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ON FUNCTORS WHICH ARE LAX EPIMORPHISMS

JIŘÍ ADÁMEK, ROBERT EL BASHIR, MANUELA SOBRAL, JIŘÍ VELEBIL

ABSTRACT. We show that lax epimorphisms in the category Cat are precisely the
functors P : E −→ B for which the functor P ∗ : [B,Set] −→ [E,Set] of composition with
P is fully faithful. We present two other characterizations. Firstly, lax epimorphisms are
precisely the “absolutely dense” functors, i.e., functors P such that every object B of B
is an absolute colimit of all arrows P (E) −→ B for E in E. Secondly, lax epimorphisms
are precisely the functors P such that for every morphism f of B the category of all
factorizations through objects of P [E] is connected.
A relationship between pseudoepimorphisms and lax epimorphisms is discussed.

1. Introduction

What are the epimorphisms of Cat, the category of small categories and functors? No
simple answer is known, and the present paper indicates that this may be a “wrong ques-
tion”, disregarding the 2-categorical character of Cat. Anyway, with strong epimorphisms
we have more luck: as proved in [2], they are precisely those functors P : E −→ B such
that every morphism of B is a composite of morphisms of the form Pf .

Our paper is devoted to lax epimorphisms in the 2-category Cat. We follow the
concept of pseudoepimorphism (and pseudomonomorphism) as presented in [3]: a functor
P : E −→ B is called a lax epimorphism provided that for every pair Q1, Q2 : B −→ C

of functors and every natural transformation u : Q1 · P −→ Q2 · P there exists a unique
natural transformation v : Q1 −→ Q2 with u = vP . Briefly, P is a lax epimorphism if
and only if the functor

( ) · P : [B,C] −→ [E,C]

is fully faithful, for every small category C.
Our first observation is that, instead of all small categories C, one can simply take Set.

That is, P is a lax epimorphism if and only if

P ∗ = ( ) · P : [B, Set] −→ [E, Set]

is fully faithful. This is what Peter Johnstone called “connected functors” in his lecture
at the Cambridge PSSL meeting in November 2000. He has asked for a characterization

The first and the fourth author acknowledge the support of the Grant Agency of the Czech Republic
under the Grant No. 201/99/0310. The second author acknowledges the support of grant MSM 113200007
and the Grant Agency of the Czech Republic grant No. 201/98/P247. The third author acknowledges
partial support by CMUC/FCT.

Received by the editors 2001 June 14 and, in revised form, 2001 October 23.
Transmitted by Ross Street. Published on 2001 November 2.
2000 Mathematics Subject Classification: 18A20.
Key words and phrases: lax epimorphism.
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of connected functors, which has inspired the present paper. We provide two characteri-
zations. Recall from [10] that a functor P : E −→ B is called dense if every object B of
B is a colimit of the diagram of all arrows P (E) −→ B (more precisely, B is a canonical
colimit of the diagram P/B −→ B forgetting the codomain). Let us call a functor P
absolutely dense if every object B of B is an absolute colimit of the diagram of all arrows
P (E) −→ B. This property could also be called locally final because it is equivalent to
saying that for every object B of B the inclusion functor

P/B −→ B/B

is final.
The main result of the paper is the following:

1.1. Theorem. For a functor P : E −→ B between small categories the following con-
ditions are equivalent:

1. P is a lax epimorphism.

2. The functor P ∗ = ( ) · P : [B, Set] −→ [E, Set] is fully faithful.

3. All the categories f // P for morphisms f of B are connected.

4. P is absolutely dense.

A category C is called connected if and only if the graph whose nodes are the objects
and whose arrows are the pairs C, C ′ of objects with C(C,C ′) �= ∅ is connected (i.e., has
precisely one component — thus, it is nonempty and every pair of nodes can be connected
by a non-directed path).

In 3 above, the objects of f // P are all triples (E, q,m) where E is an object of E and

B
f ��

q ����
��

��
�� B′

P (E)

m

����������

is a commutative triangle in B. Morphisms of f // P from (E, q,m) to (Ē, q̄, m̄) are all
morphisms e : E −→ Ē of E such that the following diagram

B
f ��

q

����
��

��
��

q̄

���
��

��
��

��
��

��
��

� B′

P (E)

m
����������

P (e)
��

P (Ē)

m̄

������������������
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commutes.
For the special case of f = idB we call the category idB // P a splitting fibre of B.

(Recall that a fibre of B is the category of all E in E with P (E) = B and all morphisms
u : E −→ E ′ with Pu = idB.) Now a splitting fibre is the category of all split subobjects
B −→ P (E) for E in E.) We conclude that every lax epimorphism has all splitting fibres
connected. In his PSSL lecture, P. Johnstone announced that every extremal epimorphism
with connected splitting fibres is “connected”, i.e., is a lax epimorphism. We show a simple
example demonstrating that this sufficient condition is not necessary.

Lax monomorphisms and epimorphisms (the latter also called full and faithful mor-
phisms) in general 2-categories have already been studied by John Gray and Ross Street
in the early 1970’s, see [11], and the latter by other authors, see, e.g. [3] and [4]. In the
latter reference Brian J. Day also calls lax epimorphisms in CAT Cauchy dense functors.
However, the explicit characterization of lax epimorphisms in CAT we provide below is
new.

How is the concept of lax epimorphism related to other epimorphism concepts? We
will see easy examples demonstrating that

regular epimorphism �⇒ lax epimorphism �⇒ epimorphism

and so there seems to be no connection to the “strict” concepts. Next, every lax epimor-
phism is a pseudoepimorphism (defined as above, except that the natural transformation
u : Q1 · P −→ Q2 · P is supposed to be a natural isomorphism — and then so is v).

1.2. Open Problem. Is every pseudoepimorphism a lax epimorphism?

1.3. Remark. For functors between preorders we prove in Proposition 3.1 that the an-
swer is affirmative.

2. A Characterization of Lax Epimorphisms

Proof of Theorem 1.1. 1.⇒2. This is trivial: given functors Q1, Q2 : B −→ Set, let
C be a small full subcategory of Set containing both images so that we have codomain-
restrictions Q′

1, Q
′
2 : B −→ C. By 1., for every natural transformation u′ : Q′

1 ·P −→ Q′
2 ·P

there is a unique v′ : Q′
1 −→ Q′

2 with u′ = v′P . This is equivalent to having, for every
natural transformation u : Q1 · P −→ Q2 · P a unique v : Q1 −→ Q2 with u = vP .

2.⇔3. The functor P ∗ = ( ) · P has a left adjoint, viz, the functor

L : [E, Set] −→ [B, Set]

of left Kan extension along P . Therefore, P ∗ is full and faithful if and only if the counit

ε : L · P ∗ −→ Id

of the adjunction L 	 P ∗ is a natural isomorphism.
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Since every object of [B, Set] is a colimit of hom-functors, and since L · P ∗ preserves
colimits, it follows that ε is a (pointwise) isomorphism if and only if the component of ε
at every B(B, ), for B an object of B, is an isomorphism.

This component can be described as follows: express

L · P ∗
(
B(B, )

)
= L

(
B(B,P )

)
B −→ Set

as a coend ∫ E

B
(
B,P (E)

)
× B

(
P (E),

)

then εB(B, ) evaluated at B′ in B is the morphism

∫ E

B
(
B,P (E)

)
× B

(
P (E), B′

)
−→ B(B,B′)

which sends an equivalence class of the pair

(m : B −→ P (E), q : P (E) −→ B′)

to the composite
q ·m : B −→ B′.

We see that εB(B, ) is a natural isomorphism if and only if for every morphism f : B −→ B′

the category f // P is connected.

3.⇒4. Firstly note that the assumption in 3. is “self-dual”, i.e., we deduce from 2.⇔3.
that the functor

( ) · P op : [Bop, Set] −→ [Eop, Set]

is full and faithful. Thus, the composite

B
Y �� [Bop, Set]

( )·P op

�� [Eop, Set]

of ( ) · P op with the Yoneda embedding Y is full and faithful. This means that P is
dense, and this implies that every object B of B can be expressed as a colimit of a
diagram P : E −→ B weighted by B(P ,B) : Eop −→ Set (see Theorem 5.1 of [9]). To
prove that P is absolutely dense, we verify that every functor F : B −→ X (with X small)
preserves the weighted colimits B ∼= B(P ,B) ∗ P . In fact, recall that ( ) · P op is full
and faithful and use B(P ,B) = B( , B) · P op to deduce the following isomorphisms

X
(
B(P ,B) ∗ F · P,X

) ∼= [Eop, Set]
(
B(P ,B),X(F · P ,X)

)
∼= [Eop, Set]

(
B( , B) · P op,X(F ,X) · P op

)
∼= [Bop, Set]

(
B( , B),X(F ,X)

)
∼= X(FB,X)
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natural in every object X in X.

4.⇒1. Since we assume that P is absolutely dense, this means that a left Kan extension
LanPP ∼= IdB of P along itself is preserved by any functor F : B −→ X. Thus, for every
pair F,G : B −→ X we have isomorphisms

[B,X](F,G) ∼= [B,X](LanP (F · P ), G)
∼= [E,X](F · P,G · P )

where the last isomorphism is induced by precomposing with P . But this means precisely
that P is a lax epimorphism.

2.1. Examples. The following are examples of lax epimorphisms:

1. Coinserters: recall that a functor P : E −→ B, together with a natural transforma-
tion α : P · F −→ P · G is called a coinserter in Cat of the pair F,G : C −→ E if
and only if the following two conditions are satisfied:

(a) For every natural transformation β : Q · F −→ Q ·G with Q : E −→ D there
is a unique functor H : B −→ D such that H · P = Q and Hα = β.

(b) For every pair H1, H2 : B −→ D of functors and every natural transformation
γ : H1 · P −→ H2 · P satisfying (H2α)(γF ) = (γG)(H1α) there is a unique
natural transformation δ : H1 −→ H2 with δP = γ.

Thus, every coinserter is a lax epimorphism, since the second condition above is
satisfied by every natural transformation γ : H1 · P −→ H2 · P .

2. The following functor between preordered sets is a lax epimorphism which is not a
coinserter:

• −→ • ∼= •
3. Categories of fractions: given a set Σ of morphisms in a small category E, then the

canonical functor
PΣ : E −→ E[Σ−1]

into the category of fractions is a lax epimorphism (see, e.g., Lemma 1.2 of [5]).

4. Epimorphisms of small categories, which are one-to-one on objects, are lax epi-
morphisms. This is due to the second equivalent condition of Theorem 1.1 and
Corollary 2.2 in [6].

A regular epimorphism in Cat need not be a lax epimorphism:

•
• −→ •

(See [2] for a characterization of regular epimorphisms as precisely those functors P : E −→
B which are surjective on objects and such that every morphism in B is a composite of
morphisms in P [E].)
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3. Pseudoepimorphisms

3.1. Proposition. For functors P : E −→ B where B is a preordered set we have:

P is a pseudoepimorphism if and only if it is a lax epimorphism.

Proof. Let P be a pseudoepimorphism. For every x ≤ y in B we prove that the category
C = (x ≤ y) // P , which is the full subcategory of E on all E with x ≤ P (E) ≤ y, is
connected.

Define a functor F : B −→ Set on objects by

Fb =




1 + 1, if x ≤ b ≤ y
1, if x ≤ b �≤ y
∅, otherwise

and on morphisms by setting Ff = id for every morphism f : b ≤ b′ with Fb = Fb′.
The category C is nonempty because otherwise we would have two natural isomor-

phisms β1, β2 : F −→ F with β1 �= β2 and β1P = id = β2P (β1 = id and β2 is the
transposition of 1 + 1), in contradiction to P being a pseudoepimorphism.

Let C0 be a connected component of C, we will prove that C0 = C. We have a natural
isomorphism

α : F · P −→ F · P
whose components are

αE =

{
id, if E is not in C0

t, if E is in C0

where t : 1 + 1 −→ 1 + 1 swaps the two copies of 1. The naturality squares

FP (E)
αE ��

FPh
��

FP (E)

FPh
��

FP (E ′) αE′
�� FP (E ′)

commute for all h : E −→ E ′: this is obvious except for the case that E is in C0 and
E ′ is in C \ C0, or vice versa, but that case does not happen because C0 is a connected
component of C.

There exists a natural isomorphism β : F −→ F with α = βP . The component βx is
t because choosing any E in C0, the following square

1 + 1 1 + 1
βx ��1 + 1

1 + 1

id=F (x−→P (E))

��

1 + 1

1 + 1

id=F (x−→P (E))

��
1 + 1 1 + 1

t=(βP )E

��

commutes. This proves that C = C0: by choosing any E ∈ C \ C0 we would obtain,
analogously, βx = id, which is impossible.
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3.2. Remark. Given a functor P : E −→ B and an object B of B we can form a splitting
fibre of B: it is the category whose objects are all pairs of morphisms

B
m ��

P (E)
q

�� with q ·m = id

where E is an object of E. And morphisms into

B
m̄ ��

p(Ē)
q̄

��

are those morphisms e : E −→ Ē in E for which the following diagram

P (E)
q

����
��

��
��

P (e)

��

B

m
����������

m̄ ����
��

��
��

B

P (Ē)

q̄

����������

commutes.
Every lax epimorphism has all splitting fibres connected. In fact, these are just the

categories idB // P .

3.3. Proposition. Let P : E −→ B have connected splitting fibres and let

(∗) all morphisms in B be composites of isomorphisms and morphisms in P [E].

Then P is a lax epimorphism.

Proof. The functor P ∗ : [B, Set] −→ [E, Set] is faithful. In fact, for distinct natural
transformations α, β : F −→ G (where F,G are functors in [B, Set]) we find an object B
with αB �= βB, and we choose an object

B
m ��

P (E)
q

��

in the splitting fibre of B. Then (αP )E �= (βP )E. In fact: assuming the contrary, we get
a contradiction:

αB = αB · Fq · Fm = Gq · αE · Fm = Gq · βE · Fm = βB.

The functor P ∗ is full: consider functors F,G : B −→ Set and a natural transformation
α = FP −→ GP . Define, for every object B of B, the morphism βB : FB −→ GB as
follows: choose

B
m ��

P (E)
q

��
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in the splitting fibre and put

βB = Gq · αE · Fm.

This is independent of the choice: to show this, we use the connectedness of the splitting
fibre and verify only that given a morphism as in 3.2, then Gq · αE · Fm = Gq̄ · αĒ · Fm̄:

FP (E)
αE ��

FP (e)

��

GP (E)
Gq

�����������

GP (e)

��

FB

Fm
		���������

Fm̄ ����������� GB

FP (Ē) αĒ

�� GP (E)
Gq̄

		���������

Consequently,

βP (E) = αE for each E in E

because we choose q = m = id. To show that βB is natural in B, it is sufficient — due
to (∗) — to consider all isomorphisms and all morphisms in P [E].

Let h : B −→ B′ be an isomorphism. Given

B
m ��

P (E)
q

��

in the splitting fibre of B, then

B′
m·h−1

��
P (E)

h·q
��

lies in the splitting fibre of B′, thus,

βB′ = G(h · q) · αE · F (m · h−1)

which implies

Gh · βB = Gh ·Gq · αE · Fm = βB′ · Fh.

Let h : B −→ B′ have the form h = P (k) for k : E −→ E ′ in E. Since P (E) = B and
P (E ′) = B′, we conclude

Gh · βB = GP (k) · αE = αE′ · FP (k) = βB′ · Fh.

Thus, β is natural.
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3.4. Proposition. For a functor P : E −→ B between finite preorders the following
conditions are equivalent:

1. P is a lax epimorphism.

2. P has connected splitting fibres and satisfies condition (∗) of Proposition 3.3.

Proof. 1.⇒2. Every morphism in B is, since B is a finite preorder, a composite of
isomorphism and coverings x0 −→ y0 (i.e., x0 < y0 and no x in B fulfils x0 < x < y0).
Thus, it is sufficient to prove condition (∗) of Proposition 3.3 for every covering x0 −→ y0.

Assuming the contrary, we extend B to a category C by adding, for every pair of
objects x ∼= x0 and y ∼= y0 a new morphism

rxy : x −→ y.

The composition in C extends that of B by the following rules: given x ∼= x0 and y ∼= y0

then for every z ≤ x put

rxy · (z −→ x) =

{
rzy, if z ∼= x

z −→ y, otherwise

and for every y ≥ z put

(y −→ z) · rxy =

{
rxz, if y ∼= z

x −→ z, otherwise

Since x0 −→ y0 (thus, x −→ y) is not a composite of isomorphisms and morphisms in
P [E], we have a well-defined functor Q1 : B −→ C with Q1(x −→ y) = rxy for all x ∼= x0,
y ∼= y0 and otherwise Q1 is the identity function. Let Q2 : B −→ C denote the inclusion
functor. Then Q1 · P = Q2 · P . But there exists no natural transformation v : Q1 −→ Q2

because the square

x0
vx0

x0−→y0

��

x0

rx0y0

��
y0 vy0

y0

does not commute.

2.⇒1. This follows from Proposition 3.3.

3.5. Remark. The above condition (∗) together with surjectivity characterizes finite
quotients (i.e., regular epimorphisms) in the category Top0 of topological T0 spaces. More
precisely, if we identify a finite topological space with the induced order (x ≤ y if and
only if x lies in the closure of y), then continuous functions are precisely the functors.
And quotients are precisely the surjective functors satisfying (∗), as proved in [7] and [8].
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3.6. Example. We exhibit a lax epimorphism P : E −→ B between posets which does
not satisfy condition (∗) of Proposition 3.3.

We define a set X =
⋃

n∈ω Xn with two partial orderings (≤) ⊆ (�) on it, where
(≤) = ⋃

n∈ω(≤n) and (�) = ⋃
n∈ω(�n), by induction. The first three steps are illustrated

below (where ≤ is indicated by full lines and � by dotted lines).

X0 :
•0

•1
X1 :

•0

•1
•a(0,1)

•
b(0,1)

X2 :

•a(0,1)

•a(a(0,1),1)

•
b(a(0,1),1)

•1

•
0

•
a(0,b(0,1))

•b(0,b(0,1))

•b(0,1)

���

																						

���























																						

First Step. X0 = {0, 1}, ≤0 is discrete, �0 is the chain 0 �0 1.
Induction Step. Let Qn be the set of all �n-coverings (i.e., pairs x �n y with no
element z satisfying x �n z �n y) which are not related by ≤n. Let Xn+1 be obtained by
adding to Xn elements a(x, y) and b(x, y) for each (x, y) ∈ Qn. Then ≤n+1 is the reflective
and transitive closure of ≤n extended by

x ≤n+1 a(x, y) and b(x, y) ≤n+1 y and b(x, y) ≤n+1 a(x, y)

for all (x, y) ∈ Qn. And �n+1 is the transitive closure of (�n) ∪ (≤n+1) extended by

a(x, y) ≤n+1 y and x ≤n+1 b(x, y)

for all (x, y) ∈ Qn.

Claim. id : 〈X,≤〉 −→ 〈X,�〉 is a lax epimorphism.
That is, given a pair x � y in X, then the subposet V of 〈X,≤〉 of all z with x � z � y

is connected. We prove this by induction on n with x, y ∈ Xn. If n = 0, the only interesting
case is x = 0, y = 1 and V = X. The poset 〈X,≤〉 is indeed connected, see Theorem 1.1
because 〈X1,≤1〉 is connected, and every new element added to Xk+1, k > 0, is connected
by ≤k to some element of Xk. For the induction case, observe that since 〈Xn,�n〉 is a
finite poset, every morphism is a composite of coverings. And the elements we add at
any stage later are only added in between coverings. (More precisely, given z ∈ Xk, for
k > n, with x �k z �k y there exists a covering x′ �n y′ with x �n x′ �k z �k y′ �n y.)
Thus, it is sufficient to prove that 〈V,≤〉 is connected assuming that x �n y is a covering.
If x ≤n y then V = {x, y} is connected. If (x, y) ∈ Qn, the argument is as for 0, 1 at the
beginning: V ∩Xn+1 = {x, y, a(x, y), b(x, y)} is connected, and every new element added
to V ∩Xk+1, k > n, is connected by ≤k to some element of V ∩Xk.

Claim. The morphism 0 −→ 1 of 〈X,�〉 is not a composite of isomorphisms and mor-
phisms in P [E] — in other words, 0 �≤ 1. This is clear.
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4. Faithfulness of P ∗

Whereas Theorem 1.1 characterizes functors P for which P ∗ is fully faithful, a charac-
terization of those for which P ∗ is just faithful has been presented in [3], where they are
called liberal. In the following we exhibit a simple direct proof of that characterization.

4.1. Proposition. For every functor P : E −→ B between small categories the following
conditions are equivalent:

1. P ∗ is faithful.

2. P ∗ is conservative (i.e., reflects isomorphisms).

3. P ∗ is monadic.

4. Every object of B is a retract of an object in P [E].

Proof. 1.⇒2. Since P ∗ is a right adjoint of L : [E, Set] −→ [B, Set] (the functor of
left Kan extension), faithfulness means that the counit is an epimorphism in [B, Set];
and since epimorphisms in [B, Set] are regular, we conclude that the comparison functor
K : [E, Set] −→ [B, Set]T of the monad T of that adjunction

[E, Set] K ��

P ∗


����������

[B, Set]T

U������������

[B, Set]

is full and faithful, thus, conservative. Since the forgetful functor U : [B, Set]T −→ [B, Set]
is conservative, it follows that so is P ∗ = U ·K.

2.⇒3. This is clear from Beck’s Theorem: P ∗ preserves coequalizers (in fact, colimits)
and has a left adjoint.

3.⇒4. This is analogous to the proof of 2.⇔3. in Theorem 1.1: here ε is an epitrans-
formation (because P ∗ is faithful) and we conclude that idB : B −→ B has a preimage
under εB(B, ), i.e., there are

B
m �� P (E)

q �� B

with q ·m = idB.

4.⇒1. Let α, β : F −→ G be different morphisms of [B, Set]. We are to prove αP �= βP .
Given an object B with αB �= βB, find

B
m �� P (E)

q �� B

with q ·m = idB. Since Fq is a split epimorphism, we conclude that αB · Fq �= βB · Fq,
or, equivalently, Gq · αP (E) �= Gq · βP (E), thus (αP )E �= (βP )E.
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4.2. Remark. If P is a pseudoepimorphism, then P ∗ is obviously faithful. But the
converse does not hold, e.g., for the embedding

P :
•0

•1 −→
•0

•1��

which is certainly no pseudoepimorphism, P ∗ is faithful.

4.3. Remark.

(a) Recall that P ∗ is fully faithful if and only if each of the categories f // P is connected,
i.e., if and only if every morphism f of B has a factorization through some object
of P [E] unique up to the equivalence ≈ of Theorem 1.1:

(E,m, q) ≈ (Ē, m̄, q̄) if and only if m̄ = P (e) ·m, q = q̄ · P (e)

for some morphism e in E. Now P ∗ is faithful if and only if each of the categories
f // P is nonempty, i.e., if and only if every morphism of B has a factorization
through some object of P [E]. In fact, given f : B −→ B′, choose a retraction
q : P (E) −→ B then, given m : B −→ P (E) with q ·m = id, we factorize

f ≡ B m �� P (E)
f ·q �� B′

(b) We can also characterize functors such that P ∗ is full. These are precisely the
functors P : E −→ B such that for every object B in B there exists an object E0 in
E and morphisms

B
m0 �� P (E0)

q0 �� B

with the following property: given morphisms

B
m �� P (E)

q �� X

in B then

(E,m, q) ≈ (E0,m0, q ·m · q0).

In fact, in the adjunction L 	 P ∗ we have P ∗ full if and only if ε is componentwise a
split monomorphism (see 19.4 in [1]). This is the case if and only if the components

εB(B, ) : G −→ B(B, )

(see the proof of Theorem 1.1) are, for all objects B in B, split monomorphisms.
To give a natural transformation α : B(B, ) −→ G with α · εB(B, ) = id means
precisely to give (E0,m0, q0) = αB(idB) as above.
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