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Preface

The idea of using the methods of complex analysis for a wider class of functions
then the space of analytic functions takes its origin from the end of 19th century
and actually is connected with the period of conception of complex analysis as the
independent branch of science. First attempts for the extension of the complex
methods were connected with the generalization of Cauchy-Riemann system and
the investigation of the properties of the space of solutions such a system (Picard,
Hilbert, Carleman, Teodorescou).

Later on, since the 1950-s, after the appearance of the monographs of I.Vekua
and L.Bers, generalized analytic functions due to the terminology of Vekua [124]
and pseudo-analytic functions due to Bers [11] these problems are the subject of
investigation by many scientists. In the frame of Vekua-Bers theory the geometric
(topological) properties of the solutions of elliptic systems on the plane became
clear: in particular, the natural relation between the pseudoanalytic functions and
the quasiconformal mappings was established. Here we mean that Carleman - Vekua
and Beltrami equations always exist in parallels.

Concepts of Bers and Vekua are similar in the cases of Bers normalized pair and
Carleman-Bers-Vekua regular equations. In particular, the normalized generating
pair induces the regular equation and vice versa, the generating pair, corresponding
to the regular equation is normalized. In such conditions these approaches are com-
pleting each other and we get the functional spaces with richer properties. In other
cases when the equation is non-regular or Bers generating pair isn’t normalized the
corresponding space of the generalized analytic functions is studied less intensively
and the theory itself is not as consistent as the Bers-Vekua theory. Besides, other
interesting generalized elliptic equations of Cauchy-Riemann equations are known,
for example, the equations which give the spaces of poly-analytic or p-analytic func-
tions. The present work is an attempt to fill up this gap at least partially. Its main
part is devoted to the study of the solutions of irregular elliptic systems, specifically
to the development of the fundamental theorems of the theory of analytic functions
and the corresponding boundary value problems in such spaces as well. The re-
maining part deals with the extension of Bers-Vekua theory on 2n-elliptic systems,
which has been soon developed independently by B.Bojarski [31], [26] and A.Douglis
[45] and it is also the subject of the authors’ interest. In particular, the geometric
interpretation of the matrix Beltrami equation, the problem of the generating pairs,
the Riemann-Hilbert monodromy problem etc.

The authors think that the solution of the listed problems is very important

complex structure of the moduli space, which in their turn are connected with the
fundamental problems of the contemporary mathematical physics: topological and
conformal field theories, the string and super string theories, supersymmetry, etc.

Further development of the theories of B.Bojarski and A. Douglis is given in the
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monographs of G. Manjavidze [90] and R. Gilbert and J.Buchanan [49]. Investigation
of such non-regular systems is an open problem yet. This work paves the way for
the study of these systems.
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1 Introduction

Let α, β, γ, δ be measurable functions of two variables (x, y), and a, b, c, d, e, f ∈
Lp(U), p > 2, U ⊂ C. Consider the system of linear partial differential equations
with respect to functions (u(x, y), v(x, y))of two variables:

∂v

∂y
= α

∂u

∂x
+ β

∂u

∂y
+ au+ bv + e

−∂v
∂x

= γ
∂u

∂x
+ δ

∂u

∂y
+ cu+ dv + f

(1.1)

The system (1.1) is elliptic if the inequalities

α(x, y) > 0, 4α(x, y)δ(x, y)− (β(x, y) + γ(x, y))2 > 0

hold. Along with ellipticity, let us require uniform ellipticity of the system (1.1),
which means that for a fixed constant k0 the functions α, β, γ, δ satisfy the inequality

4αδ − (β + γ)2 ≥ k0 > 0.

Consider the functions occurring in the system (1.1) as functions of complex variable
z = x+ iy. Suppose w(z) = u(x, y) + iv(x, y), using appropriate simplifications and
notations we get the equation

∂w(z)

∂z̄
− µ1(z)

∂w(z)

∂z
− µ2(z)

∂w

∂z
= A(z)w(z) + B(z)w(z) + C(z), (1.2)

where

µ1(z) =
2q

|q|2 − |1 + p|2
, µ2(z) = −|q|2 + (1 + p)(1− p̄)

|q|2 − |1 + p|2
,

the functions q and p are expressed by the functions α, β, γ, δ as follows:

q =
α + δ + i(γ − β)

2
, p =

α− δ + i(γ + β)

2
,

whereas the functions A, B, C are obtained from the functions a, b, c, d, e, f by
adding and multiplying by constants and by the function 1

|q|2−|1+p|2 . Since the system

is uniformly elliptic, the inequality |µ1|+ |µ2| ≤ µ0 holds for any z ∈ U . Moreover,
the functions A, B, C are either bounded on U or belong to Lp(U).

The equation (1.2) on the complex plane with natural restrictions on the func-
tions µ1, µ2, A,B, contains many well-known equations: Cauchy-Riemann, Beltrami,
Carleman-Bers-Vekua, holomorphic disc and other equations, which are obtained
from (1.1) or (1.2) by an appropriate choice of the coefficients. All these equations
are ”deformations” of the Cauchy-Riemann equation and the properties of the space
of solution of the corresponding equations are close to the properties of the spaces
of analytic functions.
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It is well-known, that the system (1.1) is equivalent to the system of equations

ux − Vy + au+ bV = 0,

uy + Vx + cu+ dV = 0,

under sufficiently general conditions. This system has the following complex form

∂w

∂z
+ Aw +B w = 0, (1.3)

which is Carleman-Bers-Vekua (CBV) equation, where

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
, w = u+ iV,

and

A =
1

4
(a+ d+ ic− ib), B =

1

4
(a− d+ ic+ ib).

This system was first investigated by Hilbert. Carleman obtained the funda-
mental property of the solutions of system (1.3) - the uniqueness theorem. Earlier
Teodorescu studied the system of the partial type and obtained the general repre-
sentation of the solutions by means of the analytic functions (see [124] and [11]).
This result turned out to be very important in constructing the general theory.

We consider the relationship between the spaces of solutions of the following
equations on the one hand and space of analytic functions on the other hand.

1.The Carleman-Bers-Vekua non homogenous equation:
∂u

∂x
− ∂v

∂y
= au+ bv + f

∂u

∂y
+
∂v

∂y
= cu+ dv + g

(1.4)

or
∂U

∂z
= AU +BU + F, (1.5)

where

A =
1

4
(a+ d) +

i

4
(c− b), B =

1

4
(a− d) +

i

4
(c+ b), U = u+ iv, F = f + ig.

If F = 0, then we obtain the homogenous Carleman-Bers-Vekua equation

∂U

∂z
= AU +BU, (1.6)

2.The degenerate Carleman-Bers-Vekua equation is obtained from (1.4) if we
assume a = d, c = −b, f = g = 0 :

∂u

∂x
− ∂v

∂y
= au+ bv

∂u

∂y
+
∂v

∂x
= −bu+ av

(1.7)
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the complex form of this system is

∂U

∂z
= AU, (1.8)

where A = 1
2
(a− bi), U = u+ iv.

3. The normal form of Bers-Vekua system is obtained from (1.4) when a = −d,
c = b : 

∂u

∂x
− ∂v

∂y
= au+ bv + f

∂u

∂y
+
∂v

∂x
= bu− av + g

(1.9)

the complex form of this system is

∂U

∂z
= BU + F. (1.10)

If f = g = 0, we obtain homogenous nonlinear equation (1.6).
4. If a = b = c = d = e = f = 0, we obtain the system

α
∂u

∂x
+ β

∂u

∂y
− ∂v

∂y
= 0

γ
∂u

∂x
+ δ

∂u

∂y
− ∂v

∂x
= 0

(1.11)

or in the complex form

∂w(z)

∂z̄
− µ1(z)

∂w(z)

∂z
− µ2(z)

∂w

∂z
= 0. (1.12)

Particular cases of this equation are a) Beltrami equation and b) holomorphic
disc equation.

5. The space of polyanalytic functions: solution space of the equation ∂nw
∂nz

= 0.

The functions belong to this space iff f(z) =
∑n−1

k=0 hk(z)z
k, where hk, k = 0, 1, ..., n−

1 are analytic functions.
The analysis of elliptic system of Cauchy-Riemann differential equations

∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
+
∂v

∂x
= 0,

(1.13)

is one among the classical concepts of construction of the theory of analytic functions
w = u + i v of complex variable z = x + i y. Picard proposed an idea of possibility
of construction of analogous theory on the basis of more general elliptic system of
first order differential equation (1.1).

The solutions of equation (1.4) are called the generalized analytic functions.
Therefore, the theory of generalized analytic functions is the meeting point between

9
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two sections of analysis - the theory of complex variable analytic functions and the
theory of elliptic type differential equations with two independent variables. This
theory was developed as independent part of analysis after appearance of monograph
of Vekua I. [124], where the long-term investigation of the author and some results
of his disciples and followers (B. Bojarski [25], [23], [26], [28], V. Vinogradov[133],
[132], I. Danyluk [42], [43] and etc) are presented completely. The foundations of the
theory of generalized analytic functions were established in [124]. Approximately in
this period Bers [11], independently from I. Vekua suggested the generalization of
analytic functions (so called pseudoanalytic functions), based on the modification
of the concept of the derivative. Note that, many authors have proposed various
generalizations, reducing the system (1.5) to the partial cases, until the complete
theory of generalized analytic functions was created (see [20],[90], [91], [13],[135],
[136], [7], [123], [91] and etc).

The natural question arises while investigating above mentioned differential sys-
tems: how should the solution be understood (definition problem). It is clear, that
even for the simplest and fundamental case of the system (1.13) the fulfillment of
indicated differential equalities isn’t sufficient to obtain the class of functions with
needed structure. For the system (1.4) (the equation (1.6)) the situation is more
complicated because of the coefficients involved there.

In connection with the above problem I. Vekua’s remarkable idea to interpret
the derivative ∂

∂z
in Sobolev generalized sense turned out to be very interesting and

fruitful. Let G be a domain of z = x + i y-plane. As usual, denote by C1(G)
the class of all complex valued functions of variables x, y with continuous partial
derivatives (in classical sense); by C1

0(G) the subclass of finite functions of the class
C1(G) is denoted. It means, that for every function φ ∈ C1

0(G) there exists the
compact subset Kφ of the set G, such that, outside of Kφ the function φ vanishes,
i.e. φ(x, y) = 0, (x, y) ∈ G \Kφ. Let the functions f, g be from the Lebesque class
Lloc

1 (G) satisfying the equality∫∫
G

(
f · ∂φ

∂z
+ g · φ

)
dG = 0,

for every function φ ∈ C1
0(G). In this case g is the generalized derivative of f by z; in

addition we preserve the classical notation g = ∂f
∂z
. The properties of the functions,

admitting the generalized derivative by z, are presented in monograph [124].
Let G be a domain of complex plane. Denote by Dz(G) the class of all functions

given (almost everywhere) in the domain G admitting the derivative in Sobolev
generalized sense by z. The function w ∈ Dz(G) and

∂w
∂z

= 0, modified appropriately
on the set of Lebesque measure zero becomes holomorphic i.e. it will be an analytic
function of complex variable without any singularities in the domain G. Here and in
what follows under singular (precisely isolated singular) point of analytic function
we mean the pole and essentially singular point; removable singular point is not
considered as a singular point.

Let A and B be functions given (almost everywhere) in the domain G. We say,
that the function w satisfies the equation (1.6) in the point z0 ∈ G or that the same

10
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function w is regular in the point z0 if there exists a positive number ρ, such that,
in ρ-neighborhood

Vρ(z0) =
{
z : |z − z0| < ρ

}
of the point z0, the function w ∈ Dz(Vρ(z0)) and the equality (1.6) is fulfilled almost
everywhere in Vρ(z0).

If the function w is regular in every point of G then we say, that w is a regular
solution of the equation (1.6) in the domain G. For the class of all possible regular
solutions somewhat long but very suitable notation A(A,B,G) is introduced. The
pair of functions A, B is called generating pair of the class A(A,B,G).

In exactly the same way, as the notion of isolated singular point has the most
important meaning for the analytic functions, the following analogous notion is
principally important for the solution of the equation (1.6).

Let the point z0 ∈ G; we say, that z0 is an isolated singular point for the function

w, if there exists a perforated ρ-neighborhood
(0)

V ρ(z0) = {z : 0 < |z−z0| < ρ}, ρ >

0, of the point z0 such, that w ∈ A(A,B,
(0)

V ρ(z0)). It should be mentioned especially,
that in the point z0 the function w must not satisfy the equation (1.6). Let for the
function w there exists the isolated subset G∗

w of the set G such, that in every point
of G, except the points of G∗, w is regular, i.e. w ∈ A

(
A,B,G \ G∗

w

)
, then we say,

that w is a quasiregular solution of the equation (1.6).
It should be also mentioned, that in the points of the set G∗

w the function w
must not satisfy the equation. The class of all possible quasiregular solutions of the
equation (1.6) is denoted by A∗(A,B,G). It is clear, that the following inclusion

A(A,B,G) ⊂ A∗(A,B,G)

holds. In addition, the solution w of the class A∗(A,B,G) is contained in the subclass
A(A,B,G) if and only if the set of its singularities G∗

w = ∅.
We just introduced the notion of the solution of the equation (1.6) above. We

can’t say anything about existence yet. In order to get the corresponding results it
is necessary to define the coefficients of the equation concretely. The equation (1.6)
is regular by the definition, if the domain G is bounded and the coefficients

A,B ∈ Lp(G) (1.14)

for some number p > 2. For such equations the existence of regular (quasiregular)
solutions is completely solved as well as their general representation by means of
holomorphic (analytic) functions is obtained [124].

Denote by A∗
0(G) the class of all possible analytic functions in G, which may have

arbitrary isolated singularities. By A0(G) the subclass of holomorphic functions
without any singularities in G is denoted.

Let (1.6) be a regular solution. Then the relation

w = Φ · exp(Θ) (1.15)

11
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defines the bijective relation between the class A(A,B,G) and A0(G), where

w ∈ A(A,B,G), Φ ∈ A0(G),

Θ(z) =
1

π

∫∫
G

A(ζ)

ζ − z
dG(ζ) +

1

π

∫∫
G

B(ζ)

ζ − z
Λ(ζ) dG(ζ),

Λ(ζ) =


w(ζ)

w(ζ)
, for w(ζ) ̸= 0,

0, for w(ζ) = 0.

(1.16)

When the coefficient B is zero almost everywhere the formula (1.15) turns into the
above mentioned result of Teodorescu. In other cases the relation (1.15) is nonlinear
integral representation of the solution w by itself and holomorphic function.

For the regular equation (1.6) by the relation (1.15) the bijective relation between
the class A∗(A,B,G) and A∗

0(G) is also given. Moreover, the set of singularities G∗
w

of the solution w coincides with the set of singularities D∗
Φ of the function Φ.

Investigation and application of the properties of integral transformation of the
operator

TG : f 7→ F, f ∈ Lp(G), p > 2,

F (z) = − 1

π

∫∫
G

f(ζ)

ζ − z
dG(ζ),

gave the possibility to state, that the structure of regular and quasiregular solu-
tions of the regular equation (1.6) is completely analogous to the structure of holo-
morphic and analytic (with arbitrary isolated singularities) functions correspond-
ingly. Here one keeps in mind not only the functional properties of the classes
A(A,B,G), A0(G)

(
A∗(A,B,G), A∗

0(G)
)
but the analysis of the boundary prob-

lems of mathematical physics.
The behavior of the quasiregular solution w in the neighborhood of its singular

point z0 ∈ G is completely analogous to the behavior of the analytic function Φ in
the neighborhood of z0, which, as was mentioned above, is singular for the function
Φ as well. As an example, we point out Sokhotsky-Weierstrass-Casorati theorem
about the behavior of analytic functions in the neighborhood of essentially singular
point, but it should be noted, that as as for as we know, the corresponding result
concerning the Picard theorem isn’t obtained.

The characteristic feature of the classes A(A,B,G) and A∗(A,B,G) with the
limits A,B ∈ Lp(G), p > 2 is their singletypeness. Speaking figuratively the classes
A(A,B,G) and A∗(A,B,G) almost do not react on the variation of generating pair
A,B ∈ Lp(G), p > 2. We don’t mean, that we want to state the validity of equalities

A(A1, B1, G) = A(A2, B2, G),A
∗(A1, B1, G) = A∗(A2, B2, G),

as soon as A1, A2, B1, B2 ∈ Lp(G), p > 2, however, in order to obtain the main
properties of the functions of the classes A(A,B,G), A∗(A,B,G) the condition

12
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A,B ∈ Lp(G), p > 2 is completely sufficient and it isn’t necessary to have the con-
crete form of the coefficients A,B. As it will be shown below, the classes A(A,B,G),
A∗(A,B,G) formed by the coefficients A,B not satisfying the regularity condition
(1.14) are sharply contrast and there occur very unexpected phenomena in general.

Natural and also necessary in applications, the extension of the class of regu-
lar equations (1.6) is the class of quasiregular equations [125]. Suppose that the
coefficients of the equation (1.6) admit the representation of the form

A(z) =
n∑
k=1

fk(z)Ak(z), Bk(z) =
n∑
k=1

gk(z)Bk(z) (1.17)

where fk, gk ∈ A∗
0(G), Ak, Bk ∈ Lp(G), p > 2, k = 1, 2, . . . , n (n is natural number

and G, is bounded domain on the complex plane as before). Generally speaking it
is obvious, that such equations are not regular. They are called the quasiregular
equations. Vekua I. obtained the following general result, which involves the whole
class of quasiregular equations [125]. Namely, we obtained the analogous formula of
the form (1.15), but in these cases the situation is much complicated.

Let w ∈ A∗(A,B,G), i.e. let w be an arbitrary quasiregular solution of the
quasiregular equation (1.6). Then the function

Φ = w · exp{−Θ} (1.18)

is holomorphic in every point of the domain

G \ G∗
w \ ∆, (1.19)

where

∆ =
n
∪
k=1

(
D∗
fk
∪D∗

gk

)
,

Θ(z) =
n∑
k=1

(
fk(z)

π

∫∫
G

Ak(ζ)

ζ − z
dG(ζ) +

gk(z)

π

∫∫
G

Bk(ζ)

ζ − z
Λ(ζ) dG(ζ)

)
,

G∗
w, D

∗
fk
, D∗

gk
are the sets of singularities of the solution w and the functions fk, gk

correspondingly, the function Λ(ζ) is given by the formula (1.16). Conversely, for
every analytic function Φ ∈ A∗

0(G) there exists the unique quasiregular solution
w ∈ A∗(A,B,G) for which the relation (1.18) holds. For singular points of analytic
function Φ the following statement is established: in every point of the set G∗

w \ ∆
the function Φ has the isolated singularity; the points of ∆ maybe singular as well as
the holomorphy points (this depends on the concrete form of the coefficients (1.17)
and the solution w; both cases are realized by examples) whether they are singular
points for the solution w or not.

From the formula (1.18) according to the properties of the functions

M(z) = h(z)

∫∫
G

f(ζ)

ζ − z
dG(ζ), f ∈ Lp(G), p > 2, h ∈ A∗

0(G),

13
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it follows, that every solution w ∈ A∗(A,B,G) is continuous in any point of the
domain (1.19).

We spoke only about quasiregular solutions of the quasiregular equation (1.6).
Unlike regular equations, equations of such type may not have nontrivial regular
solutions in general, i.e. in some cases of the coefficients (1.17) it may happen, that
the unique zero function is contained in the class A(A,B,G). On the other hand,
in some cases of the coefficients (1.17) the class A(A,B,G) may be very extensive.

Within the limits of the coefficients (1.17) and in contrast to (1.14) the singletype-
ness of the classes A∗(A,B,G) doesn’t exist. More clearly, the generating pairs of the
functions (A1, B1), (A2, B2) may be of the form (1.17) and “differing in the small”
from each other - they may be even identical to within the mark (+,−) in front the
coefficients - and nevertheless the classes A∗(A1, B1, G) and A∗(A2, B2, G) may be
principally of the different structure. In contrast of the regular and the quasireg-
ular solutions of the regular equations the regular and the quasiregular solutions
of the quasiregular equations may have principally nonholomorphic and nonanalytic
structure. Behavior of the quasiregular solutions of the quasiregular equations in the
neighborhood of a singular point of the equation may be fundamentally nonanalytic.

The solutions of the regular equations (1.6) can’t have the singularities of the
pole type of ”infinite order” and nontrivial solutions of such equations can’t have
nonisolated zero and zero of ”infinite order” in the points of regularity. The solutions
of the irregular equations of the wide class aren’t subjected to such exclusions.

The above mentioned general properties of the irregular equations of the form
(1.6) make clear the complexity of investigations. These equations were the subject
of investigation of various authors. Among them there are basic works of I. Vekua
In this direction of generalized analytic functions the most important results were
obtained by L. Mikhailov[97], V. Vinogradov [133], Z. Usmanov [123], N. Bliev [20],
V. Shmidt [117], R. Saks [113], A. Tungatarov [121], H. Begehr and D. Q. Dai [14],
M. Reissig [106], A. Timofeev [119] and others. The references according to this
subject are presented in [84], [85], [63], [54], [53].
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2 Functional spaces induced from regular

Carleman-Bers-Vekua equations

This section contains auxiliary concepts and results needed for our purpose con-
cerning Vekua-Pompej type integral operators, generalized analytic functions and
connected boundary value problems. We use the terms and notations from the
monographs [124], [99], [13], [108], [10].

2.1 Some functional spaces

Let G ⊂ C be a closed set. Denote by C(G) the set of all continuous bounded
functions f on G with the norm∥∥f∥∥

C(G)
= sup

z∈G

∣∣f(z)∣∣.
C(G) is a Banach space with this norm.

Denote by Hα(G) the set of all functions satisfying the Hölder condition with
exponent α, 0 < α ≤ 1 ∣∣f(z1)− f(z2)

∣∣ ≤ H|z1 − z2|α,

where z1 and z2 are arbitrary points, belonging to G and H is a positive constant,
not depending on the choice of the points z1 and z2. Denote by H(f) the greatest
lower bound of the numbers H.

It is clear, that

H(f) = sup
z1,z2∈G

|f(z1)− f(z2)|
|z1 − z2|α

,∣∣f(z1)− f(z2)
∣∣ ≤ H(f)|z1 − z2|α.

Define the norm of the element f of the set Cα(G) by the following formula:∥∥f∥∥
Cα(G)

=
∥∥f∥∥

C(G)
+H(f).

We understand the measurability of the set and function in the Lebesgue sense.
Let G be a measurable set and let p be a real number, 1 ≤ p < ∞. Denote by

Lp(G) the set of all functions f(z), satisfying the condition∫∫
G

∣∣f(z)∣∣pdx dy < +∞.

Denote by Lp(G) and L
loc
p (G) the set of all functions f(z), satisfying the conditions

∥∥f∥∥
Lp(G)

=

(∫∫
G

∣∣f(z)∣∣pdx dy) 1
p

and
f(z) ∈ Lp(G

′)

15



respectively, where G′ is an arbitrary closed bounded subset of the set G.
Let 1 ≤ p < ∞, ν > 0. Denote by Lp,ν(C) the set of all functions f(z) defined

on the complex plane C and satisfying the conditions

f(z) ∈ Lp(E1), fν(z) =
1

|z|ν
f
(1
z

)
∈ Lp(E1),

where E1 is a circle |z| ≤ 1.
Define the norm of the space Lp,ν(C) by the formula∥∥f∥∥

Lp,ν(C)
=
∥∥f∥∥

Lp(E1)
+
∥∥fν∥∥Lp(E1)

.

Denote by Cm(G) the set of all functions having the continuous partial derivatives
with respect to x and y up to and including the order m. Denote by D0

m(G) the set
of all functions f(z) satisfying the following conditions:

1) f ∈ Cm(G);
2) for every function f(z) ∈ D0

m(G) ) there exists the closed subset Gf of G
outside of which f = 0;

Introduce the notion of the generalized derivative in the Sobolev sense. Assume
that f, g ∈ Lloc

1 (G) and f, g satisfy the equalities∫∫
G

g
∂φ

∂z
dx dy +

∫∫
G

f φ dx dy = 0,

(∫∫
G

g
∂φ

∂z
dx dy +

∫∫
G

f φ dx dy = 0

)
,

where φ is a function of the class D0
1(G). In this case we say that the function f is

the generalized derivative with respect to z (with respect to z) of f on the domain G.

We denote by
∂f

∂z
and

∂f

∂z
the generalized derivatives of the function f respectively

z and z.
The functions having the generalized derivative with respect to z on the domain

G compose the linear space, which we denote by Dz(G).

2.2 The Vekua-Pompej type integral operators

Let G be a bounded domain. It is known that if f ∈ L1(G) then the integral

(TGf)(z) = − 1

π

∫∫
G

f(ζ)

ζ − z
, dζ dη, ζ = ξ + iη (2.1)

exists for all points z outside of G, is holomorphic outside of G and vanishes at
infinity. In addition, TGf almost everywhere on G exists as the function of the point
z ∈ G and belongs to the class Llocp (C), where p is an arbitrary number, satisfying
the condition 1 ≤ p < 2. TGf ∈ Dz(G) and the equality

∂TGf

∂z
= f(z), z ∈ G
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holds.
Analogically to above if f ∈ Lp,2(C), p > 2 then there exists the integral

(TCf)(z) = − 1

π

∫∫
C

f(ζ)

ζ − z
dζ dη, ζ = ξ + iη (2.2)

everywhere on the plane C, belongs to Dz(C) as the function of the point z and the
equality

∂TEf

∂z
= f(z), z ∈ C (2.3)

is valid. It is known also, that if g ∈ Lloc
1 (G) and

∂g

∂z
= 0, z ∈ G then g(z) is

holomorphic in the domain G.

The operator TGf gives the solution of the equation
∂g

∂z
= f for f ∈ L1(G). It

means, that it is possible to express
∂

∂z
-primitive by this operator. In particular,

we have the following result.

Theorem 2.1 If
∂g

∂z
= f and f ∈ L1(G), then

g(z) = Φ(z)− 1

π

∫∫
G

f(ζ

ζ − z
dζ dη ≡ Φ(z) + (TGf)(z), z ∈ G (2.4)

is valid, where F(z) is a holomorphic function in the domain G. On the other hand
f ∈ L1(G) and Φ(z) is a holomorphic function in the domain G then

g(z) = Φ(z) + (TGf)(z) ∈ Dz(G)

and the equality
∂g

∂z
= f(z), z ∈ G (2.5)

is fulfilled.

Let the function f(z) has the generalized derivative with respect to z at every
point of the domain G, i.e. for every point z0 ∈ G there exists the neighborhood
of this point inside of which f(z) ∈ Dz(G0). In this case f ∈ Dz(G). If g ∈ Dz(G),
then g ∈ Dz(G1), where G1 is an arbitrary subdomain of the domain G.

Theorem 2.2 Let G be a bounded domain. If f ∈ Lp(G), p > 2 then the function
g(z) = (TGf)(z) satisfies the conditions∣∣g(z)∣∣ ≤M1

∥∥f∥∥
Lp(G)

, z ∈ C, (2.6)∣∣g(z1)− g(z2)
∣∣ ≤M2

∥∥f∥∥
Lp(G)

|z1 − z2|α, α =
p− 2

p
, (2.7)

where z1 and z2 are the arbitrary points of the complex plane and M1 and M2 are
the constants. Moreover, M1 depends on p and G, M2 depends only on p.
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Therefore, if G is a bounded domain and f ∈ Lp(G), p > 2 then TGf ∈ C p−2
p
(C)

and if f ∈ D1,p(G), p > 2, then f(z) belongs to the class C p−2
p

inside of G.

Theorem 2.3 Let f ∈ Lp,2(C), p > 2 then the function g(z) = (TCf)(z) satisfies
the conditions ∣∣g(z)∣∣ ≤Mp

∥∥f∥∥
Lp,2(C)

, (2.8)∣∣g(z1)− g(z2)
∣∣ ≤Mp

∥∥f∥∥
Lp,2(C)

|z1 − z2|
p−2
p , z1, z2 ∈ C, (2.9)

Moreover, for the given R > 1 there exists the number Mp,R such, that∣∣g(z)∣∣ ≤Mp,R

∥∥f∥∥
Lp,2(C)

|z|
2−p
p , if |z| > R. (2.10)

Therefore, if f ∈ Lp,2(C), p > 2, then

TCf ∈ C p−2
p
(C), p > 2.

The operator ∂
∂z̄

satisfies the important rules of the differential operators:

Theorem 2.4 1) Let f ∈ D1,p(G), 1 < p < 2, g ∈ D1,p′(G), p
′ =

2p

3p− 2
, then

fg ∈ Dz(G). In addition

∂

∂z
(fg) = g(z)

∂f

∂z
+ f(z)

∂g

∂z
.

2) Assume the values of the function z∗ = f(z) of the class Dz(G) belong to the
bounded domain G∗ and

g(z) =
∂f

∂z
∈ Lloc

p (G), p > 2.

Let Φ(z∗) be a holomorphic function in G0
∗ moreover G∗ ⊂ G0

∗. In this case the
composite function f∗(z) = Φ(f(z)) belongs to Dz(G) and the equality

∂f∗(z)

∂z
= Φ′(f(z))

∂f(z)

∂z

is valid.

2.3 The Carleman-Bers-Vekua equation

Consider the Carleman-Bers-Vekua homogeneous equation:

Lw ≡ ∂w

∂z
+ Aw +Bw = 0, (2.11)

where A and B are given functions on G ⊂ C and
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A,B ∈ Lloc
p (G), p > 2. (2.12)

We say that w(z) satisfies equation (2.11) in the neighborhood G0 of the point
z0 if w ∈ Dz(G0) and Lw ≡ ∂w

∂z
+ Aw +Bw = 0 in G0.

If w satisfies equation (2.11) in G, then we say that w is a regular solution of
(2.11) in G, i.e. w ∈ Dz(G) and Lw = 0 almost everywhere in G.

Denote by A(A,B,G) the class of solutions of (2.11) when A,B are regular in G.
If A,B ∈ Lloc

p (G) (A,B ∈ Lp,2(C)), then we write Ap(A,B,G) (Ap,2(A,B,G)). The
regular solutions of (2.11) in G when A,B ∈ Lloc

p (G), are called generalized analytic
functions of the class Ap(A,B,G). Regular solution of (2.11) in the domain G, where
A,B ∈ Lp,2(C), called is generalized analytic function of the class Ap,2(A,B,C).

Theorem 2.5 (Main lemma)[124]. Let w(z) be a generalized analytic function of
class Ap,2(A,B,G), p > 2 and let

g(z) =

A(z) +B(z)
w(z)

w(z)
, if w(z) ̸= 0, z ∈ G,

A(z) +B(z), if w(z) = 0, z ∈ G.

(2.13)

Then the function
Φ(z) = w(z) e(TGg)(z) (2.14)

is holomorphic on G.

If w(z) isn’t identically zero, then (2.14) can be rewritten in the following form:

w(z) = Φ(z) e−TG(A+Bw
w
)(z). (2.15)

We call the function Φ(z) in the formula (2.15) the analytic divisor of the gen-
eralized analytic function w(z).

Theorem 2.6 Let Φ(z) be an analytic function in the domain G and t be a fixed
point of the extended complex plane, i.e t ∈ C or t = ∞. Let A,B ∈ Lp,2(C), p > 2
then there exists the function w(z) defined on G satisfying the following conditions:

1) the function w(z) is a regular solution of the equation

Lw ≡ ∂w

∂z
+ Aw +Bw = 0

in the domain G;

2) the function w0(z) =
w(z)

Φ(z)
is continuous in G and is continuously extendable

on the whole complex plane, moreover w0 ∈ C p−2
p
(C);

3) w0(z) ̸= 0, z ∈ C;
4) w0(t) = 1;
5) the function w0(z) is a holomorphic function outside of G.

19

Elliptic Systems on Riemann Surfaces



The function w(z), satisfying the conditions 1)-5), is unique.
The function w(z) = Φ(z)w0(z) satisfies the following non-linear integral equa-

tion
w(z) = Φ(z) eTG(A+Bw

w
)(t)−TG(A+Bw

w
)(z). (2.16)

Therefore, we can consider the operator which corresponds to every analytic
function Φ(z) and to the fixed point t of the extended complex plane the regular
solution w(z, t) of the equation Lw = 0 in the domain G. We denote this operator
by Rt(Φ).

Denote by RA,B
t the operator which connects to every analytic function on G

and to every point t of the extended complex plane the regular solution w(z, t) =
RA,B
t Φ(z) of the equation (2.1) on the domain G, satisfying the following conditions:

1) the function w0(z) =
w(z)

Φ(z)
is continuous in the domain G and is continuously

extendable on the whole complex plane, moreover w0 ∈ C p−2
p
(C);

2) w0(z) ̸= 0, z ∈ C;
3) w0(t) = 1;
4) the function w0(z) is holomorphic outside of G.
By means of the operator Rt(Φ) it is possible to construct the solution of the

equation Lw = 0 the analytic divisor of which is an arbitrary analytic function.
Theorem 2.6 and the formula (2.16) are valid even in case t = ∞. Therefore the

operator R∞(Φ) corresponds to given arbitrary analytic divisor Φ(z) the appropriate
solution of the equation Lw = 0.

Theorem 2.7 1) If the generalized analytic function of the class Ap,2(A,B,C), p >
2 is bounded on the whole complex plane and is equal to zero in the fixed point z0 of
the extended complex plane, i.e z0 ∈ C or z0 = ∞, then w(z) = 0, ∀ z ∈ C.

2) Every function w(z) of the class Ap,2(A,B,C), p > 2, bounded on the whole
complex plane, has the following form:

w(z) = c e−TE(A+Bw
w
)(z), c = const . (2.17)

We call the functions of the form (2.17) the generalized constants of the class
Ap,2(A,B,C). Therefore, arbitrary regular solution of the equation

∂w

∂z
+ Aw +Bw = 0, A,B ∈ Lp,2(C), p > 2

bounded on the whole complex plane is referred as the generalized constant.

2.4 The generalized polynomials of the class Ap,2(A,B,C),
p > 2

The regular solution of the equation

∂w

∂z
+ Aw +Bw = 0
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on the whole plane, the normal analytic divisor of which is a classical polynomial
of order n is called the generalized polynomial of order n of the class Ap,2(A,B,C),
p > 2.

Theorem 2.8 If 1) w ∈ Ap,2(A,B,C), p > 2 and 2) w(z) = O(zn), z → ∞, where
n is a non-negative integer, then w(z) is the generalized polynomial of order at most
n of the class Ap,2(A,B,C).

Let

Φ1(z) =
1

2(t− z)
, Φ2(z) =

1

2i(t− z)
, (2.18)

where t is a fixed point of the complex plane and let Xj(z, t) = Rt(Φj(z)) (j = 1, 2)
be the regular solutions of the equation

Lw ≡ ∂w

∂w
+ Aw +Bw = 0, A,B ∈ Lp,2(C), p > 2

on the domain C \ {t}, corresponding to the functions Φ1(z) and Φ2(z).
Consider the functions

Ω1(z, t) = X1(z, t) + iX2(z, t),Ω2(z, t) = X1(z, t)− iX2(z, t). (2.19)

We call the functions Ω1(z, t) and Ω2(z, t) themain kernels of the class Ap,2(A,B,C),
p > 2.

Let V2n(z, z0) and V2n+1(z, z0) be the generalized polynomials of the class
Ap,2(A,B,C), p > 2 corresponding to the normal analytic divisors (z − z0)

n and
i(z − z0)

n, and V2n(z, z0) = RA,B
∞
(
(z − z0)

n
)
, V2n+1(z, z0) = RA,B

∞
(
i(z − z0)

n
)
, n =

0, 1, 2, . . .
Consider the following Carleman-Bers-Vekua equation

∂w

∂z
+ Aw +Bw = 0, A,B ∈ Lp,2(C), p > 2 (2.20)

and its conjugate equation

∂w′

∂z
− Aw′ −Bw′ = 0. (2.21)

We call the functions Vn(z, z0) the generalized power functions of the class
Ap,2(A,B,C), p > 2. Analogically, we denote by Ap,2(−A,−B,C) the generalized
power functions of he class V ′

n(z, z0)

V ′
2n(z, z0) = R−A,−B

∞
(
(z − z0)

n
)
,

V ′
2n+1(z, z0) = R−A,−B

∞
(
i(z − z0)

n
)
.

(2.22)
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Theorem 2.9 [69]Let w(z) be a function of the class Ap,2(A,B,G), p > 2 where G
is the circle |z − z0| < R. Then the following expansion holds on this circle

w(z) =
∞∑
n=0

cn Vn(z, z0),

where cn are defined by the formulas:

c2n = Re
1

2πi

∫
|t−z0|=ρ

w(t)V ′
−2(n+1)(t, z0) dt,

c2n+1 = −Re
1

2πi

∫
|t−z0|=ρ

w(t)V ′
−2n−1(t, z0) dt,

0 < ρ < R, n = 0, 1, 2, . . .

2.5 Some properties of the generalized power functions

Consider the generalized power functions

U2k(z, z0) = RA,B
z0

((z − z0)
k), U2k+1(z, z0) = RA,B

z0
(i(z − z0)

k), (2.23)

V2k(z, z0) = RA,B
∞ ((z − z0)

k), V2k+1(z, z0) = RA,B
∞ (i(z − z0)

k), (2.24)

of the Carleman-Bers-Vekua equation

∂zw + Aw +Bw = 0, A,B ∈ Lp,2, p > 2, (2.25)

where z0 ̸= ∞, k = 0,±1,±2, ..., RA,B
z0

is the operator (see [124], chapter 3,§3)
associating to every analytic function φ and the point z0 ∈ C the solution w of the
equation (2.25), satisfying the following conditions

1)the function w̃(z, z0) =
w(z,z0)
φ

is continuous in the domain, where φ is analytic

and continuously extendable on C, moreover w̃ ∈ Cα(C), α = p−2
p
;

2)w̃(z, z0) ̸= 0 on C;
3)w̃(z0, z0) = 1.
The function φ is called an analytic divisor (with respect to the point z0) of the

function w = RA,B
z0

(φ); we call the point z0 the point of the coordination φ and w.
When z0 = ∞, the function φ is called the normal analytic divisor of the function
w.

These functions are representable in the following form

Uk(z, z0) = (z − z0)
[ k
2
]Ũk(z, z0), Vk(z, z0) = (z − z0)

[ k
2
]Ṽk(z, z0), (2.26)

where Ũ2k, Ũ2k+1, Ṽ2k and Ṽ2k+1 are the generalized constants (see [124], chapter 3,

§4) of the class A(A,B), Bk(z) = B(z) (z−z0)
k

(z−z0)k , satisfying the conditions

Ũ2k(z0, z0) = Ṽ2k(∞, z0) = limz→∞Ṽ2k(z, z0) = 1 (2.27)
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Ũ2k+1(z0, z0) = Ṽ2k+1(∞, z0) = limz→∞Ṽ2k+1(z, z0) = i. (2.28)

Besides Ũk(∗, z0), Ṽk(∗, z0) belong to the class C p−2
p
(C) and satisfy the inequality

M−1 ≤ |Ũk(z, z0)| ≤M,M−1 ≤ |Ṽk(z, z0)| ≤M, (2.29)

z ∈ C, k = 0,±1,±2, ...,

where M = exp{Mp|||A|+ |B|||p,2, Mp is a constant, depending only on p (see [124],
chapter 3, §4).

The generalized power functions Uk and Vk differ from each other only by coor-
dinated points with their analytic divisors.

It is easy to see that the following equalities hold:

U2k(z, z0) = c2k,0V2k(z, z0) + c2k,1V2k+1(z, z0) (2.30)

U2k+1(z, z0) = c2k+1,0V2k(z, z0) + c2k+1,1V2k+1(z, z0) (2.31)

where c2k,α, c2k+1,α, α = 1, 2 are real constants (z0 is fixed point), representable by
the formulas:

c2k,0 + ic2k,1 = Ũ2k(∞, z0) = −ImṼ2k+1(z0, z0)− iImṼ2k(z0, z0)

Im[Ṽ2k(z0, z0)Ṽ2k+1(z0, z0)]
(2.32)

c2k+1,0 + ic2k+1,1 = Ũ2k+1(∞, z0) =
ReṼ2k+1(z0, z0)− iReṼ2k(z0, z0)

Im[Ṽ2k(z0, z0)Ṽ2k+1(z0, z0)]
(2.33)

Note, that the denominator in the right-hand sides of equalities (2.32) and (2.33)
is not equal to zero. Indeed, assuming the contrary we have

Ṽ2k(z0, z0) = cṼ2k+1(z0, z0)

where c is a real constant. But the last equality is impossible as the functions
Ũ2k(∗, z0) and cŨ2k+1(∗, z0) are the generalized constants of one and the same class
A(A,Bk), satisfying the conditions

Ṽ2k(∞, z0) = 1, cṼ2k+1(∞, z0) = ic

and hence they couldn’t have the same meanings in any point of the plane.
The equations (2.32) and (2.33) are obviously equivalent to the following equa-

tions
V2k(z, z0) = ĉ2k,0U2k(z, z0) + ĉ2k,1U2k+1(z, z0), (2.34)

V2k+1(z, z0) = ĉ2k+1,0U2k(z, z0) + ĉ2k+1,1U2k+1(z, z0), (2.35)

where

ĉ2k,0 =
1

∆k

c2k+1,0, ĉ2k,1 = − 1

∆k

c2k,1, ĉ2k+1,0 = − 1

∆k

c2k+1,0, (2.36)
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ĉ2k+1,1 =
1

∆k

c2k,0,

∆k ≡ c2k,0c2k+1,1 − c2k,1c2k+1,0 = [Im(Ṽ2k+1(z, z0)Ṽ2k(z, z0)]
−1.

The last equality follows directly from the formulas (2.32),(2.33).
The generalized power functions of the conjugate equation of the equation (2.25)

∂zw
′ − Aw′ −Bw′ = 0, A,B ∈ Lp,2, p > 2, (2.37)

of the lass A(−A,−B) are denoted by U ′
k and V ′

k , k = 0,±1,±2, ....
It is evident, that all relations, established above for the functions Uk and Vk

take place for U ′
k and V ′

k too.
Let us prove the following theorem.

Theorem 2.10 Let Γ be a piecewise-smooth simple closed curve, surrounding the
point z0 ̸= ∞. Then the following identities hold

Re
1

2πi

∫
Γ

Uk(z, z0)U
′
m(z, z0)dz = Ik,m, (2.38)

Re
1

2πi

∫
Γ

Vk(z, z0)V
′
m(z, z0)dz = Ik,m, (2.39)

where Ik,m = 1(Ik,m = −1), if k and m even (odd) numbers and [k
2
] + [m

2
] = −1; if

all the remaining cases Ik,m = 0.

Proof. Denote by Ik,m(U,Γ) and Ik,m(V,Γ) the left-hand sides of the identities
(2.38) and (2.39). From the Green identity (see [124], chapter 3, §9) it follows that
for every R > 0

Ik,m(U,Γ) = Ik,m(U,ΓR), Ik,m(V,Γ) = Ik,m(V,ΓR), (2.40)

where ΓR is a circle with the radius R and the origin in the point z0. By virtue of
the equalities (2.26) we have

Ik,m(U,ΓR) = Re
1

2πi

∫
ΓR

χ
(U)
k,m(z, z0)(z − z0)

αdz, (2.41)

Ik,m(V,ΓR) = Re
1

2πi

∫
ΓR

χ
(V )
k,m(z, z0)(z − z0)

αdz, (2.42)

where
χ
(U)
k,m(z, z0) = Ũk(z, z0)Ũ

′
m(z, z0), (2.43)

χ
(V )
k,m(z, z0) = Ṽk(z, z0)Ṽ

′
m(z, z0), (2.44)

α =
[k
2

]
+
[m
2

]
.
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The functions χ
(U)
k,m(∗, z0) are χ

(V )
k,m(∗, z0) the Hölder continuous and are bounded on

the whole complex plane.
When α > −1 and α′ < −1 it follows from identities (2.41), (2.42), that

limR→0Ik,m(U,ΓR) = limR→0Ik,m(V,ΓR) = 0

and
limR→∞Ik,m(U,ΓR) = limR→∞Ik,m(V,ΓR) = 0

respectively.
Therefore, by virtue of (2.40) we get

Ik,m(U,Γ) = Ik,m(U,Γ) = 0.

Let now α = −1. Consider three different cases separately.
a) k and m are even numbers. Then from (2.43),(2.44),(2.27), (2.28) we have:

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z, z0) = 1.

Taking into account these equations, from (2.41), (2.42) we obtain

limR→0Ik,m(U,ΓR) = limR→∞Ik,m(V,ΓR) = 1.

Hence, in the considered case the following identity

Ik,m(U,Γ) = Ik,m(V,Γ) = 1

holds.
b) k and m are odd numbers. Then from (2.26)

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z0, z0) = −1

and as in the above case

Ik,m(U,Γ) = Ik,m(V,Γ) = −1;

c) k and m are numbers with different frequency. In this case

χ
(U)
k,m(z0, z0) = limz→∞χ

(V )
k,m(z0, z0) = i

and therefore
limR→0Ik,m(U,ΓR) = limR→oIk,m(V,Γ) = 0.

Hence, by virtue of (2.41) we have

Ik,m(U,Γ) = Ik,m(V,Γ) = 0.

The theorem is proved.
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In the particular case, when B = 0 in (2.24) we have

U2k(z, z0) = (z − z0)
keω(z)−ω(z0), U2k+1(z, z0) = iU2k(z, z0);

V2k(z, z0) = (z − z0)
keω(z), V2k+1(z, z0) = iV2k(z, z0);

U ′
2k(z, z0) = (z − z0)

keω(z0)−ω(z), U ′
2k+1(z, z0) = iU ′

2k(z, z0);

V ′
2k(z, z0) = e−ω(z), V ′

2k+1(z, z0) = iV ′
2k(z, z0),

where ω = 1
p

∫∫
C
A(ξ
ξ−zdσξ. From, the above identities we get the following formula

1

2πi

∫
γ

(z − z0)
α =

{
1, if α = −1

0, if α ̸= −1.

2.6 The problem of linear conjugation for generalized ana-
lytic functions

Consider the Carleman-Bers-Vekua equation

∂w

∂z
+ Aw +Bw = 0, A,B ∈ Lp,2(C), p > 2. (2.45)

Let Γ be a smooth closed curve, bounding the finite domain D+ and the infinite
domain D−. We say that the function w is a piecewise regular solution of the
equation (2.45) with the boundary curve Γ if w is a regular solution of the equation
(2.45) in the domains D+ and D− and is continuously extendable from both sides
on Γ (with respect to the chosen direction on Γ.)

Let Γ be a smooth closed curve. Let G(t) and g(t) be the given functions of the
class Hα(Γ), 0 < α ≤ 1. Moreover G(t) ̸= 0 everywhere on Γ. Consider the problem
of linear conjugation for the generalized analytic function:

Find a piecewise regular solution of the equation (2.45) with the boundary curve
Γ, satisfying the following conditions:

w+(t) = G(t)w−(t) + g(t), t ∈ Γ, (2.46)

w(z) = O(zN), z → ∞, (2.47)

where N is given integer.
Let X(z) be a canonical solution of the homogeneous linear conjugation problem

[99]
φ+(t) = G(t)φ−(t), t ∈ Γ

for the analytic function. Consider the self-conjugate Carleman-Bers-Vekua equa-
tions

∂V

∂z
+ AV +B1V = 0, (2.48)

∂V ′

∂z
− AV ′ −B1 V ′ = 0, (2.49)
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where B1(z) = B(z)
X(z)

X(z)
.

Let Ω1(z, t), Ω2(z, t) be the main kernels of class Ap,2(A,B1,C) and let Vk, V
′
k be

the generalized power functions of the classes Ap,2(A,B1,C) and Ap,2(−A,−B1,C)
correspondingly

V2k(z) = RA,B1
∞ (zk), V2k+1(z) = RA,B1

∞ (i zk), V ′
2k(z) = R−A,−B1

∞ (zk),

V ′
2k+1(z) = R−A,−B1

∞ (i zk), k = 0, 1, 2, . . .

The following theorems are valid

Theorem 2.11 1) Let χ + N > −1, where χ is the index of the function G(t) on

Γ (χ =
1

2π

[
argG(t)

]
Γ
). Then the general solution of the problem (2.45), (2.46),

(2.47) is given by the formula

w(z) =
X(z)

2πi

∫
Γ

Ω1(z, t)
g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt+X(z)Vχ+N(z),

where Vχ+N(z) is a generalized polynomial of order at most χ + N of the class
Ap,2(A,B1,C). It is supposed, that V−1(z) ≡ 0, z ∈ C.

2) Let χ+N ≤ −2. Then the necessary and sufficient solvability conditions for
the problem (2.45), (2.46), (2.47) are the following conditions

Im

∫
Γ

v′k(t)
g(t)

X+(t)
dt = 0, k = 0, 1, 2, . . . , 2(−N − χ)− 3. (2.50)

If the conditions (2.50) are fulfilled then the solution of the problem is given by the
formula:

w(z) =
X(z)

2πi

∫
Γ

Ω1(z, t)
g(t)

X+(t)
dt− Ω2(z, t)

g(t)

X+(t)
dt.

For detailed analysis see [21], [25], [69].
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3 Beltrami equation

In this section the review of important results of B.Bojarski is given. We follow
B.Bojarski papers [24], [27] and prove that the quasiregular mappings given by
the (normalized) principal solution of the linear Beltrami equation (3.1) and the
principal solution of the quasilinear Beltrami equation are inverse to each other. This
basic fact is deduced from the Liouville theorem for generalized analytic functions. It
essentially simplifies the known proofs of the measurable Riemann mapping theorems
and its holomorphic dependence on parameters.

The first global, i.e. defined in the full complex plane C and expressed by an
explicit analytical formula, solution of the Beltrami equation

wz − q(z)wz = 0 (3.1)

was given by Vekua [124].
In this paper the equation (3.1) is considered with compactly supported q(z),

q(z) ≡ 0 for |z| > R, for some finite R, satisfying the uniform ellipticity condition

|q(z)| ≤ q0 < 1, q0 constant. (3.2)

Vekua considers the class of solutions of (3.1), represented by the Cauchy complex
potential Tω in the form

ω(z) = − 1

π

∫
C

ω(z)dσζ
ζ − z

+ ϕ(z) ≡ Tω + ϕ(z) (3.3)

where ω(ζ) is a complex density, ω ∈ Lp(C), p > 1, and ϕ(z) is an entire function.
The function w = w(z) is aW 1,p

loc (C) solution of (3.1) iff the density ω is a solution
of the singular integral equation

ω − q(z)Sω = q(z)ϕ′(z) ≡ h(z), (3.4)

with the singular integral

Sω = − 1

π

∫
C

ω(z)

(ζ − z)2
dσζ (3.5)

understood in the sense of the Cauchy principal value.
It was probably Vekua who first introduced the singular integral operator S to the

study of elliptic equations in the plane (see [27], [32]. It appeared in connection with
the study of general boundary value problems, specifically the Poincaré boundary
value problem, in the theory of generalized analytic functions, which was defined
and developed in Vekua’s famous paper [127] (see also [124] and B.Bojarski’s Ph.D.
dissertation [25], [26]).

Later the operator S was called the Hilbert transform.
The main role of the operator S in the Vekua school was to transform the deriva-

tive wz into wz for compactly supported smooth functions w ∈ C∞
0 (C),

S(wz) = wz =
∂

∂z
T (wz).
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Since for w ∈ C∞
0 (C), the entire function ϕ(z) in (3.3) reduces to ϕ(z) ≡ 0, integra-

tion by parts then gives ||wz||L2 = ||wz||L2 and

||Swz||L2 = ||wz||L2 (3.6)

where ||.||L2 denotes the L2 norm of square integrable functions. As a result, S
extends as a unitary isometry to the Hilbert space L2(C).

Lemma 3.1 For arbitrary measurable dilatation q(z), satisfying (3.2), the integral
equation (3.10)(see below) has a unique solution in L2(C) given by the formula

ω = (1− qS)−1h. (3.7)

This means that the differential Beltrami equation (3.1) with the compactly sup-
ported coefficient q = q(z) has a unique solution in the Sobolev space W 1,2

loc (C),
admitting a holomorphic extension of the form (3.3) outside the support of q.

Lemma 3.2 For compactly supported C∞-smooth dilatation q(z) the weak W 1,2
loc (C)

solutions of the Beltrami equation (3.1) are C∞-smooth.

The proof of Lemma 3.1 is rather direct, relying on the classical tools of standard
potential theory and is described in detail in Vekua’s book [124].

By the Calderón-Zygmund theorem [38] the operator S acts also as a bounded
operator in Lp(C) for each p, 1 < p < 1, and its norm Ap is continuous at p = 2.
Thus

Apq0 < 1 for 2 ≤ p < 2 + ϵ (3.8)

and the equation ω − qSω = h is uniquely solvable

ω = (I − qS)−1h, ω ∈ Lp, (3.9)

for any h ∈ Lp and p satisfying (3.8), what we henceforth assume. In particular,
for any measurable dilatation q(z) the L2 solution ω of equation (3.4) is actually
in some Lp, p > 2. Thus, in other words, the W 1,2

loc (C) solutions of (3.1) belong to
W 1,2
loc (C), p > 2. In particular, they are continuous (α-Hölder,α = 1− 2

p
> 0).

For ϕ(z) ≡ z, h(z) ≡ q(z), formula (3.3) gives a particular solution of the Bel-
trami equation (3.1)

w ≡ z − 1

π

∫
C

ω(ζ)

ζ − z
dσζ , (3.10)

where ω is the unique solution of the equation

ω − q(z)SΩ = q(z). (3.11)

We call (3.10) the principal solution of the Beltrami equation. A fundamental is-
sue of the theory of elliptic equations and planar quasiconformal mappings was the
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understanding that the formulae (3.10)-(3.11) give a univalent solution of the uni-
formly elliptic Beltrami equation (3.1)-(3.2) realizing a homeomorphic quasiconfor-
mal mapping of the complex plane with the assigned measurable complex dilatation
q(z) (the Measurable Riemann Mapping Theorem). The existence of W 1,2

loc (C) so-
lutions was clear from the outset and the problem essentially reduced to the L2

isometry of the operator S and the classical properties of the complex potential
T : L2 → W 1,2

loc (C), described in [127], [126]. The idea of applying the Calderón-
Zygmund theorem [38] and, thus, extending the range of admissible parameters p
to the interval 2− ϵ < p < 2+ ϵ for some positive ϵ, due to B.Bojarski [21],(see also
[124], [24], [27], [32]), immediately allowed us to consider W 1,2

loc (C) solutions, p > 2,
and, by the Sobolev imbedding theorems, or classical properties of the complex
potentials Tω, α-Hölder continuous solutions with α = 1− 2

p
> 0.

Proposition 3.3 The Beltrami equation (3.1) with an arbitrary measurable dilata-
tion q(z), satisfying (3.2) and compactly supported, always admits the solution of the
form (3.10) in the Sobolev class W 1,2

loc (C), p > 2. Moreover, the norms ||wz − 1||Lp ,
||wz||Lp of this solution are uniformly bounded by quantities, depending only on q0
in (3.2) and ||q||Lp (or the support of |q|).

Not necessarily homeomorphic solutions of the Beltrami equations are known as
quasiregular mappings. By formulas (3.3) and (3.4) above they are relatively easy
to construct. The proof that univalent solutions exist at all, the more so, that the
solutions (3.10) are homeomorphisms onto, is much more subtle.

Proposition 3.4 [27] (see also [124]) 1. If the dilatation q(z) is sufficiently smooth,
then the mapping (3.10) is a homeomorphism onto, i.e., it is a quasiconformal map-
ping of the complex plane.

2. For arbitrary measurable dilatation q(z), satisfying condition (3.2), the for-
mulae (3.10)-(3.11) realize a quasiconformal mapping of the complex plane with the
assigned dilatation almost everywhere.

In view of the approximating procedure, described in [27] it is, obviously, enough
to consider the Beltrami equation (3.1) with dilatation q(z) of arbitrary high smooth-
ness (even C∞). In [27] considered, parallel to equation (3.1), the quasilinear equa-
tion for the mappings z = z(w) of the image plane Cw in (3.1) to the source plane
Cz

∂z

∂w
+ q(z)

∂z

∂w
= 0. (3.12)

We call it the conjugate (quasilinear) Beltrami equation (or holomorphic disc equa-
tion [40], see section 4). Now we are interested in a particular solution of (3.12) of
the form

ψ(w) = w + T ω̃ ≡ w − 1

π

∫
C

ω̃(ζ)

ζ − w
dσζ (3.13)

with ω̃ ∈ Lp for some p > 2.
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(3.13) is a solution of (3.12) of the Sobolev class W 1,2
loc (C) iff the complex density

ω̃ is a solution of the singular integral equation

ω̃ + q̃(w)Sω̃ = −q̃(w) (3.14)

with q(w) ≡ q(ψ(w)). Hence ψ(w)−w is in the class W 1,p and ψ(w) is the solution
of the conjugate Beltrami equation

∂ψ

∂w
+ q̃(w)

∂ψ

∂w
= 0 (3.15)

with q̃(w) at least Hölder continuous with exponent α = 1− 2
p
> 0. In the terminology

adopted above the mapping ψ(w) is a quasiregular mapping of the complex plane
Cw into the plane Cz.

Considered as an operator equation for the unknown density ω̃(w), (3.14) is a
highly nonlinear operator equation. However, its solvability in Lp spaces is easily
controlled.

Lemma 3.5 The quasilinear conjugate Beltrami equation with smooth dilatation
q(z) always admits a solution of type (3.13) in some W 1,2

loc (C). Equivalently, the non-
linear equation (3.14) always admits a solution ω̃ in Lp(Cw) (compactly supported)
for some p > 2.

The solution (3.13) of (3.12) is unique.

Lemma 3.6 Let w = w(z), in W 1,2(C) be a (generalized) solution of the equation

wz − q(z)wz = Aw (3.16)

with the coefficient q(z) : measurable, compactly supported and satisfying uniform
ellipticity condition (3.2), and A ∈ Lp(C) for some p > 2. For simplicity assume
also that A is compactly supported. If w vanishes at ∞, i.e. |z||w(z)| < C for all z,
then w ≡ 0.

For details see [21] and [124].

Corollary 3.7 The conclusion of Lemma 3.6 holds also for mappings w = w(z) in
W 1,2(C), w(∞) = 0, satisfying the inequality

|wz − q1(z)wz − q2(z)wz| ≤ A(z)|w(z)| (3.17)

if the coefficients q1, q2 have compact support and satisfy the uniform ellipticity con-
dition

|q1(z)|+ |q2(z)| ≤ q0 < 1, q0-const. (3.18)

and A ∈ Lp(C), p > 2, vanishes for |z| large enough.
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The important concept of generalized analytic function, corresponding to the
system (3.16), and discussed in [126] and [124] under the term: generalized constants
(or generalized units), is also useful in the global theory of the Beltrami equation
(3.1).

Lemma 3.8 In the conditions of Lemma 3.6 the equation (3.16) has a unique solu-
tion, defined in the full complex plane v = v(z), z ∈ C, regular at z → ∞, and such
that v(∞) = ∞. This solution does not vanish for any z ∈ C,

v(z) ̸= 0.

Lemma 3.8, as Lemma 3.6 above, could be also referred to [21].

Corollary 3.9 The derivative wz of the principal solution (3.10) of the Beltrami
equation with smooth dilatation q(z) (q(z) ∈ W 1,p, p > 2, is enough) is a generalized
constant for equation (3.16). In particular,

wz ≡ 1 + Sω ̸= 0, for all z ∈ C (3.19)

Corollary 3.7 immediately implies the following

Proposition 3.10 In the conditions of Proposition 3.4 the principal (quasiregular)
solution (3.10) is a local homeomorphism.

In [124] Vekua deduced Proposition 3.4 from Proposition 3.10 by appealing to
the ”argument principle” for local homeomorphisms of the complex plane. It was
also well known that the monodromy theorem for open mappings of the Riemann
sphere S2 or the closed plane Ĉ may also be used to deduce Proposition 3.3 from
Proposition 3.10.

Let us now consider the Beltrami equation (3.1) with a smooth compactly sup-
ported dilatation q(z) and the conjugate Beltrami quasilinear equation (3.12).

Lemma 3.11 Let χ = χ(z) be the normalized (principal) solution (3.10) of equation
(3.1) and ψ = ψ(w) the principal solution (3.13) of the quasilinear equation (3.12).
Consider the composed mappings

ϕ̃(w) = χ ◦ ψ(w), ϕ̃ : Cw → Cw, ϕ(w) = χ ◦ ψ(w), ϕ : Cw → Cw, (3.20)

Then ϕ̃ = ϕ̃(w) is a solution of the Cauchy-Riemann equation

∂ϕ̃

∂w
= 0 (3.21)

and ϕ satisfies the inequality

|ϕz − q̃(z)(ϕz − ϕz)| ≤ A(z)|ϕ(z)− z| (3.22)

with a bounded, compactly supported function A(z) and

q̃(z) ≡ q(z)

1 + |q(z)|2
.
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Lemma 3.11 and its proof have a nice geometric interpretation in terms of Lavren-
tiev fields (characteristics), see below, and also [34] and [124], [108].

Proposition 3.12 The normalized solutions (3.10) and (3.13) of the smooth Bel-
trami equation and the conjugate quasilinear equation are homeomorphisms of the
complex planes Cz → Cw inverse to each other, i.e. the formulas hold

χ(w) ◦ ψ(w) ≡ w and ψ ◦ χ(z) ≡ z. (3.23)

Corollary 3.13
Jχ · Jψ ≡ 1 (3.24)

where Jχ = |χz|2 − |χz|2 and Jψ = |ψw|2 − |ψw|2 are the Jacobians. In particular,

Jχ ̸= 0 and Jψ ̸= 0 (3.25)

at every point. Actually Jχ ≥ cχ > 0 and Jψ ≥ cψ > 0 for positive constants (in
general, dependent on the mapping).

(3.25) is also a direct consequence of Lemma 3.1 above.
The work of Vekua and his school on the solutions of the Beltrami equation

yielded much more than the previous methods due to Lichtenstein [79], Lavrentiev
[75],[76] or Morrey [98], where, in various forms, the Riemann mapping theorem for
QC-maps was proved (see [24], [33].

The explicit representation formulas of Vekua’s school and related a priori es-
timates for global mapping problems, created a powerful and flexible tool and a
method to attack many local and global problems, inaccessible in any preceding
theory. The study of quasiconformal extensions of holomorphic univalent functions
and of the theory of deformations of planar quasiconformal mappings is hardly con-
ceivable without these tools. They serve as a solid foundation for the development of
important applications of the theory inside as well as outside the planar elliptic par-
tial differential equations theory. The long list of the first ones starts with the deep
results of Vinogradov and Danilyuk on basic boundary value problems for general el-
liptic equations and generalized analytic functions described in Vekua’s monograph
[124]. For the latter, i.e. applications outside the genaralized analytic function, it
is enough to mention the deep and beautiful ideas and constructions of the Ahlfors-
Bers school in the theory of Teichmüller spaces, moduli spaces and Kleinian groups
or the results in complex holomorphic dynamics [2] (the 2006 edition).

It is necessary to stress here that the explicit formulas (3.10) and (3.19) written
in the form

wz = ω = (1− qS)−1q

and
wz − 1 = Sω = S(1− qS)−1q

show that the derivatives wz and wz of the principal solution (3.10) depend holomor-
phically, in the general functional sense, on the complex dilatation q. This functional
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dependence, naturally, implies that, if the dilatation q(z) itself depends on some pa-
rameters t, holomorphically, real analytically, smoothly or just continuously, then
the principal solutions (3.10) depend holomorphically, smoothly... . etc., as the case
may be, on these parameters.

In [124] the existence of homeomorphic solutions of the complex Beltrami equa-

tion is also discussed in the compactified complex plane Ĉ, identified with the Rie-
mann sphere S2. In this case, for the general measurable dilatation satisfying only
the condition (3.2), the homeomorphic solution cannot be in general represented by
formula (3.10). However, as shown in [124], the principal homeomorphism can be
constructed by the composition of two homeomorphisms of type (3.10), obtained
by splitting the complex dilatation q(z) = q1 + q2 with q1(z) and q2(

1
z
) compactly

supported, and a simple natural change of variables.
Besides, the behaviour of the complex dilatation qw = wz

wz
under composition

of quasiconformal mappings f = w ◦ v−1 is discussed in [21] and the simple, but
important, formula

qf = { qw − qv
1− qvqw

vz
vz
} ◦ v−1

appears and is used, at some crucial points, in [21].
Consider the convex set

∑
of mappings of the form (3.13), parametrized by the

densities ω̃ ∈ Lp(Cw) for some fixed admissible p > 2. For z = z(w) ∈
∑

consider
the principal solution ψ(w) of the conjugate linear Beltrami equation

∂ψ

∂w
+ q̃(z)

∂ψ

∂w
= 0. (3.26)

with q̃(w) ≡ q(z(w))
This defines the nonlinear map ψ = F (z) of

∑
into

∑
. Since (3.26) is again

a Beltrami equation in the w-plane, with the same uniform ellipticity estimate as
(3.1), Lemma 3.1 and Proposition 3.3 hold and a priori estimates follow. Hence F is
compact and the fixed point of F is the required solution of the quasilinear equation
(3.12).

Remarks. The concept of the principal solution of form (3.10) or its slight
generalization

w(z) = az − 1

π

∫
C

ω(z)

ζ − z
dσζ , a-complex constant, (3.27)

is meaningful for the general Beltrami equation

wz + q(z)wz − q1(z)wz = 0 (3.28)

with the uniform ellipticity condition

|q(z)|+ |q1(z)| ≤ q0 < 1, q0- const. (3.29)

These equations correspond to Lavrentiev’s quasiconformal mappings [75], [76], with
”two pairs of characteristics” [124], [125], [28], [33], and in Vekua’s school they have
been considered from the outset [28], [27], [124], [103].
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The infinitesimal geometric meaning of a differentiable transformation w = w(z)
at a point z0 is defined by the linear tangent map

Dw(z)(ξ) = wz(z0)ξ + wzξ (3.30)

It transforms ellipses in the tangent plane at z0 into ellipses in the tangent plane at
the image point w(z0).

Ellipses centred at z are defined up to a similarity transformation by the ratio
p ≥ 1 of their semiaxes and, if p > 1, the angle θmodπ between major axis and the
positive z-axis, and denoted by E(p, θ, z) or Eh(p, θ, z) where h is the length of the
minor axis. The pair (p, θ) is called the characteristic of the infinitesimal ellipse,
and the family Eh(p, θ, z), h > 0, z ∈ G, is a field of infinitesimal ellipses (Lavrentiev
field). A homeomorphism w = w(z) is said to map the infinitesimal ellipse E(p, θ, z)
onto E(p1, θ;z) if the tangent map Dw(z) transforms E(p, θ; z) onto E(p1, θ1; z).

Analytically this is described in terms of the components wz and wz in the tan-
gent map Dw (3.30) by the general Beltrami equation (3.28) where the coefficients
q and q1 are determined by the invertible formulas

q(z) = − p− p−1

p+ p−1 + p1 + p−1
1

e2iθ, q1(z) = − p1 − p−1
1

p+ p−1 + p1 + p−1
1

e2iθ1 . (3.31)

In particular, the solutions of the Beltrami equation (3.1) (q1 ≡ 0) map the
field of ellipses E(p1, θ;z) into infinitesimal circles (p1 ≡ 1) whereas the conjugate
Beltrami equations (3.12), (3.15) map the infinitesimal discs (p ≡ 1) into ellipses
(p1 ≥ 1).

The density ω(ζ) of the principal solution (3.27) satisfies the singular integral
equation

ω − qSω − q1Sω = aq + aq1 (3.32)

which is uniquely solvable and its L2 solutions are necessarily in Lp for some p > 2.

Proposition 3.14 The equation (3.28) has always a unique principal solution of
the form (3.27). If a ̸= 0 then the principal solution realizes a homeomorphic qua-
siconformal mapping of the full complex plane C.

For a = 0 the principal solution is identically ≡ 0 (Liouville theorem).
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4 The pseudoanalytic functions

The pseudoanalytic functions in the sense of Bers are defined by generating pairs
(F,G), where complex functions F and G satisfy the Hölder condition and the
inequality

Im(FG) > 0. (4.1)

Every complex function w can be expressed in the following form

w(z) = φ(z)F (z) + ψ(z)G(z),

where φ and ψ are real functions. The (F,G)-derivative ẇ(z0) at the point z0 ∈ U
is defined by

ẇ(z0) ≡
d(F,G)w(z0)

dz
:= limz→z0

w(z)− φ(z0)F (z)− ψ(z0)G(z)

z − z0
.

A function w for which the above limit exists for all z0 ∈ U is called an (F,G)-
pseudoanalytic function or pseudoanalytic in the sense of Bers in U.

Connection between the coefficients of the equation (1.6) and the generating pair
is carried out by the following identities

A =
F∂zG−G∂zF

FG−GF
,B =

G∂zF − F∂zG

FG−GF
. (4.2)

The theory of pseudo analytic functions bears the same relationship to the gen-
eral theory of elliptic equations as the theory of analytic functions does to that of
the Couchy-Riemann equation. This follows essentially from the following theorem:

Theorem 4.1 The function w(z) = φ(z)F (z) + ψ(z)G(z), possessing continuous
first partial derivatives, is (F,G)-pseudo-analytic if and only if 1

2
(wx+ iwy) ≡ wz =

Aw +Bw where as above

A =
F∂zG−G∂zF

FG−GF
,B =

G∂zF − F∂zG

FG−GF
.

that is, if and only if Fφz +Gψz = 0.

The (F,G)-integral of a continuous function W (z), taken over a rectifiable arc Γ
leading from z0 to z1, is defined by∫

Γ

Wd(F,G))z = F (z1)Re

∫
Γ

GW

FG− FG
dz −G(z1)

∫
Γ

FW

FG− FG
dz.

Theorem 4.2 A continuous function is (F,G)-integrable (i.e., its (F,G)-integral
vanishes over all closed curves, homologous to zero in U) if and only if it is an
(F,G)-derivative.
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By definition, a generating pair (F1, G1) is called a successor of (F,G) if (F,G)-
derivatives are (F1, G1)-pseudo-analytic, and (F1, G1)-pseudo-analytic functions are
(F,G)-integrable. (F,G) is then called a predecessor of (F1, G1).

Proposition 4.3 Any generating pair (F,G) ≡ (F0, G0) may be imbedded in a gen-
erating sequence of pairs (Fν , Gν), such that each (Fν , Gν), ν − 0,±1,±2, ..., is a
successor of (Fν+1, Gν+1).

With respect to such a generating sequence, it may be shown that there are cer-
tain pseudo-analytic functions, called (global) formal powers, denoted by Z

(r)
ν (a, z0; z),

which have like the usual powers a(z − z0)
r, where r is a real rational number and

a and z0 are complex numbers.
In terms of these formal powers, numerous results analogous to those of function

theory, e.g. Taylor and Laurent expansions for single and multiple valued functions,
Runge’s approximation theorem, etc., can be established.

If (F,G) is a normal generating pair (see [11] pp.65 or [124], §6) then the space
of pseudoanalytic functions coincides with the space of the generalized analytic
functions, obtained from the regular equation (1.6) whose coefficients are evaluated
from the correspondence (4.2). Note that to pass from coefficients of the Carlemann-
Bers-Vekua equation to the generating pair is a nontrivial problem, because it is
necessary to solve a system of nonlinear integral equations (4.2). Only the existence
theorem is known (see [11], theorem 16.1). It means that for a normal generating
pair there exists a regular equation of type (1.6). Only in some particular cases it
is possible to construct corresponding generating pairs exactly [73].

Proposition 4.4 [11] If (F,G) is a generating pair, then the functions F and G
are solutions of the equation (1.6) with coefficients defined by (4.2).

This proposition follows from the formulas for partial derivatives of the functions
F and G with respect to z and z, respectively:

∂zF = −AF −BF, ∂zG = −AG−BG.

From this it follows that there always exists the space of pseudoanalytic functions,
containing a given admissible function; moreover it is possible to construct the spaces
Ap,2(A,B, U) and Ap,2(A1, B1, U) with nonempty intersection. Indeed, if (F,G1) ie
the generating pair with characteristic coefficients ([11], p.5) A and B and (F,G2)
is other generating pair not equivalent ([11], p.37) to (F,G1) with characteristic
coefficients A1, B1, then F is a common element of the spaces Ap,2(A,B,U) and
Ap,2(A1, B1, U).

Proposition 4.5 Let f be a real value positive function. (f, i
f
)-pseodoanalytic func-

tions of first kind are p-analytic functions with p = f 2 and corresponding pseodoan-
alytic function of second kind satisfies the Beltrami equation with coefficient f2+1

f2−1
.
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Proposition 4.6 If Q is a positive real valued function, then (Q, i/Q) defines (1.10)
type homogeneous

∂w

∂z
=
Qz

Q
w

equation.

Proposition 4.7 The generating pair of the equation (1.8) is (e−Q, ie−Q), where Q
is ∂

∂z
-primitive of A.

Proofs of this propositions follows from formula (4.2).

4.1 Relation between Beltrami and holomorphic disc equa-
tions

In this section we give detailed analysis of the theory of pseudoanalytic functions
in the light of Beltrami equation and holomorphic disc equation and prove the
equivalence of these equations.

Let (F,G) be a normalized generating pair on complex space C [11] it means
that 1) F,G ∈ C p−2

p
, p > 2; 2)Fz, Gz ∈ Lp,2(C) ∩ Cβ, 0 < β < 1; 3)Im(F (z)G(x)) ≥

K0 > 0, K0 = const, z ∈ C. As above, every function W, at every point, is uniquely
represented by F (z), G(z) in the following form

W (z) = φ(z)F (z) + ψ(z)G(z), (4.3)

where φ, ψ are real functions.
Let W (z) be (F,G)-pseudoanalytic in C, then it is known that W (z) is the

solution of the Carlemann-Bers-Vekua equation

Wz = AW +BW, (4.4)

where A and B may be calculated by formula (4.2).
From the pseudoanalyticity it follows also, that there exist continuations of the

partial derivatives φz, φz, ψz, ψz and

Fφz +Gψz = 0.

Consider the function
ω(z) = φ(z) + iψ(z).

Then

2(Fφz +Gψz) = (F − iG)(φz + iψz) + (F + iG)(φz − iψz) =

= (F − iG)(φ+ iψ)z + (F + iG)(φ− iψ)z = (F − iG)ωz + (F + iG)ωz = 0.

Hence it follows, that

ωz(F − iG) + ωz(F + iG) = 0. (4.5)
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Lemma 4.8 F (z)− iG(z) ̸= 0.

Indeed,

|F (z)− iG(z)|2 = (F (z)− iG(z)(F (z)− iG(z)) = (F (z)− iG(z)(F (z) + iG(z)) =

= |F (z)|2 + |G(z)|2 − i(F (z)G(z)− F (z)G(z)) =

= |F (z)|2 + |G(z)|2 + 2Im(F (z)G(z)) ≥ 2K0 > 0, (4.6)

when |F (z)|2 > 0, |G(z)|2 > 0, Im(F (z)G(z)) ≥ K0 for every z ∈ C. The lemma is
proved.

From lemma 4.8 and (4.5) it follows, that

⇒ ωz + ωz
F + iG

F − iG
= 0. (4.7)

Denote by q(z) = −F (z)+iG(z)
F (z)−iG(z)

.

Lemma 4.9 |q(z)| ≤ q0 < 1, z ∈ C.

Step 1.

|q(z)|2 = |F (z) + iG(z)|2

|F (z)− iG(z)|2
=

(F (z) + iG(z))(F (z) + iG(z))

(F (z)− iG(z))(F (z)− iG(z))
⇒

⇒ |F (z)|2 + |G(z)|2 − 2Im(F (z)G(z))

|F (z)|2 + |G(z)|2 + 2Im(F (z)G(z))
< 1, (4.8)

when Im(F (z)G(z)) ≥ K0 > 0, z ∈ C.
Step 2. The function F, G satisfies Carlemnan-Bers-Vekua equation

Fz = aF + bF ,Gz = aG+ bG, (4.9)

when F ∈ C p−1
p
(C), a, b ∈ Lp,2(C) we obtain aF + bF ∈ Lp,2(C). From (4.9) it

follows,that
F (z) = Φ(z) + TC(aF + bF )(z), (4.10)

where Φ(z) is an entire function. From F (z), TC(aF + bF )(z) ∈ C p−2
p
(C), it follows

that Φ(z) ∈ C p−2
p
(C). By Liouville theorem we obtain Φ(z) = const, therefore

Φ(z) = C, z ∈ C. From this and (4.10) we obtain

F (z) = C + TC(aF + bF )(z). (4.11)

When TC(aF + bF )(∞) = 0, from (4.11) it follows, that F (∞) = C. In a similar
way we obtain G(∞) = C1.

When Im(F (z)G(z)) ≥ K0, therefore

Im(F (∞)G(∞)) ≥ K0 (4.12)
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and from (4.8) and (4.12) we obtain

⇒ |q(∞)|2 = |F (∞)|2 + |G(∞)|2 − 2Im(F (∞)G(∞))

|F (∞)|2 + |G(∞)|2 + 2Im(F (∞)G(∞))
< 1. (4.13)

From (4.8) and (4.13) it follows, that

|q(z)| < 1, z ∈ C, |q(∞)| < 1,

therefore |q(z) ≤ q0 < 1, z ∈ C.

Proposition 4.10 There exists the function q̃(z), such that ω is the solution of
Beltrami equation with the coefficient q̃(z).

Introduce the function q̃(z) :

q̃(z) =

 q(z)
∂zω

∂zω
,when ∂zω ̸= 0,

0,when ∂zω = 0.

(4.14)

and consider the equation

∂zω − q(z)
∂zω

∂zω
= 0.

From (4.14) itfollows that ω satisfies the equation

∂zω − q̃(z)∂zω = 0. (4.15)

It is clear, that

|q̃(z)| = |q(z)∂zω
∂zω

| = |q(z)||∂zω
∂zω

| = |q(z)| ≤ q0 < 1. (4.16)

From (4.15) and (4.16) it follows, that ω(z) is solution of the Beltrami equation

∂zh− q̃(z)∂zh = 0. (4.17)

In the area U ⊂ C the function ω represented as ω(z) = Ψ(W (z)), where W (z)
is complete homeomorphism of the equation (4.17) and Ψ(ζ) analytic on W (U)
function.

4.2 The periodicity of the space of generalized analytic func-
tions

Let F (z), G(z) be two complex valued Hölder continuous functions, defined in some
domain such that Im(FG) > 0. A function w = ϕF +ψG, where ϕ and ψ are real,is
called (F,G) pseudo-analytic, if ϕzF + ψzG = 0. The function ẇ = ϕzF + ψzG
is called the (F,G) derivatives of w. Every generating pair (F,G) has a successor
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(F1, G1) such that (F,G) derivatives are (F1, G1) pseudo-analytic. The successor is
not uniquely determined. A generating pair (F,G) is said to have minimum period
n if there exists generating pairs (Fi, Gi) such that (F0, G0) = (F,G), (Fi+1, Gi+1)
is a successor of (Fi, Gi) and (Fn, Gn) = (F0, G0). If such n does not exist, (F,G) is
said to have minimum period ∞.

It is known, that w is pseudonalytic iff w satisfies the following Carleman-Bers-
Vekua equation

wz = aw + bw, (4.18)

where the function a(z, z), b(z, z) expressed by the generating pair (F,G) through
the following identity (see also (4.2))

a =
GFz − FGz

FG− FG
, b =

FGz −GFz

FG− FG
. (4.19)

Define also the the quantities

A =
GFz − FGz

FG− FG
,B =

FGz −GFz

FG− FG
. (4.20)

The (F,G)-derivative ẇ satisfies the following Carleman-Bers-Vekua equation

ẇz = aẇ −Bẇ (4.21)

The functions a, b, A,B are called the characteristic coefficients of the generating
pair (F,G).

Proposition 4.11 [104] Given functions a, b, A,B are characteristic coefficients of
the generating pair if and only if they satisfy the system of differential equations

Az = az + bb−BB, Bz = bz + (a− A)b+ (a− A)B. (4.22)

Proposition 4.12 [104] 1) The space Ω(a, b) have period one iff there exist a func-
tion A0 satisfying the equation

A0z = a, (A0 − A0) = a− a+
1

b
(bz + bz) (4.23)

2)The space Ω(a, b) have period two iff there exist the functions A0, A1, B0 satis-
fying the system of equations

A0z = az + bb−B0B0, B0z = bz + (a− A0)b+ (a− A0)B0, (4.24)

A1z = az + bb−B0B0, B0z = bz + (A1 − a)B0 + (A1 − a)b. (4.25)

Proposition 4.13 Let (F,G) be a generating pair of (4.18), then the generating
pair of the adjoint equation

wz = −aw −Bw, (4.26)

is

F ∗ =
2G

FG− FG
, G∗ =

2F

FG− FG
, (4.27)
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We prove, that the characteristic coefficients, induced from adjoint generating pair
(F ∗, G∗), are equal to −a and −B.

Indeed,

G
∗
F ∗
z − F

∗
G∗
z

F ∗G
∗ − F

∗
G∗

=
2F
D
(2G
D
)z − 2G

D
(2F
D
)z

2G
D

2F
D

− 2G
D

2F
D

=
4F
D
(Gz

D
− G

D2Dz)− 4G
D
(F z

D
− F

D2Dz)
4
DD

(FG− FG)
=

=
FGz −GF z

D
− FG− FG

D2
Dz, (4.28)

where D = FG − FG,D = −D,Dz = FzG + FGz − F zG − FGz. From (4.28) we
have

a1 =
−FzG− FGz − F zG− FGz + F zG+ FGz

D
= −FzG− FGz

D
=⇒ a = −a1

Analogously as above

b1(F ∗,G∗) =
F ∗G∗

GZ
−G∗F ∗

z

F ∗G
∗ − F

∗
G∗

=
G
D
G(F

D
)z − G

D
F (G

D
)z

G
D

=

=
D

D
(
GF z

D
− GF

D2
Dz −

FGz

D
+
GF

D2
Dz) = −GF z − FGz

D
,

therefore

b1 = −GFz − FGz

D
=⇒ b1 = −B.

By definition [11] the pseudo-analytic functions corresponding to (4.18) satisfy the
following holomorphic disc equation

ωz = q(z)ωz, where q(z) =
F + iG

F − iG
(4.29)

Proposition 4.14 [37] Holomorphic disc equation, corresponding to (4.21) is

ωz = −q(z)ωz.

Indeed, coefficient of holomorphic disc equation, corresponding to (4.21) expressed
by the generating pair (F ∗, G∗) of (4.21) as

q1 =
F ∗ + iG∗

F ∗ − iG∗ ⇒ q1 =
2G
D

+ i2F
D

2G
D

− i2F
D

=
G+ iF

G− iF
⇒ q1 = −q.

Proposition 4.15 [37] If system (4.18) has the period one, then system (4.21) also
has period one.

The proof immediately follows from the proof of the preceding proposition.
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Proposition 4.16 The generating pair of the space Ω(a, 0) is (f, if), where f ̸= 0
and is solution of the equation fz = −af.

Indeed,

Im(fif) = i|f |2; (FG− FG) = f(−if)− f(if) = −2i|f |2.

a(f,if) =
fifz − fz(−if)

−2i|f |2
= −fz

f
, b(f,if) =

fifz − fzif

−2i|f |2
= 0.

Consider the particular cases of this theorem. When f is constant, or is complex
analytic, we obtain the space of holomorphic functions Ω(0, 0).

Proposition 4.17 If f is real and f ̸= 0, then (f, i
f
) generates the space Ω(0, b).

The proof is obtained from direct calculation:

Im(f
i

f
) = 1 > 0, because f = f ; a(f, i

f
) =

−f( ifz
f2
)− fz(− i

f
)

−2i
= 0;

b(f, i
f
) = −

−f( ifz
f2
)− fz(

i
f
)

−2i
=
fz
f
;

Proposition 4.18 [37] From ω ∈ Ω(a, 0) it follows, that ω̇ ∈ Ω(a, 0).

By proposition 4.16 the generating pair of the space Ω(a, 0) is (f, i
f
). The function

ω̇ satisfies the equation (4.21), therefore it is necessary to calculate B from (4.20).
It is easy, that B = 0.

In case, when the functions F,G are complex analytic, then from (4.19) it follows,
that we obtain the space of holomorphic functions Ω(0, 0), but this space is not
”isomorphic” to the space of holomorphic functions generated by the pair (1, i),
because it follows from (4.20), B isnot equal to zero. From this follows, that this
space has period N > 1. It is shown [104], that period of this space is equal to 2.

Proposition 4.19 [104] 1)There exists real analytic function b in the a neighbor-
hood of the origin, such that the space Ω(0, b) has minimum period infinity.

2) For each positive integer N there exists a real analytic function b in the neigh-
borhood of the origin, such that the space Ω(0, b) has minimum period N .

L. Bers obtained the necessary and sufficient condition that Ω(a, b) generated
by (F,G) has the period one and proved that this condition is identity F

G
= τ(y).

L. Bers also proved, that if F
G
= σ(x), then the minimum period is at most two.

Remark. A. Markushevich observed that every system of linear partial differ-
ential equations

ciux + divx = aiuy + bivy, i = 1, 2 (4.30)
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with sufficiently smooth coefficients a1(x, y), ..., d2(x, y) can be written in the form
∂ci
∂x

= ∂ai
∂y
, ∂di
∂x

= ∂bi
∂y
, i = 1, 2. In this case the integrals

U =

∫
(a2u+ b2v)dx+ (c2u+ d2v)dy, V =

∫
(a1u+ b1v)dx+ (c1u+ d1v)dy (4.31)

are path-independent and (u, v) satisfy a system (4.31)1 which is of the same form
as (see [102]). System (4.30) is said to be embedded into a cycle if there exists
a sequence of systems (4.31)1, (4.31)2, (4.31)3,... such that (4.31)i, is related to
(4.31)i+1 as (4.30) was related to (4.31)1. The cycle is said to be of finite order n
if (4.31)n, is equivalent to (4.30), of infinite order if such n doesn’t exist. In [80]-
[81](see [102]) M. Lukomskaya (a) proves that every (4.30) can be embedded into a
cycle of infinite order, and (b) gives necessary and sufficient conditions in order that
the minimum order nmin of a cycle beginning with (4.30) be 1. In [11] is stated as an
open problem the question on the existence of systems with nmin > 2. Note that for
elliptic systems the natural setting for this problem is the theory of pseudo-analytic
functions [11] and finely result in this direction gives M. Protter [104] solving the so
called periodicity problem for pseudoanalytic functions.

4.3 Almost complex structure

Let X be a two-dimensional connected smooth manifold. By definition two complex
atlases U and V are equivalent if their union is a complex atlas. A complex structure
on X is an equivalence class of complex atlases. A Riemann surface is a connected
surface with a complex structure. A differential 1-form on X with respect to a local
coordinate z can be represented in the form ω = αdz + βdz. Thus, ω has bidegree
(1,1) and is a sum of the forms ω1,0 = αdz and ω0,1 = βdz of bidegree (1,0) and
(0,1)respectively. The change of local coordinate z → iz induces on the differential
forms the mapping given by ω → i(αdz − βdz) = iω1,0 − iω0,1. Denote by J the
operator defined on 1-forms by the rule Jω = iω1,0 − iω0,1. This operator does not
depend on the change of the local coordinate z and J2 = −1, where 1 denotes the
identity operator. Therefore, the splitting Λ1 = Λ1,0 + Λ0,1 is the decomposition of
the space of differential 1-forms into eigenspaces of J : T ∗(X)C → T ∗(X)C. On the
tangent space TX the operator J acts via ω(Jv) = (Jω)(v), for every vector field
v ∈ TX. If z = x+ iy and taking v = ∂

∂x
, one has

dz(Jv) = idz(
∂

∂x
) = i = dz(

∂

∂y
) ⇒ J

∂

∂x
=

∂

∂y
, J

∂

∂y
= − ∂

∂x
.

It means that on the basis ( ∂
∂x
, ∂
∂y
) of TX the operator J is given by

(
0 −1
1 0

)
.

Therefore, by the complex structure defined from local coordinates defines the
operator J : T ∗(X)C → T ∗(X)C, with the property J2 = −1. This operator is called
almost complex structure.

Conversely, let X be a smooth surface and let J : Tx(X) → Tx(X), x ∈ X, be
such an operator, i. e. J2 = −1. The pair (X, J) is called a pseudoanalytic surface.
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As above, by duality it is possible to define J on 1-forms on X. The the space of
1-forms Λ1 decomposes into eigenspaces corresponding to the eigenvalues ±i of J
and Λ1 = Λ1,0

J + Λ0,1
J . In particular, JΛ1,0

J = iΛ1,0
J and JΛ0,1

J = −iΛ0,1
J .

Let f be a smooth function, then df ∈ Λ1 and decomposes by bidegree as
df = ∂Jf + ∂Jf, where ∂Jf := (df)1,0J and ∂Jf := (df)1,0J . By definition, f is
J-holomorphic, if it satisfies the Cauchy-Riemann equation ∂Jf.

Let (X, J) be a pseudoanalytic surface. In the neighborhood of every point
x ∈ X it is possible to change the local coordinate in such a way that dz will be of
(1, 0)J -type. Then the decomposition of dz by bidegree is dz = ω+ δ, where ω, δ are
forms of bidegree (1, 0)J . Because the fibre of T 1,0

J X is a one-dimensional complex
space, we have δ = µω, where µ is some smooth function µ(0) = 0. From this it
follows, that

dz = ω + µω and dz = ω + µω. (4.32)

Therefore, for every smooth function f in the neighborhood of x ∈ X we have

df = (∂f + µ∂f)ω + (∂f + µ∂f)ω = ∂Jf + ∂Jf

From this it follows, that f is J-holomorphic iff ∂Jf = 0, i.e.

∂f + µ∂f = 0. (4.33)

The equation (4.33) is called the Beltrami equation. Thus a smooth function defined
on a pseudoanalytic surface (X, J) is J-holomorphic iff it satisfies the Beltrami
equation (5.26).

Suppose f is J-holomorphic and let f = φ+ iψ, where φ and ψ are real-valued
functions. Consider the complex-valued function w defined by the identity w =
φF +ψG, where F,G are complex-valued Hölder continuous functions satisfying the
condition Im(FG) > 0.

Theorem 4.20 The function w = φF + ψG is (F,G)-pseudo-analytic.

Indeed, w = φF +ψG = iG−F
2
f + −iG−F

2
f, from which it follows, that f is a solution

of the Beltrami equation

(iG− F )∂f − (iG+ F )∂f = 0

iff w is a solution of the Carleman-Bers-Vekua equation

∂w +
F∂G− ∂FG

FG− FG
w +

F∂G− ∂FG

FG− FG
w = 0.

In D ⊂ C every metric has the form λ|dz + µdz|, where λ > 0 and the complex
function µ satisfies |µ| < 1, from which it follows, that J is defined uniquely by
the 1-form ω = dz + µdz on D with properties Jω = iω, Jω = −iω. The forms of
this type are forms of bidegree (1,0) with respect to J (the space of such forms has
been denoted above by Λ1,0

J ). If δ ∈ Λ1,0
J , then δ = αω + βω and it is proportional
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to ω. Therefore J is determined uniquely up to a constant multiplier (1, 0)J by the
form ω. Functions holomorphic with respect to J have differentials proportional
to ω. Indeed, if df + iJ(df) = 0, then J(df) = idf and from the representation
df = αω + βω we obtain, that βω = 0. Since df = αω + βω, in D ⊂ C the Cauchy-
Riemann equation with respect to J with base form ω = dz+µdz can be represented
as the Beltrami equation ∂f = µ∂f. This equation has a solution f such that it is
a biholomorphic map from (D, J) to f(D), Jst, where Jst is the standard conformal
structure on C.

Therefore we have proved the following proposition.

Proposition 4.21 [40] On simply connected areas there exists only one complex
structure and conformal structures are in one-to-one correspondence with complex
functions µ with |µ| < 1.

From this proposition and Theorem 4.20 follows the proposition

Proposition 4.22 [40] There exists a one-to-one correspondence between the space
of conformal structures and the space of generalized analytic functions on each simply
connected open area of the complex plane.

4.4 The holomorphic discs equation

Let D be the unit disc in the complex plane C with the standard complex structure
Jst and the coordinate function ζ. Jst is uniquely determined by the form dζ ∈ Λ1,0

Jst
.

The map ϕ : D → X of class C1 is holomorphic iff ψ∗Λ1,0
J (X) ⊂ Λ1,0(D). Let z be

another coordinate function on D. We study a local problem, therefore, without loss
of generality, it is possible to consider ϕ as mapping from (D, Jst) to (Cz, J), where
the complex structure J is defined by dz = ω + µω, ω ∈ Λ1,0

J . Therefore we have

ζ → z = z(ζ), z(0) = 0.

From (4.32) we obtain

ω =
dz − µdz

1− |µ|2
.

The form ω is J-holomorphic, which means that the form

z∗(dz − µdz) = (∂ζz − µ∂ζz)dζ + (∂ζz − µ∂ζz)dζ

has bidegree (1, 0) on D, therefore

∂ζz − µ∂ζz = 0.

From this after using the identity ∂ζz we obtain

∂ζz = µ(z)∂ζz. (4.34)

The obtained expression is called the equation of holomorphic disc. It is known that
f satisfies this equation iff f−1 satisfies the corresponding Beltrami equation (see
[55]).
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Proposition 4.23 [55] If ω = u + iv satisfies the equation ∂w(z)
∂z̄

+ µ(z)∂w(z)
∂z

= 0,
|µ| < 1 and a and b are holomorphic functions such that µ = a−b

a+b
, then W = au+ibv

is holomorphic.

Indeed,

∂

∂z̄
(a
ω + ω

2
+ ib

ω − ω

2
) =

a

2
(ωz + ωz) +

b

2
(ωz − ωz) = ωz(

a+ b

2
) + ωz(

a− b

2
),

therefore if ω is a solution of the equation ωz̄ +
a−b
a+b

ωz = 0, then ∂z̄W = 0.
From this proposition it follows in particular, that W is (a, ib)-pseudo-analytic.
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5 Irregular Carleman-Bers-Vekua equation with

weak singularity at infinity

In [129] I. Vekua is interested in the behavior of the solutions of the equation

∂w

∂z
+ A(z)w +B(z)w = 0 (5.1)

in the neighborhood of isolated singularity of the coefficients. It is known that in
the case in which A,B ∈ Lp,2(C), p > 2, every solution of (5.1) is expressible in the
form

w(z) = Φ(z)e−T (A+Bww
−1),

where Φ(z) is analytic and Tf = 1
π

∫∫
C f(ζ)(ζ − z)−1dξdη; if A and B are merely

quasi-summable, i.e., A1 = φ−1A and B1 = ψ−1B are in Lp,2(C), p > 2, for some
analytic functions φ(z) and ψ(z) with arbitrary singularities (isolated in C,) then
every solution of (5.1) is expressible in the form

w(z) = Φ(z)eφ(z)ω(z)+ψ(z)χ(z) (5.2)

where Φ(z) is analytic, ω = −T (A1) and χ = −T (B1ww
−1). In [129] the main

statement is: for a given analytic function Φ, (5.2) is a solution of (5.1) whenever
the function χ(z) satisfies the equation

χ = T0(χ), (5.3)

where T0(χ) = −T [B∗e
−2iIm(ψχ)] and B∗ = B1ΦΦ

−1e−2iImφT (A1); a fixed point argu-
ment yields the existence of a solution of (5.3). Vekua then uses the representation
(5.2) to study the behavior of solutions of (5.1) near arbitrary isolated singularities
of A and B.

In this section the concept of
∂

∂z
primitive of the function of the class Lloc

p (E),

p > 2, is introduced and its existence is proved. Some properties of this primitive
are established. The classes of the functions J0(C) and J1(C) are introduced and
studied.

In the terminology of Vekua, generalized analytic functions of class w ∈ Dz(U)
are solutions of the first order elliptic partial differential equation given in a complex
form as follows

∂zw + Aw +Bw = 0, (5.4)

where Dz(U) (respectively, Dz(U)) denotes the linear space of functions defined on
U ⊂ C which are differentiable in the Sobolev sense with respect to z (respectively,
with respect to z). Till now, except for some exceptions (see [125], [13], [133],[132]
[84], [106], [20], [123], [97]) the object of systematic investigation has been the equa-
tion (5.4) when the coefficients A and B satisfy the following regularity conditions

A,B ∈ Lp(U), p > 2, (5.5)
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or
A,B ∈ Lp,2(C), p > 2. (5.6)

In this cases the equation (5.4) is called the regular Carleman-Bers-Vekua equa-
tion.

From the representation of solutions of the equation (5.4) by the integral operator

TUg = − 1

π

∫ ∫
U

g(ζ)dξdη

ζ − z
, ζ = ξ + iη

of the form
w(z) = Φ(z)e−TUg, (5.7)

where

g(z) =

A(z) +B(z)
w(z)

w(z)
, if w(z) ̸= 0, z ∈ U,

A(z) +B(z), if w(z) = 0, z ∈ U.

(5.8)

(the so called similarity principle), follow many properties of generalized analytic
functions similar to properties of classical analytic functions. It is known that the
majority of fundamental theorems on analytic functions extend to generalized ana-
lytic functions, too. If the function Φ(z) in the representation (5.7) is analytic, we
will call the corresponding generalized analytic function w(z) pseudoanalytic.

As it is well-known if A,B ∈ Lp,2(C), p > 2 then the equation is called regular
equation and the solutions are the generalized analytic functions (pseudoanalytic)
[124], [11]. Denote by Ω(A,B) the space of solutions of the equation for the fixed
coefficients A and B. This space is linear space over the field of real numbers and
for every pair of functions from Lp,2(C), p > 2 the most fundamental theorems of the
theory of analytic functions on every Ω(A,B) are extended. In view of the theory
of functions these spaces are much the same.

We call Carleman-Bers-Vekua equation irregular [125] if both functions A and
B or at least one of them doesn’t belong to Lp,2(C), p > 2. In this case the analytic
properties of the classes Ω(A,B) are different. In other words, for irregular equations
the dependence of the functional classes Ω(A,B) on the coefficients A and B is
rigid. In particular, when A and B are constants (in general complex) and w(z) =
O(zN), z → ∞, then 1) dimRΩ(A,B) = 0 if |A| < |B|; 2) dimRΩ(A,B) = N + 1, if
|A| = |B|; 3) dimRΩ(A,B) = 2(N + 1), if |A| > |B| [133],[132].

As noted in the work of I. Vekua [129], the necessity of investigation of Carleman-
Bers-Vekua equation is motivated by the problems of mechanics [124] on one hand
and by the construction of complete theory of generalized analytic functions on the
other [133],[132] [20]. The same is the purpose of recent publications [10], [14], [54],
[53], [51], [50], [63], [64], [84], [108] (see also the references of these works).

∂

∂z
-primitive of the function of the class Lloc

p (C), p > 2. In this sec-

tion we prove the existence theorem of
∂

∂z
-primitive (see [129]) for the functions

of the classes Llocp,2(C), p > 2. In the next sections, using this theorem, we consider
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the spaces of solutions of Carleman-Bers-Vekua irregular equation, investigate their
properties, some interesting irregular equations and related spaces of generalized
analytic functions.

As, well known, for every function a ∈ Lp,2(C), p > 2, using the integral

A(z) = − 1

π

∫∫
C

a(ζ)

ζ − z
dξ dη, ζ = ξ + iη (5.9)

we can construct a
∂

∂z
-primitive [125] on the whole plane with respect to a general-

ized derivative
∂

∂z
in the Sobolev sense [125]. It means that we consider Carleman-

Bers-Vekua equations with irregular coefficients, hence it is necessary to investigate

the problem of existence of
∂

∂z
-primitives of functions not belonging to the class

Lp,2(C), p > 2. Note that the integral (5.9) is meaningless for such functions.
We obtain a solution, complete in a certain sense, of the above-mentioned problem
for functions of the class Lloc

p (C), p > 2. In particular, the existence of Hölder-

continuous
∂

∂z
-primitive is established.

The following theorem is valid.

Theorem 5.1 Every function a(z) of the class Lloc
p (C), p > 2, has

∂

∂z
-primitive

function Q(z) on the whole complex plane satisfying the Hölder condition with the

exponent
p− 2

p
on each compact subset of the complex plane C; moreover if q(z) is

one
∂

∂z
- primitive of the function a(z) then all

∂

∂z
-primitives of this function are

given by the formula
Q(z) = q(z) + Φ(z), (5.10)

where Φ(z) is an arbitrary entire function.

Proof. Let a(z) be an arbitrary function Lloc
p (C), p > 2. Consider two sequences of

positive numbers Rn and R′
n, n = 1, 2, 3, . . . , satisfying the conditions

R′
1 < R1; Rn−1 < R′

n < Rn, n = 2, 3, . . . (5.11)

lim
n→∞

Rn = +∞. (5.12)

Consider also the following sequences of the domains:

G1 =
{
z : |z| < R1

}
, Gn =

{
z : Rn−1 < |z| < Rn

}
, n = 2, 3, . . . ,

G′
n =

{
z : |z| < R′

n

}
, n = 1, 2, 3, . . . , D1 = G1,

Dn =
{
z : |z| < Rn

}
, n = 2, 3, . . .

and the boundaries of Gn

γn =
{
z : |z| = Rn

}
, n = 1, 2, 3, . . .
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Construct the sequences of the functions:

gn(t) = − 1

π

∫∫
Gn+1

a(ζ)

ζ − t
dξ dη +

1

π

∫∫
Gn

a(ζ)

ζ − t
dξ dη, (5.13)

ζ = ξ + iη, t ∈ γn, n = 1, 2, 3, . . .

Fk(z) =
1

2πi

∫
γk

gk(t)

t− z
dt, (5.14)

z ∈ E \ γk, k = 1, 2, 3 . . .

It is clear that
gn(t) =

(
TGn+1a

)
(t)−

(
TGna

)
(t),

where by definition (TGa))(t) = − 1
π

∫ ∫
G
a(ζ)
ζ−t dξdη for every bounded domain G ∈ C,

ζ = ξ + iη (see section 2.2).
Since a ∈ Lloc

p (C), p > 2, we have

TGna, TGn+1a ∈ C p−2
p
(γn), n = 1, 2, 3, . . .

Hence it is evident, that every function

gn(t) ∈ C p−2
p
(γn) (5.15)

and every function Fk(z) is holomorphic for each z ∈ C\γk. Since the function Fk(z)
is holomorphic on the circle Dk, it can be expanded into a Taylor series on Dk

Fk(z) =
∞∑
j=0

C
(k)
j zj, |z| < Rk. (5.16)

Consider the sequence of positive numbers εk, k = 1, 2, 3, . . . ,for which the series∑∞
k=1 εk converges.
Since the Taylor-series (5.16) uniformly converges on the closed circle G′

k ⊂ Dk,
there exist the natural numbers Nk such that the inequality∣∣∣∣Fk(z)− n∑

j=0

C
(k)
j zj

∣∣∣∣ < εk, z ∈ G′
k (5.17)

holds for every natural n > Nk. In particular, if we assume that n = Nk + 1, then
for completely defined polynomials

fk(z) =

Nk+1∑
j=0

C
(k)
j zj, k = 1, 2, 3, . . . (5.18)

the inequality ∣∣Fk(z)− fk(z)
∣∣ < εk, z ∈ G′

k, k = 1, 2, 3, . . . (5.19)
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holds.
Consider the function

Φ(z) =
∞∑
k=1

(
Fk(z)− fk(z)

)
, z ∈ C \

∞∪
k=1

γk. (5.20)

Let us fix arbitrary natural number n and prove that Φ(z) is a holomorphic
function in the domain Gn. Indeed,

Φ(z) =
n∑
k=1

(
Fk(z)− fk(z)

)
+

∞∑
k=n+1

(
Fk(z)− fk(z)

)
, z ∈ Gn. (5.21)

from (5.19) we obtain the inequalities∣∣Fn+1(z)− fn+1(z)
∣∣ < εn+1, z ∈ G′

n+1∣∣Fn+2(z)− fn+2(z)
∣∣ < εn+2, z ∈ G′

n+2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·∣∣Fn+l(z)− fn+l(z)
∣∣ < εn+l, z ∈ G′

n+l

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(5.22)

(5.21) implies that the inclusion

Gn ⊂ G′
n+1 ⊂ G′

n+2 ⊂ . . . ⊂ G′
n+l ⊂ . . . (5.23)

is valid. Thus from (5.19) we have∣∣Fn+j(z)− fn+j(z)
∣∣ < εn+j, z ∈ Gn, j = 1, 2, 3, . . . (5.24)

Every function Fk(z), k = 1, 2, 3, . . . , is holomorphic on the Dk, when k > n + 1,
Gn ⊂ Dk. Hence the function Fk(z) is holomorphic on Gn. The function fk(z) is
holomorphic on the whole plane, as it is a polynomial. Consequently, Fk(z)− fk(z)
is holomorphic on the domain Gn.

From the inequalities (5.24) we get that the series
∞∑

k=n+1

(Fk(z) − fk(z)) is uni-

formly convergent onGn. By virtue of Weierstrass first theorem the series
∞∑

k=n+1

(Fk(z)−

fk(z)) is holomorphic function on the domain Gn.
Since the functions Fk(z), k = 1, 2, 3, . . . are holomorphic functions in every

point z except the points of the curve γk, then the first summand on the right-hand

side of the inequality (5.21)
n∑
k=1

(Fk(z) − fk(z)) is a holomorphic function on the

domain Gn. From here the function Φ(z) is holomorphic on the domain Gn. Since

∞
∪
n=1

Gn = C \
∞
∪
k=1

γk, (5.25)
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Φ(z) is a holomorphic function at every point z, where z ∈ C \
∞
∪
k=1

γk.

Along with the function Φ(z), let us consider one more function which is defined

on the set
∞
∪
n=1

Gn by

Q(z) = Φ(z)− 1

π

∫∫
Gn

a(ζ)

ζ − z
dξ dη, z ∈ Gn, ζ = ξ + iη. (5.26)

Let z be an arbitrary point from the set
∞
∪
n=1

Gn, then there exists the unique

natural number n, such that z ∈ Gn. Denote by

H(z) = − 1

π

∫∫
Gn

a(ζ)

ζ − z
dξ dη, z ∈ Gn, ζ = ξ + iη. (5.27)

By means of the functions Φ(z) and H(z) construct the function

Q(z) = Φ(z) +H(z), z ∈ C \ ∪γn. (5.28)

Q(z) is a continuous function in every point of the set
∞
∪
n=1

Gn. Indeed, if z ∈ Gn,

then H(z) =
(
TGna

)
(z) ∈ C p−2

p
(C).

The function Φ(z) is a continuous on the domainGn.ThereforeQ(z) is continuous
on the domain Gn, to.

Let us prove, that the function Q(z) is continuously extentable on the whole
complex plane C. For this, we fix an arbitrary natural number n and consider the
left-hand Q+(t0) and right-hand Q−(t0) limits of the function Q(z) in an arbitrary
point t0 ∈ γn.

Taking into account that the interior domain of the contour γn contains the
domain Gn and the exterior domain contains the domain Gn+1, we represent the
limits as

Q+(t0) = lim
z→t0
z∈Gn

Q(z), (5.29)

Q−(t0) = lim
z→t0
z∈Gn+1

Q(z). (5.30)

To calculate the limits (5.29),(5.30) we write the function Q(z) in the form

Q(z) =
n−1∑
k=1

(
Fk(z)− fk(z)

)
+
(
Fn(z)− fn(z)

)
+

+
∞∑

k=n+1

(
Fk(z)− fk(z)

)
− 1

π

∫∫
Gn

a(ζ)

ζ − z
dξ dη, z ∈ Gn, (5.31)

Q(z) =
n−1∑
k=1

(
Fk(z)− fk(z)

)
+
(
Fn(z)− fn(z)

)
+
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+
∞∑

k=n+1

(
Fk(z)− fk(z)

)
− 1

π

∫∫
Gn+1

a(ζ)

ζ − z
dξ dη, z ∈ Gn+1. (5.32)

Each function Fk(z), where k ̸= n, is continuous on the curve γn, as the Cauchy

-type integral. Therefore the sum
n−1∑
k=1

(
Fk(z)− fk(z)

)
is continuous on the curve γn.

In case k > n + 1, the function Fk(z) is holomorphic in the domain G′
n+1. i.e. the

function Fk(z)− fk(z) is holomorphic on G′
n+1. The series

∞∑
k=n+1

(
Fk(z)− fk(z)

)
is

uniformly convergent on the domain G′
n+1. By virtue of Weirstrass first theorem

about the holomorphic functions, the sum
∞∑

k=n+1

(
Fk(z) − fk(z)

)
is holomorphic on

the domain G′
n+1. Hence, the sum

∞∑
k=n+1

(
Fk(z)− fk(z)

)
is continuous on the curve

γn.
It follows from the formula (5.13), that

gn(t) =
(
TGn+1a

)
(t)−

(
TGna

)
(t).

Since a ∈ Lloc
p (C), p > 2 ([125],theorem 1.19) we have(

TGna
)
(t),
(
TGn+1a

)
(t) ∈ C p−2

p
(C), t ∈ C.

Therefore gn(t) ∈ C p−2
p
(C).

Since Fn(z) =
1

2πi

∫
γn

gn(t)

t− z
dt, by the Sokhotsky-Plemely formulas we get

F+
n (t0) =

1

2
gn(t0) +

1

2πi

∫
γn

gn(t)

t− t0
dt,

F−
n (t0) = −1

2
gn(t0) +

1

2πi

∫
γn

gn(t)

t− t0
dt.

(5.33)

By (5.29)-(5.33) and the above reasoning we get

Q+(t0) =
n−1∑
k=1

(
Fk(t0)− fk(t0)

)
+

1

2
gn(t0)+

+
1

2πi

∫
γn

gn(t)

t− t0
dt− fn(t0) +

∞∑
k=n+1

(
Fk(t0)− fk(t0)

)
− 1

π

∫∫
Gn

a(ζ)

ζ − t0
dξ dη, (5.34)

Q−(t0) =
n−1∑
k=1

(
Fk(t0)− fk(t0)

)
− 1

2
gn(t0)+

+
1

2πi

∫
γn

gn(t)

t− t0
dt−fn(t0)+

∞∑
k=n+1

(
Fk(t0)−fk(t0)

)
− 1

π

∫∫
Gn+1

a(ζ)

ζ − t0
dξ dη. (5.35)
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Applying formulas (5.34) and (5.35) we have

Q+(t0)−Q−(t0) = gn(t0)−
1

π

∫∫
Gn

a(ζ)

ζ − t0
dξ dη +

1

π

∫∫
Gn+1

a(ζ)

ζ − t0
dξ dη = 0.

Consequently, the function Q(z) is continuously extendable on whole complex
plane.

Let us prove, that the function Q(z) is
∂

∂z
primitive of the function a(z).

Consider arbitrary domain Gn, n = 1, 2, 3, . . . . On this domain the function
Q(z) is representable by the following form:

Q(z) = Φ(z)− 1

π

∫∫
Gn

a(ζ)

ζ − z
dξ dη = Φ(z) +

(
TGna

)
(z), z ∈ Gn. (5.36)

It is evident that Gn on
∂Φ

∂z
= 0.

Since a ∈ Lp(Gn), p > 2, by virtue of the theorem 1.14 from [125] we have

∂

∂z

(
TGna

)
(z) = a(z), z ∈ Gn.

Using the equality (5.36) we get the following equality on the domain Gn:

∂Q

∂z
= a(z), z ∈ Gn. (5.37)

The function Q(z) is a continuous function on the whole complex plane. It is clear

that C = (
∞
∪
n=1

Gn) ∪ (
∞
∪
n=1

γn).

By equality (5.37) and the above reasoning we have that the equality

∂Q

∂z
= a(z), z ∈ C (5.38)

is fulfilled on the whole plane.

We obtain that the constructed function Q(z) is
∂

∂z
-primitive of the function

a(z) on the whole plane.
Let us prove that the function Q(z) satisfies the Hölder condition with the ex-

ponent
p− 2

p
on each compactum.

Consider arbitrary compact D ⊂ C. Consider also the bounded domain G, which
contains D. It is easy to see that

∂Q

∂z
= a(z), z ∈ G.

Since a ∈ Lp(G), p > 2 by virtue of the theorem 1.16 from [125] the following
equality

Q(z) = K(z) +
(
TG a

)
(z), z ∈ G, (5.39)
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is valid, where K(z) is a holomorphic function on G.
Using the theorem 1.19 from [125], we have(

TG a
)
(z) ∈ C p−2

p
(C).

Since the function K(z) is a holomorphic on the domain G, we have

K(z) ∈ C p−2
p
(D).

It follows from the equality (5.39) that Q(z) ∈ C p−2
p
(D).

Let q(z) be one of
∂

∂z
-primitives of the function a(z) and let Φ(z) be an arbitrary

entire function. Consider the function Q(z) = q(z) + Φ(z). Then the equality

∂Q

∂z
=
∂q

∂z
+
∂Φ

∂z
=
∂q

∂z
= a(z), z ∈ C,

is valid since
∂Φ

∂z
= 0.

Let Q(z) be an arbitrary
∂

∂z
-primitive of the function a(z). Then the equality

∂Q

∂z
= a(z), z ∈ C is fulfilled.

Since
∂q

∂z
= a(z), z ∈ C, the following equality

∂(Q(z)− q(z))

∂z
=
∂Q

∂z
− ∂q

∂z
= 0, z ∈ C,

is fulfilled. From here the function Φ(z) = Q(z) − q(z) by virtue of the theorem
1.5 from [125] holomorphic on the whole plane, i.e. Φ(z) is an entire function. The
theorem is proved.

5.1 The functional spaces induced from irregular Carleman-
Bers-Vekua equations

As it was proved earlier, by every function a ∈ Lloc
p (C), p > 2, has

∂

∂z
primitive.

Introduce subclasses of the class Lloc
p (C), p > 2, elements of which have

∂

∂z
primi-

tives, satisfying certain additional asymptotic conditions, needed in the sequel. In
the present section we define these classes and prove their properties.

Denote by J0(C) the set of functions a ∈ Lloc
p (C), p > 2 for which there exists

∂

∂z
-primitive Q(z) satisfying the following condition

ReQ(z) = O(1), z ∈ C. (5.40)
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Denote by J1(C) the set of the functions a ∈ Lloc
p (C), p > 2, for which there exists

∂

∂z
primitive Q(z), satisfying the following conditions

zn exp
{
Q(z)

}
= O(1), z ∈ C, (5.41)

for every natural number n.

Theorem 5.2 The function a(z) of the class Lloc
p (C), p > 2, belongs to the class

J1(C) if and only if its
∂

∂z
-primitive exists and satisfies the condition

lim
z→∞

zk exp
{
Q(z)

}
= 0, (5.42)

for every natural number k.

Proof. Let a ∈ J1(C) and let Q(z) be
∂

∂z
primitive of the function a(z), partici-

pating in the definition of the class J1(C). Consider arbitrary fixed integer k ∈ Z.
Consider the natural number n satisfying the condition n > k. By definition of the
class J1(C) we have

zn exp
{
Q(z)

}
= O(1), z ∈ E.

Then we get

lim
z→∞

∣∣zk exp{Q(z)}∣∣ = lim
z→∞

|z|k
∣∣ exp{Q(z)}∣∣ =

= lim
z→∞

1

|z|n−k
∣∣zn exp{Q(z)}∣∣ = O,

since lim
z→∞

1

|z|n−k
= 0, and the function

∣∣zn exp{Q(z)}∣∣ is a bounded function on the

whole plane.

Let Q(z) be
∂

∂z
-primitive of the function a ∈ Lloc

p (C), p > 2, satisfying the

condition (5.42) for any k ∈ Z. Then it is evident, that the condition (5.42) will be
fulfilled for any n, i.e.

lim
z→∞

zn exp{Q(z)} = 0. (5.43)

SinceQ(z) is a continuous function on the plane C, therefore the function zn exp{Q(z)}
is continuous on the whole plane. Then applying the condition (5.43) we conclude,
that the function zn exp{Q(z)} is a bounded function on C, i.e. a ∈ J1(C).

Proposition 5.3 Let a1(z), a2(z) ∈ J1(C). Then a1(z) + a2(z) also belongs to the
class J1(C).
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Proof. Let Q1(z) and Q2(z) be
∂

∂z
-primitives of the functions a1(z) and a2(z) re-

spectively, involved in the definition of the class J1(C). Then the following equalities

lim
z→∞

zk exp
{
Q1(z) +Q2(z)

}
= lim

z→∞
zk exp

{
Q1(z)

}{
expQ2(z)

}
=

= lim
z→∞

zk exp
{
Q1(z)

}
lim
z→∞

{
expQ2(z)

}
= 0, (5.44)

are valid for every integer k ∈ Z. Since lim
z→∞

zk exp
{
Q1(z)

}
= 0, lim

z→∞
exp

{
Q2(z)

}
=

0. We obtain, that for the function a1(z) + a2(z) there exists
∂

∂z
-primitive Q1(z) +

Q2(z) such that the equation (5.44) is fulfilled. i.e.a1(z) + a2(z) ∈ J1(C).

Proposition 5.4 Let a(z) ∈ J1(C) and let α be a arbitrary positive number. Then
αa(z) ∈ J1(C).

Proof. Let k ∈ Z be some integer. Assume, that the function Q(z) is
∂

∂z
-primitive

of the function a(z), involved in the definition of the class J1(C). Then the following
equations are valid

lim
z→∞

∣∣zkeαQ(z)
∣∣ = lim

z→∞
|zk|
∣∣eαQ(z)

∣∣ = lim
z→∞

|z|keReαQ(z) =

= lim
z→∞

|z|keαReQ(z) = lim
z→∞

[
|z|

k
α eReQ(z)

]α
=

= lim
z→∞

[
|z|

k
α |eQ(z)|

]α
= 0α = 0. (5.45)

Since α > 0 and lim
z→∞

|z| kα
∣∣eQ(z)

∣∣ = 0. we get,

lim
z→∞

zkeαQ(z) = 0, (5.46)

for any k ∈ Z.

We obtain, that there exists
∂

∂z
-primitive αQ(z) of the function αa(z) satisfying

the condition (5.46), i.e. αa(z) ∈ J1(C).

Proposition 5.5 Assume, that the functions a1(z) and a0(z) satisfy the conditions
a1(z) ∈ J1(C), a0(z) ∈ J0(C). Then a1(z) + a0(z) ∈ J1(C).

Proof. Let Q1(z) and Q0(z) be
∂

∂z
-primitives of the functions a1(z) and a0(z)

involved in the definitions of the classes J1(C) and J0(C) respectively. The following
equations hold for every k ∈ Z

lim
z→∞

∣∣zk exp{Q1(z) +Q0(z)}
∣∣ = lim

z→∞

∣∣zkeQ1(z)eQ0(z)
∣∣ =

= lim
z→∞

∣∣zkeQ1(z)
∣∣∣∣eQ0(z)

∣∣ = lim
z→∞

∣∣zkeQ1(z)
∣∣eReQ0(z) = 0. (5.47)
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As far as lim
z→∞

∣∣zkeQ1(z)
∣∣ = 0 and the function eReQ0(z) is bounded on the whole plane,

the following equality

lim
z→∞

zk exp
{
Q1(z) +Q0(z)

}
= 0 (5.48)

is valid.

We obtain that there exists
∂

∂z
primitive Q1(z) +Q0(z) of the function a1(z) +

a0(z) satisfying the equality (5.48). i.e. a1(z) + a0(z) ∈ J1(C).

Theorem 5.6 The class J0(C) is a linear space over the field of real numbers.
Moreover, for arbitrary real p > 2 the following inclusion

Lp,2(C) ⊂ J0(C) (5.49)

holds.

Proof. Let a1(z), a2(z) ∈ J0(C). Suppose, that Q1(z) and Q2(z) are
∂

∂z
-primitives

of the function a1(z) and a2(z) involved in the definition of the class J0(C).
Since ReQ1(z) = O(1), z ∈ C, ReQ2(z) = O(1), z ∈ C, then it is evident, that

Re
(
Q1(z) +Q2(z)

)
= ReQ1(z) + ReQ2(z) = O(1), z ∈ C. (5.50)

We get that there exists
∂

∂z
-primitiveQ1(z) + Q2(z) of the function a1(z) + a2(z)

such that the condition (5.50) is fulfilled, i.e. a1(z) + a2(z) ∈ J0(C).

Let a(z) ∈ J0(C), and let α be arbitrary real number, Q(z) is
∂

∂z
-primitive of the

function a(z) , involved in the definition of the class J0(C). Since ReQ(z) = O(1),
z ∈ C, it is clear that

ReαQ(z) = αReQ(z) = O(1), z ∈ C. (5.51)

We obtain, that there exists
∂

∂z
-primitive αa(z)of the function αQ(z), satisfying the

condition (5.51), i.e. αa(z) ∈ J0(C).
Hence we proved, that the class J0(C) is a linear space over the filed of real

numbers.
Let us prove, that

Lp,2(C) ⊂ J0(C), p > 2.

Let a(z) ∈ Lp,2(C). Consider the following function

Q(z) =
(
TEa

)
(z) = − 1

π

∫∫
E

a(ζ)

ζ − z
dξ dη, ζ = ξ + iη.

By virtue of the theorem 1.14 from [125], we have

∂Q

∂z
=
(
TEa

)
z
= a(z) (5.52)
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and from the theorem 1.11 from [125], we have that the function Q(z) = (TEa)(z) is
bounded function on the whole plane. Therefore ReQ(z) is a bounded on the whole
plane:

ReQ(z) = O(1), z ∈ C. (5.53)

From the above mentioned we conclude, that there exists
∂

∂z
-primitive Q(z) of

a(z) ∈ Lp,2(C), satisfying the condition (5.53). i.e. a ∈ J0(C). The theorem is
proved.

Theorem 5.7 The following equality

J0(C) ∩ J1(C) = ∅ (5.54)

holds.

Proof. Suppose the contrary. Assume that the condition (5.54) is not fulfilled.
Then there exists the function a(z) such that

a ∈ J0(C) ∩ J1(C).

and there exists
∂

∂z
primitives Q0(z) and Q1(z) of a(z), satisfying the conditions:

ReQ0(z) = O(1),ReQ1(z) = O(1), z ∈ C. (5.55)

Since a ∈ J1(C), then there exists
∂

∂z
-primitives Q1(z) of a(z), satisfying the condi-

tion
lim
z→∞

eQ1(z) = 0. (5.56)

It follows from (5.56) that

lim
z→∞

∣∣eQ1(z)
∣∣ = lim

z→∞
eReQ1(z) = 0. (5.57)

Consider the function
Φ(z) = Q1(z)−Q0(z).

Since
∂Q0(z)

∂z
= a(z),

∂Q1(z)

∂z
= a(z), then it is easy to see, that

∂Φ

∂z
=

∂

∂z
(Q1(z)−Q0(z)) =

∂

∂z
Q1(z)−

∂

∂z
Q0(z) = 0.

Hence we have, that Φ(z) is a holomorphic function on the whole plane, i.e. Φ(z) is
an entire function.

Consider the following entire function h(z) = eΦ(z) which has no zeros on the
complex plane C.
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From (5.55) and (5.57) we have

lim
z→∞

|h(z)| = lim
z→∞

∣∣eΦ(z)
∣∣ = lim

z→∞
eReΦ(z) =

= lim
z→∞

eRe(Q1(z)−Q0(z)) = lim
z→∞

eReQ1(z)e−ReQ0(z) = 0. (5.58)

Consequently
lim
z→∞

h(z) = 0. (5.59)

As far as h(z) is an entire function, it follows from the equation (5.59) that h(z) is
identically equal to zero on the whole plane, i.e. h(z) ≡ 0, z ∈ C. This contradiction
proves the theorem.

Proposition 5.8 The function a(z), satisfying the condition

a(z) ∈ J1(C), −a(z) ∈ J1(C) (5.60)

doesn’t exist.

Proof. Suppose the opposite. Let a(z) be a function satisfying (5.60), i.e. a(z) ∈
J1(C), −a(z) ∈ J1(C). Then from Proposition 5.5 we have a(z) + (−a(z)) ≡ 0, i.e.
an identically zero function belongs J1(C).

∂

∂z
primitive of the zero function is entire function. Therefore, it is clear, that

∂

∂z
primitive Q(z) of the identically zero function involved in the definition of the

class J1(C) is an entire function. Then we have

lim
z→∞

eQ(z) = 0.

Taking into account, that eQ(z) is an entire function, by virtue of Liouville theorem
we get

eQ(z) ≡ 0, z ∈ C.
So we get the opposite. The proposition is proved.

Proposition 5.9 Let f(z) be an arbitrary entire function. Then f(z) ∈ J0(C).

Proof. As it is known every
∂

∂z
-primitive of the function f(z) is given by the

following formula:

h(z) =

∫ z

z0

f(t) dt+ C,

where c is arbitrary complex number. For the function h(z) the following equality
∂h

∂z
= f(z) is valid. Let g(z) be

∂

∂z
primitive of the function f(z), i.e. the following

equality ∂g
∂z

= f(z) holds. It is evident that

∂g

∂z
=
∂g

∂z
= f(z). (5.61)
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Hence g(z) is one of the
∂

∂z
-primitives of the function f(z).

It is evident also, that
∂g

∂z
= 0. (5.62)

Consider the function

Q(z) = g(z)− g(z) = −2i Im g(z).

From (5.61) and (5.62) we have

∂Q

∂z
=

∂

∂z

(
g(z)− g(z)

)
=
g(z)

∂z
− ∂g(z)

∂z
= f(z). (5.63)

We get from the quality (5.63), that Q(z) is
∂

∂z
-primitive of the function f(z). On

the other hand
ReQ(z) = Re(−2i Im g(z)) = 0, z ∈ C.

Therefore, ReQ(z) is a bounded function on the whole plane C and f(z) ∈ J0(C).
The proposition is proved.

Proposition 5.10 Let f(z) be an entire function and a(z) ∈ J1(C). Then

a(z) + f(z) ∈ J1(C). (5.64)

Proof. From the Proposition 5.9 we have ‘ f(z) ∈ J0(C). Since a(z) ∈ J1(C),
therefore from Proposition 5.5 we have

a(z) + f(z) ∈ J1(C).

The theorem is proved.

Proposition 5.11 The class Lp,2(C), p > 2 is a proper subset of the class J0(C),
i.e.

Lp,2(C) ⊂ J0(C),
Lp,2(C) ̸= J0(C), p > 2.

(5.65)

Proof. The first relation (5.65) was already proved above (see theorem 5.6). In order
to prove the second relation let us seek the function of the class J0(C), not belonging
to the class Lp,2(C). Such functions are all the function of the following form Φ(z),
where Φ(z) is arbitrary non-zero entire function. In fact, from the Proposition 5.9
we have Φ(z) ∈ J0(C).

Prove, that Φ(z) ̸∈ Lp,2(C), p > 2. If we assume the contrary, we get that for
some non-zero entire function the following inclusion

Φ(z) ∈ Lp,2(C), p > 2,
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takes place, therefore,
Φ(z) ∈ Lp,2(C), p > 2. (5.66)

Let us expand the function Φ(z) in Teylor series in the neighborhood of the point
z = 0

Φ(z) =
∞∑
k=0

ckz
k, z ∈ C. (5.67)

By virtue (5.66), from the definition of the class Lp,2(C) we have

Φ2(z) =
1

|z|2
Φ
(1
z

)
=

1

|z|2
∞∑
k=0

ck
zk

∈ Lp(E1), p > 2, (5.68)

where E1 = {z : |z| ≤ 1} is unit circle of the complex plane.
Consider the function

Hm(z) =
( z
|z|

)m 1

|z|2
∞∑
k=0

ck
zk
, z ̸= 0, (5.69)

where m = 0, 1, 2, 3, . . . , arbitrary non-positive number. Since
∣∣∣( z|z|)m∣∣∣ = 1, then

from (5.68) we have
Hm(z) ∈ Lp(E1), p > 2. (5.70)

Since Lp(E1) ⊂ L1(E1), then from (5.70) we have

Hm(z) ∈ L1(E1). (5.71)

It follows from (5.71), that there exists the finite limit∫∫
E1

Hm(z)dx dy = lim
ε→0

∫∫
G0

ε

Hm(z)dx dy, (5.72)

where G0
ε = {z : ε ≤ |z| ≤ 1}.

Using the polar coordinates

x = r cosφ, y = r sinφ, z = reiφ, ε ≤ r ≤ 1, 0 ≤ φ ≤ 2π.

Let’s verify, that for arbitrary non-positive integer m = 0, 1, 2, 3, . . . there exists the
finite limit:

lim
ε→0

∫∫
G0

ε

Hm(z)dx dy = lim
ε→0

∫∫
G0

ε

( z
|z|

)m 1

|z|2
∞∑
k=0

ck
zk
dx dy =

= lim
ε→0

∞∑
k=0

∫∫
G0

ε

( z
|z|

)m 1

|z|2
ck
zk
dx dy = lim

ε→0

∞∑
k=0

∫ 2π

0

dφ

∫ 1

ε

eimφ

r2
ck

rkeikφ
r dr =

= lim
ε→0

∞∑
k=0

∫ 2π

0

ei(m−k)φdφ

∫ 1

ε

ck
rk+1

dr = lim
ε→0

2π

∫ 1

ε

cm
rm+1

dr = 2π lim
ε→0

∫ 1

ε

cm
rm+1

dr.

(5.73)
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Since for every non-positive integer m, m = 0, 1, 2, 3, . . . ,

lim
ε→0

∫ 1

ε

dr

rm+1
= ∞.

Then it comes from the equality (5.73), that for every non-positive integer m, m =
0, 1, 2, 3, . . . , cm = 0.

Hence Φ(z) is identically zero function Φ ≡ 0. We get the contradiction, i.e.
the non-zero entire function Φ(z) doesn’t exist, satisfying the condition (5.66). The
proposition is proved.

Examples. We construct some other examples of the functions of the class
J0(C), not belonging to the class Lp,2(C), p > 2.

The classes J0(C), J1(C) are introduced and studied in [63]. The following
functions are introduced in [129]:

Ak(z) = (−1)kz, Dk(z) = (−1)kze|z|
2

, z ∈ C, k = 1, 2. (5.74)

Note, that these functions play a very important role in the theory of Carleman-
Bers-Vekua irregular equations.

At it is easy to see

A1 ∈ J1(C), A2 ̸∈ J1(C), D1 ∈ J1(C), D2 ̸∈ J1(C). (5.75)

Indeed, we prove that A1 ∈ J1(C), A1(z) = −z. A1(z) is
∂

∂z
-primitive of the

function A1 take the function Q(z) = −z z = −|z|2. Then it is evident, that the
following equality

lim
z→∞

∣∣zk eQ(z)
∣∣ = lim

z→∞

|z|k

e|z|2
= 0

is fulfilled for every integer k. Therefore A1(z) ∈ J1(C).
The function A2(z) = z doesn’t belong to the class J1(C) (see Proposition 5.8).

Verify, that the function D1(z) = −z e|z|2 belongs to the class J1(C). Let us take as
∂

∂z
-primitive the function Q(z) = e−|z|2 of the function D1(z). Then

lim
z→∞

∣∣zk eQ(z)
∣∣ = lim

z→∞

|z|k

ee|z|
2 = 0

for every integer k. Hence D1(z) ∈ J1(C). The function D2(z) = z e|z|
2
is not the

function of the class J1(C) (see Proposition5.8).
It is clear that the function A1(z) = −z is the particular case of the following

function
Aλ,ν(z) = λ|z|ν ei arg z, z ∈ C, (5.76)

where ν is a real number and λ is a complex number, satisfying the condition

ν > −1, Reλ < 0. (5.77)
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Indeed, when λ = −1, ν = 1 then A−1,1(z) = −|z| ei arg z = −z = A1(z).
It can be easily checked that Aλ,ν ∈ J1(C). In fact it is evident, that Aλ,ν ∈

Lloc
p (C), p > 2.
Consider the function

Qλ,ν(z) =
2λ

ν + 1
|z|ν+1, z ∈ C (5.78)

which is
∂

∂z
-primitive of the function Aλ,ν(z). It can be checked directly if we

rewrite the operator
∂

∂z
in polar coordinates z = r eiφ as follows

∂

∂z
=
eiφ

2

( ∂
∂r

+
i

r

∂

∂φ

)
, (5.79)

∂

∂z

2λ

ν + 1
|z|ν+1 =

2λ

ν + 1

∂

∂z
|z|ν+1 =

2λ

ν + 1

eiφ

2

( ∂
∂r

rν+1 +
i

r

∂

∂φ
rν+1

)
=

=
2λ

ν + 1

eiφ

2
(ν + 1)rν = λ rν eiφ = λ|z|ν ei arg z.

Let k be an arbitrary integer. Then we get

lim
z→∞

∣∣zk eQλ,ν(z)
∣∣ = lim

z→∞
|z|k
∣∣e 2λ

ν+1
|z|ν+1∣∣ =

= lim
z→∞

|z|k eRe 2λ
ν+1

|z|ν+1

=

= lim
z→∞

|z|k e
2

ν+1
|z|ν+1 Reλ = lim

z→∞

|z|k

e−
2

ν+1
|z|ν+1 Reλ

= 0.

Hence we conclude that the condition (5.42) is fulfilled. Therefore,

Aλ,ν ∈ J1(C), ν > −1, Reλ < 0.

Let us prove that for Reλ = 0, λ ̸= 0, ν > −1, the function Aλ,ν(z) satisfies the
condition

Aλ,ν ∈ J0(C), Aλ,ν ̸∈ Lp,2(C), p > 2.

Indeed, Aλ,ν ∈ Lloc
p (C), p > 2,

ReQλ,ν(z) = Re
2λ

ν + 1
|z|ν+1 =

2

ν + 1
|z|ν+1 Reλ = 0.

Hence condition (5.40) is verified and Aλ,ν ∈ J0(C).
Let us prove, that Aλ,ν ̸∈ Lp,2(C), p > 2. Consider the following function∣∣∣∣ 1

|z|2
λ

1

|z|ν
ei arg z

∣∣∣∣ = λ

|z|ν+2
̸∈ Lp(E1),

where E1 = {z : |z| ≤ 1}. Since ν+2 > 1, (ν+2)p > p > 2, we have Aλ,ν ̸∈ Lp,2(C),
p > 2.
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Now we construct the functions of sufficiently general form, including the Vekua
function D1 as a particular case.

Let n be nonnegative integer and let ν, δk, k = 0, 1, 2, . . . , n, ν, δk > 0, k =
0, 1, 2, . . . , n be positive numbers. Consider the functions

h0(z) = exp
{
δ0|z|ν

}
, h1(z) = exp

{
δ1h0(z)

}
,

h2(z) = exp
{
δ2h1(z)

}
, . . . hn(z) = exp

{
δnhn−1(z)

}
,

q(z) = −ν e
i arg z

2
|z|ν−1

n∏
k=0

hk(z).

Let us prove that
q(z) ∈ J1(C).

It is clear that q(z) ∈ Lloc
p (C), p > 2.

A function defined as

Q(z) = − 1
n∏
k=0

δk

hn(z)

is a
∂

∂z
-primitive of the function q(z). Indeed if we use the formula (5.79) we get

∂Q

∂z
= − 1

n∏
k=0

δk

∂hn
∂z

= − 1
n∏
k=0

δk

∂

∂z
exp{δn hn−1(z)} = − 1

n∏
k=0

δk

eδn hn−1(z)δn
∂hn−1

∂z
=

= − 1
n∏
k=0

δk

δn hn(z)
∂hn−1

∂z
= − 1

n∏
k=0

δk

δn hn(z) δn−1 hn−1(z)
∂hn−2

∂z
=

− 1
n∏
k=0

δk

δn δn−1 · · · δ1 hn(z)hn−1(z) · · ·h1(z) · · exp{δ0|z|ν}
∂

∂z
δ0 |z|ν =

=− 1
n∏
k=0

δk

δnδn−1 · · · δ1 hn(z)hn−1(z) · · ·h1(z)h0(z) · δ0
eiφ

2
· ∂
∂r

rν=

= −ν
2
ei arg z|z|ν−1

n∏
k−0

hk(z) = q(z).

Therefore the function Q(z) is
∂

∂z
-primitive of the function q(z).

Let k be an arbitrary integer. Then we have

lim
z→∞

∣∣∣∣zk expQ(z)∣∣ = lim
z→∞

|z|k exp

{
− 1

n∏
k=0

δk

hn(z)

}
= 0.
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Therefore the condition (5.42) is fulfilled. Hence it follows that q(z) ∈ J1(C).
Assume n = 0, δ0 = 1, ν = 2 in the expression of the function q(z), we obtain

q(z) = −ei arg z|z|h0(z) = −ze|z|2 = D1(z).

Consequently, we get important properties for the classes of functions J0(C) and
J1(C) and we can construct various representations of these classes as well.

5.2 The Liouville type theorems for Carleman-Bers-Vekua
irregular equations

Let N be a given non-negative integer. Denote by Ω(N) the space of all regular
solutions of the equation (2.11) in the complex plane C satisfying the condition

w(z) = O(zN), z → ∞. (5.80)

It is clear, that Ω(N) is an R-linear space and as is known if the coefficients of the
equation (2.11) satisfy the regularity condition (2.12) on C, then

dimRΩ(N) = 2N + 2.

Indeed, in case a regular solution of the equation (2.11) satisfies the condition
(2.12) on the whole plane, it is therefore a generalized polynomial of order at most
N of the class up,2(A,B,C), so in our case the class Ω(N) coincides with the class
of the generalized polynomials of order at most N . This space is a linear space on
R with the dimension equal to 2N + 2. A basis of this space is

v2n(z) = RA,B
∞ (zn), v2n+1(z) = RA,B

∞ (izn), n = 0, 1, 2, . . . , N.

In fact, every generalized polynomial w of order at most N of the class up,2(A,B,C)
can be expanded into the following finite sum [124]:

w(z) =
2N+1∑
n=0

cn vn(z),

where the coefficients cn are real numbers, and moreover, this expansion is unique.
By definition the generalized constants are bounded solutions of the equation

(2.11) [124]. Therefore, Ω(0) is the space of generalized constants and dimRΩ(0) =
2.

In this section we investigate these cases of the coefficients of the equation (2.11)
where B is always regular, i.e. belongs to Lp,2(C), p > 2. The irregularity of (5.26)
is concentrated in the coefficient A in the sense that A ∈ Jj(C), j = 0 or 1. We
calculate dimension of the vector space Ω(N) for arbitrary nonnegative integer N.
We will call propositions of this Liouville type theorems for irregular Carleman-Bers-
Vekua equations.

Let us prove in advance the following theorem, often needed in the sequel. This
theorem is an extension of a result of Vekua from [125] to irregular equations.
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Theorem 5.12 Consider the Carleman-Bers-Vekua equation (2.11) with the coef-
ficients

A ∈ Lloc
p (C), B ∈ Lp,2(C), p > 2. (5.81)

Let Q(z) be a
∂

∂z
-primitive of the coefficient A(z) on the whole complex plane. Then,

if w(z) is a regular solution of the equation (2.11) on the whole plane C, then the
function defined by

w∗(z) = w(z) eQ(z), z ∈ C, (5.82)

is a regular solution of the following equation on the whole plane

∂w∗

∂z
+B∗w∗ = 0. (5.83)

where B∗(z) = B(z) e2i ImQ(z).
Conversely, if w∗(z) is a regular solution of the regular equation then the function

(5.82) is a regular solution of the equation (2.11) on the whole plane, i.e. the relation
(5.82) establishes a bijection between the regular solutions of the equations (2.11) and
(5.83).

Proof. Let w(z) be a regular solution of the equation (2.11). Then by means of
(2.11) and (5.82) we have the chain of equalities:

0 =
∂w

∂z
+ Aw +B w = e−Q(z)

(∂w∗

∂z
+B(z) e2i ImQ(z)w∗(z)

)
=

= e−Q(z)
(∂w∗

∂z
+B∗(z)w∗(z)

)
.

From this equality it follows, that

∂w∗

∂z
+B∗w∗(z) = 0,

i.e. w∗ is a regular solution of the equation (5.83).
Let w∗(z) be a regular solution of the equation (5.83). Then it follows from the

equalities (5.83) and (5.82) that

0 =
∂w∗

∂z
+B∗(z)w∗(z) = eQ(z)

(∂w
∂z

+ A(z)w(z) +B∗(z) e−2i ImQ(z)w(z)
)
=

= eQ(z)
(∂w
∂z

+ A(z)w(z) + B(z)w(z)
)
.

It follows from this equality, that

∂w

∂z
+ A(z)w(z) +B(z)w(z) = 0.

i.e. the function w is a regular solution of the equation (5.26).
One has B ∈ Lp,2(C), p > 2 and |e2i ImQ(z)| = 1, therefore B∗ ∈ Lp,2(C), p > 2.

The theorem is proved.
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Theorem 5.13 Let the coefficients of the equation (2.11) satisfy the condition

A ∈ J1(C), B ∈ Lp,2(C), p > 2. (5.84)

Then for arbitrary nonnegative integer N

dimΩ(N) = 0. (5.85)

Proof. Let w ∈ Ω(N), and Q(z) be the
∂

∂z
-primitive of the function A(z), which

participates in the definition of the class J1(C). Since w satisfies the condition

w(z) = O(zN), z → ∞,

it follows that, by virtue of the Theorem 5.12 the function w∗(z), defined by formula
(5.82), is a regular solution of the equation (5.83) and

w∗(z) e−Q(z) = O(zN), z → ∞. (5.86)

The condition (5.86) implies, that

w∗(z) = O
(
zN eQ(z)

)
, z → ∞. (5.87)

Since the function Q(z) is the
∂

∂z
-primitive of the function A(z), which participates

in the definition of the class J1(C), one has

lim
z→∞

zN eQ(z) = 0. (5.88)

It follows from (5.87) and (5.88), that

lim
z→∞

w∗(z) = 0, (5.89)

i. e. w∗(z) is a regular solution of the regular equation (5.83). Since the condition
(5.89) is fulfilled, one has by means of the Liouville theorem, concerning the general-
ized analytic functions, that w∗(z) ≡ 0 for arbitrary z ∈ C. Then from the equality
(5.82) one has w(z) ≡ 0 for arbitrary z ∈ C. Therefore dimΩ(N) = 0.

Theorem 5.14 Let the coefficients of the equation (2.11) satisfy the condition

−A ∈ J1(C), B ∈ Lp,2(C), p > 2. (5.90)

Then for arbitrary nonnegative integer N

dimΩ(N) = ∞. (5.91)
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Proof. Let w ∈ Ω(N) and let −Q(z) be the
∂

∂z
-primitive of the function −A(z),

which participates in the definition of the class J1(C). Then the function w∗(z),
defined by the formula (5.82), is a regular solution of the equation (5.83) and satisfies
(5.87). On the contrary, if w∗(z) is a regular solution of the regular equation (5.83)
and satisfies (5.87), then the function w(z) defined by the formula (5.82) is a regular
solution of the equation (2.11) and satisfies (5.87), i.e. w ∈ Ω(N). Since the function
w∗ is a regular solution of the regular equation (5.83), by virtue of the main Lemma
concerning the generalized analytic functions, there exists an entire function Φ∗(z),
such that the condition

w∗(z) = Φ∗(z) e−TC(B
∗ w∗
w∗ )(z). (5.92)

is fulfilled.
We conclude from the conditions (5.87) and (5.92), that

Φ∗(z) e−TC(B
∗ w∗
w∗ )(z) = O

(
zN eQ(z)

)
. (5.93)

It follows from (5.93), that

Φ∗(z) = O
(
zN eQ(z) eTC(B

∗ w∗
w∗ )(z)

)
, z → ∞. (5.94)

Since B∗ ∈ Lp,2(C), p > 2, and the function
w∗

w∗ is bounded on the whole plane, one

has

B∗ w
∗

w∗ ∈ Lp,2(C), p > 2.

It means that the function TC

(
B∗w

∗

w∗

)
(z) is bounded on the whole plane C.

Therefore it follows from (5.94), that

Φ∗(z) = O
(
zN eQ(z)

)
, z → ∞. (5.95)

Conversely, if the entire function Φ∗(z) satisfies the condition (5.95), then the func-
tion w∗(z) defined from the equation (5.94) is a regular solution of the equation
(5.83) and satisfies the condition (5.87).

Every polynomial Φ∗(z) = a0z
n + a1z

n−1 + · · · + an, aj ∈ C, j = 0, 1, 2, . . . , n,
satisfies the condition (5.95).

Indeed this follows from the equalities:

lim
z→∞

Φ∗(z) z−N e−Q(z) = lim
z→∞

(a0z
n + a1z

n−1 + · · ·+ an) z
−N e−Q(z) =

= a0 lim
z→∞

zn−N e−Q(z) + a1 lim
z→∞

zn−1−N e−Q(z) + · · ·+

+ an lim
z→∞

z−N e−Q(z) = 0
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Here we used the fact, that −Q(z) is the
∂

∂z
-primitive of the function −A(z),

which participates in the definition of the class J1(C), therefore

lim
z→∞

zn−N e−Q(z) = 0, lim
z→∞

zn−1−N e−Q(z) = 0, . . .

lim
z→∞

z−N e−Q(z) = 0.

Hence every generalized polynomial corresponding to the equation (5.83) satisfies
the condition (5.87). Since the space of all generalized polynomials corresponding
to the equation (5.83) is infinitedimensional, the space of solutions of the equation
(5.83) satisfying the condition (5.87) is infinitedimensional.

Let {w∗
j}, j = 1, 2, 3, . . . , be an infinite system of linearly independent functions

in this space. Let us prove that

wj(z) = e−Q(z)w∗
j (z), j = 1, 2, 3, . . .

is the infinite system of linearly independent functions in the space Ω(N). Since
w∗
j (z) is a regular solution of the equation (5.83) and satisfies the condition (5.87),

it follows that the function w(z) is a regular solution of the equation (2.11) by means
of the Theorem 5.13 and satisfies the condition wj(z) = O(zN), i.e. wj(z) ∈ Ω(N).

Let
n∑
j=1

cj wj(z) = 0, z ∈ E, cj ∈ R, j = 1, 2, . . . , n.

Then we have
n∑
j=1

cj e
−Q(z)w∗

j (z) = 0, z ∈ C.

It follows from this equality, that

n∑
j=1

cj w
∗
j (z) = 0.

Since the system of functions {w∗
j (z)}, j = 1, 2, . . . , n, is linearly independent, one

has cj = 0, j = 1, 2, . . . , n. i.e. we obtain, that the system of functions {wj(z)},
j = 1, 2, 3, . . . , is linearly independent.

Consequently, the space Ω(N) is infinitedimensional.

Theorem 5.15 Let the coefficients of the equation (2.11) satisfy the condition

A ∈ J0(C), B ∈ Lp,2(C), p > 2, (5.96)

Then for arbitrary nonnegative integer N

dimΩ(N) = 2N + 2. (5.97)
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Proof. Let w ∈ Ω(N), and let Q(z) be the
∂

∂z
-primitive of the function A(z), which

participates in the definition of the class J0(C). Then the function defined by the
formula (5.82), is a regular solution of the equation (5.83) and satisfies the condition
(5.87).

From (5.87) we have∣∣w∗(z)
∣∣ = O

(
|z|N |eQ(z)|

)
, z → ∞.

or ∣∣w∗(z)
∣∣ = O

(
|z|N eReQ(z)

)
, z → ∞.

Since the function ReQ(z) is bounded on the whole complex plane, one has∣∣w∗(z)
∣∣ = O

(
|z|N

)
, z → ∞.

Therefore
w∗(z) = O

(
zN
)
, z → ∞. (5.98)

Conversely, if the function w∗(z) is a regular solution of the equation (5.83) and
satisfies the condition (5.98), then the function w(z) defined by the formula (5.82)
is a regular solution of the equation (2.11) and satisfies the condition (5.80), i.e.
w ∈ Ω(N).

But the space of all regular solutions of the equation (5.83) satisfying the con-
dition (5.98) is the space of generalized polynomials corresponding to the regular
equation (5.83) of order at most N .

As is well, known the dimension of the space of generalized polynomials corre-
sponding to the regular equation (5.83) of order at most N is equal to 2N + 2.

Let {w∗
j (z)}, j = 1, 2, . . . , 2N + 2 be a basis of this space.

Let us prove that

wj(z) = e−Q(z)w∗
j (z), j = 1, 2, . . . , 2N + 2

is the basis of the space Ω(N). Since the function w∗
j (z) is a regular solution of the

equation (5.83) and satisfies the condition (5.98), using the Theorem 5.13 we have,
that the function w(z) is a regular solution of the equation (2.11) and satisfies the
condition wj(z) = O(zN), z → ∞, i.e. wj ∈ Ω(N).

Let
2N+2∑
j=1

cj wj(z) = 0, cj ∈ R, j = 1, 2, . . . , 2N + 2, z ∈ C.

Then we get
2N+2∑
j=1

cj e
−Q(z)w∗

j (z) = 0, z ∈ C.

This equality implies, that

2N+2∑
j=1

cj w
∗
j (z) = 0, z ∈ C.
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Since the system of the functions {w∗
j (z)}, j = 1, 2, . . . , 2N + 2, is linearly indepen-

dent, we have cj = 0, j = 1, 2, . . . , 2N + 2. Therefore the system of the functions
{wj(z)}, j = 1, 2, . . . , 2N + 2 is linearly independent.

Let us prove that every function w(z) from the space Ω(N) is representable by
a linear combination of the system of the functions {wj(z)}, j = 1, 2, . . . , 2N + 2.
Indeed, as w∗(z) defined by (5.82), is a generalized polynomial, corresponding to
the equation (5.83) of order at most N , there exist real numbers d1, d2, . . . , d2N+2,
such that the following equality holds

w∗(z) =
2N+2∑
j=1

dj w
∗
j (z).

This yields

e−Q(z)w∗(z) =
2N+2∑
j=1

dj e
−Q(z)w∗

j (z).

Hence

w(z) =
2N+2∑
j=1

dj wj(z),

i.e. the function w(z) is representable by the linear combination of functions w1(z),
w2(z), . . . , w2N+2(z). The theorem is proved.

Examples. Here we give examples of irregular Carleman-Bers-Vekua equations
and prove, that the dimension of the spaces of generalized constants may be zero,
as well as infinity. In [125] the examples of irregular equations ∂w

∂z
+ zw = 0 are

considered and ∂w
∂z

− zw = 0 and various essential properties of the corresponding
solutions spaces are pointed out. We consider Vekua examples from the point of
view of our approach as z,−z ∈ Jj(C). Before that we will prove a simple auxiliary
result which is applied further on.

Proposition 5.16 The solution of the equation on the whole plane

∂w

∂z
+ Aw = 0, (5.99)

where A ∈ Lloc
p (C), p > 2, has the form

w(z) = Φ(z) e−Q(z), (5.100)

where Q(z) is one of the
∂

∂z
-primitives of the function A(z) and Φ(z) is an arbitrary

entire function.

First let us prove, that every function w, which can be represented in the form
(5.100), where Φ(z) is an entire function, is a solution of the equation (5.99).
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This follows from the following equalities:

∂w

∂z
= −Φ(z) e−Q(z)∂Q

∂z
= −A(z)w(z).

Let us prove now, that if w is a regular solution of the equation (5.99) then it is
an representable by (5.100).

Consider the function Φ(z) = w(z) eQ(z). We have

∂Φ

∂z
=

∂

∂z
w(z) eQ(z) = eQ(z)

(∂w
∂z

+ A(z)w(z)
)
= 0.

From this it follows, that the function Φ(z) is an entire function.
Now let us give the examples.
1.Consider the equation

∂w

∂z
− zw = 0 (5.101)

and let us prove, that dimΩ(N) = 0.

Indeed, the
∂

∂z
-primitive of the function A(z) = −z is the function Q(z) =

−z z = −|z|2. Therefore by (5.100)

w(z) = Φ(z) e|z|
2

. (5.102)

Let w ∈ Ω(N). Then the condition (5.80) is fulfilled. It follows from the
condition (5.80), that Φ(z) e|z|

2
= O(zN), z → ∞; from this it follows that

Φ(z) = O
(
zN e−|z|2), z → ∞. Since lim

z→∞
|z|N e−|z|2 = lim

z→∞
|z|N

e|z|2
= 0, one has

limz→∞ Φ(z) = 0.
It is evident, that by virtue of the Liouville theorem Φ(z) ≡ 0, z ∈ C. So we

have w(z) = 0, i.e. Ω(N) = {0}.
2. Let us prove that dimΩ(N) = ∞ for the equation

∂w

∂z
+ zw = 0. (5.103)

The
∂

∂z
-primitive of the function A(z) = z is the function Q(z) = z z = |z|2. It

follows from (5.100) that the general regular solution of the equation (5.103) on the
whole plane is representable in the following form:

w(z) = Φ(z) e−|z|2 , (5.104)

where Φ(z) is arbitrary entire function.
Let us prove, that every function of the form (5.104) belongs to the corresponding

space Ω(N) of the equation (5.103), where Φ(z) is an arbitrary entire function of
order ρΦ which is less than 2 (see [125]).

In fact, consider the real number β satisfying the condition ρΦ < β < 2. Then it is
clear from the definition of the order of the function, that Φ(z) = O

(
e|z|

β)
, z → ∞.
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It follows from this that Φ(z) = O
(
|z|N e|z|2

)
, z → ∞. Therefore Φ(z) e−|z|2 =

O
(
|z|N

)
and w(z) = O

(
|z|N

)
, z → ∞, i.e. w ∈ Ω(N).

It is evident, that the space of all those entire functions whose orders are less
than 2 is infinitedimensional (for example, every classical polynomial belongs to this
space). Hence the space of the functions of the form (5.104), where Φ(z) is arbitrary
entire function of order less than 2 is infinitedimensional too. Since such functions
belong to Ω(N), this space is infinitedimensional.

The example of an irregular Carleman-Bers-Vekua equation with dimΩ(0) = 1
is given in [109].

5.3 The generating triple

In this subsection we introduce a generating pair, corresponding to solution space
of the irregular Carleman-Bers-Vekua equation by analogy to the Bers generating
pair in the regular case.

We consider the following irregular Carleman-Bers-Vekua system

wz + Aw +Bw = 0, (5.105)

where A ∈ Llocp (C), B ∈ Lp,2(C), p > 2.
Let Q(z) be a ∂z-primitive of A(z). By definition, it means that Qz = A(z) on

C. Let (F1, G1) be the generating pair [11] of the following regular system

w1z +B1w1 = 0,

where B1(z) = B(z)e2iImQ(z). Therefore (F1, G1) is a generating pair for the class
up,2(0, B1) such that a) F1, G1 ∈ C p−2

2
(C) b) F1z, G1,z ∈ Lp,2(C) and c) there exists

K0 > 0, such that Im(F 1(z)G1(z)) ≥ K0 > 0.
It is known, that the functions F (z) = F1(z)e

−Q(z) and G(z) = G1(z)e
−Q(z) are

the solutions of (5.105). It is clear that F,G ∈ C p−2
p
(C), Fz, Gz ∈ Llocp (C) and

it is easy to check that Im(F (z)eQ(z)G(z)eQ(z)) > K0, it means, that (F,G) is is
generating pair. From this it follows, that the functions F and G satisfy the following
identity

Fz + AF +BF = 0, Gz + AG+BG = 0. (5.106)

Consider (5.106) as a linear system of equations with respect to A(z) and B(z). The
determinant of this system is equal to −2Im(FG) ̸= 0. Therefore,

A =
GFz − FGz

GF − FG
, B =

FGz −GFz

GF − FG
.

We call (F,G,Q) a generating triple of the irregular system by analogy with the
Bers generating pair of the pseudoanalytic functions [11]. Using this concept it is
possible to define irregular pseudoanalytic functions similar to regular ones.
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5.4 The problem of linear conjugation for some classes of
Carleman-Bers-Vekua equation

In this section we investigate the problem of linear conjugation for the CBV equation

∂w

∂z
+ Aw +Bw = 0, (5.107)

on the whole complex plane C, where

A ∈ Lloc
p (C), B ∈ Lp,2(C), p > 2. (5.108)

Let Γ be a smooth closed curve with inner domain D+ and outer domain D−.
Let G(t) and g(t) be the given functions of the class Hα(Γ), 0 < α ≤ 1. In addition
let G(t) ̸= 0 everywhere on Γ.

Consider the following problem:
Find a piecewise regular solution of the equation (5.107) with the boundary curve

Γ satisfying the conditions:

w+(t) = G(t)w(t) + g(t), t ∈ Γ, (5.109)

w(z) = O
(
zN e−Q(z)

)
, z → ∞, (5.110)

where N is a given integer, Q(z) is
∂

∂z
-primitive of the function A(z).

As it was proved in section 2, the condition (5.108) provides the existence of
∂

∂z
-

primitive and every
∂

∂z
-primitive is Hölder-continuous function on each compact of

the plane.
Note, that the boundary value problem (5.107),(5.109), (5.110) is studied in case

when A and B are satisfying the regularity condition, i.e. A,B ∈ Lp,2(C), p > 2.
Consider the CBV regular self-conjugated equations:

∂V

∂z
+B1 V = 0, (5.111)

∂V ′

∂z
−B1 V ′ = 0, (5.112)

where B1(z) = B(z)
X(z)

X(z)
e2i ImQ(z) andX(z) is the canonical solution of the problem

of linear conjugation
X+(t) = G(t)X−(t), t ∈ Γ.

for holomorphic functions.
The following theorems are valid.
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Theorem 5.17 Let χ + N > −1, where χ =
1

2π

[
argG(t)

]
Γ
is the index of the

function G(t) on the curve Γ. Then the general solution of the problem (5.107),
(5.109), (5.110) is given by the formula

w(z) =

[
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt− Ω2(z, t)

g1(t)

X+(t)
dt+X(z)Vχ+N(z)

]
e−Q(z),

where g1(t) = g(t) eQ(t), t ∈ Γ. Vχ+N(z) is the generalized polynomial of the class
up,2(0, B1,C) of order at most χ+N and it is assumed that V−1(z) ≡ 0, z ∈ C.

Theorem 5.18 Let χ+N ≤ −2, then the necessary and sufficient solvability con-
ditions for the problem (5.107), (5.109), (5.110) are the following conditions

Im

∫
Γ

v′k(t)
g1(t)

X+(t)
dt = 0, k = 0, 1, 2, . . . 2(−N − χ)− 3. (5.113)

If the condition (5.113) is fulfilled then the solution of the problem (5.107), (5.108),
(5.110) is given by the formula:

w(z) =

[
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt− Ω2(z, t)

g1(t)

X+(t)
dt

]
e−Q(z).

Proof. Let the function w(z) be a solution of the problem (5.107), (5.109), (5.110).
Then by means of the Theorem 2.12, the function w∗(z) defined by the formula
(5.82) is a regular solution of the regular equation (5.83) in the domains D+ and
D−.

Since Q(z) is a continuous function on the whole complex plane then from (5.82)
we have

w±(t) = lim
z→t
z∈D±

w∗(z) e−Q(z) = lim
z→t

e−Q(z) lim
z→t
z∈D±

w∗(z) =

= e−Q(t)(w∗)±(t), t ∈ Γ,

i.e.
w+(t) = e−Q(t)(w∗)+(t), t ∈ Γ, (5.114)

w−(t) = e−Q(t)(w∗)−(t), t ∈ Γ. (5.115)

It follows from the conditions (5.109), (5.114), (5.115), that

e−Q(t)(w∗)+(t) = G(t) e−Q(t)(w∗)−(t) + g(t), t ∈ Γ. (5.116)

From (5.116) we conclude, that

(w∗)+(t) = G(t)(w∗)−(t) + g1(t), t ∈ Γ. (5.117)
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Since g ∈ Hα(Γ), Q ∈ H p−2
p
(Γ) then g1 ∈ Hβ(Γ), where β = min

(
α, p−2

p

)
. From

the conditions (5.82) and (5.110) we have

e−Q(z)w∗(z) = O
(
zN e−Q(z)

)
, z → ∞. (5.118)

Therefore
w∗(z) = O(zN), z → ∞. (5.119)

We proved, that if w(z) is a solution of the problem (5.107), (5.109), (5.110) then
the function w∗(z) defined by (5.82) is a solution of the problem (5.83), (5.117),
(5.119).

Let us prove the converse. Let the function w∗(z) be a solution of the problem
(5.83), (5.117), (5.119). Then by virtue of the Theorem 2.12 the function w(z)
defined by (5.82) is a regular solution of the equation (5.107) in the domains D+

and D−.
From condition (5.117) follows (5.116); from conditions (5.114)-(5.116) follows

(5.109); from (5.118) follows (5.119) and from (5.110) follows (5.118). It means that
if w∗(z) is a solution of the problem (5.83), (5.117), (5.119), then the function w(z)
defined by (5.82) is a solution of the problem (5.107), (5.109), (5.110). Hence the
problem (5.107), (5.109), (5.110) is equivalent to the problem (5.83). Let χ +N >
−1, then by means of the Theorem 1.20 the general Solution of the problem (5.83),
(5.117), (5.119) is given by the formula:

w∗(z) =
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt− Ω2(z, t)

g1(t)

X+(t)
dt+X(z)Vχ+N(z),

z ∈ D+, z ∈ D−,

where Vχ+N(z) is a generalized polynomial of order at most χ + N of the class
up,2(0, B1,C). Here V−1(z) ≡ 0. Hence it follows that the general solution of the
problem (5.107), (5.109), (5.110) is given by the formula:

w(z) = w∗(z) e−Q(z) =

[
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt−

− Ω2(z, t)
g1(t)

X+(t)
dt+X(z)Vχ+N(z)

]
e−Q(z).

Let χ+N ≤ −2; then by means of the Theorem 1.21 the necessary and sufficient
solvability conditions for the problem (5.83), (5.117), (5.119) is the fulfillment of the
following conditions:

Im

∫
Γ

v′k(t)
g1(t)

X+(t)
dt = 0, k = 0, 1, 2, . . . 2(−N − χ)− 3.

these are the conditions (5.113). If the conditions (5.113) are fulfilled then the
solution of the problem (5.83), (5.117), (5.119) is given by the formula:

w∗(z) =
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt− Ω2(z, t)

g1(t)

X+(t)
dt.

78

Lecture Notes of  TICMI, vol. 13, 2012



Since the problem (5.107), (5.109), (5.110) is equivalent of the problem (5.83),
(5.117), (5.119) then the necessary and sufficient condition for the problem (5.107),
(5.109), (5.110) to be solvable is the fulfillment of the condition (5.113). If the con-
dition (5.113) is fulfilled then the solution of the problem (5.107), (5.109), (5.110)
is given by the formula:

w(z) = w∗(z) e−Q(z) =

=

[
X(z)

2πi

∫
Γ

Ω1(z, t)
g1(t)

X+(t)
dt− Ω2(z, t)

g1(t)

X+(t)
dt

]
e−Q(z).

The theorems are proved.
Let the coefficients of the equation (5.107) satisfy the conditions:

A ∈ Lloc
p (C), A ∈ J0(C), B ∈ Lp,2(C), p > 2. (5.120)

Since A ∈ J0(C) then there exists
∂

∂z
-primitive Q(z) of the function A(z) such that

the function ReQ(z) is a bounded function on the whole plane. Consider the problem
(5.107), (5.109), (5.110) for such a function Q(z). Then the condition (5.110) will
be equivalent to following classical condition:

w(z) = O(zN), z → ∞. (5.121)

Indeed, assume that the condition (5.110) is fulfilled. Then

|w(z)| = O
(
|z|N |e−Q(z)|

)
, z → ∞.

From here we have

|w(z)| = O
(
|z|N |e−ReQ(z)|

)
, z → ∞.

Since ReQ(z) is bounded on the whole plane then |w(z)| = O
(
|z|N

)
, z → ∞

or w(z) = O(zN). From the condition (5.121) there follows the condition (5.110).
Therefore if the conditions (5.120) are fulfilled, the problem (5.107), (5.109), (5.110)
is the generalization of the classical problem.
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6 Singular points of solutions of some elliptic sys-

tems on the plane

6.1 Degenerate elliptic systems

As was mentioned above, I. Vekua’s scientific interest was concentrated on construc-
tion of the theory of generalized analytic functions and its applications in geometry
and in the theory of elastic shells. I. Vekua systematically indicated the necessity
of investigation of irregular equations. Let us now consider the following equation

∂w

∂z
+
a(z)

f(z)
w +

b(z)

g(z)
w = 0, (6.1)

in some domain G of z-plane; a, b ∈ Lp(G), p > 2; f and g are analytic functions on
G, they may have zeros of arbitrary order and essential singularities. I. Vekua called
these functions analytic regularizators of the coefficients of the equation (6.1).

One of the fundamental results (and important tool of investigation of this equa-
tion) of the theory of generalized analytic functions is the general representation of
solution by the analytic functions. Precisely for any w(z) there exists a function
Φ(z) analytic in G, such that

w(z) = Φ(z) exp{Ω(z)}, (6.2)

where

Ω(z) =
1

πf(z)

∫∫
G

a(s)

ζ − z
dG(ζ) +

1

πg(z)

∫∫
G

b(s)

ζ − z

ω(ζ)

ω(ζ)
dG(ζ). (6.3)

For regular coefficients the conversion of this relation is given in I. Vekua’s fa-
mous monograph [124], by the given analytic function Φ(z) the solution w(z) is
constructed. For general case this important result was also generalized by himself.

In regular case this relation completely reveals the properties of generalized an-
alytic functions however even if one of the functions f and g has essentially singular
point then nothing meaningful is known on behavior of the solution of the equation
(6.1) in the neighborhood of this point. It is unknown how to use the relation in
this case too.

Much more is known in case when f and g have zeros but do not have essential
singularities. This type of equations are called Carleman-Vekua equations with polar
singularities.

Consider typical and important in applications the following Carleman-Vekua
equation with polar singularities

|z|ν ∂w
∂z

+ a(z)w + b(z)w = 0, (6.4)

where the real number ν > 0, a, b ∈ Lp(G), p > 2 and G contains some neighborhood
of z = 0 except this point (perforated neighborhood of z = 0). For these equations
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(differing form the regular case ν = 0) it case take place very unexpected phenomena
take place.

Very important is I. Vekua’s emotional attitude to these problems, which he
expressed as follows: ”some simple examples show the complicate character of these
problems” [125].

To make it clear let’s consider the following examples:

|z|ν ∂
∂z

+ ε(cosφ+ i sinφ)w = 0, (6.5)

where ν > 1, ε = ±1.
It is easy to show that the solutions of this equation in the neighborhood of z = 0

have essentially different behavior for ε = 1 and ε = −1. It follows that the problem
of construction of general theory of such singular equations is very different and
indeterminable however the validity of the following proposition about the structure
of solutions of these equations under general assumptions for given ν, a, b is proved:
every solution w(z) of the equation (6.4) satisfying the condition

w(z) = O(Ψ(z)), z → 0 (6.6)

for some analytic in the domain G function Ψ(z) is identically zero; every function
Ψ(z) satisfying the condition

Ψ(z) = O(w(z)), z → 0 (6.7)

in the domain G is identically zero for some solution w(z).
From above the following conclusion holds: the structure of solutions of Carleman-

Bers-Vekua equations with polar singularities is principally nonanalytic.
We have obtained correct statement and complete analysis of boundary value

problems for a sufficiently wide class of equations of such type. They are first order
singular equations. The equations of higher order undoubtly are of much theoretical
and practical interest. In this connection let’s consider the following system

m∑
k=0

zνk Ak
∂kw

∂z k
= 0, (6.8)

where m, ν are given natural numbers, Ak (0 ≤ k ≤ m) are given complex square
n × n-matrices. Under the solution of this system we mean a vector-function w =
(w1, . . . , wn) of the class Cm(G) satisfying the system (6.8) at every point of G.
Note, that G is, as above, perforated neighborhood of z = 0. Assume that

detA0 ̸= 0, detAm ̸= 0, Ak · Aj = Aj · Ak, 0 ≤ j, k ≤ m. (6.9)

Construct all possible polynomials of the form

τmζ
m + τm−1ζ

m−1 + · · ·+ τ1ζ + τ0 = 0, (6.10)
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where the coefficients τk are some eigenvalues of the matrix Ak, (0 ≤ k ≤ m).
Denote by ∆ the set of all complex roots of these polynomials and introduce a
number δ0 = min

ζ∈∆
|ζ|, obviously δ0 > 0.

Along with the solution w(z) of the system (6.8) construct its characteristic
function

Tw(ρ) = max
0≤φ≤2π

n∑
k=1

m−1∑
p=0

∣∣∣∣∂pω∂z p
(ρ eiφ)

∣∣∣∣, ρ > 0. (6.11)

The following theorem holds:

Theorem 6.1 Let ν > 2 and Ψ(z) be some analytic function in G. Let the solution
w(z) of the system satisfy the condition

Tw(z) = O

(
|Ψ(z)| exp

{
δ

|z|δ

})
, z → 0. (6.12)

where δ is some number and σ < ν − 1.

Then the solution w(z) is identically zero vector-function. Moreover when the con-
dition (6.12) is fulfilled w(z) is also trivial if

σ = ν − 1, δ < δ0 cosπβ, β = max
{
ν,

ν − 3

2ν − 2

}
. (6.13)

Note that, in particular, where ν = 2 for this system we succeeded to state correct
boundary value problem to make its complete analysis.

6.2 Quasilegular Carleman-Bers-Vekua equations

In the present section the structures of the solutions of some important classes of
singular elliptic systems on the plane are investigated. In particular, it is proved,
that the solutions of such systems have principally nonanalytic behavior in the
neighborhood of fixed singular points. These results gave the possibility to state
correctly the boundary value problems and make their complete analysis.

To illustrate the possible structures of the solutions of quasiregular equation (1.6)
consider the following simplest one

∂w

∂z
+
λ · exp(i φ)

r2
w = 0, (6.14)

where the complex number λ ̸= 0, r, φ - are polar coordinates of the variable z,
z = r exp(iφ) and the main thing is, that the domain G contains the origin z = 0.
It is clear, that (6.14) is an irregular equation. Checking directly we get, that the
function w is contained in the class

Sλ ≡ A∗
(
λ · exp(i φ)

r2
, 0, G

)
(6.15)
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if and only if w has the form

w(z) = Φ(z) · exp
{
2λ

r

}
, (6.16)

where the function Φ ∈ A∗
0(G). It follows from (6.16), that the classes Sλ aren’t

of single type. In order to explain what has been said note, that in case Reλ = 0
the module of every function of the class Sλ coincides with the module of analytic
function in the domain G. When Reλ > 0 in the class Sλ there are neither nontrivial
bounded in the neighborhood of the point z = 0 functions nor the functions with
power growth; i.e. the functions admitting estimate

w(z) = O

(
1

|z|σ

)
, z → 0, (6.17)

for some real number σ > 0. When Reλ < 0 in Sλ there exists an extensive
subclass, every function of which more rapidly then arbitrary positive power of |z|
while z → 0.

When Reλ > 0, there aren’t nontrivial regular solutions of the equation (6.14)
in the point z = 0. Indeed, if the function w satisfies the equation (6.14) in z = 0,
then it has the form (6.16), where Φ is an analytic function in some neighborhood
Vρ(0) = {z : |z| < ρ}, ρ > 0, of the point z = 0. It is clear, that the function (6.16)
can’t satisfy the following condition∫∫

Vρ(0)

|w(z)| dx dy < +∞

for every number ρ > 0 and for a nontrivial analytic function Φ. When Reλ ≤ 0 the
equation (6.14) has an extensive class of regular solutions in z = 0. When Reλ < 0
the formula (6.16) gives the regular in z = 0 solution and if the function Φ has
the pole of arbitrary power and even in the case when Φ has the essential singular
point in z = 0, but hasn’t rapidly exponential growth in its neighborhood. This
growth measure is limited by the multiplier exp

{
2λ
r

}
. When Reλ < 0 the regular

(of sufficiently wide class) solutions of the equation (6.14) have zero of infinite order,
i.e. these solutions w satisfy the condition

lim
z→0

w(z)

(z − z0)k
= 0, k = 0, 1, 2, . . .

In these cases Reλ < 0 the equation (6.14) also has regular solutions w (their class
is sufficiently wide) also such that z = 0 is limit point of their zeroes.

The equation (6.14) is the particular case of the equation (1.6) with the coeffi-
cients

A(z) =
λ · exp(i φ)

rν
+
A0(z)

rν1
+ h(z),

B(z) =
B0(z)

rµ
,

(6.18)
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where the real numbers ν, ν1, µ satisfy the condition

µ > 0, ν > max
{
[µ] + 2, [ν1] + 2

}
, (6.19)

and the functions
h ∈ A∗

0(G), A0, B0 ∈ Lp(G), p > 2 (6.20)

(G is a bounded domain containing the origin).
Most statements formulated above for the model equation (6.14) can be proved

for the equation (1.6) with the coefficients (6.18) also.
The picture, described above for the class A∗(A,B,G), sharply changes, if we

carry the apparently insignificant change in the coefficient A(z) from (6.18), namely
we get a very interesting picture if we consider the coefficients

A(z) =
λ · exp(imφ)

|z|ν
+
A0(z)

|z|ν1
+ h(z),

B(z) =
B0(z)

|z|µ
,

(6.21)

where m is a natural number and with respect to other parameters of the functions
A,B the above assumptions (6.19) and (6.20) are fulfilled.

It is clear, that the equation (1.6) with the coefficients (6.21) is quasiregular.
Using the relation (6.2) for this equation first and then applying a modification of
the well known principle of Phragmen-Lindelöf from the function theory we get the
following theorem

Theorem 6.2 Let the generating pair of the class A∗(A,B,G) be of the form (6.21),
let the conditions (6.19) and (6.20) be fulfilled and

λ ̸= 0, m > 1, m ̸= ν, (6.22)

then every solution w ∈ A∗(A,B,G) satisfying the condition

w(z) = O
(
Ψ(z)

)
, z → 0, (6.23)

for some function Ψ ∈ A∗
0(G) is identically zero.

The essential extension of the Theorem 6.2 is proved; the existence of the real
number δ0 > 0, such that every solution w of A∗(A,B,G), (the generating pair
should satisfy the conditions of the Theorem 6.2) satisfying the following condition

w(z) = O

(
Ψ(z) · exp

{
δ

|z|ν−1

})
, z → 0, (6.24)

for some δ < δ0, Ψ ∈ A∗
0(G) is identically zero is also proved.

From Theorem 6.2 (taking as the analytic function Ψ ≡ 1) we get immediately
the triviality of solution of the class A∗(A,B,G) bounded in the neighborhood of
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the singular for the equation point z = 0. Further, let the solution w ∈ A∗(A,B,G)
has the power of the growth

w(z) = O(
1

|z|σ
), z → 0 (6.25)

for some σ > 0. Taking as Ψ(z) the function

Ψ(z) =
1

z[σ]+1

we conclude that w ≡ 0.
As the next application of the Theorem 6.2 consider arbitrary solution w ∈

A∗(A,B,G) (the generating pair should satisfy the conditions of the Theorem 6.2)
and let the analytic function Ψ ∈ A∗

0(G) satisfy the condition

Ψ(z) = O
(
w(z)

)
, z → 0. (6.26)

Applying the functions w, Ψ we construct the function

W =
Ψ

w
,

which is bounded in the neighborhood of z = 0.
Direct checking gives, that

∂W

∂z
− AW − BΨ

Ψ

(
W

W

)2

W = 0, (6.27)

i.e. W is a quasiregular solution of the quasiregular equation (6.27). It is evident,
that for the coefficients of this equation all conditions of the Theorem 6.2 are fulfilled
and therefore the solution W ≡ 0, i.e. Ψ ≡ 0.

Summarizing the above we conclude that the following theorem is valid.

Theorem 6.3 Let the generating pair of the class A∗(A,B,G) be of the form (6.21)
and let the conditions (6.19),(6.20),(6.22) be fulfilled. Then every function Ψ ∈
A∗

0(G) satisfying the condition (6.26) for some solution w ∈ A∗(A,B,G) is identi-
cally zero.

It follows from the Theorems 6.2, 6.3 that the quasiregular solutions of the
equation (1.6) of sufficiently wide class in the neighborhood of singular point of the
equation doesn’t admit the estimation (neither from above nor from below) by the
module of the analytic function and therefore the behavior of the solution is non-
analytic. But these solutions have one common property: they are remaining the
behavior of the analytic functions in the neighborhood of the essentially singular
point. Namely, these solutions have no limit in singular (for the equation) point.
Indeed, the unboundedness of every nontrivial function w ∈ A∗(A,B,G) imply that
no finite limit exists in the point z = 0.
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Let us prove the impossibility of the equality

lim
z→0

w(z) = ∞. (6.28)

In fact, if the equality (6.28) takes place then there exists a real number ρ > 0 such,
that

|w(z)| > 1, 0 < |z| < ρ,

however, this is impossible by virtue of the Theorem 6.3. Summarizing what has
been told we conclude that the following theorem is valid.

Theorem 6.4 Let the generating pair of the class A∗(A,B,G) be of the form 6.21)
and let the conditions(6.19), (6.20), (6.22) be fulfilled. Then every nontrivial func-
tion w ∈ A∗(A,B,G) has no limit (neither finite nor infinite) in singular for the
equation point z = 0.

In conclusion of this section we note, that we have investigated the boundary
problems for a sufficiently wide class of quasiregular equations (1.6) and their com-
plete analysis in some sense.

6.3 Correct boundary value problems for some classes of
singular elliptic differential equations on a plane

The investigation of differential equations of the type

∂nω

∂zn
+ an−1

∂n−1ω

∂zn−1 + an−2
∂n−2ω

∂zn−2 + · · ·+ a0ω = 0

with sufficiently smooth coefficients a0, a1, . . . , an−1 (the theory of meta-analytic
functions) traces back to the work of G. Kolosov [72]. Subsequently, numerous pa-
pers in this direction were published by many authors. The present section deals
with some singular cases of the above-given equation. Correct boundary value prob-
lems are pointed out, and their in some sense complete analysis are given.

In the domainG containing the origin of the plane of a complex variable z = x+iy
we consider a differential equation of the type

Eνω ≡ z2ν
∂2ω

∂z2
+ Azν

∂ω

∂z
+Bω = 0, (6.29)

where A and B are given complex numbers, ν ≥ 2 is a given natural number and as

usual ∂
∂z

≡ 1
2

(
∂
∂x

+ i ∂
∂y

)
. To avoid more simple case we assume that

B ̸= 0. (6.30)

The function ω(z) is said to be a solution of the equation (6.29), if it belongs to
the class C2(G \ {0}) and satisfies (6.29) at every point of the domain G \ {0}. We
denote by K the set of such functions; it should be noted that it is wide enough.
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Every non-trivial (not identically equal to zero) function from the set K, being
a classical solution of an elliptic differential equation in the neighborhood of any
non-zero point of the domain G, has an isolated singularity at the point z = 0. The
analysis of the structure of the functions ω ∈ K shows highly complicated nature of
their behaviour (in the vicinity of the singular point z = 0) and, undoubtedly, is of
independent interest because it allows one to obtain a priori estimates of solutions
and of their derivatives which in turn are necessary for the correct statement and
for the investigation of boundary value problems. A highly complicated nature of
behaviour of solutions in the vicinity of the origin can be explained first by the fact
that the equation (6.29) at the point z = 0 degenerates up to the zero order.

For every function ω(z) ∈ K we introduce the following natural characteristic,
i.e., the function of the real argument ρ > 0,

Tω(ρ) ≡ max
0≤φ≤2π

{∣∣∣ω(ρeiφ)∣∣∣+ ∣∣∣∂ω
∂z

(ρeiφ)
∣∣∣ }. (6.31)

According to Theorem 6.2 proved below, we in particular conclude that for every
non-trivial solution ω(z) the function (6.31) increases more rapidly not only than
an arbitrary power of 1

ρ
as ρ→ 0, but more rapidly than the function exp{ δ

ρν−1} for
certain positive numbers δ.

With the equation (6.29) is closely connected the characteristic equation

λ2 + Aλ+B = 0,

where λ is an unknown complex number, which, by (6.30), has two non-zero, possibly
coinciding, roots; we denote them by λ1 and λ2, and in what follows it will be
assumed that

|λ1| ≤ |λ2|. (6.32)

Having the roots λ1 and λ2, we can factorize the operator Eν in the form

Eν =
(
zν

∂

∂z
− λ1I

)
◦
(
zν

∂

∂z
− λ2I

)
,

and immediately obtain that every function ω(z) ∈ K under the condition

λ1 ̸= λ2

is representable as

ω(z) = ϕ(z) exp
{λ1z
zν

}
+ ψ(z) exp

{λ2z
zν

}
, (6.33)

and under the condition
λ0 ≡ λ1 = λ2

as

ω(z) = [ϕ(z)z + ψ(z)] exp
{λ0z
zν

}
, (6.34)
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where ϕ(z) and ψ(z) are arbitrary holomorphic functions in the domain G \ {0};
z = 0 is an isolated singular point for ϕ(z) and ψ(z).

20. We will need the following two statements whose proof is based on the
well-known Fragman–Lindelöf principle (see, e.g., [120] and also [85])in the sequel.

Lemma 6.5 Let ϕ(z) be a function holomorphic in the deleted neighborhood of the
point z = 0 and such that

ϕ(z) = 0 (exp{g(z)}), z → 0, (6.35)

where

g(z) =
1

|z|k−2
{δ + a cos (k arg z) + b sin (k arg z)},

k ≥ 3 is natural, δ, a, b are real numbers, and

δ =
√
a2 + b2 cos πβ, β = max

{
0,

k − 4

2k − 4

}
.

Then the function ϕ(z) is identically equal to zero.

Lemma 6.6 Let ϕ be a function holomorphic in the deleted neighborhood of the
point z = 0 and such that the condition (6.35) is fulfilled with

g(z) =
1

|z|
{
√
a2 + b2 + a cos(3 arg z) + b sin(3 arg z)}

and a, b real numbers. Then the function ϕ(z) has the removable singularity at the
point z = 0.

30. The following theorem holds

Theorem 6.7 Let δ be a real number such that δ < |λ1| cosπβ, where

β = max
{
0,

ν − 3

2ν − 2

}
. (6.36)

Then for every non-trivial solution ω(z) ∈ K

lim
ρ→0+

Tω(ρ)

exp
{

δ
ρν−1

} = +∞. (6.37)

Proof. First, let λ1 ̸= λ2. Then differentiating the general solution (6.33) with
respect to z, we have

∂ω

∂z
=
λ1
zν
ϕ(z) exp

{λ1z
zν

}
+
λ2
zν
ψ(z) exp

{λ2z
zν

}
,
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which together with (6.33)gives

ϕ(z) exp
{λ1z
zν

}
=

1

λ1 − λ2

(
λ1ω − zν

∂ω

∂z

)
,

ψ(z) exp
{λ2z
zν

}
=

1

λ1 − λ2

(
λ2ω − zν

∂ω

∂z

)
.

(6.38)

Let for some solution ω(z) ∈ K the condition (6.37) be violated; this means that
there exist positive numbers M and ρ0 such that

Tω(ρ) ≤M exp
{ δ

ρν−1

}
, 0 < ρ < ρ0,

whence, with considering (6.31), we obtain

|w(ρeiφ)| ≤M · exp{ δ

ρν−1
},∥∥∥∂ω

∂z
(ρeiφ)

∥∥∥ ≤M · exp
{ δ

ρν−1

}
, 0 < ρ < ρ0, 0 ≤ φ ≤ 2π.

(6.39)

In its turn, from (6.39) and (6.38) the existence of a positive number M0 follows
such that

|ϕ(z)| ≤M0 exp
{ 1

|z|ν−1
[δ − |λ1| cos(ψ1 − (ν + 1)φ)]

}
,

|ψ(z)| ≤M0 exp
{ 1

|z|ν−1
[δ − |λ2| cos(ψ2 − (ν + 1)φ)]

}
,

(6.40)

0 < |z| < ρ0, 0 ≤ φ ≤ 2π,

where φ = arg z, ψk = arg λk, k = 1, 2.
From the inequalities (6.40) by virtue of Lemma 6.5 we get that ϕ(z) ≡ ψ(z) ≡ 0,

i.e., the solution ω(z) is trivial.
Let now λ0 ≡ λ1 = λ2. Then differentiating the general solution (6.34) with

respect to z, we have

∂ω

∂z
=
[
ϕ(z)

(
1 +

λ0z

zν

)
+
λ0
zν
ψ(z)

]
exp

{λ0z
zν

}
,

which together with (6.34) gives

zνϕ(z) exp
{λ0z
zν

}
= zν

∂ω

∂z
− λ0ω,

zνψ(z) exp
{λ0z
zν

}
= (zν + λ0z)ω − zzν

∂ω

∂z
.

(6.41)

The formulas (6.41) obtained above are analogous to the formulas (6.38) which
allows to repeat our reasoning and conclude that the non-trivial solutions ω(z) ∈ K
are unable to violate the condition (6.37).
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From the above-proved theorem it follows immediately that for every non-trivial
solution ω(z) ∈ K

lim
ρ→0+

Tω(ρ)

exp
{

δ
ρσ

} = +∞,

where δ is some real number, and the real number σ < ν − 1.
40. Theorem 6.7 admits generalizations to more general systems of differential

equations of the type
m∑
k=0

zνkAk
∂kω

∂zk
= 0, (6.42)

where ν ≥ 2, m ≥ 1 are given natural numbers Ak, k = 0, 1, . . . ,m, are given
complex square matrices of dimension n× n, and

detA0 ̸= 0, detAm ̸= 0, (6.43)

AkAj = AjAk, j, k = 0, 1, . . . ,m. (6.44)

Under a solution of the system (6.42) we mean the vector function ω(z) =
(ω1(z), ω2(z), . . . , ωn(z)) belonging to the class Cm(G \ {0}) and satisfying (6.42)
at every non-zero point of the domain G.

By Λ we denote the set of all possible complex roots of the polynomial

m∑
k=0

τkλ
k = 0,

where the coefficient τk is some eigenvalue of the matrix Ak, k = 0, 1, . . . ,m. Intro-
duce the number

δ0 ≡ min
λ∈Λ

|λ|,

which by (6.43) satisfies the inequality δ0 > 0.
The following theorem holds.

Theorem 6.8 Let ψ(z) be a function analytic in some deleted neighborhood of the
point z = 0 and having possibly arbitrary isolated singularities (concentration of
singularities of the function ψ(z) at the point z = 0 is not excluded). Further, let
δ, σ be real numbers such that either σ < ν − 1 (σ is arbitrary) or σ = ν − 1,
δ < δ0 cos πβ where the number β is given by the formula (6.36). Then there are no
non-trivial solutions of the system (6.42) satisfying the asymptotic condition

T̃ω(|z|) = 0
(
|ψ(z)| exp

{ δ

|z|σ
})
, z → 0,

where

T̃ω(ρ) ≡ max
0≤φ≤2π

n∑
k=1

m−1∑
p=0

∣∣∣∂pωk
∂zp

(ρeiφ)
∣∣∣ , ρ > 0.
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50. Everywhere below G will denote a finite domain (containing the origin of
coordinates of the complex plane) with the boundary Γ consisting of a finite number
of simple, closed, non-intersecting Lyapunov contours. In the sequel, we will consider
the special case of the equation (6.29), when ν = 2, i.e., we consider the equation

z4
∂2ω

∂z2
+ Az2

∂ω

∂z
+Bω = 0, (6.45)

and study the following two boundary value problems.
Problem R(δ, σ). On the contour Γ there are prescribed, Hölder continuous

functions a(t), γ(t) where the function γ(t) is real and a(t) ̸= 0, t ∈ Γ. Real positive
numbers δ, σ are also given. It is required to find a continuously extendable to
G \ {0} solution of the equation (6.45) satisfying both the asymptotic condition

lim
ρ→0

Tω(ρ)

exp
{

δ
ρσ

} < +∞ (6.46)

and the boundary condition

Re{a(t)ω(t)} = γ(t), t ∈ Γ. (6.47)

Problem Q(δ, σ). On the contour Γ there are prescribed Hölder continuous
functions γk(t), ak,m(t), k,m = 1, 2, where γ1(t), γ2(t) are real and

det ∥ak,m(t)∥ ̸= 0, t ∈ Γ.

Real positive numbers δ, σ are also given. It is required to find a continuously
extendable (together with its derivative ∂ω

∂z
) to G \ {0} solution of the equation

(6.45) satisfying both the condition (6.46) and the boundary condition

Re{ak,1(t)ω(t) + ak,2(t)
∂ω

∂z
(t)} = γk(t), t ∈ Γ, k = 1, 2. (6.48)

Along with the problems formulated above, let us consider the following bound-
ary value problems.

Problem R0(p). Given an integer p, it is required to find a function ϕ0(z)
holomorphic in the domain G, continuously extendable to G and satisfying the
boundary condition

Re{α(t)ϕ0(t)} = γ(t), t ∈ Γ, (6.49)

where α(t) = a(t)t2−p exp{λ1t
t2
}.

Problem Q′
0(p). Given an integer p, it is required to find a vector function

(ϕ0(z), ψ0(z)) holomorphic in the domain G, continuously extendable to G and sat-
isfying the boundary condition

Re{αk,1(t)ϕ0(t) + αk,2(t)ψ0(t)} = γk(t), t ∈ Γ, k = 1, 2, (6.50)
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where

αk,m(t) =
[
ak,1(t)t

2−p +
λmak,2(t)

tp

]
exp

{λmt
t2

}
, k,m = 1, 2.

Problem Q′′
0(p). Given an integer p, it is required to find a vector function

(ϕ0(z)), ψ0(z) holomorphic in the domain G, continuously extendable to G and
satisfying the boundary condition

Re{βk,1(t)ϕ0(t) + βk,2(t)ψ0(t)} = γk(t), t ∈ Γ, k = 1, 2, (6.51)

where

βk,1(t) =
[ak,1(t)

tp
|t2|+ ak,2(t)

(
t1−p +

λ0t

t2+p

)]
exp

{λ0t
t2

}
βk,2(t) =

[
ak,1(t)t

2−p +
λ0
tp
ak,2(t)

]
exp

{λ0t
t2

}.

On the basis of the following obvious relations

α(t) ̸= 0, t ∈ Γ,

det ∥βk,m(t)∥ = −t3−2p det ∥ak,m(t)∥e
2λ0t

t2 = 0, t ∈ Γ,

det ∥αk,m(t)∥ = (λ2 − λ1)t
2−2p det ∥ak,m(t)∥e

λ1+λ2
t2

t ̸= 0, t ∈ Γ,

if only λ1 ̸= λ2, we conclude that for every integer p the problems R0(p), Q
′
0(p),

Q′′
0(p) refer to those boundary value problems which are well-studied (see, e.g., [23],

[99]). In particular, it is known that the corresponding homogeneous problems
(γ(t) ≡ γ1(t) ≡ γ2(t) ≡ 0) have finite numbers of linearly independent solutions 1

(and as it is easy to see, these numbers become arbitrarily large as p→ +∞). Also
formulas for the index and the solvability criteria of the problems are available.

60. We have the following

Theorem 6.9 Let |λ1| < |λ2|. Then the boundary value problems R(|λ1|, 1) and
R0(0) are simultaneously solvable (unsolvable), and in case of their solvability the
relation

ω(z) = z2ϕ0(z) exp
{λ1z
z2

}
, z ∈ G \ {0}, (6.52)

establishes a bijective relation between the solutions of these problems.

Proof. First we have to find a general representation of solutions of the equation
(6.45) which are continuously extendable to G\{0} and satisfy the condition (6.46),
where δ = |λ1|, σ = 1. Towards this end, we use the equalities (6.38) and find
that the functions ϕ(z) and ψ(z), holomorphic in the domain G \ {0}, satisfy the
conditions

ϕ(z) = 0
(
exp

{ |λ1|
|z|

[
1− cos(ψ1 − 3 arg z)

]})
, z → 0,

1 Here and everywhere, the linear independence is understood over the field of real numbers.
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ψ(z) = 0
(
exp

{ |λ1|
|z|

[
1− |λ2|

|λ1|
cos(ψ2 − 3 arg z)

]})
, z → 0,

ψk = arg λk, k = 1, 2.

The first of the above conditions on the basis of Lemma 6.6 shows that z = 0 is
a removable singular point for the function ϕ(z). Next, if we take into account the

inequality
∣∣∣λ2λ1 ∣∣∣ > 1, then by virtue of Lemma 6.5 the second condition shows that

the function ψ(z) ≡ 0. This immediately implies that the relation

∂ω

∂z
=
λ1
z2
ϕ(z) exp

{λ1z
z2

}
is valid. Consequently,∣∣∣λ1

z2

∣∣∣ |ϕ(z)| = 0
(
exp

{ |λ1|
|z|

(1− cos(ψ1 − 3 arg z))
})
, z → 0. (6.53)

In turn, (6.53) yields∣∣∣λ1
z2

∣∣∣ |ϕ(z)| = 0(1), z → 0, arg z =
ψ1

3
. (6.54)

Considering the Taylor series expansion of the holomorphic function λ1ϕ(z)

λ1ϕ(z) = a0 + a1z + a2z
2 + · · · ,

and substituting this expansion in (6.54), we obtain∣∣∣a0 + a1z

z2

∣∣∣ = 0(1), z → 0, arg z =
ψ1

3
,

and hence a0 = a1 = 0. From the above–said it follows that

ω(z) = z2ϕ0(z) exp
{λ1z
z2

}
, z ∈ G \ {0}, (6.55)

where ϕ0(z) is a function holomorphic in the domain G. Further, if the solution ω(z)
is continuously extendable onG\{0}, then the function ϕ0(z) is likewise continuously
extendable on G.

Conversely, it is obvious that any function of the type (6.55) provides us with
a solution of the equation (6.45), which is continuously extendable to G \ {0} and
satisfies the condition (6.46), where δ = |λ1|, σ = 1.

It remains to take into account the boundary conditions (6.47) and (6.49) (where
p = 0) which immediately leads us to the validity of the theorem.

Since any linearly independent system of functions ϕ0(z) by means of the relation
(6.52) transforms into the functions ω(z) (and conversely), on the basis of the above
proved Theorem 6.9 it is possible to carry out the complete investigation of the
boundary value problem R(|λ1|, 1) under the assumption |λ1| < |λ2|.

We have the following
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Theorem 6.10 Let at least one of the relations

δ = |λ1|, σ = 1, |λ1| < |λ2|, (6.56)

be violated. Then either the homogeneous problem R(δ, σ) has an infinite set of
linearly independent solutions or the inhomogeneous problem is unsolvable for any
right-hand side γ(t) ̸≡ 0.

Proof. By the inequality (6.32), violation at least of one of the relations (6.56)
means the fulfilment of one of the following conditions

δ ̸= |λ1|, σ = 1, |λ1| < |λ2|, (6.57)

or
σ ̸= 1 (δ is arbitrary), |λ1| < |λ2|, (6.58)

or
δ = |λ1|, σ = 1, |λ1| = |λ2|, (6.59)

or
δ ̸= |λ1|, σ = 1, |λ1| = |λ2|, (6.60)

or
σ ̸= 1 (δ is arbitrary) |λ1| = |λ2|. (6.61)

We consider these cases separately. Let (6.57) be fulfilled. In its turn, this case
splits into the following two cases: either

δ < |λ1|, σ = 1, |λ1| < |λ2|, (6.62)

or
δ > |λ1|, σ = 1, |λ1| < |λ2|. (6.63)

Let the case (6.62) be fulfilled, and let ω(z) be a solution of the equation (6.45)
satisfying the condition (6.46). Since ν = 2, the number β given by the formula
(6.36) is equal to zero. On the basis of Theorem 1, this implies that the solution
ω(z) ≡ 0, and hence the inhomogeneous boundary value problem R(δ, 1) is unsolv-
able for any right-hand side γ(t) ̸≡ 0.

Let now the condition (6.63) be fulfilled. We call an arbitrary real number N
and prove that the number of linearly independent solutions of the homogeneous
boundary value problem R(δ, 1) is greater than N . Indeed, we select a natural
number p so large that the number of linearly independent solutions of the homo-
geneous boundary value problem R0(p) be greater than N . Denote these solutions

by ϕ
(1)
0 (z), ϕ

(2)
0 (z) · · · , ϕ(m)

0 (z), (m > N) and introduce the functions

ωk(z) = z2−pϕ
(k)
0 exp

{λ1z
z2

}
, k = 1, 2, . . . ,m. (6.64)

It is clear that the system of functions (6.64) is likewise independent.
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By the representation (6.33), every function from (6.64) is a continuously ex-
tendable to G\{0} solution of the equation (6.45) which by virtue of (6.49) satisfies
the homogeneous boundary condition (6.47). Further, since the condition (6.63) is
fulfilled, on the basis of the obvious relation

∂ωk
∂z

=
λ1
zp
ϕ
(k)
0 (z) exp

{λ1z
z2

}
= 0
(
exp

{ δ

|z|

})
, z → 0,

we can conclude immediately that every function of the system (6.64) satisfies the
asymptotic condition (6.46), and hence the homogeneous boundary value problem
R(δ, 1) has infinitely many linearly independent solutions.

Let now the condition (6.58) be fulfilled. This case in its turn splits into two
cases: either

σ < 1 (δ is arbitrary), |λ1| < |λ2|, (6.65)

or
σ > 1 (δ is arbitrary), |λ1| < |λ2|. (6.66)

It is evident that in the case (6.65) (analogously to the case (6.62)) the inho-
mogeneous boundary value problem R(δ, σ) is unsolvable for any right-hand side
γ(t) ̸≡ 0, and in the case (6.66) (analogously to the case (6.63) the homogeneous
boundary value problem R(δ, σ) has infinitely many linearly independent solutions.

Let now the condition (6.59) be fulfilled. This case in its turn splits into two
cases: either

δ = |λ1|, σ = 1, |λ1| = |λ2|, λ1 ̸= λ2, (6.67)

or
δ = |λ1|, σ = 1, λ1 = λ2. (6.68)

Let us prove that in both cases (6.67) and (6.68) the homogeneous boundary value
problem R(δ, 1) has infinitely many linearly independent solutions. We start with
the case (6.67). Evidently, every function of the type

ω(z) = z2ϕ0(z)e
λ1z

z2 + z2ψ0(z)e
λ2z

z2 , z ∈ G \ {0} (6.69)

(where ϕ0(z) and ψ0(z) are holomorphic in the domain G) is a solution of the
equation (6.45) satisfying the condition (6.46), where σ = |λ1|, σ = 1 (in proving
Theorem 6.12 below we will show that the converse statement is valid, i.e., every
solution of the equation (6.45) satisfying the condition (6.46) with δ = |λ1|, σ = 1
has the form (6.69)). Next, if the holomorphic functions ϕ0(z) and ψ0(z) are contin-
uously extendable to G, then the solution ω(z) is likewise continuously extendable
on G \ {0}. Consider the following problem: find two functions ϕ0(z) and ψ0(z),
holomorphic in the domain G and continuously extendable to G by the boundary
condition

Re
{
a(t)t2ϕ0(t)e

λ1t

t2 + a(t)t2ψ0(t)e
λ2t

t2

}
= 0, t ∈ Γ. (6.70)

Therefore every solution of the problem (6.70) provides us by the formula (6.69)
with solution of the homogeneous boundary value problem R(|λ1|, 1).
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On the other hand, the problem (6.70) has infinitely many linearly independent
solutions. Indeed, let

ϕ∗
1(z), ϕ

∗
2(z), . . . , ϕ

∗
l (z)

be a complete system of solutions of the conjugate boundary value problem: given
a real Hölder continuous function β(t), find the function ϕ0(z) holomorphic in the
domain G and continuously extendable on G by the boundary condition

Re [α(t)ϕ0(t)] = β(t), t ∈ Γ, (6.71)

where

α(t) = a(t)t2 exp
{λ1t
t2

}
.

Take arbitrary natural number N0 and consider natural number N such that

N + 1− 2l > N0.

Introduce now the polynomial

ψ0(z) = C0 + C1z + · · ·+ Cnz
N , (6.72)

where Cj, j = 0, 1, . . . , N , are yet undefined real coefficients. Further, taking the
right-hand side of the problem (6.71) in the form

β(t) = −Re
[
a(t)t2 exp

{λ2t
t2

}
ψ0(t)

]
, t ∈ Γ,

we obtain a boundary value problem which will certainly be solvable if∫
Γ

α(t)β(t)ϕ∗
k(t)dt = 0, 1 ≤ k ≤ l.

Thus if real constants Cj are chosen such that

N∑
j=0

DkjCj = 0, k = 1, 2, . . . , l, (6.73)

where

Dkj =

∫
Γ

α(t)ϕ∗
k(t) Re

[
a(t)t2+je

λ2t

t2

]
dt,

then the problem (6.71) is solvable. In turn, the conditions (6.73) form a system
consisting of (6.40) linear algebraic homogeneous equations with N + 1 real un-
knowns, of which at least N + 1 − 2l can be taken arbitrarily. This means that in
the decomposition (6.72) we can take N + 1− 2l real coefficients. Substituting this
decomposition in the boundary condition (6.70), we can find the function ϕ0(z). It
is obvious that the problem (6.70) has an infinite number of linearly independent
solutions.
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If the condition (6.68) is fulfilled, then any function of the type

ω(z) = (zzϕ0(z) + z2ψ0(z))e
λ1z

z2 , z ∈ G \ {0} (6.74)

(where ϕ0(z) and ψ0(z) are functions holomorphic in G), is a solution of the equation
(6.45) satisfying the condition (6.46), where δ = |λ1|, σ = 1 (in proving Theorem 6.13
below, we will establish the validity of the converse statement, i.e., any solution of the
equation (6.45) satisfying the condition (6.46), where δ = |λ1|, σ = 1, has the form
(6.74)). Moreover, if the holomorphic functions ϕ0(z) and ψ0(z) are continuously
extendable onG then the solution ω(z) is likewise continuously extendable onG\{0}.

Let us consider the following boundary value problem. Find two functions ϕ0(z)
and ψ0(z), holomorphic in the domain G and continuously extendable on G by the
boundary condition

Re
[
a(t)(ttϕ0(t) + t2ψ0(t))e

λ1t

t2

]
= 0, t ∈ Γ. (6.75)

Any solution of the problem (6.75) provides us by the formula (6.74) with a
solution of the boundary value problem R(|λ1|, 1). But the problem (6.75), just as
the problem (6.70), has an infinite number of linearly independent solutions. Hence
the homogeneous problem R(|λ1|, 1) has an infinite number of linearly independent
solutions.

The case (6.60) splits into the following two cases: either

δ < |λ1|, σ = 1, |λ1| = |λ2|, (6.76)

or
δ > |λ1|, σ = 1, |λ1| = |λ2|. (6.77)

In the case (6.76), just as in the case (6.62), on the basis of Theorem 6.9 we im-
mediately find that the equation (6.45) has no non-trivial solution satisfying the
condition (6.46), and hence the inhomogeneous boundary value problem R(δ, 1) is
unsolvable for any right-hand side γ(t) ̸≡ 0.

In the case (6.76) it is obvious that every solution of the boundary value problem
R(|λ1|, 1) is also a solution of the problem R(δ, 1). But the homogeneous boundary
value problem R(|λ1|, 1) has an infinite number of linearly independent solutions
(see the case (6.59) above), consequently the homogeneous problem R(δ, 1) has an
infinite number of linearly independent solutions as well.

The case (6.61) splits into the following two cases: either

σ < 1 (δ is arbitrary), |λ1| = |λ2| (6.78)

or
σ > 1 (δ is arbitrary), |λ1| = |λ2|. (6.79)

In the case (6.78), just as in the case (6.76), on the basis of Theorem 6.8 we
immediately find that the inhomogeneous boundary value problem R(δ, σ) is un-
solvable for any right-hand side γ(t) ̸≡ 0, t ∈ Γ, and in the case (6.79) (just as in
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the case (6.77)) the homogeneous boundary value problem R(δ, σ) has an infinite
number of linearly independent solutions.

On the basis of the above proved Theorems 6.9 and 6.10 we have

Theorem 6.11 The boundary value problem R(δ, σ) is Noetherian if and only if the
relations (6.56) are fulfilled.

70. Next we have investigated the boundary value problem R(δ, σ). As we have
found out, this problem is correct only under the condition (6.56). The last of these
relations allows one to exclude from the consideration wide a class of equations of
the type (6.45).

If not mentioning it specially, we assume that |λ1| = |λ2|, and for equations of
the type (6.45) we give the correct statement and investigation of the boundary
value problems.

Everywhere below by δ0 we denote the number δ0 = |λ1|. We have the following

Theorem 6.12 If
arg λ1 ̸= arg λ2,

then the boundary value problems Q(δ0, 1) and Q′
0(0) are simultaneously solvable

(unsolvable) and in case they are solvable, the relation (6.69)
allows us to establish bijective correspondence between the solutions of these prob-
lems.

Proof. First we have to find general representation of those solutions of the equa-
tion (6.45) which (together with its derivative with respect on z) are continuously
extendable to G \ {0} and satisfy the condition (6.46), where δ = δ0, σ = 1. To this
end we again use the equalities (6.38) and find that the functions ϕ(z) and ψ(z),
holomorphic in the domain G \ {0}, satisfy the conditions

ϕ(z) = 0
(
exp

{ δ0
|z|

[1− cos(ψ1 − 3 arg z)]
})
, z → 0,

ψ(z) = 0
(
exp

{ δ0
|z|

[1− cos(ψ2 − 3 arg z)]
})
, z → 0,

ψk = arg λk, k = 1, 2.

Thus on the basis of Lemma 6.6 we conclude that z = 0 is a removable singular
point for the functions ϕ(z) and ψ(z). Further, it is obvious that

∂ω

∂z
=
λ1ϕ(z)

z2
exp

{λ1z
z2

}
+
λ2ψ(z)

z2
exp

{λ2z
z2

}
=

= 0
(
exp

{ δ0
|z|

})
, z → 0.

Hence we obtain the following two relations:

δ0
r2

∣∣∣ϕ(r exp{ iψ1

3

})∣∣∣ ≤ const+
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+
δ0
r2

∣∣∣ψ(r exp{iψ1

3

})∣∣∣ exp{δ0
r
[cos(ψ2 − ψ1)− 1]

}
,

δ0
r2

∣∣∣ψ(r exp{ iψ2

3

})∣∣∣ ≤ const+

+
δ0
r2

∣∣∣ϕ(r exp{iψ1

3

})∣∣∣ exp{δ0
r
[cos(ψ2 − ψ1)− 1]

}
,

whence it respectively follow∣∣∣ϕ(z)
z2

∣∣∣ = 0(1), z → 0, arg z =
ψ1

3
,

and ∣∣∣ψ(z)
z2

∣∣∣ = 0(1), z → 0, arg z =
ψ2

3
.

This implies that the functions ϕ(z) and ψ(z) admit the representations

ϕ(z) = z2ϕ0(z), ψ(z) = z2ψ0(z),

where ϕ0(z) and ψ0(z) are functions holomorphic in the domain G.
Consequently, every solution of the equation (6.45) satisfying the condition (6.46)

(δ = δ0, σ = 1) is representable in the form

ω(z) = z2ϕ0(z) exp
{λ1z
z2

}
+ z2ψ0(z) exp

{λ2z
z2

}
, (6.80)

and hence
∂ω

∂z
= λ1ϕ0(z) exp

{λ1z
z2

}
+ λ2ψ0(z) exp

{λ2z
z2

}
. (6.81)

Next, if the solution (6.80) (together with its derivative (6.81)) is continuously
extendable on G \ {0}, then we find that the functions ϕ0(z) and ψ0(z) are likewise
continuously extendable on G.

Conversely, it is evident that any function of the type (6.80) provides us with
continuously extendable (together with its derivative ∂ω

∂z
) solution of the equation

(6.45), satisfying the condition (6.46), where δ = δ0, σ = 1. It remains to take into
account the boundary conditions (6.48) and (6.50) (where p = 0) which directly
leads to the conclusion of our theorem.

On the basis of the above proved Theorem 6.12 in particular it follows that the
number of linearly independent solutions of the homogeneous boundary value prob-
lem Q(σ0, 1) is finite. This number coincides with that of the linearly independent
solutions of the homogeneous boundary value problem Q′

0(0), because any linearly
independent system of holomorphic vector functions

(ϕk(z), ψk(z)), 1 ≤ k ≤ m, (6.82)

transforms by the relation

ωk(z) = ϕk(z) exp
{λ1z
z2

}
+ ψk(z) exp

{λ2z
z2

}
, k = 1, 2, . . . ,m, (6.83)
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into linearly independent system of functions ωk(z), k = 1, 2, . . . ,m, and vice versa.
Indeed, let the system of holomorphic vector functions (6.82) be independent, and

m∑
k=1

Ckωk(z) ≡ 0,

where Ck are complex (in particular, real) coefficients. Then

m∑
k=1

Ckϕk(z) ≡ −e
λ2−λ1

z2
z

m∑
k=1

Ckψk(z). (6.84)

Differentiating both parts of the equality (6.84) with respect to z, we obtain

λ2 − λ1
z2

e
λ2−λ1

z2
z

m∑
k=1

Ckψk(z) ≡ 0.

Hence (since λ2 ̸= λ1)
m∑
k=1

Ckψk(z) ≡ 0. (6.85)

It follows from (6.84) and (6.85) that

m∑
k=1

Ckϕk(z) ≡ 0, (6.86)

while (6.86) and (6.85), by virtue of the fact that the system (6.82) is linearly
independent, yield Ck = 0, k = 1, 2, . . . ,m.

The converse statement is obvious because the linear dependence of the system
of vector functions (6.82) immediately implies that of the system of functions (6.83).

We have the following

Theorem 6.13 If
ψ1 ≡ arg λ1 = arg λ2,

then the boundary value problems Q(δ0, 1) and Q′′
0(0) are simultaneously solvable

(unsolvable), and if they are solvable, then the relation (6.74) allows us to establish
bijective correspondence between the solutions of these problems.

Proof. First of all, just as in the proof of Theorems 6.9 and 6.12, we have to find
general representation of those solutions of the equation (6.45) which (together with
the derivative ∂ω

∂z
) are continuously extendable on G \ {0} and satisfy the condition

(6.46), where δ = δ0, σ = 1. Towards this end, we use the equalities (6.41) and find
that the functions ϕ(z) and ψ(z), holomorphic in G \ {0}, satisfy the conditions

z2ϕ(z) = 0(g(z)), z2ψ(z) = 0(g(z)), z → 0, (6.87)
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where

g(z) = exp
{ δ0
|z|

(1− cos(ψ1 − 3 arg z))
}
.

By virtue of the relations (6.87) and Lemma 6.6 we obtain that z = 0 is a remov-
able singular point for the functions z2ϕ and z2ψ, i.e. the solution ω is representable
in the form

ω(z) = H(z) exp
{λ1z
z2

}
, z ∈ G \ {0}, (6.88)

where

H(z) = z
ϕ̃(z)

z2
+
ψ̃(z)

z2
,

and ϕ̃ and ψ̃ are functions holomorphic in G. In its turn from the representation
(6.88) it follows

∂ω

∂z
= H1(z) exp

{λ1z
z2

}
, z ∈ G \ {0},

where

H1(z) =
ϕ̃(z)

z2

(
1 +

λ1z

z2

)
+
λ1
z4
ψ̃(z).

Further, taking into account the condition (6.46), we get

H(z) = 0(1), z → 0, arg z =
1

3
(ψ1 + 2πk), (6.89)

H1(z) = 0(1), z → 0, arg z =
1

3
(ψ1 + 2πk), (6.90)

k = 0, 1, 2, . . . .

Expanding the holomorphic functions ϕ̃ and ψ̃ into their Taylor series

ϕ̃(z) = a0 + a1z + a2z
2 + · · · ,

ψ̃(z) = b0 + b1z + b2z
2 + · · · ,

(6.91)

and substituting them in (6.89), we have

a0z + b1z + b0
z2

= 0(1), arg z =
ψ1 + 2πk

3
, (6.92)

where the coefficient b0 = 0. Taking this into account and using the relation (6.92)
for the coefficients a0 and b1, we obtain the following equalities

a0e
−2iφ0 + b1 = 0, φ0 =

ψ1

3
,

a0e
−2iφ0 + b1 = 0, φ1 =

ψ1 + 2π

3
,

which (with regard for e−2iφ0 − e−2iφ1 ̸= 0) show that the coefficients a0 = b1 = 0.
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Substituting now the expansions (6.91) and (6.90), we have

1

r3
[λ1a1e

−4iφk + λ1b2re
−iφk + r2(a1 + λ1a2e

−2iφk+

+λ1b3)] = 0(1), r → 0, φk =
ψ1 + 2πk

3
, k = 0, 1, 2, . . . ,

which immediately gives a1 = 0. Taking this fact into account, we obtain

1

r2
[λ1b2e

−iφk + λ1r(a2e
−2iφk + b3)] = O(1), r → 0,

and therefore b2 = 0. In its turn we have

a2e
−2iφ0 + b3 = 0, φ0 =

ψ1

3
,

a2e
−2iφ1 + b3 = 0, φ1 =

ψ1 + 2π

3
,

by virtue of which a2 = b3 = 0.
Thus the holomorphic functions ϕ̃ and ψ̃ have the form

ϕ̃(z) = z3ϕ0(z), ψ̃(z) = z4ψ0(z), (6.93)

where the functions ϕ0 and ψ0 are holomorphic in the domain G. Substituting (6.93)
and (6.88), we obtain the representation (6.74). Next, if the solution (6.74) together
with its derivative

∂ω

∂z
=
[
ϕ0(z)

(
z +

λ1z

z2

)
+ λ1ψ0(z)

]
e

λ1z

z2 (6.94)

is continuously extendable on G \ {0}, we will find that the holomorphic functions
ϕ0 and ψ0 are continuously extendable on G.

Conversely, every function of the type (6.74) provides us with continuously ex-
tendable (together with its derivative (6.94)) on G \ {0} solution of the equation
(6.45), satisfying the condition (6.46) with δ = δ0, σ = 1. It remains to take into
account the boundary conditions (6.48) and (6.51) (with p = 0) which immediately
leads us to the conclusion of our theorem.

It is not difficult to see that any linearly independent system of holomorphic
vector functions (6.82) transforms by the relation

ωk(z) =
(
zzϕk(z) + z2ψk(z) exp

{λ1z
z2

})
, z ∈ G \ {0}

(analogously to the relation (6.83)) into linearly independent system of functions
ωk(z), k = 1, 2, . . . ,m, and vice versa. Therefore the numbers of linearly independent
solutions of homogeneous boundary problems Q(δ0, 1) and Q

′′
0(0) coincide.

We have the following
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Theorem 6.14 Let at least one of the equalities

δ = δ0, σ = 1, (6.95)

be violated. Then either the homogeneous boundary value problem Q(δ, σ) has an
infinite number of linearly independent solutions, or the inhomogeneous problem is
unsolvable for any right-hand side (γ1(t), γ2(t)) ̸≡ 0.

Proof. The violation of at least of one of the equalities (6.95) implies that one of
the following conditions is fulfilled:

δ < δ0, σ = 1, (6.96)

or
δ > δ0, σ = 1, (6.97)

or
σ < 1 (σ is arbitrary), (6.98)

or
σ > 1 (σ is arbitrary). (6.99)

Under the condition (6.96) (and under the condition (6.98)), on the basis of
Theorem 6.14 it immediately follows that the equation (6.45) has no non-trivial
solution satisfying the condition (6.46) and hence the inhomogeneous boundary value
problem Q(δ, σ) is unsolvable for any right-hand side (γ1(t), γ2(t)) ̸≡ 0.

Let us prove that under the condition (6.97) the homogeneous boundary value
problem Q(δ, 1) has an infinite number of linearly independent solutions. Indeed,
let the condition (6.97) be fulfilled and moreover, arg λ1 ̸= arg λ2. We take an
arbitrary natural number N and choose natural number p so that the number of
linearly independent solutions of the homogeneous boundary value problem Q′

0(p)
be greater than N . We denote these solutions by

(ϕ
(k)
0 (z), ψ

(k)
0 (z)), k = 1, 2, . . . ,m, m > N. (6.100)

It is easy to see that the system of functions (6.100) transforms by the relation

ωk(z) = z2ϕ
(k)
0 (z) exp

{λ1z
z2

}
+

+z2ψ
(k)
0 (z) exp

{λ2z
z2

}
, z ∈ G \ {0},

into a linearly independent system of solutions of the homogeneous boundary value
problem Q(δ, σ). Therefore this problem has an infinite number of linearly indepen-
dent solutions.

Let now the condition (6.97) be fulfilled, and arg λ1 = arg λ2. We take an
arbitrary natural number N and choose a natural number p so large that the number
of linearly independent solutions of the homogeneous boundary value problem Q′′

0(p)
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be greater than N . We denote again these solutions by (6.100). It is not difficult to
see that the system of functions (6.100) transforms by the relation

ωk(z) = (zzϕ
(k)
0 (z) + z2ψ

(k)
0 (z)) exp

{λ1z
z2

}
,

z ∈ G \ {0}, k = 1, 2, . . . ,m,

into linearly independent system of solutions of the homogeneous boundary value
problem Q(δ, σ). Therefore this problem has an infinite number of linearly indepen-
dent solutions.

It remains to consider the case (6.99). But any solution of the homogeneous
boundary value problem Q(δ, 1) (for δ > δ0) is likewise the solution of the homo-
geneous boundary value problem Q(δ, σ) (for σ > 1). Therefore the latter problem
has an infinite number of linearly independent solutions.

On the basis of the above-proved Theorems 6.13 and 6.14 we have the following
theorem.

Theorem 6.15 The boundary value problem Q(δ, σ) is Noetherian if and only if
the condition (6.95) is fulfilled.

6.4 One class of two-dimensional third kind Fredholm inte-
gral equation

Consider the following integral equation

zνw + pnw = f, (6.101)

where ν > 0 is a given integer, n is a natural number, f is a given function on the
bounded domain G containing the origin,

p1w(z) = − 1

π

∫∫
G

a1(ζ)w(ζ)

ζ − z
dG(ζ),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

pnw(z) = − 1

π

∫∫
G

an(ζ) pn−1(w(ζ))

ζ − z
dG(ζ),

(6.102)

is the sequence of singular integral operators, w is a desired function; by ak = ak(z)
(1 ≤ k ≤ n) are denoted the holomorphic in G and continuous in G functions. Here
we mean that

m =
ν

n
> 2. (6.103)

Consider now the homogeneous integral equation

zνw + pnw = 0. (6.104)

Under the solution of this equation we mean the function w ∈ Lp(G), p > 2,
satisfying (6.104) almost everywhere in G. From the definition and on the basis of
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known properties of the operator p1w [124] it follows that every solution of the equa-
tion (6.104) is continuous in every point of G, except may be the origin. Moreover,
the function

w0(z) ≡ zν w(z), z ∈ G, (6.105)

has a continuous derivatives of order n− 1 in G and the function

w1(z) ≡ zν
∂n−1w

∂z n−1
, z ∈ G, (6.106)

has a generalized derivative by z and

wz +R(z)w = 0, (6.107)

where R(z) =
n∏
k=1

ak(z), z ∈ G.

Assume that there exists a holomorphic in the domain G function b(z), such that[
b(z)

]n
= −R(z), z ∈ G and b(0) ̸= 0. (6.108)

Denote by

αk = cos
2π(k − 1)

n
+ i sin

2π(k − 1)

n
, 1 ≤ k ≤ n

all possible roots from 1 of order n. Taking into account (6.103), (6.106), (6.107)
and (6.108) we obtain that every solution of the homogeneous equation (6.104) is
representable in the form

w(z) =
n∑
k=1

Qk(z), z ∈ G \ {0}, (6.109)

where Qk(z) = Φk(z) exp{αk c(z) z}, c(z) = b(z)
zm

and Φk(z) (k = 1, n) are holomor-
phic in G \ {0} functions.

From (6.109) follows the validity of the following representation

∂qw

∂z q
=

n∑
k=1

αqk c(z)
qQk(z) (1 ≤ q ≤ n− 1), (6.110)

which simultaneously with (6.109) admits the matrix form

A ·Ψ(z) = Ω(z), (6.111)

Ψ(z) = column
(
Q1(z), Q2(z), . . . , Qn(z)

)
,

Ω(z) = column

(
w,

1

c(z)

∂w

∂z
, . . . ,

1

c(z)n−1

∂n−1w

∂z n−1

)
, (6.112)

A =


1 1 · · · 1
α1 α2 · · · αn
α2
1 α2

2 · · · α2
n

. . . . . . . . . . . . . . . . . . . . . .
αn−1
1 αn−1

2 · · · αn−1
n

 .
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From (6.111) we have that every function Qk (k = 1, n) is a linear combination
of the components of the vector (6.111). Therefore, in the neighborhood of z = 0,
the following estimation holds

Q(z) = O
( 1

z ν

)
, z → 0. (6.113)

Consequently, we get the result:

Theorem 6.16 The homogeneous integral equation (6.104) has no nontrivial solu-
tions in Lp(G), p > 2.

Let us consider the inhomogeneous case (6.101), when the right hand side func-
tion is s-analytic in G

f(z) = F0(z) + z F1(z) + · · ·+ z s−1 Fs−1(z), (6.114)

here s is a natural number, Fk (0 ≤ k ≤ s− 1) are arbitrary holomorphic functions
in G.

The following theorem is valid.

Theorem 6.17 The inhomogeneous integral equation (6.101) is unsolvable in the
class Lp(G), p > 2, if the right hand side function has the form (6.114), where
at least one function Fk (0 ≤ k ≤ s − 1) isn’t identically zero and the following
inequality holds

s ≤ n. (6.115)

Remark. We have established that the homogeneous integral equation (6.104)
and the inhomogeneous equation (6.101) with sufficiently general right-hand side
have no solutions. Note, that the exact description of the image of our integral
operator for which the equation (6.101) will have solutions is very complicated.
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7 Some problems of 2n-elliptic systems on the

plane

7.1 Maximum modulus theorem

The first order system of partial differential equations

∂u

∂x
+ A(x, y)

∂u

∂y
+B(x, y)u = 0, (7.1)

where u = (u1, u2, . . . , u2n) is 2n-component desired vector, A, B are given real
2n × 2n-matrices depending on two real variables x, y is called elliptic in some
domain G ⊂ R2

(x,y), if

det(A− λI) ̸= 0, (7.2)

for every real λ and (x, y) ∈ G; I is an identity matrix. In other words the system
(7.1) is elliptic if the matrix A has no real characteristic numbers in G.

In this subsection we study the problem of validity of the maximum modulus
theorem. To this end let us mention some auxiliary explanations. Under the solution
of the system (7.1) we mean the classical solution of the class C1(G) ∩ C(G).

Denote by
Λ(A,B) (7.3)

the class of all possible solutions of the system (7.1); the matrices A and B are called
the generating pair of the class (7.3).

Introduce

ρu(x, y) =
[∑

u2k(x, y)
] 1

2
, (x, y) ∈ G (7.4)

for every u of the class (7.3).The following question arises (cf. Bojarski [23]):
Is the inequality

ρu(x0, y0) ≤ max
(x,y)∈Γ

ρu(x, y) (7.5)

valid for arbitrary u from (7.3) and (x0, y0) ∈ G? Here Γ is a boundary of the
domain G.

Of course, in case n = 1 and

A =

(
0 −1
1 0

)
, B =

(
0 0
0 0

)
the condition (7.5) if fulfilled.

Consider now G = {x2 + y2 < 1}, n = 1, A is the same matrix, B =

(
2x 0
2y 0

)
and u = column(e−x

2−y2 , 0) ∈ Λ(A,B).
It is evident, that ρu(0, 0) = 1 and ρu(x, y) =

1
e
, i.e. the condition (7.5) is not

fulfilled. In this example the matrix B is not a constant matrix. This example
shows, that the maximum modulus theorem for minimal dimensional elliptic system
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is not always true. It is easy to construct the example of higher dimensional system
when the condition (7.5) is disturbed in case A and B are constant. In fact, consider
G is the same domain G = {x2 + y2 < 1},

A =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , B =


−2 0 0 0
0 −2 0 0

−6 0 −2 0
0 −6 0 −2


and u = column(u1, u2, u3, u4) ∈ Λ(A,B), where

u1 = ex(x cos y + y sin y), u2 = ex(y cos y − x sin y),

u3 = 3(x2 + y2 − 1)ex cos x, u4 = −3(x2 + y2 − 1)ex sin y.

It is clear, that
ρu(0, 0) = 3, max

(x,y)∈Γ
ρu(x, y) = e

and therefore the condition (7.5) is not fulfilled.
In case the dimension of the system (7.1)–(7.3) is minimal, i.e. when n = 1 and

moreover, when

A =

(
0 −1
1 0

)
, B =

(
b11 b12
b21 b22

)
, bkq ∈ Lp(G), p > 2.

We have with the great effort of very famous mathematicians, in some sense complete
theory which is in very close connection with the theory of analytic functions of
complex variable. In particular, it is well-known that there exists the numberM > 1
(depending only on the matrix B) such, that

ρu(x0, y0) ≤M max
(x,y)∈Γ

ρu(x, y) (7.6)

for every u ∈ Λ(A,B) and (x0, y0) ∈ G.
The inequality (7.6) is weaker than (7.5), but it is also a very interesting problem,

as was noted by Bojarski in [30].
Now we describe the sufficiently wide class of the elliptic systems (7.1)–(7.3), for

which the inequality (7.6) as well as stronger inequality (7.5) holds. Consider the
case of constant coefficients.

Theorem 7.1 Let for the matrices A and B there exists the orthogonal matrix D
such, that

D−1AD =



0 −1 0 0 · · · 0 0
1 0 0 −1 · · · 0 0
0 0 1 0 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 · · · 0 −1
0 0 0 0 · · · 1 0

 (7.7)
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D−1BD =



d11 −h11 d12 −h12 · · · d1n −h1n
h11 d11 h12 d12 · · · h1n d1n
d21 −h21 d22 −h22 · · · d2n −h2n
h21 d21 h22 d22 · · · h2n d2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn1 −hn1 · · · · · · · · · dnn −hnn
hn1 dn1 · · · · · · · · · hnn dnn


(7.8)

where dkp, hkp, 1 ≤ k ≤ n, 1 ≤ p ≤ n are arbitrary real numbers and the constructed
complex matrix

B0 =


d11 + ih11 d12 + ih12 · · · d1n + ih1n
d21 + ih21 d22 + ih22 · · · d2n + ih2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn1 + ihn1 dn2 + ihn2 · · · dnn + ihnn

 (7.9)

is a normal matrix, i.e. B0B
T
0 = B T

0B0. Then the inequality (7.5) holds for any
u ∈ L(A,B), (x0, y0) ∈ G. Moreover, if the equality holds in some inner point of the
domain G then the function ρu (but not necessarily vector-function u) is constant.

In the above mentioned example, for the case n = 2, the conditions (7.7) are
fulfilled, but the constructed complexB0 is not normal and therefore (7.5) is violated.

7.2 Generalized Beltrami equation

The first order linear system of partial differential equations

∂

∂x
u(x, y) = A(x, y)

∂u

∂y
+B(x, y)u(x, y) + F (x, y), (7.10)

where u = u(u1, u2, . . . , un) is 2n-desired vector, A,B are given real 2n×2n-matrices,
depending on two variables x, y F is given real 2n-vector, is said to be elliptic in the
domain D, is

det(A− λI) ̸= 0, (7.11)

for all real λ and for all points (x, y) ∈ D; I is a unit matrix. In other words the
system is elliptic in some plane domain D if and only if the matrix A has no real
characteristic numbers in D.

As it is well-known, when n = 1 in case of sufficient smoothness of the coefficients
of (7.10), after corresponding changing of variables we can reduce the system to one
complex equation

∂zw + A1w +B1w + F = 0

(
∂z =

1

2

( ∂
∂x

+ i
∂

∂y

))
. (7.12)

The complete theory of functions, satisfying this equation, the theory of gener-
alized analytic functions was constructed by I. Vekua [124]. Later on B. Bojarski
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has shown, that the methods of the theory of generalized analytic functions admit
far-going generalizations on case of an elliptic system of first order in the complex
form, which has the following form

∂zw −Q(z)∂zw + Aw +Bw = 0,
(
∂z =

1

2
(∂x− i ∂y)

)
, (7.13)

where Q(z), A(z), B(z) are given square matrices of order u, Q(z) is a matrix of
special quasi-diagonal form [21], Q(z) ∈ W 1

p (C), p > 2, |qii| ≤ q0 < 1, Q(z) ≡ 0
outside some circle, A,B are bounded measurable matrices. (The notation A ∈ K,
where A is a matric and K is some class of functions, means that every element Aαβ
of A belongs to K).

The regular solutions of the equation (7.13) are called the generalized analytic
vectors. In case A = B = 0 such solutions are called the Q-holomorphic vectors.

In the works of B. Bojarski by the full analogy with the theory of generalized
analytic functions are given the formulae of general representations. On this basis
the boundary value problems of linear conjugation and Riemann-Hilbert boundary
value problem with Hölder-continuous coefficients are considered. These results of B.
Bojarski and some further development of the theory of generalized analytic vectors
are presented in the monograph [124].

The section 7.4 deals with discontinuous problems of the theory of analytic vec-
tors. By analogy with the case of analytic functions under these problems we mean
the problems, where desired vectors in considered domains have angular bound-
ary continuous are to be fulfilled only almost everywhere on Γ, in addition given
coefficients of the boundary conditions are to be piecewise continuous matrices.

7.3 The solvability of the problem (V )

Differential boundary value problem is such boundary value problem for which the
boundary condition contains the boundary values of derivatives of the desired func-
tions. In the theory of differential boundary value problems for holomorphic func-
tions an integral representation formula constructed by I. Vekua [130] plays an im-
portant role.

Let D be a finite domain bounded by a simple smooth curve Γ, 0 ∈ D, let
Φ(z) be holomorphic in D. Suppose the derivative of order m (m > 1) of Φ(z) has
boundary values on Γ satisfying Hölder-condition. Then Φ(z) can be represented by
the formula

Φ(z) =

∫
Γ

µ(t)
(
1− z

t

)m−1

ln
(
1− z

t

)
ds+

∫
Γ

µ(t)ds+ ic, (7.14)

where µ(t) is a real-valued function, µ(t) ∈ H(Γ) and c is a real constant; µ(t) and
c are uniquely determined by Φ(z).

This representation gave I. Vekua the possibility to study the differential bound-
ary value problem for holomorphic functions in Hölder-classes.
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We introduce the suitable classes of generalized analytic vectors and for the
elements of these classes the analog of I. Vekua representations, which allow us to
investigate discontinuous differential boundary value problems in these classes.

Denote by Ep(D,Q), p > 1, Q(z) ∈ W 1
p0
(C), p0 > 2, the class of Q-holomorphic

vectors in D satisfying the conditions∫
δkΓ

|wk(z)|p |dz| ≤ c, k = 1, 2, . . . , n, (7.15)

where c is a constant, δkΓ is the image of the circumference |ζ| = r, r < 1, under
quasi-conformal mapping

ζ = ωk(sk(z)) (7.16)

of unit circle |ζ| < 1 onto D, ωk is a schlicht analytic function in the domain sk(D),
sk(z) is a fundamental homeomorphism of the Beltrami equation

∂zS − qkk(z) ∂zS = 0, k = 1, 2, . . . , n, (7.17)

qkk are the main diagonal elements of the matrix Q.
By Em,p(d,Q) denote the class of Q-holomorphic vectors satisfying the inequal-

ities ∫
δkr

∣∣∣∣∂mwk(z)∂zm

∣∣∣∣p|dz| ≤ c, k = 1, 2, . . . , n, (7.18)

where c is a constant and δkr denotes the same.
By Em,p(D,Q, ρ) denote the class of the vectors w(z) belonging to the class

Em,λ(D,Q) for some λ > 1 such that the boundary values of the vector ∂mw/∂zm

belong to the class Lp(Γ, ρ).
If w(z) is a Q-holomorphic vector from Em,p(D,Q, ρ), Q(z) ∈Wm

p0
(C), p0 > 2.

Then the analogous formula of (7.14) holds.

w(z) =

∫
Γ

[
I − ζ−1(t)

]m−1
ln
[
I − ζ(z) ζ−1(t)

][
I +Q(t)t′ 2

]
µ(t) ds

+

∫
Γ

M(t)µ(t)ds+ iC, (7.19)

where C = Imw(0), M(t) = diag[M1(t), . . . ,Mn(t)] is a definite real continuous
diagonal matrix depending only on Q and Γ; the real vector µ(t) ∈ Lp(Γ, ρ) is
defined uniquely by the vector w(z). By ln[I − ζ(z) ζ ′(t)] we mean the branch on
the plane, cut along the curve lt (lt connects the point t on Γ with the point z = ∞
and lies outside of D) which is zero-matrix at the point z = 0.

Em,p(D,Q,A,B, ρ) is the subclass of the class Em,λ(D,Q,A,B) for some λ > 1
containing vectors whose angular boundary values ∂mw/∂zm belong to Lp(Γ, ρ).

The following formula holds [124]:

w(z) = Φ(z) +

∫
D

[
Γ1(z, t) Φ(t) + Γ2(z) Φ(t)

]
dt+

N∑
k=1

ckWk(z), (7.20)
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where Φ(z) is a Q-holomorphic vector, ck are real constants, {Wk(z)} (k = 1, . . . , N)
is a complete system of linearly independent solutions of the Fredholm equation

Kw ≡ w(z)− 1

π

∫
D

V (t, z)
[
A(t)w(t) + B(t)w(t)

]
dσt. (7.21)

Wk(z) turn out to be continuous vectors in the whole plane vanishing at infinity;
the kernels Γ1(z, t) and Γ2(z, t) satisfy the system of integral equations

Γ1(z, t) +
1

π
V (t, z)A(t)+

1

π

∫
D

V (τ, z)
[
A(τ) Γ1(τ, t)+B(τ)Γ2(τ, t)

]
dστ

= −1

2

N∑
k=1

{
vk(z), vk(t)

}
,

(7.22)

Γ2(z, t) +
1

π
V (t, z)A(t)+

1

π

∫
D

V (τ, z)
[
A(τ) Γ2(τ, t)+B(τ)Γ1(τ, t)

]
dστ

= −1

2

N∑
k=1

{
vk(z), vk(t)

}
,

where vk(z) ∈ Lp(D) (k = 1, . . . , N) form a system of linearly independent solutions
of the Fredholm integral equation

v(z) +
A′(z)

π

∫
D

V ′(z, t) v(t) dσt +
B′(z)

π

∫
D

V ′(z, t) v(t) dσt = 0. (7.23)

In (7.22) the curly bracket {v, w} mains a diagonal product of the vectors v and
w, the matrix V (t, z) is a generalized Cauchy kernel for the equation (4) in case
A(z) ≡ B(z) ≡ 0. Φ(z) in (7.20) has to satisfy the following conditions

Re

∫
D

Φ(z) vk(z) dσz = 0, k = 1, . . . , N. (7.24)

Note that generally speaking, the Liouville theorem in not true for solutions
of the equation (7.13). This explains the appearence of the constants ck in the
representation formula (7.20) and the conditions (7.24).

From (7.24) we have
w(z) = Φ(z) + h(z), (7.25)

where Φ(z) ∈ Em,p(D,Q, ρ) and h(z) ∈ Hm(D), Wk(z) ∈ Hm(D).
Next we consider differential boundary value problem of linear conjugation type

for generalized analytic vectors, i.e. the boundary condition contains the boundary
values of the desired vector and its derivatives on both sides of jump line.

Let Γ be a smooth simple curve. Denote by D+(D−) the finite (infinite) domain
which is bounded by Γ. Suppose 0 ∈ D+. Consider the pair of equations

∂w

∂z
−Q+(z)

∂

∂z
+ A+(z)w(z) + B+(z)w(z) = 0 in D+ (7.26)
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and
∂w

∂z
−Q−(z)

∂

∂z
+ A−(z)w(z) +B−(z)w(z) = 0 in D−, (7.27)

where Q+ ∈ W l
p(C), Q− ∈ Wm

p (C), A+, B+ ∈ H l−1(D+), A−, B− ∈ Hm−1(D),
A− = B− = 0 in certain neighborhood of z = ∞. By E±

l,m,p(Γ, Q±, A±, B±, ρ) we
denote the class of solutions of equations (7.26) and (7.27) respectively,belonging to
the class El,p(D

+, Q+, A+, B+, ρ) [Em,p(D
−, Q−, A−, B−, ρ)] in the domain D+ [D−].

The classes E±
l,m,p(Γ, Q±, 0, 0, ρ) will be denoted by E±

l,m,p(Γ, Q±, ρ).

Problem (V). Find a vector w(z) of the class E±
l,m,p(Γ, Q±, A±, B±) satisfying

the boundary condition

l∑
k=0

[
ak(t)

(
∂kw

∂tk

)+

+ bk(t)

(
∂kw

∂tk

) + ]

+
m∑
k=o

[
ck(t)

(
∂kw

∂tk

)−

+ dk(t)

(
∂kw

∂tk

) − ]
= f(t), (7.28)

almost everywhere on Γ, where ak(t), bk(t), ck(t), dk(t) are given piecewise continuous
square matrices of order k, and f(t) is a given vector of the class Lp(Γ, ρ).

Boundary condition can also contain integral term, which we omit for the sake
of simplicity.

First we consider this problem in caseA± = B± = 0, i.e. the class E±
l,m,p(Γ, Q±, ρ).

For vectors of this class the following representation formula

w(t) =


1

2πi

∫
Γ

S+(z, τ, l) dζ+(τ)µ(τ), z ∈ D+

− 1

2πi

∫
Γ

S−(z, τ,m) dζ−(τ)µ(τ), z ∈ D−
(7.29)

holds, the kernels S+(z, t, l) and S−(z, t,m) are represented by the matrices ζ+ [ζ−]
respectively. Thee are fundamental matrices for Q+(z) [Q−(z)], µ(t) is the solution
of the equation

Nµ = (Ḋ)l
(
ζ l+(t) Φ+(t)

)
− ζm− ḊmΦ−(t) in Lp(Γ, ρ), (7.30)

where

Ḋ f(z) = α(z) fz(z) + β(z) fz(z),

α(z) = −ζz(z)
[
ζz(z) ζz(z)− [ζz(z) ζz(z)

]−1
, (7.31)

β(z) = −ζz(z)
[
ζz(z) ζz(z)− [ζz(z) ζz(z)

]−1
.

Substituting the representation (7.29) into the boundary condition for the desired
vector µ(t) we obtain the following system of singular integral equations

Kµ = K1µ+K2µ = 2f(t), (7.32)
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where

Ksµ = As(t)µ(t) +
Bs(t)

πi

∫
Γ

µ(τ)dτ

τ − t
+

∫
Γ

ks(t, τ)µ(τ) dτ (7.33)

(s = 1, 2),

and

A1(t) = al(t)
( ∂
∂t
ζ+(t)

)l
ζ−l+ (t)− cm(t)

( ∂
∂t
ζ−(t)

)m
ζ−m− (t),

A2(t) = bl(t)
( ∂
∂t
ζ+(t)

)l
ζ−l+ (t)− dm(t)

( ∂
∂t
ζ−(t)

)m
ζ−m− (t),

B1(t) = al(t)
( ∂
∂t
ζ+(t)

)l
ζ−l+ (t) + cm(t)

( ∂
∂t
ζ−(t)

)m
ζ−m− (t),

B2(t) = bl(t)
( ∂
∂t
ζ+(t)

)l
ζ−l+ (t) + dm(t)

( ∂
∂t
ζ−(t)

)m
ζ−m− (t),

(7.34)

ks(τ, t) are certain matrices with weak singularities.
In the general case the problem (7.28) is to be considered in the classE±

l,m,p(Γ, Q±, A±,
B±, ρ), and we use the integral formula

w±(z) = Φ±(z) +

∫
Γ

[
Γ1
±(z, τ) Φ±(τ) + Γ2

±(z, τ) Φ(τ)
]
dστ

+
N±∑
k=1

ck±W
k
±(z), z ∈ D±, (7.35)

where the resolvents Γ1,Γ2 and the vector Wk(z) are as introduced above. ck±
(k = 1, . . . , N±) unknown real constants, Φ±(z) are unknown vectors of the class
E±
l,m,p(Γ, Q±, ρ), satisfying additional conditions

Im

∫
Γ

Φ±(t) dQ±tΨj
±(t) = 0, j = 1, . . . , N±, (7.36)

where {Ψj
±} form a complete system of linearly independent solutions of conjugate

equations, they are continuous in the whole plane and vanish at infinity.
The formula (7.25) allows us to reduce the problem (7.28) to the case of Q-

holomorphic vectors. Note that the vectors W k
±(z), k = 1, . . . , N± have continuous

derivatives up to the required order because of smoothness of the coefficients of the
equations (7.26) and (7.27).

Finally we obtain the following result

Theorem 7.2
inf
t∈Γ

∣∣ detΩ(t)∣∣ > 0 (7.37)

holds, then the problem (7.28) is Noetherian in the class
E±
l,m,p(Γ, Q±, A±, B±, ρ) if and only if

1 + νk
p

̸= µjk, (7.38)
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where µjk = 1/2π arg λjk, 0 ≤ arg λjk < 2π, k = 1, . . . , r, j = 1, . . . , n, λjk are the
roots of the equation

det
[
Ω−1(tk + 0)Ω(tk − 0)− λI

]
= 0 (7.39)

and Ω(t) is the block-matrix

Ω(t) =

(
cm(t)

dl(t)

bm(t)

al(t)

)
. (7.40)

Using I. Vekua representations we obtain necessary and sufficient solvability con-
ditions and index formulae for Problem (V) in case when the plane is cut along
several regular arcs for analytic functions so-called cut plane in various functional
classes. These problems are important in applications. We have considered the gen-
eral differential boundary value problems for analytic vectors as well as boundary
value problems with shift complex conjugation on a cut plane [89]-[94].

7.4 Boundary value problems for elliptic system on the plane
with angular points

In this subsection by the full analogy with the theory of generalized analytic func-
tions the formulas of general representation of regular solutions of the system (7.13)
are given, the so-called generalized analytic vectors. On this basis the bound-
ary value problems of Riemann-Hilbert and linear conjugation in case of Holder-
continuous coefficients are considered. These results and some further development
of the theory of generalized analytic vectors are presented in the monograph [90].

In the work of Bojarski [31] it was shown that the methods of generalized analytic
functions admits further generalization on the case of the first order elliptic systems
the complex form of which is the following

∂z ω −Q(z) ∂z ω + Aω +B ω = 0, (7.41)

∂z ≡ 1
2
(∂x − i∂y), Q(z), A(z), B(z) are given square matrices of order n, Q(z) is

a given square matrix of order n of the special quasi-diagonal form: every block
Qr = (qik)

r is a lower (upper) triangular matrix satisfying the conditions

qr11 = · · · = qrms,ms
= qr, |qr| ≤ q0 < 1,

qrik = qri+s,k+s (i+ s ≤ n, k + s ≤ n),

moreover Q(z) ∈ W 1
p (C), p > 2 and Q(z) ≡ 0 outside some circle of the complex

plane C.
A vector w(z) = (w1, . . . , wn) is called a generalized analytic vector in some

domain D of the complex plane C, if it is a solution of an elliptic system (7.41).
Under the solution of the system (7.41) we mean the so-called regular solution,

i.e. w(z) ∈ L2(D), wz, wz ∈ Lλ(D
′), λ > 2, D ′ ⊂ D. The system (7.41) is to be

fulfilled almost everywhere on D.
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The following equation

∂z Ψ− ∂z(Q
′Ψ)− A′(z)Ψ−B′(z)Ψ = 0 (7.42)

is called the conjugate equation of the equation (7.41) (the prime’ denotes the trans-
position of the matrices).

When A = B = 0, system (7.41) takes form

∂z w −Q(z)ω(z) = 0. (7.43)

The solutions of the equation (7.43) are called Q-holomorphic vectors.
We introduce the suitable classes of generalized analytic vectors. Let Γ be a

piecewise smooth curve. Denote by E±
p (Γ, Q,A,B, ρ) the class of solutions of the

system (7.42) representable by generalized Cauchy type integrals

w(z) =
1

2πi

∫
Γ

{
Ω1(z, t) dQ t φ(t)− Ω2(r, t) dQ t φ(t)

}
+

+
N∑
k=1

ckWk(z), (7.44)

where ck are arbitrary real constants, Wk(z) are continuous vectors on the whole
plane vanishing at infinity, {Wk} (k = 1, N) forms a complete system of linearly
independent solutions of the Fredholm equation

Kw ≡ w(z)− 1

π

∫
D

v(t, z)
[
A(t)w(t) + B(t)W (t)

]
dσt = 0, (7.45)

the matrix v(t, z) is generalized Cauchy kernel for the equation (7.43), the weight

function ρ(t) =
m∏
k=1

|t − tk|νk , −1 < νk < p − 1, p > 1, φ(t) ∈ Lp(Γ, ρ) and satisfies

the condition

Im

∫
Γ

(
dQ t φ(t),Ψj

)
= 0 (j = 1, N ),

(
dQ t = I dt+Qdt

)
, (7.46)

here Ψj form a similar system for the conjugate equation (7.42), Ω1 and Ω2 are the
fundamental kernels of (7.41) representable by the resolvent Γ1 and Γ2

Ω1(z, t) = v(t, z) +

∫
D

Γ1(z, τ) v(t, τ) dστ ,

Ω2(z, t) =

∫
D

Γ2(z, t) v(t, τ) dστ .

(7.47)

Denote by E±
q (Γ, Q

′,−A′,−B′, ρ1−q), q = p/p− 1 the class of solutions of the equa-
tion (7.42) representable in the form

Ψ(z) =
1

2πi

∫
Γ

{
Ω′

1(t, z) dQ′ t h(t)− Ω′
r(t, z) dQ′ t h(t)

}
+
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+
N∑
k=1

ckΨk(z), (7.48)

where the density h(t) ∈ Lq(Γ, ρ
1−q) satisfies the conditions

Im

∫
Γ

(
dQ′ t h(t),Wj(t)

)
= 0 (j = 1, N). (7.49)

Our model problem is the following:
Find a vector w(z) = (w1, . . . , wn) ∈ E±

p (Γ, Q,A,B, ρ) satisfying the boundary
condition

w+(t) = a(t)w−(t) + b(t)w−(t) + c(t), (7.50)

almost everywhere on Γ. Γ is piecewise smooth closed curve, the knot points of Γ
(where Γ loosed the smoothness) are included in the set of {tk} points; a(t) and b(t)
are given piecewise continuous n × n-matrices on Γ, inf | det a(t)| > 0 and c(t) is a
given vector of the class Lp(Γ, ρ).

The boundary value problem (7.50) for holomorphic vectors was studied by
A. Markushevich and is called the generalized Hilbert problem [95]. The bound-
ary condition (7.50) contains the conjugate value of the desired vector. Therefore,
the Noetherity condition and the index formula of this problem depend on the values
of the angles in the knot points of the boundary curve Γ.

Substituting the integral representation formula (7.44) into the boundary con-
dition (7.50) for the unknown vector φ(t), we obtain the following singular integral
equation

(M φ)(t) = f(t), (7.51)

f(t) = 2c(t) + 2
N∑
k=1

ck [a(t)− I]Wk(t) + b(t)Wk(t)

and the solution is subjected to the conditions (5).
It is easy to see that the problem (7.50) is Noetherian in the classE±

p (Γ, Q,A,B, ρ)
if and only if the singular integral operator (M φ)(t) is Noetherian in Lp(Γ, ρ).

The necessary and sufficient Noetherity condition for the integral operator M φ
is [99]

inf
t∈Γ, ξ∈R1

∣∣ detM(tk, ξ)
∣∣ > 0 (k = 1,m), (7.52)

where the matrix M(tk, ξ) is defined in the following way: in the points different
from the knot points

M(tk, ξ) = (1 + sgn ξ) I + (1− sgn ξ) a(t), (7.53)

and in the knot points

M(tk, ξ)=

(
(1−s0)I+(1+s0)a(t−0) s1(I−a(t−0))

s2(I−a(t+0)) (1+s0)I+(1+s0)a(t+0)

)
(7.54)
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s0 = cos thω, s1 = e(α−1)ω/ sinhω, s2 = e(1−α)ω/ sinhω, α = η/π, where η is the
angle between the tangents at the knot points, 0 < η < 2π, ωj = π(iβj + ξ),

βj =
1+νj
p

.

If the Noetherity condition (7.52) is fulfilled, then the necessary and sufficient
solvability conditions are the following

Im

∫
Γ

(
f(t), dQ f Ψk(t)

)
= 0, (7.55)

where Ψk(z) form a complete system of linearly independent solutions of the homo-
geneous problem

Ψ+(t) = a′(t)Ψ−(t) + b(t)[t′] +Q′(t) [ t ′] Ψ−(t) (7.56)

for the equation (7.42) in the class E±
q (Γ, Q

′,−A′,−B′, ρ1−q).
Starting from the properties of Mellin transform and the hyperbolic trigonometric

functions we define the index of singular integral operator and therefore the index
of our problem (7.50) in E±

q (Γ, Q,A,B, ρ).
Consider the first order system of partial differential equations in the complex

plane C
wz = Q(z)wz , (7.57)

where Q is abovementioned matrix.
Following G. Hile [60] if Q is self-commuting in C, which means

Q(z1)Q(z2) = Q(z2)Q(z1),

for any z1, z2 ∈ C and Q(z) has eigenvalues with the modulus less than one, then
the system (7.57) is called generalized Beltrami system. Solutions of this equation
are called Q-holomorphic vectors. Under the solution in some domain D we under-
stand so-called regular solution [124], [31]. Equation (7.57) is to be satisfied almost
everywhere in D.

The matrix valued function Φ(z) is a generating solution of the system (7.57) if
it satisfies the following properties [31]:

(i) Φ(z) is a C1 solution of (7.57) in C;
(ii) Φ(z) is self-commuting and commutes with Q in C;
(iii) Φ(t)− Φ(z) is invertible for all z, t in C, z ̸= t;
(iv) Φ(z) is invertible for all z in C.

We call the matrix

V (t, z) = ∂tΦ(t)
[
Φ(t)− Φ(z)

]−1

the generalized Cauchy kernel for the system (7.57).
Let now Γ be a union of simple closed non-intersecting Liapunov-smooth curves,

bounding finite or infinite domain. If Γ is one closed curve then D+ denotes the
finite domain; if Γ consists of several curves then by D+ we denote the connected
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domain with the boundary Γ, on these curves the positive direction is chosen such,
that when moving to this direction D+ remains left; the complement of open set
D+ ∪ Γ in the whole plane will be denoted by D−.

Consider the following integral

Φ(z) =
1

2πi

∫
Γ

V (t, z) dQ t φ(t), (7.58)

where φ(t) ∈ L(Γ), dQ(t) = Idt+Qdt, I is an identity matrix. It is evident, that (3)
is a Q-holomorphic vector everywhere outside of Γ, Φ(∞) = 0. We call the integral
(7.58) the generalized Cauchy-Lebesgue type integral for the system (7.57) with the
jump line Γ.

The boundary values of Φ(z) on Γ are given by the formulas:

Φ± = ±1

2
φ(t) +

1

2πi

∫
Γ

V (τ, t) dQ τ µ(τ). (7.59)

The formulas (7.59) are to be fulfilled almost everywhere on Γ, provided that
Φ± are angular boundary values of the vector Φ(z) and the integral in (7.59) is to
be understood in the sense of Cauchy principal value.

Theorem 7.3 Let Φ(z) be a Q-holomorphic vector on the plane cut along Γ, Φ(∞) =
0. Let Φ(z) have the finite angular boundary values Φ±. The vector Φ(z) is rep-
resented by the Cauchy-Lebesgue type integral (7.58) if and only if the following
equality

1

πi

∫
Γ

V (t, t0) d
[
Φ+(t)− Φ−(t)

]
= Φ+(t0) + Φ−(t0) (7.60)

is fulfilled almost everywhere on Γ.

Introduce some classes of Q-holomorphic vectors. Let

ρ(t) =
r∏

k=1

|t− tk|ρk , −1

p
< ρk <

1

p∗
p∗ =

p

p− 1
, (7.61)

k = 1, . . . , r.

tk are some fixed points on Γ.
We say that the Q-holomorphic vector Φ(z) belongs to the class

Ep(D
+, ρ, Q)|Ep(D−, ρ, Q)|, p > 1,

if Φ(z) is represented by generalized Cauchy-Lebesgue type integral in the domain
D+ (D−) with the density from the class Lp(Γ, ρ) = ⟨φ|ρφ ∈ Lp(Γ)⟩. It follows from
(7.61) that Ep(D

±, ρ, Q ⊆ E1+ε(D
±, Q)) for sufficiently small positive ε.

The following theorems are valid [90], [91], [100],[101], [7],[8], [5]:

Theorem 7.4 If Q ∈ Ep(D
±, ρ, Q) then it can be represented by generalized Cauchy-

Lebesgue integral with respect to its angular boundary values.
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Theorem 7.5 Let Q-holomorphic vector Φ(z) be represented by generalized Cauchy-
Lebesgue type integral in the domain D+ (D−) with the summable density. If the
angular boundary values Φ+ (Φ−) belong to the class Lnp (Γ, ρ, Q) for some weight
function (7.61) then Φ(z) ∈ Ep(D

+, ρ, Q) (Φ(z) ∈ Ep(D
−, ρ, Q)).

Theorem 7.6 Let D be a domain of the complex plane bounded by the union of
simple closed non-intersecting Liapunov curves Γ = Γ0 ∪ Γ1 ∪ · · · ∪ Γm, Γ1, . . . ,Γm
are situated outside of each other but inside of Γ0. If Q ∈ Ep(D, ρ,Q) then it admits
the following representation

Φ(z) =
1

πi

∫
Γ

V (t, z) dQ t µ(t) + i C, (7.62)

where µ(t) ∈ Lp(Γ, ρ) is a real vector, is a real constant vector. The vector µ(t)
is defined on Γj, j > 1, uniquely within the constant vector, µ(t) on Γ0 and the
constant vector C are defined by Φ(z) uniquely.

Theorem 7.7 Let D be the domain defined as in the above theorem. If Φ(z) ∈
E1+ε(D,Q) and ReΦ+(t)(ImΦ+(t)) belongs to the class Lp(Γ, ρ), p > 1, ρ has the
form (6), then ImΦ+(t)(ReΦ+(t)) also belongs to the class Lp(Γ, ρ).

On the basis of introduced and investigated weight Cauchy-Lebesgue classes
for the generalized analytic vectors can be considered the discontinuous boundary
value problems of generalized analytic vectors since they are natural classes for such
problems. Similarly, as in case of analytic functions [124], we mean the problems
when the desired vectors in the considered case have the angular boundary values
almost everywhere on boundary Γ and the boundary conditions are fulfilled almost
everywhere on Γ. In this connection given coefficients of the boundary conditions
are piecewise-continuous non-singular matrices.

For example in our view the Riemann-Hilbert type discontinuous boundary value
problems can be solved by means of these classes. Reducing these problems to the
corresponding singular integral systems one can establish the solvability criterions
and index formulas of corresponding functional classes. While investigating such
problems some difficulties appear, connected with the fact that the Liouwille theorem
is not valid in general as well as the unique-ness theorem. In most cases these
difficulties may be successfully avoided.

Recently in paper [61] detailed analysis of Q-holomorphic functions is given in
the case when the matrix Q is self-commuting. The authors investigate generalized
Q-holomorphic functions under the additional assumptions that A and B commute
with Q, that is, Q(z1)A(z2) = A(z2)Q(z1) and Q(z1)B(z2) = B(z2)Q(z1), respec-
tively.

The main tool of the investigations is generalized Pompeiu operator, that is,
a domain integral operator JΩ in the domain Ω which generalizes the well known
(weakly singular) TΩ-operator from I. N. Vekua’s theory. One has D(JΩν) = ν,
where D is the operator ∂z−Q∂z. Also a Cauchy-Pompeiu integral formula and the
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compactness of J̃w = J(Aw+Bw) in the space of continuous and bounded functions
in C are proved.

Special assumptions about the commutability of Q lead to (complicated) re-
lations between the entries of the matrix Q. Using them, the authors prove the
following Liouville type theorem generalized Q-holomorphic functions:

Theorem 7.8 [61] Suppose w is a generalized Q-holomorphic continuous function
in the whole plane which commutes with Q, then w can be represented in the form
w(z) = Cexpω(z), where C is a constant lower diagonal matrix and ω is matrix-
function satisfies the condition: ω(z) = O(|z|−α) as |z| → ∞.

The given proof makes use of rewriting wz − Qwz = Aw + Bw of the differential
equation for generalized Q-holomorphic functions.

Theorem 7.9 [61] If h commutes with Q, then the uniquely determined solution w
of

w + J̃w = h

also commutes with Q.

This theorem permits us to give an analog to the generating pair of Bers. Fol-
lowing the paper [61] we give the definition. The m×m square matrix functions F
and G are called a generating pair in some bounded domain U if they satisfies the
condition:

a) F,G bounded and continuous in U ;
b) Fx, Fy, Gx, Gy ∈ Lp(U);
c)there exists a positive number ε such that Im⊓j=1mfjjgjj ≥ ε, where fjj and

gjj main diagonal elements of F and G, respectively;
d) F and G are commuting with Q.
The generating pair for matrix function introducing this way has all properties

similar to Bers generating pair in scalar case.
The proof is obtained by rewriting the differential equation for generalized Q-

holomorphic function ω(z).
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8 Monodromy of generalized analytic functions

The global theory of generalized analytic functions [124] both in one-dimensional
and multi-dimensional case [31], involves studying the space of horizontal sections
of a holomorphic line bundle with connection on a complex manifold with singular
divisor. In this context one should require that a connection is complex analytic.
An interesting class of such connections is given by Lp-connections, and their moduli
spaces have many applications. Such connections and their moduli spaces are the
object of intensive study [122], [48], [41], [58].

8.1 System of elliptic equations on the Riemann surfaces

We study holomorphic vector bundles with Lp-connections from the viewpoint of the
theory of generalized analytic vector [31]. To this end we consider a matrix elliptic
system of the form

∂−
z
Φ(z) = A(z)Φ(z). (8.1)

The system (8.1) is a particular case of the Carleman-Bers-Vekua system

∂−
z
f(z) = A(z)f(z) + B(z)f(z), (8.2)

where A(z), B(z) are bounded matrix functions on a domain U ⊂ C and f(z) =
(f 1(z), ..., fn(z)) is an unknown vector function. The solutions of the system (8.2) is
called generalized analytic vectors, by analogy with the one-dimensional case [124],
[31].

Along with similarities between the one-dimensional and multi-dimensional cases,
there also exist essential differences. One of them, as noticed by B.Bojarski [31], is
that there may exist solutions of system (8.1) for which there is no analogue of the
Liouville theorem on the constancy of bounded entire functions.

We present first some necessary fundamental results of the theory of generalized
analytic functions and vectors [124],[31],[90] in the form convenient for our purposes.
A modern consistent exposition of this theory was gives by A.Soldatov [115], [116].

Let f ∈ Lp(U), where U is a domain in C. As above (see section 2.1) we write
f ∈ Wp(U), if there exist functions θ1 and θ2 of class L

p(U) such that the equalities∫∫
U

f
∂φ

∂z̄
dU = −

∫∫
U

θ1φdU,

∫∫
U

f
∂φ

∂z
dU = −

∫∫
U

θ2φdU

hold for any function φ ∈ C1(U).
Let us define two differential operators on Wp(U)

∂z̄ : Wp(U) → Lp(U), ∂z : Wp(U) → Lp(U),

by setting ∂z̄f = θ1, ∂zf = θ2. The functions θ1 and θ2 are called the generalized
partial derivatives of f with respect to z̄ and z respectively. Sometimes we will use
the shorthand notation fz̄ = θ1 and fz = θ2. It is clear that ∂z and ∂z̄ are linear
operators satisfying the Leibnitz equality.
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Define the following singular integral operator on the Banach space Lp(U):

T : Lp(U) → Wp(U),

T (ω) = − 1

π

∫∫
U

ω(t)

t− z
dU, ω ∈ Lp(U). (8.3)

The integral (8.3) makes sense for all ω ∈ Lp(U), almost all z ∈ U , and all z /∈ Ū
and (8.3) determines a function φ(z) = T (ω) on the whole C. For ω ∈ Lp(U) with
p > 2, the function φ is continuous.

Any element of Wp(U) can be represented by the integral (8.3). In particular, if
fz̄ = ω, then f(z) can be represented in the form

f(z) = h(z)− 1

π

∫∫
U

ω(t)

t− z
dU,

where h(z) is holomorphic in U . The converse is also true, i.e., if h(z) is holomorphic

in U and ω ∈ Lp(U), then h(z)− 1
π

∫∫
U
ω(t)
t−z dU determines an element f(z) of Wp(U)

satisfying the equality fz̄ = ω.
As we have seen, the generalized derivative with respect to z̄ of the integral (8.3)

is ω. Similarly, there exists a generalized derivative of this integral with respect to
z. It equals

− 1

π

∫∫
U

ω(t)

(t− z)2
dU. (8.4)

The integral (8.4) is understood in the sense of Cauchy principal value and by
definition equals

S(ω) = lim
ε→0

fε(z) ≡ − 1

π

∫∫
Uε

ω(t)

(t− z)2
dU, (8.5)

where Uε = C \Dε(z), with Dε(z) being the disk of radius ε centered at z. In the
equality (8.4), the limit converges to function f(z) in Lp-metric, p > 1.

It is known [124] that in one dimensional case a solution of (8.1) can be repre-
sented as

Φ(z) = F (z) exp(ω(z)), (8.6)

where F is a holomorphic function in U , and ω = − 1
π

∫ ∫
U
A(z)
ξ−z dU . In multi-

dimensional case an analogue of factorization (8.6) is given by the following theorem

Theorem 8.1 [31] Each solution of the matrix equation (8.1) in U can be repre-
sented as

Φ(z) = F (z)V (z), (8.7)

where F (z) is an invertible holomorphic matrix function in U , and V (z) is a single-
valued matrix function invertible outside U .
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The representation of the solution of the system (8.1) of the form (8.7) we use
for the construction holomorphic vector bundle on the Riemann sphere and for
computation of monodrmy matrices of the elliptic system of the form (8.1).

We recall some properties of solutions of (8.1). The product of two solutions
is again a solution. From Theorem 8.1 it follows (see also [45]) that the solutions
constitute an algebra and the invertible solutions are a subfield of this algebra.

Proposition 8.2 Let C(z) be a holomorphic matrix function, then [C(z), ∂z] = 0.
Indeed,

[C(z), ∂z]Φ(z) = C(z)∂zΦ(z)− ∂zC(z)Φ(z) = C(z)∂zΦ(z)− C(z)∂zΦ(z) = 0.

Here we have used that ∂zC(z) = 0.

Definition 8.3 Two systems ∂zΦ(z) = A(z)Φ(z) and ∂zΦ(z) = B(z)Φ(z) called
gauge equivalent if there exists a non-degenerate holomorphic matrix function C(z),
such that B(z) = C(z)A(z)C(z)−1.

Proposition 8.4 Let the matrix function Ψ(z) be a solution of the system ∂zΦ(z) =
A(z)Φ(z) and let Φ1(z) = C(z)Φ(z), where C(z) is a nonsingular holomorphic ma-
trix function. Then Φ(z) and Φ1(z) are solutions of the gauge equivalent systems.

The converse is also true: if Φ(z) and Φ1(z) satisfy systems of equations

∂zΦ(z) = A(z)Φ(z),

∂zΦ1(z) = B(z)Φ1(z)

and A(z) = C−1(z)B(z)C(z), then Φ1 = D(z)Φ(z) for any holomorphic matrix
function D(z).

Proof. By Proposition 8.2 we have C(z)∂zΦ1(z) = A(z)C(z)Φ1(z), and therefore
Φ1(z) satisfies the equation ∂zΦ1(z) = C−1(z)A(z)C(z)Φ1(z). To prove the converse
let us substitute in ∂zΦ(z) = A(z)Φ(z), instead of A(z) the expression of the form
C−1B(z)C(z) and consider

∂zΦ1(z) = C−1B(z)C(z)Φ(z) =⇒

C(z)∂zΦ(z) = B(z)C(z)Φ(z)

but for the left hand side of the last equation we have C(z)∂zΦ(z) = ∂zC(z)Φ(z),
therefore

∂z(C(z)Φ(z)) = B(z)(C(z)Φ(z)).

From this it follows that Φ and CΦ are the solutions of equivalent systems, which
means that Φ1 = DΦ.

The above arguments for solutions of (8.1) are of a local nature, so they are ap-
plicable for an arbitrary compact Riemann surface X, which enables us to construct
a holomorphic vector bundle on X (see [56], [58]). Moreover, using the solutions
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of system (8.1) one can construct the matrix 1-form Ω = DzFF
−1 on X which is

analogous to holomorphic 1-forms on Riemann surfaces.
Let X be a Riemann surface. Denote by Lα,βp (X) the space of Lp-forms of the

type (α, β), α, β = 0, 1, with the norm ∥ω∥Lα,β
p (X) =

∑
j ∥ω∥Lα,β

p (Uj)
, where {Uj} is

an open covering of X and denote by Wp(U) ⊂ Lp(U) the subspace of functions
which have generalized derivatives.

We define the operators

Dz =
∂

∂z
: Wp(U) → L1,0

p (U), f 7→ ω1dz = ∂zfdz,

Dz =
∂

∂ z
: Wp(U) → L0,1

p (U), f 7→ ω2d z= ∂zfdz.

It is clear that D2
z
= 0 and hence the operator Dz can be used to construct the

de Rham cohomology.
Let us denote by CL1

p(X) the complexification of L1
p(X), i.e. CL1

p(X) = L1
p(X)⊗

C. Then we have the natural decomposition

CL1
p(X) = L1,0

p (X)⊕ L0,1
p (X) (8.8)

according to the eigenspaces of the Hodge operator ∗ : L1
p(X) → L1

p(X), ∗ = −ı on
L1,0
p (X) and ∗ = ı on L0,1

p (X).
The decomposition (8.8) splits the operator d : L0

p(X) → L0
p(X) in the sum

d = Dz +D−
z
.

Next, let, as above, E → X be C∞-vector bundle on X, let Lp(X, E) be the sheaf
of the Lp-sections of E and let Ω ∈ L1

p(X, E) ⊗ GLn(C) be a matrix valued 1-form
on X. If the above arguments are applied to the complex L∗

p(X, E) with covariant
derivative ▽Ω, we obtain again the decompositions of the space CL1

p(X, E) and the
operator ▽Ω

CL1
p(X, E) = L1,0

p (X, E)⊕ L0,1
p (X, E),

▽Ω = ▽′
Ω +▽′′

Ω.

Locally, on the domain U, we have ▽U
Ω = dU+Ω, where Ω ∈ L1

p(X,U)⊗GLn(C) is a
1-form. Therefore ▽U

Ω = (Dz +Ω1) + (D−
z
+Ω2), where Ω1 and Ω2 are, respectively,

holomorphic and anti-holomorphic part of the matrix value 1-form on U. We say
that a Wp-section f of the bundle E with Lp-connection is holomorphic if it satisfies
the system of equations

∂−
z
f(z) = A(z)f(z), (8.9)

where A(z) is a n× n matrix-function with entries in L0
p(X)⊗GLn(C) and f(z) is

a vector function f(z) = (f1(z), f2(z), ..., fn(z)), or in equivalent form (8.9) may be
written as:

Dzf = Ωf,

where Ω ∈ L1
p(X)⊗GLn(C).
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8.2 Associated bundles with regular connections

We now use the above arguments for constructing a holomorphic vector bundle over
Riemann sphere CP1 by system (8.1). Let {Uj}, j=1,2, be an open covering of
the CP1. Then in any domain Uj, a solution Φ(z) can be represented as Φ(z) =
Vj(z)F (z), where Vj(z) is a holomorphic non-degenerate matrix function on U c

j −Sj
where Sj being a finite set of points. Restrict Φ(z) on the (UC

1 ∩UC
2 )−S = (U1∪U2)

C−
S, S = S1∪S2 and consider the holomorphic matrix-function φ12 = V1(z)V2(z)

−1 on
(U1 ∪U2)

C −S. It is a cocycle and therefore defines a holomorphic vector bundle E ′

on CP1 − S. From the proposition 8.1 it follows, that E ′ → CP1 − S is independent
of the choice of solutions in the same gauge equivalence class. The extension of
this bundle to a holomorphic vector bundle E → CP1 can be done by a well-known
construction (see [56], [58]) and the obtained bundle is holomorphically nontrivial.

It is now possible to verify that the operator ∂
∂z

+ Ω(z, z) is a Lp-connection of
this bundle. It turns out that its index coincides with the index of Cauchy-Riemann
operator on X. This follows since the index of Cauchy-Riemann operator is equal
to the Euler characteristic of the sheaf of holomorphic sections of the holomorphic
vector bundle E .

For the given loop G : Γ → GLn(C), find the piecewise continuous generalized
analytic vector f(z) with the jump on contour Γ such that on Γ it satisfies the
conditions

a) f+(t) = G(t)f−(t), t ∈ Γ, b) |f(t)| ≤ c|z|−1, |z| → ∞.

It is known, that for G there exists a Birkhoff factorization (see [59], i.e.

G(t) = G+(t)dK(t)G−(t),

setting this equality in a) we obtain the following boundary problem

G−1
+ (t)f+(t) = dK(t)G−(t)f

−(t).

Since G−1
+ (t)f+(t), f+(t) and G−(t)f

−(t), f−(t) are solutions of the gauge equivalent
systems, the holomorphic type of the corresponding vector bundles on Riemann
sphere is defined by K = (k1, ..., kn).

Proposition 8.5 The cohomology groups H i(CP1,O(E)) and H i(CP1,G(E)) are
isomorphic for i = 0, 1, where O(E)) and G(E), respectively, are the sheaves of
holomorphic and generalized analytic sections of E.

From this proposition follows that the number of linear independent solutions of
the Riemann-Hilbert boundary problem is equal to

∑
kj<0 kj. Its holomorphic type

is determined by an integer vector. In terms of cohomology groups H i(CP1,O(E))
and H i(CP1,G(E)) one can describe the number of solutions and stability of the
Riemann-Hilbert boundary value problem [25], [23] the topological constructions
related with the sheaf O(E) can be extended to the sheaf G(E) [56].
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Theorem 8.6 There exists one-to-one correspondence between the space of gauge
equivalent Carleman-Bers-Vekua systems and the space of holomorphic structures
on the bundle E → X.

For the investigation of the monodromy problem for Phaff system an important
role is played by a representation of solution of the system in exponential form,
which in one-dimensional case was studied by W.Magnus in [82]. We use iterated
path integrals and the theory of formal connections (as a paralel transport operator)
developed by K.-T.Chen [39].

Let ω1, ..., ωr ∈ L1
p(X) and γ : [0, 1] → X be a piecewise continuous path. Let aj

be functions defined on [0, 1] and satisfying the identity γ∗ωj = aj(t)dt, j = 1, ..., r.

Definition 8.7 The r-iterated integral from 1-form ω1, ..., ωr is defined as the func-
tion on the space of piecewise continuous paths whose value on a path γ is the number
γ →

∫
γ
ω1...ωr, where

∫
γ
ω1...ωr is∫

γ

ω1...ωr =

∫
△r

a1(t1)a2(t2)...ar(tr)dt1dt2...dtr.

Here on the right hand side is an ordinary Lebesque integral on the simplex

△r = {(t1, ..., tr) : 0 ≤ t1 ≤ t2 ≤ ... ≤ tr ≤ 1}.

By passing to a multiple integral the value of r-iterated integral can be expressed
by the formula:∫

γ

ω1...ωr =

∫ 1

0

ar(tr)...

∫ t3

0

a2(t2)(

∫ t2

0

a1(t1)dt1)dt2...dtr.

If r = 1, then we obtain ordinary path integral.
Let Pz0X be the space of piecewise continuous loops. It is known that it is

a differentiable space [39] and the operator of exterior differentiation d is defined
Pz0X. Let d

∫
γ
ω1...ωr = 0, then

∫
γ
ω1...ωr = 0 depends only on homotopy class of γ

and therefore we obtain a function on π1(X, z0).
Let Ω1, ...,Ωr bem×m matrix forms with entries of L1

p(X). The iterated integral
from Ω1, ...,Ωr is defined as follows: consider the form product of matrix form
Ω = Ω1, ...,Ωr and iterated integral of Ω is defined elementwise.

Proposition 8.8 [50] The parallel transport corresponding to the elliptic system
(8.1), has an exponential representation.

Since the elliptic system (8.1) defines a connection the proof of proposition follows
from the general theory of formal connections.

From the identity ∂zΦΦ
−1 = Ω it follows that singular points of Ω are zeros of

the matrix function Φ, in particular ∞. This means that it makes sense to speak of
singular and apparent singular points of the system (8.1).
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In case n = 1 from (8.6) it follows, that given analytic function F (z), one
can define by (8.6) generalized analytic function Φ(z) uniquely. Besides that, if
z1, ..., zm are poles (or branching points) for F (z), then they are poles (correspond-
ingly, branching points) for Φ(z) too. For n > 1 this does not hold. Thus we
want to emphasize once more the difference between the one-dimensional and multi-
dimensional theory of generalized analytic functions. In general the correspondence
between holomorphic vectors and generalized analytic vectors is not one-to-one.

Despite that, properties of the generalized analytic functions allow one to con-
struct a generalized analytic function with given monodromy.

From the integrability of (8.1) it follows that for the iterated integral
∫
ΩΩ...Ω

we have d
∫
ΩΩ...Ω = 0 and therefore we have a representation of the fundamental

group π1(X − S, z0).
We can say that zi ∈ {z1, ..., zm} is a regular singular point of (8.1), if any

element of F (z) has at most polynomial growth as z → zi. If the solution Φ(z) at
any singular point zi, i = 1, ...,m has a regular singularity, then we call the system
(8.1) a regular system.

In case n = 1 the singular integral (8.6) is well studied. In particular, it is known

that ω(z) is holomorphic in Cm\
−
Uz0 and equal to zero at infinity. Here Cm = CP1\

{z1, ..., zm}.
Let z̃ ∈ Uz0 be any point and let γ1, γ2, ..., γm be loops at z̃ such that γi goes

around zi without going around any zj ̸= zi. Consider the holomorphic continuation
of the function F (z) around γi. Then we obtain the analytical element F̃ (z) of the
holomorphic function F (z), which are related by the equality F̃i(z) = miF (z), where
mi ∈ C∗. It is independent of the choice of the homotopy type of loop γi. Therefore,
we obtain a representation of the fundamental group π1(CP1\{z1, ..., zm}, z̃) → C∗,
which is defined by the correspondence γi → mi.

Let us summarize the above arguments.

Proposition 8.9 Let the system (8.1) have regular singularities at points z1, ..., zm.
Then it defines a monodromy representation of the fundamental group

ρ : π1(C\{z1, ..., zm}, z̃) → GLn(C).

In this situation the monodromy matrices are given by Chen iterated integrals

ρ(γj) = 1 +

∫
γj

Ω +

∫
γj

ΩΩ +

∫
γj

ΩΩΩ + ...+ .... (8.10)

The convergence properties of series (8.10) can be described as follows. Let a 1-form
Ω be smooth except the points s1, ..., sm ∈ X. Let, as above, S = {s1, s2, ..., sm}
and Xm = X − S. Thus, for every γ ∈ PXm, there exists a constant C > 0 such
that

|
∫
γj

︷ ︸︸ ︷
Ω...Ω

r

| = 0(
Cr

r!
)

and the series (8.10) converges absolutely [52].
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In addition to system (8.1) consider the system of ordinary differential equations
with regular singularities at points z1, z2, ..., zm :

df

dz
= A(z)f(z) (8.11)

Let
ρ : π1(CP1\{z1, ..., zm}, z̃) → GLn(C) (8.12)

be the monodromy representation induced from (8.11). Denote by F (z) the funda-
mental matrix of solutions of (8.11). Then F (z) satisfies the system of equations

dF = Ω̂F (z),

where Ω̂ = A(z)dz denotes now the corresponding matrix valued (1, 0)-form on the
surface CP1\{z1, ..., zm}.

Let Ω(z) = ∗Ω̂, where ∗ is the Hodge star operator. Then Ω(z) is a (0,1)-form
and it makes sense to consider the system of type (8.1)

∂−
z
Φ = ΦΩ(z), (8.13)

which has regular singularities at the points z1, z2, ..., zm.
For the regular system (8.11), the Poincaré theorem is valid, which gives that

the fundamental matrix of solutions (8.11) has the form

F (z) = (z − zi)
EiZ(z), (8.14)

where Ei =
1

2πi
lnMi andMi is the monodromy matrix corresponding to the singular

point zi. It follows that any solution of the system (8.13) in the neighborhood Uzi
has the form

Φ(z) = (z − zi)
EiZ(z)V (z, z). (8.15)

All what was said above remains true for arbitrary compact Riemann surface of
genus g. It is clear, that in this case the singular integral (8.3) should contain the
Cauchy kernel for the given Riemann surface.

As was noted, a system (8.13) without singularities induces flat vector bundle
E → X on the Riemann surface X. Analogously, the system (8.13) with regular
singularity gives flat vector bundle on the surface Xm = X\{z1, z2, ..., zm} which we
denote by E ′ → Xm. The representation of solutions in the form (8.14), (8.15) gives
possibility to extend E ′ to the whole of X and if we choose the canonical extension
then we obtain the uniquely defined (possibly topologically nontrivial) vector bundle
E → X which is induced from (8.13). The Chern number of the bundle E → X can
be calculated from monodromy matrices in the following way: c1(E) =

∑m
i=1 tr(Ei),

here matrices Ej are chosen in such a way that eigenvalues λi, i = 1, ..., n satisfy
inequalities 0 ≤ ℜλji < 1, j = 1, ..., n.

The matrix-function Φ is a holomorphic section of the bundle End E → X.
Assume that E → X is stable in the sense of Mumford. Since stability implies
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H0(X,O(End E)) ∼= C, from the Riemann-Roch theorem for the bundle End E → X
we obtain

dimH1(X,O(End E)) = n2(g − 1) + 1. (8.16)

Since there exists the one-to-one correspondence between the gauge equivalent sys-
tems (8.13) and the holomorphic structures on the bundle E → X, we obtain that
if the system (8.13) induces a stable bundle, then the dimension d of the gauge
equivalent solutions of the system (8.13) is calculated by formula (8.16).
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9 Carleman-Bers-Vekua equation on Riemann

surfaces

9.1 Cauchy-type integral on Riemann surfaces

Let X be a compact Riemann surface. Boundary-value problems on such surfaces
were considered by many authors (see [109] and the references therein). We de-
scribe below some constructions and problems of a global nature in the spirit of
the geometric approach to (a) Riemann-Hilbert boundary value problem and (b)
Riemann-Hilbert monodromy problem (see [58], [56], [59]). In view of what was said
above, it is clear that the representation of functions of the considered class in the
form of Cauchy-type integral is one of the key tools for solving such boundary-value
problems. Recall that it is also possible to construct a Cauchy-type integral on the
Riemann surface X [11], [16]-[19], [50], [107]. Denote the corresponding kernel (it is
described, e.g., in [109]) by KX(τ, z)dτ. If we cut the surface X along the cycles of

a canonical homology basis, we obtain polygon X̂ and KX(τ, z)dτ is single valued

in X̂. If γ is some sufficiently smooth curve on X̂ and ψ(τ) is a Hölder-continuous
function on Γ, we can consider the Cauchy-type integral

f(z) =
1

2πi

∫
γ

ψ(τ)KX(τ, z)dz.

Boundary-value problems on Riemann surfaces are closely connected with dif-
ferential forms. Recall that a differential 1-form on a compact Riemann surface
which is analytic everywhere except for a finite number of poles is called the Abelian
differential and the corresponding indefinite integral is called the Abelian integral.
Analytic Abelian differentials on surfaces without singular points are called Abelian
differentials of the first kind. Abelian differentials having a finite number of poles
with zero residues are called Abelian differentials of the second kind, and Abelian
differentials having poles with nonzero residues called Abelian differentials of the
third kind.

If M is a compact Riemann surface of genus g, then the real dimension of the
linear space of Abelian differentials of the first kind is equal to 2g and the sum of
the residues of Abelian differential is equal to zero. Let γ1, ..., γ2g be a canonical
homology basis of M and let z0 and z be arbitrary different points on M. The
normalized Abelian differentials of the third kind dωz0z(τ) and dΩz0z(τ) are defined
as differentials which have poles with residues -1 and +1 at the points z0 and z,
respectively, and periods satisfying the conditions∫

γ2j−1

dωz0z(τ) = 0, j = 1, ..., g,

∫
γj

dΩz0z(τ) = 0, j = 1, ..., 2g.
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The Cauchy type integral is the main tool for the investigation of boundary problems
on the Riemann sphere. The existence of Cauchy-type integrals, in particular, yields
the Cauchy integral representation and the Sokhotsky formulas. The Cauchy-type
integral can be described rather explicitly by analogy with the case of a complex
plane, where its properties can be formulated as follows.

Theorem 9.1 The kernel K(τ, z)dτ of Cauchy-type integral on the complex plane
is Abelian differential of the third kind with respect to the variable τ having first-
order poles at the points τ = z,∞ with residues ±1, respectively, and it is analytic
function with respect to z having a pole at z = t and zero at z = ∞. In explicit form
KCP1(τ, z)dτ = dτ

τ−z .

Starting from the Cauchy-type integral on the Riemann sphere, we can construct the
Cauchy-type integral on arbitrary compact Riemann surface. A direct generalization
is not possible but there exist natural analogs. First of all, let us require that
KX(τ, z)dτ be a function with respect to z and a differential form with respect to
τ. Moreover, every analog of Cauchy-type integral should satisfy the condition

KX(τ, z)dτ =
dτ

τ − z
+ regular terms, (9.1)

which implies the Cauchy formula and the Sokhotski-Plemelj formula. Following
the paper [50], denote by dωqq0(p) the Abelian differential of the third kind on X
which (a) has vanishing periods and (b) has two simple poles at the points p = q
and p = q0 with residues +1 and −1, respectively. Denote by

dω1(p), dω2(p), ..., dωg(p)

a canonical basis of Abelian differentials of the first kind (i.e., periods of this basis
form the identity (g × g)-matrix). Let dω̃qq0(p) be a single-valued branch of multi-

valued differential 1-form dωqq0(p) on X̃, where X̃ is obtained from X by cutting
along a1, ..., ag and dω̃qq0(p) satisfies the condition dω̃qq0(p) = 0. This branch can be
changed by imposing conditions

dω̃qq0(p) =

∫ q

q0

dt[dωtq0(p)],

where the integration path does not intersect a1, ..., ag. This differential is easily seen
to satisfy condition (9.1). For this reason, dω̃qq0(p) can be considered as a Cauchy
kernel and is called the discontinuous Cauchy kernel since it is discontinuous on
curves aj. In some cases it possesses further nice properties similar to Theorem 9.1.

Let ∆ = pn1
1 ...p

nk
k be a divisor on the surface X. A meromorphic analog of the

Cauchy kernel with minimal characteristic divisor ∆ is an expression of the form
A(p, q)dp, which satisfies the following conditions:

(1) A(p, q)dp = dp
p−q + regular terms and it is Abelian differential with respect to

the variable p with divisor q−1∆;
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(2) with respect to the variable q, A(p, q)dp is a meromorphic function on X
with divisor p−1∆−1.

Actually, there are several other ways of constructing an analog of the Cauchy
kernel (see [1], [16], [111]). We described only the most natural one, and in the
sequel we always use the Cauchy kernel constructed

f(z) =
1

2πi

∫
γ

ψ(τ)KX(τ, z)dτ

for the surface X and obtain the Plemelj-Sokhotski formulas [109]:

f±(z) = ±ψ(z) + 1

2πi

∫
γ

ψ(τ)KX(τ, z)dτ

the boundary values to the right and left of the contour. Recall that, on each
Riemann surface X, we have an analog of the usual ∂z operator in the plane which
is called the Dolbeault operator and is again denoted by ∂z [109]. Using this operator,
one can obtain elliptic systems of differential equations on X and develop an analog
of the classical theory.

Namely, consider a homogeneous first-order elliptic system on the Riemann sur-
face X of the form

∂zw(z) + z(z)w(z) + b(z)w(z) = 0, a, b ∈ Lp,2, p > 2. (9.2)

Solutions of this system can be called generalized analytic functions on X. Let
s1, ..., sm be singular points of forms a and b. We say that the point sj is a regular
singular point of system (9.2) if each of its solutions has no more than polynomial
growth in each small sector with vertex at sj. The system is called regular if all of
its singular points are regular. In the investigation of such systems, an important
role is played by the operator

Pv = − 1

π

∫∫
X̃

(a(τ)v(τ) + b(τ)v(τ)KX(τ, z)dX̃, a, b ∈ Lp,2, p > 2. (9.3)

where the integral is taken with respect to surface area.

Theorem 9.2 (see [110]). Operator (9.3) defines a completely continuous mapping

P : L0
m(X) → L0

l (X)

where 1
2
≤ 1

m
+ 1

p
< 1, 1

m
+ 1

p
− 1

2
< 1

l
< 1. The function Pf has a generalized

derivative and
∂zf(z) = a(z)f(z) + b(z)f(z).

For l > 2p
p−2

, the function (Pf)(z) is Hölder continuous.

Using this operator, one can relate the above system to integral equations.
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Theorem 9.3 (see [111]). If v(z) is a generalized analytic solution of system (9.3)
with the orders of poles not exceeding one then v(z) satisfies the following integral
equation:

v(z) +
1

π

∫∫
X̃

(a(τ)v(τ) + b(τ)v(τ)KX(τ, z)dX̃ = F (z),

where F̂ (z) is an Abelian integral.

It is known that the real dimension of the space of generalized constants c and the
dimension of the space of generalized analytic differentials of the first kind h are
finite and

c− h = χ(X),

where χ denotes the Euler characteristic.
Denote by L(D) and H(D) the space of generalized analytic functions which are

multiples of the divisor −D, and by H(D) denote the space of generalized analytic
differentials which are multiples of D. Then one has the following analog of the
Riemann-Roch formula [109]:

dimL(D)− dimH(D) = 2degD − χ(X).

9.2 Hypercomplex function

In many practically important situations, Q has in matrix Beltrami equation some
special form and then this equation can be written in the canonical form, which
simplifies its investigation. For example, if elements of Q are lower triangular ma-
trices whose shape is the same throughout the domain of the system then matrix
Beltrami equation is called the Bojarski normal form (see section 7). If Q is a con-
stant quasi-triangular matrix, then this equation is said to be the Douglis normal
form of the elliptic system in the plane. Let us illustrate the above discussion by
considering the latter case in some detail. Denote by A the commutative associative
algebra generated by two elements i and e and relations

i2 = −1, er = 0, r ∈ N.

Elements of this algebra are called hypercomplex numbers and have the form∑r−1
k=1(ak + ibk)e

l. Now any function V : R2 → A can be written as

V (x, y) =
r−1∑
k=0

(uk(x, y) + ivk(x, y))e
k

where vk, uk : R2 → R are real functions. Continuous functions of such form are
called hypercomplex functions and their totality is denoted by H. Define on H a
differential operator

D : H → H
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by the formula

D = Dx + (a+ ib+ e)Dy, where Dx =
∂

∂x
,Dy =

∂

∂x
.

This operator satisfies the Leibnitz rule, i.e., for any pair of hypercomplex functions
U, V ∈ H we have

D(UV ) = DU · V + U ·DV.

The operator D is called the generalized Beltrami operator and the equation

DV = 0

is called the generalized Beltrami equation. Now we consider the following differential
equation

DV +
r−1∑
k=0

ek
k∑
l=0

(aklWl + bklW l) = 0, (9.4)

where W is a hypercomplex function and akl and bkl are complex functions.

Theorem 9.4 (see [49]). Let W be a continuous and bounded solution of (9.4) in
the whole plane and akl, bkl ∈ Lp,2(C). ThenW admits the exponential representation

W (z) = Cexpω(z),

where C is a hypercomplex constant and ω is a hypercomplex Hölder-continuous
function with exponent p−2

p
.

This theorem is generalization of the Vekua representation for generalized ana-
lytic functions [124]. At the same time, it can be deduced from Theorem 9.4 using
the algebraic properties of the algebra A. Note that if a and b are hypercomplex
numbers, then

exp(ab) = exp a exp b, ln(exp(a)) = exp(ln(a)) = a.

Moreover, each hypercomplex function f admits a canonical factorization [49], i.e.,

f(t) = f+(t)τ(t)κf−(t), (9.5)

where f+(z) is hyperanalytic and invertible in U+, f−(z) is hyperanalytic in U∪{∞},
κ is an integer, and τ(t) is a generating solution for the system

DW = 0, (9.6)

where

DW =
r∑

k=0

ekWkz +
r∑

k=1

r∑
j=1

ej+kqkWjz.
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A generating solution is special solution of (9.6), and it is expressed in the following
form by the Pompeiu operator T (see section 2)

τ(t) = z + T (z). (9.7)

For more detailed analysis, see [49].
Consider Riemann-Hilbert boundary value problem for hypercomplex functions

which consists in finding a piecewise hyperanalytic function satisfying the boundary
condition

Φ+(t) = f(t)Φ−(t), t ∈ Γ,

where f(t) is a quasi-diagonal matrix with detf(t) ̸= 0. It follows from [107] that
f(t) defines a holomorphic vector bundle on CP1, which is denoted by E → CP1 as
above. The number of linearly independent solutions of the above problem can be
calculated as the rank of the 0-th cohomology group of CP1 with coefficients in the
sheaf of germs of hyperanalytic sections of the bundle E .

In conclusion, we mention that the Riemann-Hilbert problem for generalized ana-
lytic functions gives rise to some more subtle phenomena which cannot be described
in topological terms. For example, as is well known, the solvability of Riemann-
Hilbert monodromy problem for Fuchsian system depends on the location of singular
points of Fuchsian system [55], [54]. It turned out that an analog of this phenomenon
takes place for boundary-value problems for generalized analytic functions.

To be more precise, Begehr and Dai in [14] considered the following Hilbert
problem for a singular elliptic system

∂zw =
µ

z − z0
w + aw + bw, (9.8)

where Γ is the unit circle considered as the boundary of the unit disk U, µ is constant
and z0 ∈ U ∪ S1. The Hilbert problem in question was to find a regular solution w
of (9.8) in U which is continuous in U ∪S1, wz, wz ∈ Lp(U ∪S1) for some p > 2, and
satisfies on S1 the following boundary condition:

Re[G(z)w(z)] = g(z), z ∈ Γ,

where G and g are given functions on S1. Begehr has shown that the number of
linearly independent continuous solutions depends not only on the index but also
on the location of the singularity z0. It is easy to show that, in general, the number
of linearly independent continuous solutions depends on the location and types of
all singularities.

Moreover, in [109] Rodin and Turakulow consider the system

∂W = AW +BW

with singular coefficients on Riemann surface and show that the index of this system
depends not only on the genus of the surface but also on the type of singularities of
the coefficients. These results show that Riemann-Hilbert boundary value problem
and Rieamnn-Hilbert monodromy problem exhibit interesting features in the setting
of hyperanalytic and generalized analytic vectors (see [59]).
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10 Appendix

10.1 On the analytic solutions of the system degenerated in
the point

The results of the present section deal with the analytic solutions of sufficiently wide
class of the system of the equations degenerated in the point. It has the following
complex form

zν z µ
∂n+qw

∂z n ∂zq
= B w, (10.1)

where ν, µ, n, q are given non-negative integers, B is a given analytic function of the
variables x, y on the domain G

We call the solution of the equation (10.1) the analytic function w satisfying
(10.1) everywhere in the domain G, which contains the origin z = 0.

10.1.1 Some auxiliary statements

This subsection contains some auxiliary statements concerning analytic function of
two real variables x and y needed in sequel.

Let G be a given domain of the complex plane. If the function φ(x, y) of real
variables x and y is representable in the form of the following convergent double
power series with complex coefficients

φ(x, y) =
∞∑
k=0

∞∑
m=0

akm(x− x0)
k (y − y0)

m.

in every z = x+ iy point of the domain G∗.
Denote by ζ ∈ G∗ the domain defined as follows: ζ ∈ G if ζ ∈ G. i.e. G∗ is

the symmetric domain of the domain G according to real number axis. Let G4 be a
domain of four-dimensional space defined as: G4 = G×G∗.

As is known, every analytic function φ(x, y) of real variables x, y in the domain
G is analytically extendable in the domain G4 where Φ(z, ζ). Denote by Φ(z, ζ)
the analytic extension of the function z, ζ in the domain G4. Therefore Φ(z, ζ) is
an analytic function of the complex variables z, ζ in the domain G4. Moreover, the
following equality is fulfilled

Φ(z, z) = φ(z), z ∈ G. (10.2)

The following theorem is valid.

Theorem 10.1 Let Φ(z, ζ) be an analytic extension in the domain G4of the ana-
lytic function φ(x, y) of the real variables x, y in the domain G. Then the analytic
extension of the function φ(x, y) in the domain G4 will be the function Φ∗(z, ζ) given
by the formula:

Φ∗(z, ζ) = Φ(ζ, z), z ∈ G, ζ ∈ G∗. (10.3)
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Proof. First prove, that the function Φ∗(z, ζ) is the analytic function of the complex
variables z, ζ in the domain G4. Consider arbitrary point (z0, ζ0) ∈ G4 of the domain
G4, z0 ∈ G, ζ0 ∈ G∗. Since Φ(z, ζ) is the analytic function of the complex variables
z, ζ in the domain G4, then it may be expanded in the form of double power series
in the neighborhood of the point (ζ0, z0) as follows

Φ(z, ζ) =
∞∑
k=0

∞∑
m=0

Ckm(z − ζ0)
k(ζ − z0)

m. (10.4)

Then in the neighborhood of the point (z0, ζ0) the following equalities are valid

Φ∗(z, ζ) = Φ(ζ, z) =
∞∑
k=0

∞∑
m=0

Ckm(ζ − ζ0)
k(z − z0)

m =

=
∞∑
k=0

∞∑
m=0

Ckm(ζ − ζ0)
k(z − z0)

m =

=
∞∑
k=0

∞∑
m=0

Ckm(z − z0)
k(ζ − ζ0)

m. (10.5)

i.e. Φ∗(z, ζ) expands in the form of double power series in the neighborhood of the
point (z0, ζ0). Therefore, the function Φ∗(z, ζ) is the analytic function of the complex
variables z, ζ in the domain G4.

On the other hand, from (10.3) we have

Φ∗(z, z) = Φ(z, z) = φ(z), z ∈ G. (10.6)

It follows from (10.5) and (10.6), that the function Φ∗(z, ζ) is the analytic extension
of the function φ(z) in the domain G4. The theorem is proved.

Theorem 10.2 Let Φ(z, ζ) be an analytic extension in the domain G of the analytic
function φ(x, y) of the variables x, y in the domain G. Then the analytic extension

of the function
∂φ

∂z
in the domain G4 is the function

∂Φ(z, ζ)

∂ζ
.

Proof. At first prove, that the function
∂Φ(z, ζ)

∂ζ
is the analytic function of the

complex variables z, ζ in the domain G4. Consider arbitrary point (z0, ζ0) ∈ G4,
z0 ∈ G, ζ0 ∈ G∗ of the domain G4. Since Φ(z, ζ) is the analytic function of the
complex variables z, ζ in the domain G4 then it is expanding in the form of double
power series

Φ(z, ζ) =
∞∑
k=0

∞∑
m=0

Ckm(z − z0)
k(ζ − ζ0)

m. (10.7)

Differentiating by terms the double series (10.7) with respect to ζ in the neighbor-
hood of the point (z0, ζ0) we get the following equality

∂Φ(z, ζ)

∂ζ
=

∞∑
k=0

∞∑
m=1

Ckm(z − z0)
km(ζ − ζ0)

m−1 =
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=
∞∑
k=0

∞∑
m=0

Ck,m+1(m+ 1)(z − z0)
k(ζ − ζ0)

m. (10.8)

It follows from the
∂Φ(z, ζ)

∂ζ
that the function (z0, ζ0) is expanding in the form of

double power series in the neighborhood of the point z, ζ and therefore this function
is the analytic function of the complex variables in the domain G4.

On the other hand the following equality is valid

∂Φ(z, z)

∂ζ
=
∂φ(z)

∂z
, z ∈ G. (10.9)

In fact, since the function Φ(z, ζ) is the analytic extension of the function φ(z) in
the domain G4, then

φ(z) = φ(x, y) = Φ(z, z) = Φ(x+ iy, x− iy), z ∈ G. (10.10)

Differentiating both sides of the equality (10.10) with respect to x and y, we obtain

∂φ

∂x
=
∂Φ(z, z)

∂z
+
∂Φ(z, z)

∂ζ
,

∂φ

∂y
= i

∂Φ(z, z)

∂z
− i

∂Φ(z, z)

∂ζ
.

(10.11)

If we recall the definition of
∂φ

∂z
from (10.11) we conclude, that

∂φ(z)

∂z
=

1

2

(∂φ
∂x

+ i
∂φ

∂y

)
=

=
1

2

(∂Φ(z, z)
∂z

+
∂Φ(z, z)

∂ζ
− ∂Φ(z, z)

∂z
+
∂Φ(z, z)

∂ζ

)
=
∂Φ(z, z)

∂ζ
.

Therefore the equality (10.9) is proved. It follows from (10.8) and (10.9), that

the analytic extension of analytic function
∂φ

∂z
in the domain G4 is

∂Φ(z, ζ)

∂ζ
. The

theorem is completely proved.

10.1.2 The existence of the analytic solutions

Theorem 10.3 Let B(0) ̸= 0, ν+µ > n+q. Then the equation (10.1) has the only
trivial solution.

Proof. Recall, that B and w are the analytic functions of the variables x, y in the
domain G. Extend the functions B(z) and w(z) analytically in the domain G4.
Denote correspondingly by B(z) and w(z) the analytical extensions of the functions
B(z) and w(z) in domain G4. Therefore, the functions B(z, ζ) and w(z, ζ) are the
analytic functions of the complex variables z, ζ in the domain G4. It follows from the
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theorem 3.1, that the function w(z) will be the analytic extension of the function
w∗(z, ζ) in the domain G4 which is defined by the following formula

w∗(z, ζ) = w(ζ, z) . (10.12)

It follows from the Theorem 10.3, that
∂w

∂z
is the analytic extension of the function

∂w(z, ζ)

∂ζ
in the domain G4. From here, we get, that the analytic extension of the

function
∂n+qw

∂z n ∂zq
is

∂n+qw

∂ζn ∂zq
in the domain G4. Then the equation (10.1) has the

following form

zν ζµ
∂n+qw

∂ζn ∂zq
= B(z, ζ)w∗(z, ζ). (10.13)

Since B(z, ζ) and w(z, ζ) are the analytic functions of the complex variables z, ζ
in the domain G4 then in the neighborhood of the point (0, 0) these functions are
representable in the form of double power series

B(z, ζ) =
∞∑
k=0

∞∑
m=0

bkm z
k ζm, (10.14)

w(z, ζ) =
∞∑
k=0

∞∑
m=0

wkm z
k ζm. (10.15)

It follows from the equalities (10.14) and (10.12), that the function w∗(z, ζ) in the
neighborhood of the point (0, 0) will expand in the form of the following double
power series

w∗(z, ζ) =
∞∑
k=0

∞∑
m=0

wmk z
k ζm. (10.16)

Consider the left-hand side of the equality (10.13). Differentiating by terms the
double power series (10.15) with respect to z and ζ- we get the following equalities

zν ζµ
∂n+qw

∂ζn ∂zq
= zν ζµ

∞∑
k=q

∞∑
m=n

m(m− 1)(m− 2) · · · (m− n+ 1)·

· k(k − 1)(k − 2) · · · (k − q + 1)wkm z
k−q ζm−n =

=
∞∑
k=q

∞∑
m=n

m!

(m− n)!

k!

(k − q)!
wkm z

k+ν−q ζm+µ−n =

=
∞∑
k=ν

∞∑
m=µ

(m+ n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ z

k ζm. (10.17)

Consider now the right-hand side of the equation (10.15). Multiplying the double
power series (10.14) and (10.16) we obtain

B(z, ζ)w∗(z., ζ) =
∞∑
k=0

∞∑
p=0

bkp z
k ζp

∞∑
k=0

∞∑
p=0

wpk z
k ζp =
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=
∞∑
k=0

∞∑
p=0

∞∑
k1=0

∞∑
p1=0

bk1p1wpk z
k+k1 ζp+p1 =

k + k1 = l, p+ p1 = m, k1 = l − k, p1 = m− p

=
∞∑
l=0

∞∑
m=0

( l∑
k=0

m∑
p=0

bl−k,m−pwpk

)
zl ζm =

=
∞∑
k=0

∞∑
m=0

( l∑
l=0

m∑
p=0

bk−l,m−pwpl

)
zk ζm. (10.18)

Inserting the equalities (10.17) and (10.18) in the equation (10.13), we get the fol-
lowing equation

∞∑
k=ν

∞∑
m=µ

(m+ n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ z

k ζm =

=
∞∑
k=0

∞∑
m=0

( k∑
l=0

m∑
p=0

bk−l,m−pwpl

)
zk ζm. (10.19)

Equating in the equation (10.19) the coefficients of the same powers of the variables
z and ζ we obtain the algebraic system with respect to wmk

k∑
l=0

m∑
p=0

bk−l,m−pwpl = 0, (10.20)

In case 0 ≤ m ≤ µ− 1, k = 0, 1, 2, 3, . . . or m = 0, 1, 2, 3, . . . , 0 ≤ k ≤ ν − 1.

k∑
l=0

m∑
p=0

bk−l,m−pwpl =
(m+ n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ, (10.21)

when m > µ, k > ν.
Prove, that wmk = 0, m = 0, 1, 2, 3, . . . , k = 0, 1, 2, 3, . . . wmk, we call h the

height (altitude) of the coefficient wmk the non-negative integer h = m+ k.
Proof this by means of the method of mathematical induction with respect to h.

Let h = 0. Then m = k = 0. From the equation (10.20) we have

b00w00 = 0.

Since b00 = B(0, 0) ̸= 0, when w00 = 0.
Assume that by the assumption of mathematical induction all coefficients wmk

the height of which is not greater than h, are equal to zeroes. Consider the coefficient
wmk with the height h+1, m+k = h+1. Rewrite the left-hand sides of the equalities
(10.20) and (10.21) as follows

k∑
l=0

m∑
p=0

bk−l,m−pwpl =
k∑
l=0

(m−1∑
p=0

bk−l,m−pwpl + bk−l,0wml

)
=
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=
k−1∑
l=0

(m−1∑
p=0

bk−l,m−pwpl + bk−l,0wml

)
+

+
m−1∑
p=0

b0,m−pwpk + b00wmk =
k−1∑
l=0

m−1∑
p=0

bk−l,m−pwpl+

+
k−1∑
l=0

bk−l,0wml +
m−1∑
p=0

b0,m−pwpk + b0,0wmk.

Let 0 ≤ m ≤ µ − 1, k = 0, 1, 2, 3, . . . , or 0 ≤ k ≤ ν − 1, m = 0, 1, 2, 3, . . . then the
equation (10.20) takes the form

wmk = −
k−1∑
l=0

m−1∑
p=0

bk−l,m−p

b00
wpl −

k−1∑
l=0

bk−l,0
b00

wml −
m−1∑
p=0

b0,m−p

b00
wpk . (10.22)

We conclude from the equality (10.22), that wmk is the linear combination of the co-
efficients wpl, wml, wpk the height of them is not greater than h. But by the assump-
tion of mathematical induction such wpl coefficients are equal to zero. Therefore,
wmk = 0.

Let m > µ, k > ν. Then the equation will take the following form

wmk = −
k−1∑
l=0

m−1∑
p=0

bk−l,m−p

b00
wpl −

k−1∑
l=0

bk−l,0
b00

wml−

−
m−1∑
p=0

b0,m−p

b00
wpk +

(m+ n− µ)! (k + q − ν)!

(m− µ)! (k − ν)! b00
wk+q−ν,m+n−µ . (10.23)

Since ν + µ > n+ q, Then

(k + q − ν) + (m+ n− µ) = (k +m) + (n+ q)− (ν + µ) < k +m. (10.24)

It follows from the equality (10.23) and the inequality (10.24), that wmk is the
linear combination of the coefficients wpl, wml, wpk, wk+q−ν,m+n−µ with the heights
not greater than h. But by means of the assumption of the method of mathematical
induction such wpl coefficients are equal to zero. Therefore wmk = 0.

At last we prove, that

wmk = 0, m = 0, 1, 2, 3, . . . , k = 0, 1, 2, 3, . . .

Hence w(z, ζ)is identically equal to zero in the neighborhood of the point (0,0).
From the uniqueness theorem we have, that w(z, ζ) is identically equal to zero in the
domain G4. Since w(z, ζ) is the analytic extension of the analytic function w(z) in
the domain G4, then w(z) is identically zero on the whole domain G. The theorem
is proved.
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Examples. 1. Let ν = 1, µ = 0, n = 1, q = 0, B(z) ≡ 1. Then we get the
equation

z
∂w

∂z
= w

This equation has the non-zero analytic solution w(z) = z.
2. Let ν, µ, n, q be the non-negative integers satisfying the condition ν+µ = n+q

Let m and k be non-negative integers satisfying the conditions

m− k = ν − q = n− µ, m > n, k > q.

Let B(z) =
m! k!

(m− n)! (k − q)!
. Then the equation (10.1) takes the form

zν z µ
∂n+qw

∂z n ∂zq
=

m! k!

(m− n)! (k − q)!
w. (10.25)

The equation (10.25) has the non-zero analytic solution w(z) = zk z m. In fact,

zν z µ
∂n+qzk z m

∂z n ∂zq
= zν z µm(m− 1) · · · (m− n+ 1) z m−n k(k − 1) · · ·

· · · (k − q + 1) zk−q =
m!

(m− n)!

k!

(k − q)!
zν+k−q z µ+m−n =

=
m! k!

(m− n)! (k − q)!
zm z k =

m! k!

(m− n)! (k − q)!
zk z m.

This examples shows, that the condition ν + µ > n + q from the theorem is
important.

10.2 Darboux transformation and Carleman-Bers-Vekua
system

Recently in [73] new application of the theory of pseudoanalytic functions to differ-
ential equations of mathematical physics is presented. The author’s applications of
pseudoanalytic functions to differential equations of mathematical physics are based
on the factorization of second order differential operator in product of two first order
differential operators whose one of these two factors leads to so called main Vekua
equation

wz =
fz
f
w, (10.26)

where f is a real valued function.
In particular it is show, that if f, h, ψ are real-valued functions, f, ψ ∈ C2(Ω), Ω ⊂

C and besides f is a positive particular solution of the two dimensional stationary
Schrodinger equation

(−∆+ h)f = 0 (10.27)
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in the domain Ω ⊂ C, where ∆ = ∂2

∂x2
+ ∂2

∂y2
is a two dimensional Laplace operator,

then

(∆− h)ψ = 4(∂z +
fz
f
C)(∂z −

fz
f
C)ψ = 4(∂z +

fz
f
C)(∂z −

fz
f
C)ψ, (10.28)

where C denotes the operator of complex conjugation.
Let w = w1 + iw2 be a solution of the equation (10.26). Then the functions u =

f−1w1 and v = fw2 are the solutions of the following conductivity and associated
conductivity equations

div(f 2∇u) = 0, and div(f 2∇u) = 0, (10.29)

respectively. The real and imaginary part of the solution of the equation (10.26)
w1 and w2 are solutions of the stationary Schrodinger and associated stationary
Schrodinger equations

−∆w1 + r1w1 = 0 and −∆w2 + r2w2 = 0, (10.30)

respectively, where r1 =
∆f
f
, r2 =

2(∇f)2
f2

− r1, ∇f = fx + fy and (∇f)2 = f 2
x + f 2

y .
On the other hand it is known that the elliptic equation

∂z∂zψ + hψ = 0 (10.31)

is covariant with respect to the Darboux transformation [96]

ψ → ψ[1] = θ(ψ, ψ1)ψ
−1
1 , θ(ψ, ψ1) =

∫ (z,z)

(z0,z0)

Ω, (10.32)

h[1] = h+ 2∂z∂zlnψ1, (10.33)

where ψ1 is a fixed solution of equation (10.30), Ω is closed 1-differential form

Ω = (ψ∂zψ1 − ψ1∂zψ)dz − (ψ∂zψ1 − ψ1∂zψ)dz.

Here covariant properties means, that ψ[1] satisfies the following equation

∂z∂zψ[1] + h[1]ψ[1] = 0.

From the equality dΩ = 0 it follows, that the function θ(ψ1, ψ) in (10.32) doest not
depend on the path of integration.

Theorem 10.4 [47] Let w = w1 + iw2 be the solution of the main Vekua equation

wz =
ψ1z

ψ1

w. (10.34)

Then w1 = ψ1 and w2 = −1
2
ψ[1], where ψ1 is the real positive solution of the equation

−∆ψ + hψ = 0 (10.35)

h = △ψ1

ψ1
and ψ[1] its Darboux transformation defined by (10.32), (10.33).

Conversely, if ψ1 is the real positive solution of the equation (10.35) and ψ[1] its
Darboux transformation then the solution of main Vekua equation (10.34) equal to
w = ψ1 − 1

2
ψ[1].
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First part of the theorem follows from (10.29), (10.30). Here we prove the second
part of theorem. Let ψ be a real solution of (10.35), then in this case the Darboux
transformation (10.32),(10.33) has the form

h[1] = h− 2∆lnψ1 and ψ[1] = 2iψ−1
1 Im

∫
(ψψ1z − ψzψ1)dz.

We seek the solution of the equation (10.34) in the form w = ψ + iw2. Then

ψ1z + iw2z =
ψ1z

ψ1

ψ − i
ψ1z

ψ1

w2,

from this the solution of the corresponding homogenous equation is w2 =
C(z)
ψ1
, where

C(z) is arbitrary holomorphic function. Let w2 =
C(z,z
ψ1

) be the solution of the above
equation. Then

ψz + i
Cz
ψ1

− i
ψ1z

(ψ1)2
C(z, z) =

ψ1z

ψ1

ψ − i
ψ1z

(ψ1)2
C(z, z) ⇒

⇒ Cz = −i(ψψ1z − ψzψ1) ⇒ C(z, z) = −i
∫
(ψψ1z − ψzψ1)dz + C̃(z).

From this we obtain

w2 = ψ−1
1 (b(z)− i

∫
(ψψ1z − ψzψ1)dz).

We choose b(z) in last expression such that w2 was real. Then w2 = ψ−1
1 Im

∫
(ψψ1z−

ψzψ1)dz, from this it follows, that −2iw2 = ψ[1], therefore w = ψ1 − 1
2
ψ[1] is the

solution of (10.35).
Here we give new formulation and proof of Theorem 10.4.

Theorem 10.5 1)Let W = W1 + iW2 be the solution of the equation Wz = fz
f
W,

then W1 and W2 are related to by Darboux transformation W2 = iW1[1] and W1 =
−iW1[1].

2) If W1 is a solution of the equation (△ − △f
f
)ψ = 0, then W1 −W1[1] is the

solution of the equation Wz =
fz
f
W.

3) If W2 is the solution of the equation (△+ △f
f
−2(∇f

f
)2)ψ = 0, then −iW2[1]+

iW2 is a solution of the equation Wz =
fz
f
W.

From the theorem 33 [73] it follows, that W1 + iW2 = W is the solution of the
equation Wz =

fz
f
W, then

W2 = f−1A[if 2∂z(f
−1W1)] and W1 = −fA[if 2

∂z(fW2)],

where A[ϕ] = 2Re
∫
ϕdz = 2Im

∫
iϕdz. Therefore,

W2 = −f−12Im

∫
f 2∂z(f

−1W1)dz and W1 = f2Im

∫
f−2∂z(fW2)dz.
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Consider the equation (△ − △f
f
)ψ = 0 and take the function f as particular

solution of this equation, then by theorem 33 [73] the function W1 is the solution of
this equation. Consider the Darboux transformation W1 :

W1 →W1[1] = f−1

∫
Ω(W1, f),

Ω(W1, f) = (W1fz −W1zf)dz − (W1fz −W1zf)dz = 2iIm[f 2∂z(f
−1W1)],

W1[1] = f−12iIm

∫
f 2∂z(f

−1W1)dz.

Therefore W2 = iW1[1].
Now consider the function 1

f
as particular solution of the equation (△−△f

f
)ψ = 0,

then from theorem 33 [73] it follows, thatW2 is a solution of this equation. Consider
the Darboux transformation of W2:

W2 →W2[1] = (
1

f
)−1

∫
Ω(W2, f

−1) = f

∫
Ω(W2, f

−1),

Ω(W2, f
−1) = (W2∂z(

1

f
)−W2z

1

f
)dz − (W2∂z(

1

f
)−W2z

1

f
)dz =

= (−W2
fz
f 2

−W2z
1

f
)dz +

1

f 2
(W2fz +W2zf)dz = 2iIm[f−2∂z(fW2)].

Therefore, W1 = −iW2[1].
Remark. In [50] the authors studied intertwining relations, supersymmetry and

Darboux transformations for time-dependent generalized Schrodinger equations and
obtained these relations in an explicit form, it means that it is possible to construct
arbitrary-order Darboux transformations for some class of equations. The authors
develop corresponding supersymmetric formulation and prove equivalence of the
Darboux transformations with the supersymmetry formalism. In our opinion the
method given in this subsection may be applied also in this direction.

10.3 Topological properties of generalized analytic functions

The Carleman-Bers-Vekua equation is invariant with respect to conformal transfor-
mations [124], [11], therefore it is possible to consider generalized analytic functions
on Riemann surfaces. The global theory of generalized analytic functions demands
consideration of many-valued generalized analytic functions. One of the first results
in this direction was the Riemann-Hurvitz theorem (formula) given in [11]. In par-
ticular, Bers computed the genus g of covering Riemann surface w : X → CP1 and
showed that

g =
B

2
− 1 +N,

where w is a pseudoanalytic function from the compact Riemann surface X to the
Riemann sphere CP1, B is the sum of the orders of all branching points of w and
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N is the number of sheets (topological degree of w). In section 9 we consider
the monodromy theorem for generalized analytic functions. Different branches of
the generalized analytic functions, in general, satisfy different Carleman-Bers-Vekua
equations [109]. The results given in this paper is a certain tool for investigation
of many-valued generalized analytic functions on the Riemann sphere with finitely
many points removed so that it is possible to consider these points as singular points
of Carleman-Bers-Vekua equations.

Let f be a map of topological space X into topological space Y. If whenever U is
open in X, f(U) is open in Y, then f is interior. By introducing the interior transfor-
mations, S. Stoilow to solve the Brouwer problem, the topological characterization
of the analytic functions (see [118]). Stoilow proved two basic properties of the inte-
rior transformation f : X → Y, where X and Y are domains (open, connected sets)
in the plane:

a) The interior transformation are discrete;
b) they are locally topological equivalent to non-constant analytic functions;
Properties b) is contained in the well-known Stoilow inverse theorem, which

shows that in the neighborhood of a point in X an interior transformation behaves
as zn, n ∈ N in the neighborhood of z = 0.

Theorem 10.6 (see [42]) If A,B ∈ Lp,2(C), p > 2, then for every given point z0 in
the small neighborhood U0 of this point, there exists single valued generalized analytic
functions.

Theorem 10.7 (see [42]) Let the function A(x, y), B(x, y) be analytic with respect
to arguments x and y in closed circle K. Suppose there exists the extension of
A(x, y), B(x, y) with respect to x, y as complex analytic functions and let A(z, ζ), B(zζ)
be analytic functions on Kz ×Kzeta, where z = x + iy and ζ = x − iy, i.e.z = ζ.
Then there exists f = u + iv solution of Carlemann-Vekua equation, which is an
interior mapping of the unit disc on some Riemann surface.

Topological properties of the generalized analytic functions differ from the topolog-
ical properties of the analytic functions. B.Shabat was first to consider the general-
ized analytic functions from the topological point of view in [112]. He proved that
some of the solutions of Carleman-Bers-Vekua equations are topologicaly equivalent
to analytic functions, while the others don’t have this property. This is true, e.g. for
the regular equations with constant coefficients, see [112]). Generally the Riemann
mapping theorem doesn’t hold for the system (1.9) (see [124], p.278, [42]), but it
holds in particular cases (see [105]).
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