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HOW LARGE ARE LEFT EXACT FUNCTORS?

J. ADÁMEK∗, V. KOUBEK† AND V. TRNKOVÁ†

ABSTRACT. For a broad collection of categories K, including all presheaf categories,
the following statement is proved to be consistent: every left exact (i.e. finite-limits
preserving) functor from K to Set is small, that is, a small colimit of representables.
In contrast, for the (presheaf) category K = Alg(1, 1) of unary algebras we construct a
functor from Alg(1, 1) to Set which preserves finite products and is not small. We also
describe all left exact set-valued functors as directed unions of “reduced representables”,
generalizing reduced products.

1. Introduction

We study left exact (i.e. finite-limits preserving) set-valued functors on a category K,
and ask whether they all are small, i.e., small colimits of hom-functors. This depends of
the category K, of course, since even so well-behaved categories as Grp, the category of
groups, have easy counterexamples: recall the well-known example

F =
∏

i∈Ord

Grp(Ai,−) : Grp −→ Set

of a functor preserving all limits and not having a left adjoint (thus, not being small),
where Ai is a simple group of infinite cardinality ℵi.

In the present paper we are particularly interested in the case K = SetA, A small, since
this corresponds to the question put by F. W. Lawvere, J. Rosický and the first author
in [ALR1] of legitimacy of all A-ary operations on the category LFP of locally finitely
presentable categories. The main result of our paper is that the following statement

“all left exact functors from SetA to Set, A small, are small”

is independent of set theory in the following sense: this is true if the set-theoretical axiom
(R), introduced below, is assumed, and this is false if the negation of the following axiom

(M) there do not exist arbitrarily large measurable cardinals
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is assumed. For categories K with finite limits we are going to describe all left exact
functors F : K −→ Set, generalizing the results for K = Set by the third author [T].
She proved that left exact endofunctors of Set are precisely the (possibly large) directed
unions of reduced-power functors QK,D. Here D is a filter on a set K, and QK,D assigns
to every set X its reduced power∏

D
X = colimD∈DXD,

or more precisely, QK,D = colimD∈DSet(D,−).
In the present paper we prove that this result extends to left exact set-valued functors

on any category with finite limits: they are precisely the (possibly large) directed unions
of “reduced hom-functors” defined analogously to QK,D above.

Returning to our question of smallness of left exact functors

F : SetA −→ Set (A small),

the negative answer has, for A = 1, been already found by J. Reiterman [R]. The idea is
simple: recall that ¬(M) is equivalent to the following statement:

¬(M) For every ordinal i there exists a set Ki of power ≥ ℵi and a uniform ultrafilter Di

on Ki (i.e., an ultrafilter whose members have the same power as Ki) closed under
intersections of less than ℵi members.

The functor F : Set −→ Set obtained by “transfinite composition” of the functors QKi,Di

(i.e., F = colimi∈OrdFi where F0 = Id, Fi+1 = QKi,Di
◦ Fi and Fj = colimi<jFi for limit

ordinals j) is left exact and large (i.e., not small).
Concerning the affirmative answer, it was A. Blass who showed in [B] that every left

exact endofunctor of Set is small provided that the following set-theoretical axiom is
assumed:

(R) Every uniform ultrafilter on an infinite set is regular

where an ultrafilter D on a set K of cardinality λ is called regular provided that D has λ
members Di ∈ D (i ≤ λ) such that every element of K lies in only finitely many of the
sets Di. An important property of regular ultrafilters D is that ultrapowers have the “full
cardinality” of powers

card
∏
D

X = cardXλ for all X infinite

see [CK]. The argument of A. Blass showing that (R) implies that every left exact functor
F : Set −→ Set is small probably does not request the full strength of (R); all we need is
the following consequence of it:

(R′) There is a set Y such that for every cardinal µ there is a cardinal λ with the
property that the ultrapowers of Y with respect to uniform ultrafilters on λ all have
cardinality at least µ.
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The argument goes as follows: suppose that, to the contrary, a large functor F :
Set −→ Set is left exact. For every cardinal µ choose λ as in (R′), then there exists, since
F is large, a set X of cardinality cardX ≥ λ and an element x ∈ FX such that the filter
D(x) of all subsets Z of X with x ∈ Fm(FZ) for the inclusion map m : Z −→ X is
uniform. (Since F is left exact, D(x) is indeed a filter.) Thus D(x) can be embedded into
a uniform ultrafilter D∗(x). Then (R′) implies

cardQX,D(x)Y ≥ card
∏
D∗(x)

Y ≥ µ.

This is in contradiction to QX,D(x) being a subfunctor of F : we cannot have cardFY ≥ µ
for all cardinals µ.

Now a decade after the paper of A. Blass it was proved by H.-D. Donder [D] that (R)
is consistent with ZFC. We are going to extend Blass’s argument to left exact set-valued
functors on any category K which

(a) is finitely complete and well-powered

(b) admits a faithful left adjoint into Set.

In particular, we conclude:

1.1. corollary. It is consistent with ZFC to state that all left exact functors SetA −→
Set, A small, are small.

As mentioned above, this corollary answers the open problem put in [ALR1] whether
it is consistent with set theory to assume that all small-ary operations on the category
LFP are legitimate.

A completely different situation is shown to happen with operations on the category
VAR of all finitary varieties studied in [ALR2]. The legitimacy of all small-ary operations
on VAR would be equivalent to the statement that every functor

F : SetA −→ Set (A small)

preserving finite products is small. But here is the answer dramatically different: for the
free monoid A on two generators we prove that (in ZFC) there exists a large functor from
SetA to Set preserving finite products.

2. Reduced Hom-functors

Definition. By a filter on an object K of a finitely complete category we understand
a non-empty set of subobjects of K closed under finite intersections and upwards-closed
(i.e. given subobjects D1, D2 of K, if D1, D2 ∈ D then D1 ∩D2 ∈ D and if D1 ⊆ D2 then
D1 ∈ D implies D2 ∈ D).
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Remark. (1) A filter always contains the largest subobject K.
(2) If K = Set, our concept coincides with the usual concept of a filter on a set K

except that here we admit the trivial case of D = all subobjects of K.

Definition. Let D be a filter on an object K of K, then the reduced hom-functor of K
modulo D is the functor

QK,D = colimD∈DK(D,−) in SetK.

A functor in SetK is said to be reduced representable if it is naturally isomorphic to a
reduced hom-functor for some filter on an object of K.
Remark. Explicitly, QK,D is a colimit of the filtered diagram in SetK defined as follows:
every element of D is represented by a monomorphism mD : D −→ K; given D′ ⊆ D in
D we have the unique monomorphism

mD′,D : D′ −→ D with mD′ = mD ◦mD′,D.

This leads to a diagram whose objects are the hom-functors

K(D,−) (D ∈ D)

and whose morphisms are the natural transformations

(−) ◦mD′,D : K(D,−) −→ K(D′,−) (D′, D ∈ D, D′ ⊆ D).

2.1. lemma. Every reduced representable functor is left exact.

Proof. A filtered colimit of left exact functors is always left exact because finite limits
commute in presheaf categories with filtered colimits (including the large ones as far as
they exist.

2.2. theorem. Let K be a finitely complete, well-powered category. A set-valued functor
on K is left exact if and only if it is a (possibly large) directed union of reduced repre-
sentable functors.

Remark. Directed unions are (possibly large) filtered colimits whose scheme is a di-
rected partially ordered class and whose connecting morphisms are monomorphisms. In
SetK each such diagram, provided that it has a colimit, has a colimit cocone formed by
monomorphisms.

Proof. (i) Sufficiency follows from II.3 since directed unions of left exact functors are
left exact.
(ii) To prove the necessity, let

F : K −→ Set

be a left exact functor. Let I be the class of all finite sets of elements of F , ordered by
inclusion. (An element of F is a pair (K, k) where K ∈ ObjK and k ∈ FK.) We use
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finite sets of elements, rather than just elements, in order to obtain F as a directed union
rather than filtered colimit below.

For each element
i = {(Ki1 , ki1), . . . , (Kin , kin)}

of I put
Ki = Ki1 × . . .×Kin

and since F preserves this product, we can denote by

ki ∈ FKi

the unique element mapped by the t-th projection of FKi = FKi1 × . . . × FKin to kit

(t = 1, . . . , n). Denote by Di the filter on Ki of all subobjects

mD : D �−→ Ki

such that ki lies in the image of FmD. Since F preserves pullbacks, it is easy to see
that Di is indeed a filter. Moreover, F preserves monomorphisms, therefore FmD is a
monomorphism, thus, there is a unique

kD
i ∈ FD with FmD(k

D
i ) = ki.

(iii) We define a diagram
H : I −→ SetK

on objects by
Hi = QKi,Di

(i ∈ I).

For i ⊆ j in I we define the connecting morphism

hi,j : Hi −→ Hj

by determining its composites with the colimit maps

cD
i : K(D,−) −→ Hi = QKi,Di

(D ∈ Di)

of Hi as follows. Given mD : D �−→ Ki in Di we form a pullback of mD and the first
projection, π1, of

Kj
∼= Ki ×Ki′

(where i′ denotes the complement of the set i in j), see Figure 1.
Since F preserves the pullback, from

FmD(k
D
i ) = ki = Fπ1(ki, ki′) = Fπ1(k

D
j )

we conclude that there exists kD′
j ∈ FD′ with

FmD′(kD′
j ) = kj and Fπ′(kD′

j ) = kD
i . (1)
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Kj Ki

D′ D

mD′ mD

π1

π′

✲

✲

❄ ❄

Figure 1.

Consequently, mD′ : D′ −→ Kj represents a member of Dj. We compose K(π′,−) :
K(D,−) −→ K(D′,−) with the colimit morphism cD′

j : K(D′,−) −→ Hj and obtain a
morphism

cD′
j ◦ K(π′,−) : K(D,−) −→ Hj.

Let us verify that these morphisms form a cocone, i.e., that given

D0 ⊆ D in Di

(with the connecting morphism mD0,D), then

cD′
j ◦ K(π′,−) =

[
c
D′

0
j ◦ K(π′

0,−)
]
◦ K(mD0,D,−) (2)

where π′
0 is the morphism from the corresponding pullback for D0, see Figure 2.

Kj Ki

D′
0 D0

mD′
0

mD0

π1

π′
0

✲

✲

❄ ❄

Figure 2.

Use the universal property to define mD′
0,D′ , see Figure 3.

Since c
(−)
j is a cocone, we have

cD′
j = c

D′
0

j ◦ K(mD′
0,D′ ,−)

therefore (2) holds:

cD′
j ◦ K(π′,−) = c

D′
0

j ◦ K(π′ ◦mD′
0,D′ ,−)
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Figure 3.

= c
D′

0
j ◦ K(mD0,D ◦ π′

0,−)
= c

D′
0

j ◦ K(π′
0,−) ◦ K(mD0,D,−).

Consequently, there is a unique morphism

hi,j : Hi −→ Hj (i ⊆ j in I)

factorizing the above cocone through the colimit cocone of Hi, i.e. with

hi,j ◦ cD
i = cD′

j ◦ K(π′,−) for all D ∈ Di. (3)

(iv) hi,j is a monomorphism in SetK (for any i ⊆ j). In fact, it is sufficient to prove that
the right-hand side of (3) is a monomorphism for all D ∈ Di. That is given X ∈ ObjK
and f, g : D −→ X with F (f ◦ π′)(kD′

j ) = F (g ◦ π′)(kD′
j ) then we are to show that

Ff(kD
i ) = Fg(kD

i ). This follows from (1).
(v) Our functor F is a colimit of the above directed diagram of all Hi (i ∈ I) and hi,j

(i ≤ j). In fact, define a natural transformation

hi : Hi −→ F (i ∈ I)

by
hi ◦ ci : K(D,−) −→ F, idD �→ kD

i ∈ FD

for all D ∈ Di. It is easy to see that hi ◦ cD
i is a cocone, i.e., if D0 ⊆ D then

hi ◦ cD
i = hi ◦ cD0

i ◦ K(mD0,D,−)
because FmD0,D(k

D0
i ) = kD

i (this follows from the fact that FmD0(k
D0
i ) = FmD(k

D
i )).

Thus, hi is well-defined.
The above cocone is collectively epic because for every element k ∈ FK of K we have

i = {(K, k)} in I and then hK
i : QK,Di

−→ FK maps the element cK
i (idK) to k.
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And each hi is a monomorphism. In fact, assume that hi ◦ cD
i merges two elements

f, g : D −→ X, then we prove that cD
i merges them too. By assumption, Ff(kD

i ) =
Fg(kD

i ). Let e : D0 −→ D be an equalizer of f and g, then since Fe is an equalizer of
Ff and Fg we have kD

i in the image of Fe, thus mD ◦ e : D0 −→ K is a member of Di,
and e = mD0,D. Since cD

i = cD0
i ◦ K(mD0,D,−), from f ◦mD0,D = g ◦mD0,D we conclude

cD
i (f) = cD

i (g).

Consequently, (Hi
hi−→ F )i∈I is a filtered colimit.

3. All left exact set-valued functors are small

Definition. A category K is called strongly left exact provided that it is left exact (i.e.,
finitely complete) and well-powered and there exists a faithful left adjoint from K to Set.

Examples. (1) Every category of presheaves

K = SetA (A small)

is strongly left exact. The functor V : K −→ Set defined on objects H : A −→ Set by

V (H) =
∐

A∈ObjA
HA

and analogously on morphisms is obviously faithful. It preserves colimits, and since K has
a set of generators (the hom-functors of objects of A), it follows from the Special Adjoint
Functor Theorem that V is a left adjoint.

(2) The category K = Top of topological spaces is strongly left exact — just consider
the usual forgetful functor and the indiscrete topology functor Set −→ Top.

The category K = Rel(n) of n-ary relations for any cardinal n and the category
K = Gra of undirected graphs are strongly left exact — just consider the usual forgetful
functor. More generally, all topological categories (see [AHS]) over strongly left exact
base-categories are strongly left exact.

(3) The category Grp of all groups is not strongly left exact. Under (R) this is a
consequence of the following

3.1. theorem. Assuming the axiom (R), every left exact functor F : K −→ Set with K
a strongly left exact category is small.

Proof. Let F : K −→ Set be a left exact functor, and let

V � R : Set −→ K

be an adjoint situation with V faithful. Thus the unit εK : K −→ RVK is formed by
monomorphisms.

The functor FR is left exact, therefore, small, see Introduction above. Thus, there
exists a cardinal λ such that for every set M and every element x ∈ FRM there exists



Theory and Applications of Categories, Vol. 8, No. 13 385

a function f : M ′ −→ M , cardM ′ < λ, with x ∈ Im (FRf). We are going to prove
that for every object K ∈ K and every element k ∈ FK there exists an object K ′ which
is a subobject of RM ′ for some set M ′ with cardM ′ < λ and there exists a morphism
g : K ′ −→ K with k ∈ Im (Fg). Since K is well-powered, all such objects K ′ have a small
set of representatives with respect to isomorphism — therefore, F is small.

For the element FεK(k) ∈ FRVK there exists a function f : M ′ −→ V K, cardM ′ <
λ, and y ∈ FRM ′ with

FεK(k) = FRf(y).

Let us form a pullback of εK and Rf , see Figure 4.

K RVK

K ′ RM ′

g Rf

εK

ε′K

✲

✲

❄ ❄

Figure 4.

Since F preserves this pullback, the above equality implies that there exists z ∈ FK ′

with Fg(z) = k and Fε′K(z) = y. Thus k ∈ Im (Fg). Since εK is a monomorphism, so is
ε′K , i.e., K

′ is a subobject of RM ′.

3.2. corollary. The statement “all left exact functors SetA −→ Set (A any small
category) are small” is consistent with set theory.

In fact, we have remarked above that ZFC consistent implies ZFC+(R) consistent.

Remark. Recall that P. Gabriel and F. Ulmer introduced in [GU] a category LFP of
locally finitely presentable categories and all right adjoints preserving filtered colimits.
In [ALR1] operations on LFP are studied whose arity is any small category A: an A-
ary operation ω assigns to every object K of LFP an “operation map”, i.e., a functor
ωK : KA −→ K, which all morphisms H : K −→ L of LFP preserve in the expected sense:
H ◦ωL ∼= ωK ◦HA. It is proved in [ALR1] that A-ary operations correspond bijectively to
left exact functors on SetA, and operations called legitimate correspond precisely to small
left exact functors. Thus:

3.3. corollary. It is consistent with ZFC to state that all operations of small arity on
LFP are legitimate.

4. Set functors preserving finite products

4.1. In [ALR2] the A-ary operations on the category VAR of all varieties of algebras are
studied. They correspond to set-valued functors on the category SetA preserving finite
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products; and the so-called legitimate operations correspond to small functors preserving
finite products. We will prove now that there is no analogy between the situation with
LFP and VAR, namely, the following holds in ZFC

• there is a large finite-products preserving functor F : SetA −→ Set
where A is the free monoid on two generators.

4.2. In fact, assuming the above axiom (M) (nonexistence of arbitrarily large measurable
cardinals), we present large, finite-products preserving functors F : K −→ Set for a very
broad collection of categories K. Namely, for all algebraically universal categories, i.e.,
categories K such that every variety of algebras has a full embedding into K, see [PT].
The category

SetA ∼= Alg(1, 1)

for the above monoid A (equivalent to the category of unary algebras on two operations)
is known to be algebraically universal, and so are the categories Gra (of graphs), Sem (of
semigroups), and many others, see [PT].

The axiom (M) guarantees that every algebraically universal category K is universal ,
i.e., all concrete categories over Set have full embedding into K. In particular, K has a
large, full, discrete subcategory. We prove below that it also has a large strongly discrete
subcategory where we introduce the following.

Definition. A full discrete subcategory D of a category K is called strongly discrete
provided that given a finite product D1 × D2 × . . . × Dn (n ≥ 1) of objects of D and
a morphism D1 × D2 × . . . × Dn −→ D with D ∈ D, it follows that D = Di for some
i = 1, 2, . . . , n.

Example. of large functor F : K −→ Set preserving finite products.
Let D be a large, strongly discrete subcategory of K and let K have finite products.

Define F on objects X of K by

FX =

{
1 if hom(D1 × . . .×Dn, X) �= ∅ for some D1, . . . , Dn ∈ D,
∅ else;

the definition on morphisms is obvious. Then F clearly preserves finite products.
Suppose that F is small. Then there clearly exists a small collection K0 of objects

K ∈ K with FK = 1 and such that for every object X ∈ K with FX = 1 we have
hom(K,X) �= ∅ for some K ∈ K0. We derive a contradiction. For each K ∈ K0 since
FK = 1, there exists a finite set DK ⊆ D such that we have a morphism from

∏
D∈DK

D
into K.

Since K0 is small, also the union

D̄ =
⋃

K∈K0

DK

is small. However, D̄ = D: for every object D0 ∈ D we have FD0 = 1, thus, by the choice
of K0 there exists K ∈ K0 with hom(K,D0) �= ∅. This implies hom(∏D∈DK

D,D0) �= ∅.
By the definition of strong discreteness, we conclude that D0 ∈ DK ⊆ D̄. This is a
contradiction: D̄ is small but D is large.
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4.3. theorem. Assuming (M), every algebraically universal category has a large strongly
discrete subcategory.

Proof. I. We construct a strongly discrete subcategory in the category Rel(Σ) of rela-
tions of signature Σ = {R, T, S} where R is binary, T unary and S ternary. This category
is algebraically universal, and so is the category of directed graphs (one binary relation),
see [PT]. Since (M) is assumed, it follows that there is a large, full, discrete subcategory
D of the category of directed graphs. For every graph G = (X,RG) we denote by G∗ the
Σ-structure on the set X ∪ {v}, v /∈ X, where

RG∗ = RG ∪ {(v, v)},
TG∗ = X,
SG∗ = {(x, y, z); exactly one of v = x, v = y, v = z holds} ∪ {(v, v, v)}.

We then prove strong discreteness of D∗ = {D∗;D ∈ D} in Rel(Σ). In fact, let

f : D∗
1 ×D∗

2 × . . .×D∗
n −→ D∗

be a Σ-homomorphism for Di = (Xi, RDi
) and D = (Y,RD) in D. Then we will prove

that

(∗) there exists i = 1, 2, . . . , n with f(x̄) ∈ Y for all x ∈ Xi

where we put
x̄ = (v, v, . . . , v, x, v, v, . . . , v) x in position i.

It follows that we obtain a graph homomorphism from Di to D by x �→ f(x̄) for x ∈ Xi:
given R(x1, x2) in Di we have R(x̄1, x̄2) in D∗

1 ×D∗
2 × . . . ×D∗

n, thus, R(f(x̄1), f(x̄2)) in
D. This proves Di = D and, in case n = 1, f = id – thus, D∗ is strongly discrete.

Assuming that (∗) fails, we derive a contradiction by proving that f is the constant
function with value v – this contradicts the preservation of T , of course. Given z =
(z1, z2, . . . , zn) in D∗

1 × D∗
2 × . . . × D∗

n we prove f(z) = v by induction on the number
k of coordinates i with zi �= v. The case k = 0, i.e. z = v̄, follows from the negation
of (∗): choose xi ∈ Xi with f(x̄i) = v (i = 1, 2, . . . , n). Then S(x̄i, x̄i, v̄) holds in
D∗

1 × D∗
2 × . . . × D∗

n, thus, S(v, v, f(v̄)) holds in D∗ and this proves f(v̄) = v. Also
the case k = 1, i.e. z = ȳi for some yi ∈ Xi, follows similarly: we have S(x̄i, ȳi, v̄) in
D∗

1 × D∗
2 × . . . × D∗

n, thus S(v, f(ȳi), v) in D∗, i.e. f(ȳi) = v. In the induction step
we have k ≥ 2 and we choose a coordinate i with zi ∈ Xi. Let z′ denote the element
obtained from z by changing the i-th coordinate only, with z′i = v. Then S(z, z′, z̄i) in
D∗

1 ×D∗
2 × . . .×D∗

n. Since, by the induction hypothesis, f(z′) = f(z̄i) = v, we conclude
S(f(z), v, v) in D∗, thus, f(z) = v.

II. For an arbitrary algebraically universal category K a full embedding E : Rel(Σ) −→
K exists, see [PT]. Then E(D∗) is strongly discrete in K. In fact, given a finite product∏n

i=1 E(Di) with Di ∈ D∗ and given D ∈ D∗ for which a morphism
∏n

i=1 E(Di) −→ E(D)
exists, then form a product

∏n
i=1 Di in Rel(Σ) and observe that, since one always has a

morphism E(
∏n

i=1 Di) −→
∏n

i=1 E(Di), there exists a morphism from E(
∏n

i=1 Di) to ED
in K. Since E is full, this yields a morphism from

∏n
i=1 Di to D, thus, D = Di for some

i = 1, 2, . . . , n.
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4.4. corollary. For the free monoid on two generators, A, there exist large functors
from SetA to Set preserving finite products.

In fact, if we assume (M), then this follows from IV.4 and IV.5 because SetA ∼=
Alg(1, 1) is algebraically universal. If ¬(M) is satisfied, we use the above functor F :
Set −→ Set of J. Reiterman presented in Section I, composed with the natural forgetful
functor U : Alg(1, 1) −→ Set. The composite FU preserves finite limits. And it is
not small: if it were, it would preserve λ-directed colimits for some infinite cardinal λ.
However, if one of the sets Ki in Reiterman’s example (see Introduction) is chosen to have
cardinality at least λ, we can presentKi as a λ-directed union of sets L ⊆ Ki of cardinality
less than λ, and for the free-algebra functor V : Set −→ Alg(1, 1) we obtain V Ki as a
λ-directed colimit of the subalgebras V L. FU does not preserve this λ-directed colimit:
in FUV (Ki) consider the universal map Ki −→ UV Ki as an element of QKi,Di

UV (Ki).
This element does not lie in the image of FUV (m) for the embedding m : L −→ Ki of
any set L ⊆ Ki of cardinality less than λ.

4.5. A description of finite-products preserving functors. Let K be a finitely
complete category. A functor K −→ Set preserves finite products iff it is a (possibly large)
directed union of quotients of representables each of which preserves finite products.

This is a trivial consequence of the following observations: Let F : K −→ Set preserve
finite products, and let (K, k) be an element of F (k ∈ FK). Then the quotient of
K(K,−) which is the image of the Yoneda transformation K(K,−) −→ F corresponding
to k preserves finite products. The rest of the proof is analogous to that in II.4.

Example. Let D be a filter on an object K. The quotient

RK,D

of K(K,−) given be the following congruence ∼
f ∼ g iff f ◦m = g ◦m for some m ∈ D (f, g : K −→ X)

preserves finite products.

Remark. In case K = Set, all finite-products preserving quotients of representables are
naturally isomorphic to the functors RK,D. Moreover, whenever D is a “true filter”, i.e.,
∅ /∈ D, then RK,D ∼= QK,D. However, given K �= ∅ and D = expK, then

QK,D = Set(∅,−) −a constant functor with value 1

whereas
RK,D∅ = ∅ and RK,DX ∼= 1 for all X �= ∅.

This has been observed by the third author [T] who concluded that the only endofunctors
of Set which are not left exact but preserve finite products are those naturally isomorphic
to RK,exp K (K �= ∅). This result immediately extends to K = power of Set, i.e., to the
case K = SetA for A small and discrete. Thus from III.4 we obtain
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4.6. corollary. It is consistent with ZFC to state that all operations of small, discrete
arity on VAR are legitimate.
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