a2)`a3) � � � `an�1)`an , i.e. association
to the left.

3. Uniqueness of Recursors

3.1. Natural Numbers Objects. In categorical logic [20], a natural numbers object (=
NNO) in a cartesian closed category (= ccc) C is an object N together with arrows

1
0
! N

S
! N which is initial among all diagrams of the shape 1

a
! A

g
! A . This means:

for all arrows a : 1! A and g : A! A there is a unique iteration arrow ItA(a; g) : N! A
satisfying: (i) ItA(a; g)o0 = a and (ii) ItA(a; g)oS = goItA(a; g). A weak natural numbers
object N in a ccc C merely postulates the existence, but not uniqueness, of the iterator
arrow above. In the typed lambda calculus associated to C, a weak NNO is equivalent to
having an iterator IA : A� (A) A)�N) A in the language (cf. [20], p. 70).

3.2. Lambek's Uniqueness Conditions. We now consider uniqueness of lambda terms de-
�ned by iterators or, more generally, recursors. Girard discusses the subtleties of such
questions, and the defects of standard syntax, in [13], pp. 51, 91.

The use of �rst-order logic to strengthen lambda calculus is familiar, for example in
discussing extensionality, lambda models, and well-pointedness of ccc's, cf. [22]. In a
similar manner, uniqueness of ItA in ccc's can be guaranteed by the following conditional
rule: given arrows a : 1! A and g : A! A, if f : N! A is any arrow satisfying f o0 = a
and f oS = gof then f = ItA(a; g). Let us translate this into lambda calculus.

More generally, we consider typed lambda calculi L presented with recursors RA;B.
Given any terms a and h of appropriate type, uniqueness of RA;Bah may be guaranteed
by the following uniqueness rule: for any term f : A � N ) B, and variables x; y of
appropriate types:

(Uf;h)

8x8y[fx(Sy) = hxy(fxy)]

f = RA;Bah where a = �x : A:fx0

Here, for any x, the initial value of the recursion, fx0, is simply de�ned to be ax .
Lambek [18, 17] proved that it is possible to equationally represent the �rst-order rule

Uf;h, provided we assume the existence of certain Mal'cev operators. Let us recall his
proof.

Suppose all the types A in the lambda calculus L have a Mal'cev operation; i.e. a
closed term mA : A3 ) A satisfying the following equations (in uncurried form):

mAxxy = y mAxyy = x
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for all x; y : A . Fix a family fmA jA a typeg of such Mal'cev operations (we omit type
subscripts). Consider the term H, where Hmfh = �xyz:m(hxyz)(hxy(fxy))(fx(Sy)) for
variables f; h (where f has the same type as RA;Bah and Hmfh has the same type as h),
and the following equational rule:

(Mf;h) RA;Ba(Hmfh) = f

Notation. From now on, when the context is clear, we shall omit type subscripts.

3.3. Theorem. [Lambek([18])] The following implications hold:

(i) Mf;h implies Uf;h

(ii) Uf;h0 implies Mf;h where h0 = Hmfh .

Proof. In this proof, we freely use (�)-rule, i.e. extensionality. (i): Suppose Mf;h and
the hypotheses of Uf;h, i.e. suppose fx(Sy) = hxy(fxy). Since m is a Mal'cev operator,
Hmfh = h. Therefore by Mf;h, fxy = Ra(Hmfh)xy = Rahxy, so f = Rah, by (�),
which is the conclusion of Uf;h.

(ii) Suppose Uf;h0. Note that the hypothesis of this rule is always true, since it says
fx(Sy) = h0xy(fxy) = m(hx(fxy))(hx(fxy))(fx(Sy)) = fx(Sy): Thus, the conclusion
of the rule is true; so f = Rah0, i.e. Mf;h, as required.

The theorem above expresses the sense in which we can replace the conditional unique-
ness rules Uf;h by the equations Mf;h. The problem of equationally de�ning the appropri-
ate Mal'cev operators is addressed in section 3.2 below.

The rule Uf;h above guarantees uniqueness of the recursor RA;Bah for given a; h, which
suÆces for many purposes (e.g. in Lambek's work, it guarantees uniqueness of the iterator
arrow in a strong natural number object). But it does not guarantee the uniqueness of
the term RA;B itself. The uniqueness of such R is a much stronger condition which we
shall not discuss here.

One advantage of assuming the uniqueness rule Uf;h is pointed out in [20], Proposition
2.9, p. 263: in simply typed lambda calculus with the uniqueness rule (equivalently, in
the free ccc with NNO) all primitive recursive functions and the Ackermann function may
be de�ned by their usual free variable equations. But in fact more is true: in the next
proposition we show many familiar set-theoretic equations become provable for variables
(not just for numerals). In what follows, +; .; . are terms de�ned (using R) by the usual

primitive recursive equations on N (cf. [14]) .

3.4. Proposition. [Goodstein[14], Lambek[18], Roman[27]] In typed lambda calculus
with the uniqueness rule Uf;h, the following identities hold for variables x; y : N
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(i) Sx .Sy = x .y

(ii) x .x = 0

(iii) x.(1
.
x) = 0

(iv) x.(1 .y) = x .(x.y)

(v) (x + y) .y = x

(vi) Associativity of + and .

(vii) jx; yj = jy; xj, where
jx; yj = (x .y) + (y .x)

(viii) Commutativity of + and .

(ix) x+ (y .x) = y + (x .y)

Proof. Detailed arguments are given in Goodstein [14] and/or Lambek[18] (cf. also
Roman [27]). Re (ix), which is an important identity, either follow [14], 5.17 (p.108)
or alternatively, note that both sides of (ix) (as functions of x; y) satisfy the following
double recursion formula: '(0; 0) = 0; '(0; y + 1) = y + 1; '(x + 1; 0) = x + 1; '(x +
1; y + 1) = '(x; y) + 1. Hence by uniqueness the equality follows, provided we can show
' is representable in typed lambda calculus (equivalently, in the free ccc with NNO). We
omit the construction of ' except to remark it is similar to the proof that Ackermann's
function is representable (cf. [1], p. 570,[20], p. 258 ).

Notation. We extend the arithmetical operations in the set S = f0;+; .; .g to all types

by induction: (i) at type N the operations in S have their usual meanings. (ii) Suppose
we know the operations in S at types A and B. Then we extend these operations to
type A ) B by lambda abstraction, i.e. 0A)B =def �x : A:0B, and f ?A)B g =def �x :
A:fx ?B gx, for any operation ? 2 f+; .;

.
g. Since all types have the form A � A1 )

A2 ) � � � ) An�1 ) N, an operation a?A b is essentially �x1 � � �xn:ax1 � � �xn �N bx1 � � �xn
, where xi : Ai. Finally, we may now discuss the usual di�erence function in Goodstein
at higher types: jM;N j = (M .N) + (N .M)

If we add explicit product types, we could also de�ne the arithmetical operations
0A�B and ?A�B \componentwise". We shall use the usual notation (without subscripts)
for +; .;

.
; 0 at all types when the meaning is clear.

3.5. Proposition. In typed lambda calculus with the uniqueness rule Uf;h, the following
�rst-order schema holds for arbitrary terms M;N of the same type: ` jM;N j = 0 $
M = N :

Proof. The (!) direction is the interesting one. Arguing informally, we prove the result
for variables of type N , the other cases following from appropriate lambda abstractions
and substitutions. Suppose jx; yj = 0; then by Proposition 3.4(v; vii), jx; yj .(y .x) = 0,
so x .y = 0. Similarly, y .x = 0. Hence, using equation Proposition 3.4(ix) above, we
obtain: x = x + (y .x) = y + (x .y) = y.

3.6. De�nable Mal'cev Operations. The ruleMf;h is equational, provided the speci�cation
of the Mal'cev operationsmA are. In the pure typed lambda calculus, Lambek [19] showed
that Mal'cev operations are actually de�nable from cut-o� subtraction . , provided we
adjoin some simple equations (see below). Consider the inductively de�ned family of
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closed terms mA : A3 ) A, uniquely determined (by functional completeness) by the
following clauses in uncurried form:

1. mNxyz = (x + z) .y, for variables x; y; z : N.

2. mA)Buvw = �x : A:mB(ux)(vx)(wx), for variables u; v; w : A) B.

Remark. If typed lambda calculus is extended with products and terminal type, we may
extend mA (using explicit tupling) as follows: m1hx; y; zi = �, for variables x; y; z : 1 and
mA�B = hmAohpA1; pA2; pA3i; mBohpB1; pB2; pB3ii, where pAi denotes the projection onto
the ith-factor of the A component, etc.

To say mNxyz = (x + z) .y gives a Mal'cev operator at type N means we must be
able to prove (x + z) .x = z and (x + y) .y = x for variables x; y; z. Alas, in the pure
theory these equations are only provable for closed numerals 0; S0; S20; � � �: to guarantee
the result for variables we must postulate it, as follows:

3.7. Theorem. Let L be pure typed lambda calculus (all types freely generated from N).
The inductively-de�ned family of terms fmA jA a typeg given above de�nes Mal'cev op-
erations at each type, provided that at type N we add the axioms: (x + z) .x = z and
(x + y) .y = x, for variables x; y; z.

Proof. By direct calculation.

3.8. Uniqueness, Induction, and Undecidability. We now show that the uniqueness rule
is in fact equivalent to a version of quanti�er-free induction. We shall then give proofs of
the undecidability of L with uniqueness.

3.9. Lemma. The following are equivalent for any type B:

1. Uniqueness rule: for any closed term f : A) (N) B)

(Uf;h)

8x8y[fx(Sy) = hxy(fxy)]

f = RA;Bah where a = �x : A:fx0

2. Goodstein Induction at type B: for any closed term f : A) N) B

(Goodstein Ind:)

8x8y[fx0 = 0 (1 .fxy).fx(Sy) = 0]

f = �xy:0

where x : A and y : N.

3. The induction rule : for any closed terms F;G : A) N) B

(Induction)

8x; y: Fx0 = Gx0

[Fxy = Gxy]
....

Fx(Sy) = Gx(Sy)

F = G

where x : A and y : N in the antecedent are universally quanti�ed.
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Proof. We show (1)) (2)) (3)) (1), in each case by induction on the type B.
(a). (Uf;h) ) (Goodstein induction) : this is essentially Goodstein's argument, [14],

p.35, using the identities of Proposition 3.4 (this proposition assumes Uf;h .) For com-
pleteness, we sketch the proof.
Case 1. B = N. Let f : A ) N ) N be given satisfying the hypotheses of Goodstein
Induction. Then

(1 .fxy).(1
.fx(Sy)) = (1 .fxy) .((1 .fxy).fx(Sy)) = 1 .fxy (1)

De�ne g : A ) N ) N by primitive recursion as follows (where x : A and y : N are
variables): gx0 = 1, gx(Sy) = gxy.(1 .fxy). Let hxy = gx(Sy). Then using equation (1)

hx(Sy) = gx(Sy).(1 .fx(Sy)) = gxy.(1 .fxy) = gx(Sy) (2)

Also hx0 = 1 = gx0. An easy argument ([14], p.34) then shows hxy = gxy. Hence,
gx0 = 1 and gx(Sy) = gxy. By [14], 2.7304 (p. 55), g = �xy:1 . In particular, 1 .fxy = 1.
Hence fxy = fxy.(1 .fxy) = 0, by Proposition 3.4, (iii) .

Case 2: In general, any type has the form B = A1 ) A2 � � � ) An�1 ) N. Thus a
closed term f : A ) N ) B means f : A ) N ) A1 ) A2 � � � ) An�1 ) N. Thus
f = �xAyNzA1

1 � � � zAn�1

n�1 :fxy~zi, where fxy~zi : N. Now apply the same argument as in
Case 1 (with extra parameters ~zi ).

(b). (Goodstein Induction) ) (Induction):
Case 1: B = N. Let � be the closed term �xy:jFxy;Gxyj. By Proposition 3.5, Induction
is equivalent to saying:

8x; y: �x0 = 0

[�xy = 0]
....

�x(Sy) = 0

� = 0

The proof that Goodstein Induction implies the above rule is (slightly) modi�ed from
Goodstein [14], p.109. Note that Goodstein's proof assumes terms F;G : N ) N; the
same proof goes through verbatim if we assume there is an extra parameter y of type A,
i.e. that F;G are actually of type A) N) N.
Case 2: B = A1 ) A2 � � � ) An�1 ) N. Hence, as above, the problem reduces to the
case B = N, with extra parameters zi : Ai.

(c). (Ind.) ) (Uf;h): The following proof is valid for all types B. Suppose the
hypotheses of Ufh. Let F = �xy:fxy and G = �xy:Rahxy . We wish to prove F = G,
i.e. Fxy = Gxy, for all x; y. Clearly Fx0 = fx0 = ax = Rahx0 = Gx0. Now suppose
Fxy = Gxy, i.e. fxy = Rahxy. Then, using the hypothesis of Ufh ,

Fx(Sy) = fx(Sy) = hxy(fxy) = hxy(Rahxy) = Rahx(Sy) = Gx(Sy) :

So by Induction, F = G.
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From the availability of induction in the simply typed lambda calculus with uniqueness,
it follows that the �rst-order presentation is undecidable. But there are direct proofs for
the equational presentation as well:

3.10. Theorem. The typed lambda calculus L with uniqueness Uf;h is undecidable. Hence
we cannot simultaneously have SN and CR for any associated rewriting system.

Proof. Observe that with uniqueness we can represent polynomials with positive integer
coeÆcients (cf the remarks before Proposition 3.4). Thus, from the undecidability of
Hilbert's 10th problem, the general question of deciding if two such lambda terms are
equal or not is undecidable. The conclusion about rewriting systems is familiar. SN and
CR imply the word problem is decidable: to decide if two terms are equal or not, reduce
them using SN to their unique normal forms, then check if the normal forms are identical
(up to change of bound variables).

Let us end this section with a few remarks.

(i) A related result by G. Dowek [10] yields the undecidability of pattern matching in
lambda calculi supporting inductive types (as well as other theories).

(ii) Simply typed lambda calculus with product types and uniqueness L + Uf;h is very
close to Troelstra's theory qf-�-E-HA!

p of the quanti�er-free part of extensional arith-
metic in all higher types, lambda operator and product types with surjective pairing
[29], p. 46, 62 (cf. the form of induction in the Lemma above.)

We can also give an indirect proof of undecidability based on Troelstra's theory;
note, in particular, our calculus satis�es the �-rule: s = t ) �x:s = �x:t. We
follow Troelstra's proof [29], p. 62 that S = fhdme; dnei j ` m = ng and S 0 =
fhdme; dnei j ` m 6= ng are recursively inseparable. Note, however, that Troelstra's
proof also requires ([29], pp. 51-59) coding various equations of primitive recursive
arithmetic, as well as simultaneous recursion, all proved using induction. Our proofs
of similar equations in Proposition 3.4 used the uniqueness axiom Uf;h instead.

4. Rewriting theory for Uniqueness: SN and CR

Let L be the typed lambda calculus with primitive recursors and Mal'cev operators,
considered as a rewrite system[16, 20, 13]. To this end we orient all basic equations as
usual, i.e. from left-hand side to right-hand side, abbreviated LHS� RHS . In particular,
we orient in this manner the basic Mal'cev equations at type N : mxxy � x , mxyy � y,
the equations required for de�ning Mal'cev operators (see Proposition 3.7), as well as �
and �.

4.1. Proposition. The system L of typed lambda calculus, recursors (without unique-
ness) and Mal'cev equations considered as a rewriting theory oriented as above satis�es
SN and CR.

The proof is a corollary of the work of Jouannaud-Okada[16].
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Figure 1: Failure of CR

We now turn to the Mal'cev uniqueness rule. Consider the following two basic orien-
tations:

1. Reduction Ra(Hmfh)� f

2. Expansion f � Ra(Hmfh)

Let Lred = the rewriting theory obtained from L with the above reduction rule and
Lexp = the rewriting theory obtained from L with the above expansion rule.

4.2. Proposition. The system Lexp is CR but not SN.

Proof. Since the LHS of the expansion rule is a (higher-type) variable and the original
system L is CR, any critical pair is joinable by 1-step parallel reduction, [2] Hence, the
system is CR. Obviously, the system Lexp with the expansion rule above is not SN, since
the RHS expands with each reduction.

The system Lred is considerably more interesting. In what follows we show that Lred

is SN, not CR, but is ground CR (i.e. CR for closed terms of ground type ).

4.3. Proposition. The system Lred is not CR. Indeed, it is not even CR for open terms
of ground type.

Proof. Consider f = �xy:0 and h = �xyz:0, where f is of the type of the recursor Rah.
Consider the following critical pair between the reduction rule and the Mal'cev rule:

(i) Ra(Hmfh)� f , (ii) Ra(Hmfh)� Rah

Reduction (i) comes from our orientation of the Mal'cev equation Mf;h. Reduction (ii)
arises as follows: since hxy(fxy) = 0 = fx(Sy), then

Hmfh = �xyz:m(hxyz)(hxy(fxy))(fx(Sy))� �xyz:0 � h

where f and Rah are irreducible. Note that all other critical pairs are actually joinable.
See Figure 1(i). In Figure 1(ii), we see a modi�cation of (i) where Rahxy : N is an open
term with variables x : A; y : N. 2
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4.4. Proposition. The system Lred is ground CR, i.e. CR for closed terms of base type.

Proof. The only important case is shown by diagram (ii) of Figure 1, where we substi-
tute closed terms x̂ : A and ŷ : N for the variables x; y, respectively. Assuming Lred is SN
(see below), then by an inductive argument ([29], p. 104) one shows ` ŷ = Sn0 (for some
n 2 Z+) or ` ŷ = 0. In either case, we note that (ii) is joinable in either one or two steps,
with Rahx̂ŷ �� 0.

Strong Normalization of Lred

4.5. Theorem. The system Lred is SN, i.e. if t is an arbitrary term, then every reduction
path starting from t halts (at an irreducible).

The proof uses the Tait computability method ([29]). For technical reasons it does
not suÆce to directly de�ne computability for Lred , but rather we must introduce an
auxiliary language L0red (see Remark 4.8 below) 2.

The language L0 is L but with a kind of \parametrized" Mal'cev operator m0

A : A3 �
N) A de�ned as follows:

1. m0

N
xyzw = (x + z) .y for variables x; y; z : N

2. m0

A)Bfghw = �x : A�y : N:m0

B(fx)(gx)(hx)y for variables f; g; h : A) B, w : N.

Note that for every type A, variables x; y; z : A, w : N, the two de�ned Mal'cev operators
are indistinguishable, in the sense that: ` m0

Axyzw = mAxyz, i.e. m0 is essentially m
with an extra dummy variable w.

In L0, analogously to L, we introduce the term

H 0m0fh = �xyz~p:m0(hxyz~p)(hxy(fxy)~p)(fx(Sy)~p)(fxy~p)

where ~p is a sequence of variables such that fxy~p is of type N.
We now form the lambda calculus L0red completely analogously to Lred, but with Mf;h

replaced by the reduction

(M 0

fh) RA;Ba(H
0m0fh)� f

4.6. Theorem. The system L0red is SN, i.e. if t is an arbitrary term, then every reduction
path starting from t halts (at an irreducible).

The proof is a modi�cation of the well-known Tait computability method [29]. One
�rst de�nes the computable terms of type A, CompA, by induction on types as in [29]:

t 2 CompA , t 2 SN for atomic types A: (3)

t 2 CompA)B , 8a(a 2 CompA ) t`a 2 CompB): (4)

2Known SN techniques do not suÆce. For example, in order to adapt Blanqui, Jouannaud, Okada[3]
f in the Mal'cev uniqueness rule must be an accessible subterm, which is not generally true if f is of
higher type. In the earlier paper of Jouannaud and Okada [16] the SN techniques do not apply since the
higher type variable h on the LHS disappears on the RHS.
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One now proves the following by induction on types:

CR1. If t is computable, then t is SN.
CR2. If t is computable and t�� t0 then t0 is computable.

We now need to prove a lemma (by induction on terms): All terms are computable ,
from which the main theorem follows by CR1. In the proof of the lemma, one needs a
stronger inductive hypothesis to handle the case of lambda abstraction. This is summa-
rized by the following (cf. [13], p. 46) :

4.7. Lemma. Let L0red be simply typed lambda calculus with reduction on the new Mal'cev
operator, as above. If t(x1; :::; xn) : B is any term with free variables xi : Ai , and if the
terms ai : Ai are all computable, then t(a1; :::; an) is itself computable. In particular, since
variables are computable, any term t(x1; :::; xn) : B is computable.

Proof. The proof is on the complexity of t. We consider the substitution instance
t[~d=~x]~b, where the di are computable, and the bj are also computable so that t[~d=~x]~b is
of type N. It suÆces to verify that this term is SN. All cases proceed as usual, except
the critical case when t[~d=~x]~b is Ra(H 0m0fh)~b0, the redex of the Mal'cev reduction (M 0

fh).

We show that after (M 0

fh), f
~b0 : N is SN. There are essentially two key forms of such t

: (i) either t � Râ(H 0m0f̂ ĥ) (so f̂ [~d=~x] = f (for the f in Ra(H 0m0fh)) ) or (ii) t is not
of the form (i); then f must be a proper subterm of some di or bj. Case (i) is very easy

to prove: by induction hypotheses, since f̂ is a subterm of t, f̂ [~d=~x] is computable, so f

is computable, so f~b is SN. For case (ii) H 0m0fh is contained in either some di or some
bj. Hence, since these are SN, H

0m0fh is SN. In particular using the chosen formula for
H 0 in terms of m0 the subterm fxy~p is strongly normalizable for any computable terms
substituted for x; y; ~p; in particular f~b0 is SN.

4.8. Remark. The reader should note that in the proof above, the key fact that H 0

contains the subterms fxy~p is critical{the original Mal'cev rule, using Hmfh, will not
directly work.

Since the tree of reductions of m is a subtree of that of m0, we obtain:
Corollary. (Theorem 4.5) Lred is SN.

4.9. Remark. Although we do not assume genuine product types here, they may be
accounted for, just as in the setting of Jouannaud-Okada [16]. Products use the Tait-
Girard computability method [13], Chap. 6 (cf. also [20], pp. 88-92)), along with an
auxiliary notion of \neutral term" and an extended computability predicate satisfying
CR3 (cf. [13]). All this extends to the setting here.

5. Applications and Extensions

5.1. Coherence for CCC's. As an immediate corollary of the above results, we obtain:
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5.2. Example. The undecidability of the word problem (Coherence Problem) for equal-
ity of arrows in the free cartesian closed category with (strong) NNO generated by the
empty graph.

Here, the free ccc with strong NNO F can be presented in several ways from term
models:

(i) Following Pitts [25, 8] (4.2.1) we may construct F from simply typed lambda calculus
without product types (e.g. our language L above) as follows: the objects of F will
be �nite lists of types; arrows will be equivalence classes of �nite lists of terms in
context. The Mal'cev equations guarantee that the NNO is strong.

(ii) Following Lambek and Scott [20], we may construct F using our language L with
product and terminal types; here objects are types, and arrows are equivalence
classes of terms with at most one free variable. Again, the Mal'cev equations guar-
antee that the NNO is strong.

In either case above we know the equational theory so generated is undecidable, so
equality of arrows is too (for the Pitts' construction use Theorem 3.10; for the Lambek-
Scott, we use the extension of Theorem 3.10 to product types (cf. Remark 4.9).

Remarks:

1. G�odel's T (i.e. simply typed lambda calculus with recursors) is known to be decid-
able, since it is CR and SN. We wish to emphasize that the extended theory with
Uniqueness Lred is undecidable because of failure of Church-Rosser, not because of
failure of SN.

2. We should like to emphasize that simply typed lambda calculus with uniqueness
of iterators (as an equational theory) is a mathematically natural extension of T ,
containing a purely equational equivalent to induction, and closely related to familiar
theories of arithmetic of �nite types .

5.3. Example. The equational theory Lred of typed lambda calculus with Mal'cev's
equations is a natural example of an SN, non-CR, ground-CR, undecidable rewriting
system.

Natural examples of such theories are not common. Such a theory can provide a
computational model for functional languages, since computation of terms of ground type
(by normalization) gives unique values. Moreover, Lred is undecidable, unlike most SN,
CR typed lambda calculi which only represent a proper subclass of the total recursive
functions.

Lred can also be used for veri�cation of inductive properties: the uniqueness rule for
terms de�ned by recursion is equivalent to an induction rule, and hence could be used
as an alternative proof technique to traditional inductive arguments. We would like to
see how these techniques could apply to inductive theorem proving and related decision
problems in rewriting theory (cf. [6] ).
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5.4. Extension to Brouwer Ordinals. We shall now sketch how to extend the treatment to
a larger class of data types. Such data types satisfy a domain equation � �= A) �, where
the type variable � appears covariantly; in particular, we consider � 62 A (cf. [20, 15]).
To illustrate, we consider the data type of Brouwer Ordinals added to the simply type
lambda calculi L above.

5.5. Definition. The type of Brouwer ordinals Ord is a type with distinguished con-
stants: 0 : Ord; S : Ord) Ord; lim : (N) Ord)) Ord. The recursor R is de�ned on
Ord by postulating the following rules:

Rahgx0 = ax (5)

Rahgx(Sy) = hxy(Rahgxy) (6)

Rahgx(lim k) = gxk(�z(Rahgx(kz))) (7)

Here: a : A) Ord; h : A) N) Ord; g : A) ((N) Ord)) (N) Ord)); and x : A
. For simplicity we are assuming Rahgx0 is of type Ord, but it could be of any higher
type.

We wish to remark that this de�nition is merely the data type of Brouwer ordinals,
and has nothing to do with set-theoretic trans�nite recursion.

We extend our analysis of Lambek's uniqueness conditions in Section 3 as follows. The
rule Uf;h;g now has two premisses:

(Uf;h;g)

8x8y[ fx(Sy) = hxy(fxy) ] 8xk[ fx(lim k) = gxk(�z(fx(kz))) ]

f = Rah

where a = �x : A:fx0. Similarly, we have

(Mf;h;g) Ra(Hmfh)(H 0mfg) = f

Here, Hmfh is the same as before, while

H 0mfg =def �xku[m(gxku)(gxk(�z(fx(kz))))(fx(lim k))]:

The following is analagous to Lambek's Theorem 3.3, in Section 3.

5.6. Theorem. The following implications hold:

(i) Mf;h;g implies Uf;h;g

(ii) Uf;h0;g0 implies Mf;h;g where h0 = Hmfh and g0 = H 0mfg .

Proof. Re (i), assume the two premises of Uf;h;g. In particular, from the second premise,
fx(limk) = gxk(�z(fx(kz))). Therefore, by the property of the Mal'cev operator m and
by the de�nition of H 0mfg, we have H 0mfg = �xku(gxku) = g. In the same way, from
the �rst premise, we get Hmfh = h. Therefore, from Mf;h;g, Rahg = f . This proves (i).
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Re (ii), below we prove the following two equations:

fx(Sy) = h0xy(fxy) (8)

fx(limk) = g0xk(�z(fx(kz))): (9)

By using equations (8) and (9) as the two premisses of Uf;h0;g0 , then by Uf;h0;g0 f = Rah0g0;
namely, f = Ra(Hmfh)(H 0mfg), i.e., Mf;h;g holds.

Since the proof of (8) is the same as the type N case in the original Lam-
bek theorem, we prove (9) only: g0xk(�z(fx(kz))) =def (H 0mfg)xk(�z(fx(kz))) =
m(gxk(�z(fx(kz))))(gxk(�z(fx(kz))))(fx(lim k)) = fx(lim k), as required.

As for the rewriting theory of this Ord system, the analog of Proposition 4.1, that the
combined system of �rst-order Mal'cev rules and the Ord-recursor rules is SN follows from
a recent theorem of Blanqui, Jouannaud, and Okada [3]. Letting again Lred denote this
new language with the reduction ordering, Lred is not CR but is ground CR by the same
proof as Proposition 4.3. The analog of Theorem 4.5 establishing SN similarly applies to
this extended language.

Finally, concerning the discussion in Lemma 3.9 on the equivalence of uniqueness and
various forms of induction, the situation is a little more complex here. First we observe
that the Ord-induction rule is:

(Ord� Ind)

Fx0 = Gx0

[Fxy = Gxy]
....

Fx(Sy) = Gx(Sy)

[ 8z(Fx(fz) = Gx(fz) ]
....

Fx(lim f) = Gx(lim f)

F = G

where y and f are eigen variables.
In order to naturally extend the equivalence in Lemma 3.9, it is necessary to discuss

the computations used in Goodstein Induction in this more general framework. For this,
it appears necessary to set up a primitive recursive ordinal notation system to represent
+; . ; m, etc. in order to simulate (in our now more general system) the basic properties
used in the standard N-case (cf. also the discussion after Theorem 3.6). This appears
routine, but we omit the detailed veri�cation here.

Finally, we remark that from a categorical viewpoint, the datatype Ord makes sense
in any ccc with natural numbers object N : it is an object Ord with arrows 1! Ord; S :
Ord ! Ord; lim : OrdN ! Ord satisfying the appropriate equations (analogous to a
parametrized natural numbers object [20, 27])

5.7. Remark. Concerning more general inductive data types (cf. [7, 3]) the above re-
sults can be extended under the condition that we can de�ne Mal'cev operations on the
data type. In the examples we know, this involves de�ning some analog of . (or, for
multiplicative operations, (�)�1). This is not always easy to do. For example, for the
data type of lists of integers, `ist(N), there is no obvious choice for . . On the other hand,
the data type of lists of length k, `istk(N), does have a Mal'cev operator using pointwise
subtraction: (a1; � � � ; ak) .(b1; � � � ; bk) = (a1 .b1; � � � ; ak .bk).
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Another way to extend these results is simply to postulate a Mal'cev operator, and
the associated rewriting rule, at each type.
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