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Preface

The present lecture notes contain results concerning elastic cusped Euler-Bernoulli beams
and Kirchhoff-Love plates reported by the author at workshops and minisymposia orga-
nized by TICMI and mostly belonging to him.

In practice, such plates and beams are often encountered in spatial structures with
partly fixed edges, e.g., stadium ceilings, aircraft wings, submarine wings etc., in machine-
tool design, as in cutting-machines, planning-machines, in astronautics, turbines, and in
many other areas of engineering. The problem mathematically leads to the question
of setting and solving boundary value problems for even order equations and systems
of elliptic type with the order degeneration in the static case and of initial boundary
value problems for even order equations and systems of hyperbolic type with the order
degeneration in the dynamical case.

To end this preamble, I would like to express my gratitude to Alois Kufner and Natalia
Chinchaladze for valuable comments and also to Mary Bitsadze and Mary Sharikadze who
contributed with efficiency to type this text on LaTex.

Finally, my special thanks goes to Nugzar Skhirtladze for his support in publishing
this issue.
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Introduction

In 1955 I.Vekua [85]-[87] raised the problem of investigation of elastic cusped plates, i.e.,
such ones whose thickness on the part of the plate boundary or on the whole one vanishes.
Such bodies considered as three-dimensional models occupy three-dimensional domains
with, in general, non-Lipschitz boundaries. In practice, such plates and beams are often
encountered in spatial structures with partly fixed edges, e.g., stadium ceilings, aircraft
wings, submarine wings etc., in machine-tool design, as in cutting-machines, planning-
machines, in astronautics, turbines, and in many other areas of engineering. The problem
mathematically leads to the question of setting and solving boundary value problems
for even order equations and systems of elliptic type with the order degeneration in the
static case and of initial boundary value problems for even order equations and systems
of hyperbolic type with the order degeneration in the dynamical case (for corresponding
investigations see the survey [30], [53], and also I. Vekua’s comments in [87, p.86]).

The first works concerning classical bending of cusped elastic plates were done by E.
Makhover [61], [62] and S. Mikhlin [64]. Namely, in 1957, 1958 E. Makhover [61], [62], by
using the results of S. Mikhlin [64], had considered such a cusped plate with the flexural
rigidity D(x1, x2) satisfying

D1x
κ1
2 ≤ D(x1, x2) ≤ D2x

κ1
2 , D1, D2,κ1 = const > 0, (1)

within the framework of classical bending theory. She particularly studied in which cases
the deflection (κ1 < 2) or its normal derivative (κ1 < 1) on the cusped edge of the plate
can be given. In 1971, A. Khvoles [59] represented the forth order Airy stress function
operator as the product of two second order operators in the case when the plate thickness
2h was given by

2h = h0x
κ2
2 , h0, κ2 = const > 0, x2 ≥ 0, (2)

and investigated the question of the general representation of corresponding solutions.

Since 1972 the works of G. Jaiani [31]-[52] have also been devoted to these problems.
By using more natural spaces than E. Makhover had, G. Jaiani in [43] has analyzed
in which cases the cusped edge can be freed (κ1 > 0) or simply supported (κ1 < 3).
Moreover, he established well-posedness and the correct formulation of all the admissi-
ble principal boundary value problems (BVPs). In [36], [37], [42] he also investigated
the tension-compression problem of cusped plates, based on I. Vekua’s model of shallow
prismatic shells (N = 0). G. Jaiani’s results can be summarized as follows:
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6 INTRODUCTION

Let n be the inward normal of the plate boundary (i.e., of the boundary of the plate
projection). In the case of the tension-compression (N = 0) problem on the cusped edge,
where

0 ≤ ∂h

∂n
< +∞ (in the case (2) this means κ2 ≥ 1),

which will be called a sharp cusped edge, one can not prescribe the displacement vector;
while on the cusped edge, where

∂h

∂n
= +∞ (in the case (2) this means κ2 < 1),

which will be called a blunt cusped edge, the displacement vector can be prescribed. In
the case of the classical bending problem with a cusped edge, where

∂h

∂n
= O(dκ−1) as d → 0, κ = const > 0 (3)

and where d is the distance between an interior reference point of the plate projection and
the cusped edge, the edge can not be fixed if κ ≥ 1/3, but it can be fixed if 0 < κ < 1/3;
it can not be simply supported if κ ≥ 1, and it can be simply supported if 0 < κ < 1
(here 1 should be replaced by 2

3
when the bending moment prescribed on the cusped edge

is not identically zero i.e., when we consider inhomogeneous boundary conditions); it can
be free or arbitrarily loaded by a shear force and a bending moment if κ > 0. Note that
in the case (2), the condition (3) implies that d2 = x2 and κ = κ2 = κ1/3. The above
conditions are also reformulated as some integral conditions on the plate thickness.

For the specific cases of cusped cylindrical and conical shell bending, the above results
remain valid as it has been shown by G. Tsiskarishvili and N. Khomasuridse [80]-[82].
These results also remain valid in the case of classical bending of orthotropic cusped
plates (see [46]). However, for general cusped shells and also for general anisotropic
cusped plates, corresponding analysis is yet to be done.

As it was already mention the problems involving cusped plates lead to the problem of
correct mathematical formulations of BVPs for even order elliptic equations and systems
whose orders degenerate on the boundary (see [42], [47], [48]).

Applying the functional-analytic method developed by G. Fichera in [24], [25] (see
also [18], [19]), in [42] the particular case (λ = µ) of Vekua’s system for general cusped
plates has been investigated.

I.Vekua’s system in the N = 1 approximation in the case (2) is investigated in [17].

The classical bending of plates with the stiffness (1) in energetic and in weighted
Sobolev spaces has been studied by G. Jaiani in [43], [46] (see also Sections 2.2, 2.4, and
2.5 of the present book). In the energetic space some restrictions on the lateral load has
been relaxed by G. Devdariani in [16]. G. Tsiskarishvili [80] characterized completely the
classical axial symmetric bending of specific circular cusped plates without or with a hole.

In the case (2), the basic BVPs have been explicitly solved in [38] and [48] with the
help of singular solutions depending only on the polar angle.
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If we consider the cylindrical bending of a plate, in particular of a cusped one, with
rectangular projection a ≤ x1 ≤ b, 0 ≤ x2 ≤ l, we actually get the corresponding results
also for cusped beams (see [44], [38], [9]-[11], [49], [50]).

In 1980-1986 S. Uzunov [83] numerically solved the problem of bending of the cusped
circular beam on an elastic foundation with constant compliance. The moment of inertia
of the beam had the form

I(x2) =
πr4

4
, r = cxγ

2 , c, γ = const > 0, γ < 1

(r is the cross-section radius). The cusped end was free and the non-cusped end was
clamped.

In 1990-1995 the bending vibration of homogeneous Euler-Bernoulli cone beams and
beams of continuously varying rectangular cross-sections, when one side of the cross-
section is constant, while the other side is proportional to xκ2 , κ = const > 0, where x2 is
the axial coordinate measured from the cusped end, were considered by S. Naguleswaran
[65 - 68]. Firstly, the concrete cases of κ = 1, 1/2, and finally, the general case of k
were investigated. In these investigations the cusped end is always free; direct analytical
solutions were constructed for the mode shape equation and the frequences were also
tabulated.

In 1999-2001 two contact problems were considered by N. Shavlakadze [77], [78],
namely, the contact problem for an unbounded elastic medium composed of two half-
planes x1 > 0 and x1 < 0 having different elastic constants and strengthened on the semi-
axis x2 > 0 by an inclusion of variable thickness (cusped beam) with constant Young’s
modulus and Poisson’s ratio. It was assumed that the plate is subjected to plane defor-
mation, the flexural rigidity D had the form

D = D0x
κ
2 , D0, κ = const > 0,

and the cusped end x2 = 0 of the beam was free.
The second contact problem considered in [77], [78] was the problem of bending of

an isotropic plate of constant thickness reinforced by a finite elastic rib (beam) with the
flexural rigidity D of the form

D = (a2 − x2
2)

n+1/2P (x2),

where a = const ≥ 0, n ≥ 1 was an integer and P (x2) was a polynomial which satisfied
certain restrictions. It was assumed that the rib was not loaded.

In the fifties of the twentieth century, I.Vekua [85] introduced a new mathematical
model for elastic prismatic shells (i.e., of plates of variable thickness) which was based on
expansions of the three-dimensional displacement vector fields and the strain and stress
tensors of linear elasticity into orthogonal Fourier-Legendre series with respect to the
variable of plate thickness. By taking only the first N + 1 terms of the expansions, he
introduced the so-called N -th approximation. Each of these approximations for N =
0, 1, ... can be considered as an independent mathematical model of plates. In particular,
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the approximation for N = 1 corresponds to the classical Kirchhoff plate model. In the
sixties of the XX century, I. Vekua [86] developed the analogous mathematical model
for thin shallow shells. All his results concerning plates and shells are collected in his
monograph [87]. Works of I. Babuška, D. Gordeziani, V. Guliaev, I. Khoma, A. Khvoles,
T. Meunargia, C. Schwab, T. Vashakmadze, V. Zhgenti, M. Avalishvili, G. Avalishvili,
and others (see [1], [2], [26], [28], [58], [59], [63], [76], [84], [90] and the references therein)
are devoted to further analysis of I.Vekua’s models (rigorous estimation of the modelling
error, numerical solutions, etc.) and their generalizations (to non-shallow shells, to the
anisotropic case, etc.).

In [53] variational hierarchical two-dimensional models for cusped elastic plates are
constructed by G. Jaiani, S. Kharibegashvili, D. Natroshvili, and W. Wendland. With
the help of variational methods, existence and uniqueness theorems for the corresponding
two-dimensional boundary value problems are proved in appropriate weighted function
spaces. By means of the solutions of these two-dimensional boundary value problems,
a sequence of approximate solutions in the corresponding three-dimensional region is
constructed. This sequence converges in the Sobolev space H1 to the solution of the
original three-dimensional boundary value problem. The systems of differential equations
corresponding to the two-dimensional variational hierarchical models are explicitly given
for a general system and for Legendre polynomials, in particular.

The direct and inverse problems connected with the interaction between different
vector fields of different dimension have been recently given much attention and intensively
investigated in the mathematical and engineering scientific literature. They arise in many
physical and mechanical models describing the interaction of two different media where
the whole process is characterised by a vector-function of dimension k in one medium
and by a vector-function of dimension n in another one (e.g., fluid-structure interaction
where a streamlined body is an elastic obstacle, scattering of acoustic and electromagnetic
waves, interaction between an elastic body and seismic waves, etc.).

A lot of authors have considered and studied in detail the direct problems of interaction
between an elastic isotropic body, which occupies a bounded region Ω and where a three-
dimensional elastic vector field is to be defined, and some isotropic medium (fluid, say),
which occupies the unbounded exterior region, the compliment of Ω with respect to the
whole space, where a scalar field is to be defined. The time-harmonic dependent unknown
vector and scalar fields are coupled by some kinematic and dynamical conditions on the
boundary ∂Ω, which lead to various types of non-classical interface problems of steady
oscillations for a piecewise homogeneous isotropic medium. An exhaustive information in
this direction concerning theoretical and numerical results can be found in [3]-[5], [20]-[23],
[56], [27], [29], [69].

Some particular cases when the elastic body under consideration is an anisotropic one
have been treated in [55].

Various authors dedicated their works to the solid-fluid (see e.g., [75], [88], [89], [73],
[74], [6]-[8]) contact problems but interaction problems when the profile of an elastic part
is cusped one on some part or on the whole boundary of its projection was not considered
there. In [9-15] cylindrical bending of a plate with two cusped edges under the action of
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a fluid has been considered by N. Chinchaladze: the peculiarities of setting of boundary
value problems of the classical bending theory caused by sharpening of plates are es-
tablished; the well-posedness of these problems have been studied; admissible dynamical
problems are also investigated; general and harmonic vibration of such plates are stud-
ied; the setting of boundary conditions at the plates edges depends on the geometry of
sharpenings of plate edges, while the setting of initial conditions is independent of them;
in some cases the solutions of these problems are represented explicitly either by integrals
or by series; the transmission conditions of interaction problem between an above elastic
cusped plate and a fluid are established; the bending of such plates under the action
of incompressible ideal and viscous fluids has been considered, in particular, harmonic
vibration is studied.

The present lecture notes contain results concerning elastic cusped Euler-Bernoulli
beams and Kirchhoff-Love plates reported by the author at workshops and minisymposia
organized by TICMI and mostly belonging to him.

This book is divided into two Chapters.
The first Chapter is devoted to elastic cusped beams. In section 1.1 the elastic cusped

Euler-Bernoulli beam is introduced. Section 1.2 deals with the properties of the general
solution of the degenerate Euler-Bernoulli equation. In Section 1.3 we solve all the ad-
missible boundary value problems of cusped beam’s bending. In section 1.4 we study
dynamical problems, namely the existence of weak solutions to vibration problems.

The second Chapter is devoted to cusped elastic plates. In Section 2.1 the elastic
cusped Kirchhoff-Love plate is introduced. Section 2.2 deals with the admissible bending
problems in the energetic space. In Section 2.3 we prove a modification of the Lax-Milgram
theorem. In Section 2.4 and 2.5 we study cusped plate’s bending and bending vibration
problems in the weighted Sobolev spaces.



Chapter 1

Cusped Euler-Bernoulli Beams

The aim of the present chapter is to consider an elastic cusped beam with a continuously
varying cross-section of an arbitrary form.

Section 1.2 is devoted to the investigation of properties of solutions of degenerate
Euler-Bernoulli equation (see Theorem 1.2.1).

Section 1.3 deals with the well-posedness and correct formulation of all admissible
bending BVPs for cusped elastic beams. In contrast to the case of non-cusped beams,
when the beam end can always be either clamped or freely supported, for cusped beams
this is not the case. The admissibility of these boundary conditions (BCs) depends on the
geometry of the beam end sharpening, which is expressed by the convergence-divergence of
the integrals I0

k , I l
k, k = 0, 1, 2, ... (see Theorem 1.3.1). For the indicated cases of the beam

end sharpening some BCs completely disappear and are replaced by the boundedness of
the deflection and its derivative. In particular, mechanically free ends are also free of
mathematical BCs (see Remarks 1.3.3 and 1.3.4). The BVPs formulated in Theorem
1.3.1 are solved in the explicit form.

A bending vibration of the cusped beam is considered in Section 1.4 (see also [54]). The
investigation is based on the Lax-Milgram theorem. It is established that BCs preserve
their peculiarities from the static case, while the presence of cusped ends does not affect
the setting of initial conditions.

1.1 Cusped Euler-Bernoulli beam

Let the barycenters of cross-sections lie on the axis x2 of the Cartesian system of coor-
dinates Ox1x2x3. The dynamical bending equation of such a beam (i.e., Euler-Bernoulli
beam) has the following form [52]

(D(x2)w, 22 ), 22 = f(x2, t)− ρσ(x2)
∂2w

∂t2
, 0 < x2 < l, (1.1.1)

where w(x2, t) is a deflection of the beam, f(x2, t) is an intensity of the load,

D(x2) := E(x2)I(x2), (1.1.2)

10



PROPERTIES OF THE GENERAL SOLUTION... 11

E(x2) is Young’s modulus, I(x2) is the moment of inertia with respect to the barycentric
axis normal to the plane x2x3, ρ(x2) is a density, σ(x2) is the area of a transverse section
lying in the plane x1x3, and index 2 after comma means differentiation with respect to
x2. Such a beam will be called a cusped one if I(x2) vanishes at least on one of the ends
x2 = 0, l of the beam (see Appendix, Figures 1-19).

Let us remark that if we consider a cylindrical bending of the cusped plate (see Chapter
2) with the flexural rigidity

D(x2) :=
2E(x2)h

3(x2)

3(1− ν2)
, (1.1.3)

where ν is Poisson’s ratio and 2h(x2) is a thickness of the plate then the bending equation
for the plate coincides with (1.1.1), where σ(x2) should be replaced by 2h.

In the case of a beam vibration with a frequence ω = const (i.e., w(x2, t) = w(x2)e
iωt,

f(x2, t) = f(x2)e
iωt), from (1.1.1) we obtain the following vibration equation

(D(x2)w, 22 ), 22−ω2ρ(x2)σ(x2)w(x2) = f(x2), 0 < x2 < l. (1.1.4)

1.2 Properties of the general solution of the Euler-

Bernoulli equation

In the static case, the equation (1.1.1) becomes

(D(x2)w, 22 ), 22 = f(x2). (1.2.1)

But (1.2.1) coincides with the equation of cylindrical bending of the cusped plate with
the flexural rigidity (1.1.3) and projection

ω := {x1, x2 : −∞ < x1 < +∞, 0 < x2 < l}

on the plane x3 = 0.
The well-posedness of BVPs for such plates when the thickness can vanish only at

points (−∞ < x1 < +∞, x2 = 0) was investigated in [46]. After reformulation of the
corresponding results for (1.2.1) (see Chapter 2 bellow), where D is given by (1.1.3), the
case I(0) = 0, I(l) 6= 0 will be completely studied. Below in an analogous way we consider
the general case when both I(0) = 0 and I(l) = 0 are admissible. Obviously, the results
will be applicable also for cylindrical bending of a plate (1.2.1), where D is given by
(1.1.3), with the cusped edges, i.e., both h(x1, 0) = 0 and h(x1, l) = 0 for arbitrary x1 will
be admissible.

Now, let us consider (1.2.1), where D is given by (1.1.2), with D(x2) ∈ C([0, l]) ∩
C2(]0, l[) and recall that the bending moment and shearing force are (see also (2.1.6)-
(2.1.9) below):

M2 = −Dw,22, (1.2.2)
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Q2 = M2,2. (1.2.3)

At the ends of a beam, where I(x2) vanishes all quantities will be defined as limits from
inside of ]0, l[.

From (1.2.1)-(1.2.3) follows

Q2,2 = −f(x2), M2,22 = −f(x2),

where a fixed x0 ∈]0, l[ and C1, C2 = const.
Hence,

Q2 = −
x2∫

x0

f(t)dt + C1, (1.2.4)

M2 = −
x2∫

x0

(x2 − t)f(t)dt + C1(x2 − x0) + C2, (1.2.5)

taking into account (1.2.2),

w,2 = −
x2∫

x0

M2(τ)D−1(τ)dτ + C3

=

x2∫

x0

K1(τ)D−1(τ)dτ +

x2∫

x0

K2(τ)τD−1(τ)dτ + C3

=

x2∫

x0

K(τ)D−1(τ)dτ + C3, (1.2.6)

w = −
x2∫

x0

(x2 − τ)M2(τ)D−1(τ)dτ + C3(x2 − x0) + C4

=

x2∫

x0

(x2 − τ)K1(τ)D−1(τ)dτ

+

x2∫

x0

(x2 − τ)K2(τ)τD−1(τ)dτ + C3(x2 − x0) + C4

=

x2∫

x0

(x2 − τ)K(τ)D−1(τ)dτ + C3(x2 − x0) + C4, (1.2.7)
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where

K(τ) := K1(τ) + τK2(τ) (1.2.8)

with

K1(τ) := C1x0 − C2 −
τ∫

x0

f(t)tdt, (1.2.9)

K2(τ) := −C1 +

τ∫

x0

f(t)dt. (1.2.10)

Clearly,
K ′(τ) = K2(τ).

From (1.2.4), (1.2.5), (1.2.8)-(1.2.10) we conclude that

K2(τ) = −Q2(τ), K(τ) = −M2(τ), K1(τ) = τQ2(τ)−M2(τ). (1.2.11)

For f summable on ]0, l[, i.e., f ∈ L(]0, l[), obviously,

Q2, M2 ∈ C([0, l]); w, w,2 ∈ C(]0, l[);

the behavior of
w,2 and w when x2 → 0+, l−

depends, in view of (1.2.6), (1.2.7), on the convergence of the integrals

I0
i :=

ε∫
0

τ iD−1(τ)dτ, I l
i :=

l∫
l−ε

(l − τ)iD−1(τ)dτ,

i = 0, 1, 2, . . . , l > ε = const > 0.

Evidently, for any nonnegative integer i :

if I
0(l)
i < +∞, then I

0(l)
i+1 < +∞, i ≥ 0,

and

if I
0(l)
i = +∞, then I

0(l)
i−1 = +∞, i ≥ 1.

Theorem 1.2.1 Let f ∈ L(]0, l[), D ∈ C2(]0, l[) ∩ C([0, l]), and w ∈ C4(]0, l[) be a
solution of equation (1.2.1).

Case I. If I0
0 (I l

0) < +∞, then

w, w,2 ∈ C([0, l[) (C(]0, l])). (1.2.12)
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Case II. I0
0 (I l

0) = +∞, I0
1 (I l

1) < +∞.

If either D ∈ C2([0, l[)(C2(]0, l])) or the value of
the first or second order derivative of D
tends to infinity as x2 → 0 + (l−) and f is bounded
in some neighbourhood ]0, ε]([l − ε, l[) of 0(l),

(1.2.13)

then
w ∈ C([0, l[) (C(]0, l])). (1.2.14)

If
K(0) = 0 (K(l) = 0), (1.2.15)

then
w,2 = O(1) as x2 → 0 + (l−) (1.2.16)

(condition (1.2.15) is necessary and sufficient).
Case III. If I0

1 (I l
1) = +∞, I0

2 (I l
2) < +∞, and either D ∈ C3([0, l[) (C3(]0, l])) or the

value of the first, second, or third order derivative of D tends to infinity as x2 → 0+(l−),
and f is bounded with its first derivative in some right (left) neighbourhood of the point
0(l) then

w = O(1) as x2 → 0 + (l−), (1.2.17)

if and only if (iff) (1.2.15) is fulfilled.
Case IV. If I0

2 (I l
2) = +∞ and, moreover, for a fixed k ≥ 2

I0
k(I l

k) = +∞, I0
k+1(I

l
k+1) < +∞; (1.2.18)

f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, ..., k − 2,

fk−1(x2) is continuous at 0(l),
(1.2.19)

then (1.2.17) is valid iff

K(0) = 0, K2(0) = 0 (K(l) = 0, K2(l) = 0) (1.2.20)

hold.
Case V. If I0

1 (I l
1) = +∞ and either (1.2.18), (1.2.19) are fulfilled for k ≥ 2 or

(1.2.18) is fulfilled for k = 1 and f(x2) is continuous at 0(l), then (1.2.16) is valid iff
(1.2.20) holds.

In order to prove Theorem 1.2.1. beforehand we prove some lemmas

Lemma 1.2.2 If
I0
0 (I l

0) = +∞ (1.2.21)

and moreover, for a fixed integer k ≥ 0

I0
k(I l

k) = +∞, I0
k+1(I

l
k+1) < +∞; (1.2.22)
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f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, ..., k − 2 (for the case k ≥ 2); (1.2.23)

f (k−1)(x2) is continuous at 0(l) (for the case k ≥ 1), (1.2.24)

then
∣∣∣∣∣
x0∫
x2

K(τ)D−1(τ)dτ

∣∣∣∣∣ ≤
x0∫
x2

|K(τ)|D−1(τ)dτ

(
x2∫
x0

|K(τ)|D−1(τ)dτ

)

≤ const < +∞ ∀x2 ∈]0, x0] (∀ x2 ∈ [x0, l[)

(1.2.25)

iff (1.2.15) and (1.2.20) are fulfilled for k = 0, and k ≥ 1, respectively.

Proof. Obviously, in the case k = 0

∣∣∣∣∣∣

x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤

x0∫

x2

∣∣∣∣
K(τ)

τ

∣∣∣∣ τD−1(τ)dτ

≤ C

x0∫

0

τD−1(τ)dτ = const < +∞ ∀ x2 ∈]0, x0], (1.2.26)

since, by virtue of K(0) = 0 and K ′(τ) = K2(τ),

lim
τ→0+

K(τ)

τ
= K ′(0) = K2(0) < +∞,

i.e., ∣∣∣∣
K(τ)

τ

∣∣∣∣ ≤ C ∀τ ∈]0, x0].

Analogously,

∣∣∣∣∣∣

x2∫

x0

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤

x2∫

x0

∣∣∣∣
K(τ)

l − τ

∣∣∣∣ (l − τ)D−1(τ)dτ

≤ C

l∫

x0

(l − τ)D−1(τ)dτ = const < +∞ ∀x2 ∈ [x0, l[, (1.2.27)

since, using the substitution l − τ = ξ,

lim
τ→l−

K(τ)

l − τ
= lim

ξ→0+

K(l − ξ)

ξ
= −K ′(l) = −K2(l) < +∞,

i.e., ∣∣∣∣
K(τ)

l − τ

∣∣∣∣ ≤ C ∀τ ∈ [x0, l[.
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In the case k ≥ 1, evidently,

∣∣∣∣∣∣

x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤

x0∫

x2

∣∣∣∣
K(τ)

τ k+1

∣∣∣∣ τ k+1D−1(τ)dτ

≤ C

x0∫

0

τ k+1D−1(τ)dτ = const < +∞ ∀x2 ∈]0, x0], (1.2.28)

since, in view of, (1.2.20), (1.2.23), (1.2.24),

lim
τ→0+

K(τ)

τ k+1
= lim

τ→0+

K ′(τ)

(k + 1)τ k
= lim

τ→0+

K2(τ)

(k + 1)τ k

= lim
τ→0+

f (k−1)(τ)

(k + 1)!
=

1

(k + 1)!
f (k−1)(0),

i.e.,

∣∣∣∣
K(τ)

τ k+1

∣∣∣∣ ≤ C ∀τ ∈]0, x0].

Analogously,

∣∣∣∣∣∣

x2∫

x0

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤

x2∫

x0

|K(τ)|D−1(τ)dτ ≤ const < +∞ ∀x2 ∈ [x0, l[, (1.2.29)

since, using the substitution l − τ = ξ,

lim
τ→l−

K(τ)

(l − τ)k+1
= lim

ξ→0+

K(l − ξ)

ξk+1

= lim
ξ→0+

−K ′(l − ξ)

(k + 1)ξk
= − lim

ξ→0+

K2(l − ξ)

(k + 1)ξk

=
(−1)k+1

(k + 1)!
f (k−1)(l),

i.e.,

∣∣∣∣
K(τ)

(l − τ)k+1

∣∣∣∣ ≤ C ∀τ ∈ [x0, l[.

Let us consider the end x2 = 0 and show that the condition (1.2.15) is also necessary for
(1.2.25). In fact, if we assume that (1.2.25) takes place and at the same time, without loss

of generality, suppose that K(0) > 0, then K(τ) > C̃ = const > 0 in some neighbourhood
[0, ε] of 0, and

+∞ > const ≥
ε∫

x2

K(τ)D−1(τ)dτ > C̃

ε∫

x2

D−1(τ)dτ, (1.2.30)
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whence,
ε∫

x2

D−1(τ)dτ ≤ const < +∞ for x2 ∈]0, ε].

But the last inequality would contradict (1.2.21). Thus, K(0) = 0.
Analogously, we can show the necessity of the conditions (1.2.20) for the case k ≥ 1.

The necessity of K(0) = 0 follows from the previous assertion. Now, let (1.2.25) be valid
and let K(0) = 0 but K2(0) > 0. Then, in view of (1.2.8), from K(0) = 0 we have
K1(0) = 0. By virtue of K ′

1(x2) = −x2f(x2), similarly to the proof of (1.2.28) we can
show that

∣∣∣∣∣∣

x0∫

x2

K1(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤ const < +∞ ∀x2 ∈]0, x0], iff K1(0) = 0. (1.2.31)

From (1.2.25) and (1.2.31), because of τK2(τ) = K(τ)−K1(τ), we immediately get

∣∣∣∣∣∣

x0∫

x2

τK2(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤ const < +∞ ∀x2 ∈]0, x0]. (1.2.32)

But the necessary condition for (1.2.32) is the condition K2(0) = 0. Indeed, if K2(0) > 0,
then similar to (1.2.30) we get

∣∣∣∣∣∣

ε∫

x2

τD−1(τ)dτ

∣∣∣∣∣∣
≤ const < +∞ ∀x2 ∈]0, ε],

which contradicts I0
1 = +∞. Thus, K2(0) = 0.

Let us now consider the end x2 = l. The proof of necessity of the conditions (1.2.15)
and (1.2.20) is similar to the case of the end x2 = 0. In this case, when k ≥ 1, we use the
following identity

x2∫

x0

(l − τ)K2(τ)D−1(τ)dτ

=

x2∫

x0

[K1(τ) + lK2(τ)]D−1(τ)dτ

−
x2∫

x0

K(τ)D−1(τ)dτ ∀x2 ∈ [x0, l[.

(1.2.33)

Which is obvious in view of (1.2.8). Bearing in mind that

K1(l) + lK2(l) = K(l) = 0
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and, hence,

lim
τ→l−

K1(τ) + lK2(τ)

(l − τ)k+1
= lim

τ→l−
−f(τ)τ + lf(τ)

−(k + 1)(l − τ)k

= lim
τ→l−

−f(τ)

(k + 1)(l − τ)k−1
= lim

ξ→0+

−f(l − ξ)

(k + 1)ξk−1
,

in the right hand side of (1.2.33) we prove the boundedness as x2 → l− of the first integral
like the proof of (1.2.29). Therefore, taking into account that we assumed the validity of
(1.2.25), the left hand side is bounded for x2 ∈ [l − ε, l[, since such is the right hand side
of (1.2.33). But the necessary condition for it is K2(l) = 0. ¤

Finally, let us note, that (1.2.25) implies

x0∫

x2

K(τ)D−1(τ)dτ ∈ C([0, x0]) (C([x0, l])) .

Corollary 1.2.3 Under assumptions of Lemma 1.2.2 we have

lim
x2→0+

x2

x2∫

x0

K(τ)D−1(τ)dτ = 0, (1.2.34)

x2∫

x0

K(τ)τD−1(τ)dτ ∈ C([0, x0]), (1.2.35)

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ = 0,

x2∫

x0

K(τ)(l − τ)D−1(τ)dτ ∈ C([x0, l]). (1.2.36)

Lemma 1.2.4 If I0
0 = +∞, I0

1 < +∞ (I l
0 = +∞, I l

1 < +∞), then

∣∣∣∣∣∣
x2

x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤ const < +∞ ∀x2 ∈]0, x0] (1.2.37)




∣∣∣∣∣∣
(x2 − l)

x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
≤ const < +∞ ∀x2 ∈ [x0, l[


 . (1.2.38)
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Proof. Evidently,

∣∣∣∣∣∣
x2

x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

x0∫

x2

K(τ)
x2

τ
τD−1(τ)dτ

∣∣∣∣∣∣

≤ C

x0∫

0

τD−1(τ)dτ = const < +∞ ∀x2 ∈]0, x0],

because of

|K(τ)| ≤ C, τ ∈ [0, x0]; 0 <
x2

τ
≤ 1,

since 0 < x2 ≤ τ ≤ x0.

Taking into account that

0 <
l − x2

l − τ
≤ 1,

because of

0 < x0 ≤ τ ≤ x2,

i.e.,

l > l − x0 ≥ l − τ ≥ l − x2 > 0,

we analogously prove (1.2.38). ¤

Lemma 1.2.5 If I0
0 = +∞, I0

1 < +∞ (I l
0 = +∞, I l

1 < +∞), and either D ∈ C2([0, l[)
(D ∈ C2(]0, l])) or the value of the first or second derivative of D tends to infinity as
x2 → 0 + (l−), and f is bounded in some neighbourhood ]0, ε] ([l − ε, l[) of 0(l), then

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ

=

{
0 if K(0) = 0; if K(0) 6= 0 and either D′(0) 6= 0

or D′(0) = ∞ or D′(0) = 0 and D′′(0) = ∞.
(1.2.39)

The case D′(0) = 0, D′′(0) = 0, K(0) 6= 0 and the case D′(0) = 0, D′′(0) 6= 0 cannot
occur;


 lim

x2→l−
(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ

=

{
0 if K(l) = 0; if K(l) 6= 0 and either D′(l) 6= 0

or D′(l) = ∞ or D′(l) = 0 and D′′(l) = ∞.

)
(1.2.40)
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The case D′(l) = 0, D′′(l) = 0, K(l) 6= 0 and the case D′(l) = 0, D′′(l) 6= 0 cannot occur;
Proof. Let us note that because of I0

0 = +∞, evidently, D(0) = 0. If K(0) = 0, then
according to Lemma 1.2.2 for k = 0 we have (1.2.25), and, hence,

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ = 0.

Let, now, K(0) 6= 0. By virtue of

K ′(x2) = K2(x2), (1.2.41)

we obtain

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ = lim
x2→0+

x2
2K(x2)

D(x2)

= lim
x2→0+

2x2K(x2) + x2
2K2(x2)

D′(x2)

=





0 if D′(0) 6= 0 or D′(0) = ∞;

lim
x2→0+

2K(x2) + 4x2K2(x2) + x2
2f(x2)

D′′(x2)
if D′(0) = 0.

(1.2.42)

Therefore, when D′(0) = 0, we obtain

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ =





0 if D′′(0) = ∞;

2K(0)

D′′(0)
if D′′(0) 6= 0,

and

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ = ∞ if D′′(0) = 0, K(0) 6= 0. (1.2.43)

But D′′(0) cannot be equal to 0, when K(0) 6= 0, otherwise (1.2.37) and (1.2.43) will
contradict each other. Hence, (1.2.43) is excluded. Also the case D′(0) = 0, D′′(0) 6= 0
cannot occur since, otherwise,

lim
τ→0+

τ γτD−1(τ) = lim
τ→0+

(γ + 1)τ γ

D′(τ)
= lim

τ→0+

(γ + 1)γτ γ−1

D′′(τ)
=

2

D′′(0)
> 0 for γ = 1.

Hence, I0
1 = +∞. But the latter contradicts the assumption I0

1 < +∞.
Similarly, we can prove (1.2.40). If K(l) = 0, then according to to Lemma 1.2.2 for

k = 0 we have (1.2.25), and, hence,

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ = 0.
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Let, now, K(l) 6= 0. Then, by virtue of (1.2.41), we obtain

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ = lim
x2→l−

−(x2 − l)2K(x2)

D(x2)

= − lim
x2→l−

2(x2 − l)K(x2) + (x2 − l)2K2(x2)

D′(x2)

=





0 if D′(l) 6= 0 or D′(l) = +∞;

− lim
x2→l−

2K(x2) + 4(x2 − l)K2(x2) + (x2 − l)2f(x2)

D′′(x2)
if D′(l) = 0.

(1.2.44)

Hence, when D′(l) = 0, we have

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ =





0 if D′′(l) = ∞;

−2K(l)

D′′(l)
if D′′(l) 6= 0;

and

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ = ∞ if D′′(l) = 0, K(l) 6= 0. (1.2.45)

But D′′(l) can not be equal to 0, when K(l) 6= 0, otherwise (1.2.38) and (1.2.45) will
contradict each other. Hence, (1.2.45) is excluded. Because of I l

1 < +∞, the case D′(l) =
0, D′′(l) 6= 0 cannot occur as well. ¤

Lemma 1.2.6 If K(0) = 0 (K(l) = 0), I0
1 = +∞ and I0

2 < +∞ (I l
1 = +∞, I l

2 < +∞),
then (1.2.37) ((1.2.38)) is valid.

Proof. Evidently, by virtue of I0
2 < +∞, we have

∣∣∣x2

x0∫

x2

K(τ)D−1(τ)dτ
∣∣∣ =

∣∣∣
x0∫

x2

K(τ)

τ

x2

τ
τ 2D−1(τ)dτ

∣∣∣

≤ C

x0∫

0

τ 2D−1(τ)dτ

= const < +∞ ∀x2 ∈]0, x0],

because of

0 <
x2

τ
≤ 1
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(since 0 < x2 ≤ τ ≤ x0) and

∣∣∣K(τ)

τ

∣∣∣ < C ∀τ ∈]0, x0] (1.2.46)

(since lim
τ→0+

K(τ)
τ

= K2(0) < +∞).

Similarly, by virtue of I l
2 < +∞, we have

∣∣∣(x2 − l)

x0∫

x2

K(τ)D−1(τ)dτ
∣∣∣ =

∣∣∣
x0∫

x2

K(τ)

l − τ

x2 − l

l − τ
(l − τ)2D−1(τ)dτ

∣∣∣

≤ C

l∫

x0

(l − τ)2D−1(τ)dτ

= const < +∞ ∀x2 ∈ [x0, l[,

because of

0 <
l − x2

l − τ
≤ 1

(since x0 ≤ τ ≤ x2 < l, i.e., 0 < l − x2 ≤ l − τ) and

∣∣∣K(τ)

l − τ

∣∣∣ < C ∀τ ∈ [x0, l[ (1.2.47)

(since lim
τ→l−

K(τ)
l−τ

= − lim
τ→l−

K ′(τ) = − lim
τ→l−

K2(τ) = −K2(l) < +∞). ¤

Lemma 1.2.7 Let either D ∈ C3([0, l[) (D ∈ C3(]0, l])) or the value of the first, second,
or third order derivative of D tends to infinity as x2 → 0+ (l−). Let further f be bounded
with its first derivative in a neighbourhood ]0, ε[ ( ]l − ε, l[ ) of the point x2 = 0 (x2 = l).
If I0

1 = +∞ and I0
2 < +∞ (I l

1 = +∞ and I l
2 = +∞), then

1.

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ =





0 when D′(0) 6= 0 or D′(0) = ∞
or D′(0) = 0 and D′′(0) = ∞;

2K(0)

D′′(0)
when D′(0) = 0

and D′′(0) 6= 0;
∞ when D′(0) = 0 and D′′(0) = 0

(1.2.48)




lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ =





0 when D′(l) 6= 0 or D′(l) = ∞)
or D′(l) = 0 and D′′(l) = ∞;

−2K(l)

D′′(l)
when D′(l) = 0

and D′′(l) 6= 0;
∞ when D′(l) = 0 and D′′(l) = 0




(1.2.49)
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if
K(0) 6= 0 (K(l) 6= 0);

2.

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ

=





0 when K2(0) = 0; when K2(0) 6= 0 and
either D′(0) 6= 0 or D′(0) = ∞
or D′(0) = 0 and D′′(0) = ∞
or D′(0) = 0 and D′′(0) 6= 0
or D′(0) = 0, D′′(0) = 0, and D′′′(0) = ∞

(1.2.50)

(the case D′(0) = 0, D′′(0) = 0, D′′′(0) = 0, K2(0) 6= 0 and the case D′(0) = 0, D′′(0) =
0, D′′′(0) 6= 0 cannot occur)


 lim

x2→l−
(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ

=





0 when K2(l) = 0; when K2(l) 6= 0 and
either D′(l) 6= 0 or D′(l) = ∞
or D′(l) = 0 and D′′(l) = ∞
or D′(l) = 0 and D′′(l) 6= 0
or D′(l) = 0, D′′(l) = 0, and D′′′(l) = ∞

(1.2.51)

(the case D′(l) = 0, D′′(l) = 0, D′′′(l) = 0, K2(l) 6= 0 and the case D′(l) = 0, D′′(l) = 0,
D′′′(l) 6= 0 cannot occur)
if

K(0) = 0 (K(l) = 0).

Proof. In both the cases the reasonings (1.2.42), (1.2.43) are valid since by their
derivation it was not used that I0

1 (I l
1) < +∞. Therefore, (1.2.48) easily follows from

(1.2.42) if K(0) 6= 0. If K(0) = 0, when D′(0) = 0, from (1.2.42) we get

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ =





0 if D′′(0) 6= 0;

lim
x2→0+

6K2(x2) + 6x2f(x2) + x2
2f
′(x2)

D′′′(x2)
if D′′(0) = 0.

Hence, when D′(0) = 0, D′′(0) = 0, we have

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ =





0 if D′′′(0) = ∞;
6K2(0)

D′′′(0)
if D′′′(0) 6= 0,

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ = ∞ if D′′′(0) = 0, K2(0) 6= 0. (1.2.52)
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But D′′′(0) and K2(0) 6= 0 cannot take place at the same time, otherwise (1.2.52) and
(1.2.37) (see Lemma 1.2.6 which has been proved under the assumptions I0

1 = +∞,
I0
2 < +∞, without any requirment of differentiability of D(x2)) will contradict each

other. Thus, (1.2.52) is excluded. Also the case D′(0) = 0, D′′(0) = 0, D′′′(0) 6= 0 cannot
occur since in this case I0

2 = +∞ which is in contradiction with our assumption I0
2 < +∞.

Indeed,

lim
τ→0+

τ γτ 2D−1(τ) = lim
τ→0+

(γ + 2)τ γ+1

D′(τ)

= lim
τ→0+

(γ + 2)(γ + 1)τ γ

D′′(τ)
= lim

τ→0+

(γ + 2)(γ + 1)γτ γ−1

D′′′(τ)
=

6

D′′′(0)
> 0 for γ = 1.

But it means that I0
1 = +∞. When K2(0) = 0, then according to the Lemma 1.2.2 for

k = 1, (1.2.25) holds iff (1.2.20) is valid. Therefore,

lim
x2→0+

x2

x0∫

x2

K(τ)D−1(τ)dτ = 0 if K2(0) = 0.

So, (1.2.50) is proved.

Similarly, in both the cases the reasonings (1.2.44) are valid. Therefore, (1.2.49) easily
follows if K(l) 6= 0. If K(l) = 0, when D′(l) = 0, from (1.2.44) we get

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ

=





0 if D′′(l) 6= 0;

− lim
x2→0+

6K2(x2) + 6(x2 − l)f(x2) + (x2 − l)2f ′(x2)

D′′′(x2)
if D′′(l) = 0.

Hence, when D′(l) = 0, D′′(l) = 0, we have

lim
x2→l−

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ =





0 if D′′′(l) = ∞;

−6K2(l)

D′′′(l)
if D′′′(l) 6= 0,

lim
x2→l−

(x2 − l)

x0∫

x2

K(τ)D−1(τ)dτ = ∞ if D′′′(l) = 0, K2(l) 6= 0. (1.2.53)

But D′′′(l) and K2(l) 6= 0 cannot take place at the same time, otherwise (1.2.53) and
(1.2.38) (see Lemma 1.2.6 which has been proved under the assumptions I l

1 = +∞,
I l
2 < +∞, without any requirement of differentiability of D(x2)) will contradict each

other. Thus, (1.2.53) is excluded. Because of I l
2 < +∞, the case D′(l) = 0, D′′(l) = 0,
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D′′′(l) 6= 0 cannot occur as well. When K2(l) = 0, then according to the Lemma 1.2.2 for
k = 1, (1.2.25) holds iff (1.2.20) is valid. Therefore,

lim
x2→0+

(x2 − l)

x2∫

x0

K(τ)D−1(τ)dτ = 0 if K2(l) = 0.

So, (1.2.51) is proved. ¤

Lemma 1.2.8 If I0
1 = +∞ and I0

2 < +∞ (I l
1 = +∞ and I l

2 < +∞), then

lim
x2→0+

x0∫

x2

K(τ)τD−1(τ)dτ =

x0∫

0

K(τ)τD−1(τ)dτ < +∞ (1.2.54)


 lim

x2→l−

x2∫

x0

(l − τ)K(τ)D−1(τ)dτ =

l∫

x0

(l − τ)K(τ)D−1(τ)dτ < +∞

 (1.2.55)

iff
K(0) = 0 (K(l) = 0). (1.2.56)

Proof. By virtue of (1.2.46), for every τ ∈]0, x0] we have

|K(τ)τD−1(τ)dτ | =
∣∣∣K(τ)

τ

∣∣∣ |τ 2D−1(τ)| ≤ C|τ 2D−1(τ)|. (1.2.57)

But the right hand side of (1.2.57) is integrable on ]0, x0[, because of I0
2 < +∞. There-

fore, the left hand side of (1.2.57) will be also integrable on ]0, x0[, and so, we arrive at
(1.2.54). The necessity of (1.2.56) can be shown with the help of (1.2.57) in a usual way
by contradiction (see e.g., (1.2.30)).

Similarly, by virtue of (1.2.47), for every τ ∈ [x0, l[ we have

|K(τ)(l − τ)D−1(τ)dτ | =
∣∣∣K(τ)

l − τ

∣∣∣ |(l − τ)2D−1(τ)| ≤ C|(l − τ)2D−1(τ)|. (1.2.58)

But the right hand side of (1.2.58) is integrable on ]x0, l[, because of I l
2 < +∞. There-

fore, the left hand side of (1.2.58) will be also integrable on ]x0, l[, and so, we arrive at
(1.2.55). The necessity of (1.2.56) can be shown with the help of (1.2.58) in a usual way
by contradiction (see e.g., (1.2.30)). ¤

Lemma 1.2.9 If either I0
1 = +∞ and I0

2 < +∞ (I l
1 = +∞ and I l

2 < +∞), and (1.2.15)
is violated or I0

k = +∞ and I0
k+1 < +∞ (I l

k = +∞ and I l
k+1 < +∞), k ∈ {2, 3, . . .}, and

(1.2.20) is violated, then

lim
x2→0+

(x2→l−)

x0∫

x2

(τ − x2)(M2w)(τ)D−1(τ)dτ = ∞.
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Proof: Let first (M2w)(0) > 0, then on the one hand, both (1.2.15) and (1.2.20) are
violated for k ≥ 1 and on the other hand, there exists an ε = const > 0 such that

(M2w)(x2) ≥ C̃ = const > 0 ∀x2 ∈ [0, ε].

After substitution τ − x2 = t, we get

lim
x2→0+

x0∫

x2

(τ − x2)(M2w)(τ)D−1(τ)dτ

= lim
x2→0+

x0−x2∫

0

t(M2w)(x2 + t)D−1(x2 + t)dt

= lim
x2→0+

ε/2∫

0

t(M2w)(x2 + t)D−1(x2 + t)dt

+

x0∫

ε/2

t(M2w)(t)D−1(t)dt = +∞,

since

lim
x2→0+

ε/2∫

0

t(M2w)(x2 + t)D−1(x2 + t)dt

≥ C̃ lim
x2→0+

ε/2∫

0

tD−1(x2 + t)dt = +∞, x2, t ∈ [0, ε/2[,

because of x2 + t < ε and I1 = +∞.
Let, now, (M2w)(0) = 0 but (Q2w)(0) > 0, i.e., (1.2.20) is violated for k ≥ 2 and there

exists an ε = const > 0 such that (Q2w)(x2) ≥ C̃ > 0 ∀x2 ∈ [0, ε]. Similarly, in view of

x2(Q2w)(x2) = (M2w)(x2) + K1(x2),

we obtain

lim
x2→0+

x0∫

x2

(τ − x2)(M2w)(τ)D−1(τ)dτ

= lim
x2→0+

x0−x2∫

0

t[(t + x2)(Q2w)(x2 + t)−K1(x2 + t)]D−1(x2 + t)dt
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= lim
x2→0+

x0−x2∫

0

t(t + x2)(Q2w)(x2 + t)D−1(x2 + t)dt

− lim
x2→0+

x0−x2∫

0

tK1(x2 + t)D−1(x2 + t)dt

= lim
x2→0+

ε/2∫

0

t(t + x2)(Q2w)(x2 + t)D−1(x2 + t)dt

+

x0∫

ε/2

t2(Q2w)(t)D−1(t)dt−
x0∫

0

tK1(t)D
−1(t)dt = +∞,

since

lim
x2→0+

ε/2∫

0

t(t + x2)(Q2w)(x2 + t)D−1(x2 + t)dt

≥ C̃ lim
x2→0+

ε/2∫

0

t(t + x2)D
−1(x2 + t)dt = +∞, x2, t ∈ [0, ε/2[,

because of I0
2 = +∞ and

∣∣∣∣∣∣∣

x2∫

ε/2

t2(Q2w)(t)D−1(t)dt

∣∣∣∣∣∣∣
< +∞,

∣∣∣∣∣∣

x2∫

0

tK1(t)D
−1(t)dt

∣∣∣∣∣∣
< +∞

(the finiteness of the last term readily follows from (1.2.31)). Using substitution τ −x2 =
t− l, the case x2 → l− we consider analogously. Thus, Lemma 1.2.9 is completely proved.
¤

Proof of Theorem 1.2.1.
Case I is evident in view of (1.2.7), (1.2.6), and I0

0 (I l
0) < +∞.

Case II. I0
0 = +∞, I0

1 < +∞ (I l
0 = +∞, I l

1 < +∞). Then, in view of Lemma 1.2.4,
the estimate (1.2.37) ((1.2.38)) is valid. Taking into account the fact that the other term

−
x2∫

x0

τK(τ)D−1(τ)dτ
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in (1.2.7) is bounded on ]0, x0] ([x0, l[) because of I0
1 < +∞ (I l

1 < +∞), we conclude that

w(x2) = O(1) as x2 → 0 + (l−).

Moreover, if (1.2.13) is fulfilled then (1.2.14) is valid. Indeed, from Lemma 1.2.5 it follows
that

x2

x2∫

x0

K(τ)D−1(τ)dτ ∈ C([0, l[) (C(]0, l])) .

Obviously, the other term

−
x2∫

x0

τK(τ)D−1(τ)dτ

of (1.2.7) is also continuous on [0, l[ (]0, l]) and hence (1.2.14) is proved.
If (1.2.15) is fulfilled, then in view of (1.2.6), (1.2.25), obviously, w,2 is bounded on

]0, l[ and, moreover, continuous on [0, l[ (]0, l]) (see a note after proof of Lemma 1.2.2).
So, (1.2.16) is proved. The necessity of condition (1.2.15) for (1.2.16) readily follows from
(1.2.6) and Lemma 1.2.2 (see (1.2.25), (1.2.15)).

Case III. I0
1 = +∞, I0

2 < +∞ (I l
1 = +∞, I l

2 < +∞). Then, according to Corollary
1.2.3 for the case k = 1 (see also Lemma 1.2.2), from (1.2.7) we get (1.2.17) and, moreover
(1.2.14). Let us note that in order to consider x2 → l− we represent (1.2.7) as follows

w =

x2∫

x0

[(x2 − l) + (l − τ)]K(τ)D−1(τ)dτ + C3(x2 − x0) + C4.

The necessity of condition (1.2.15) for (1.2.27) follows from Lemma 1.2.9.
Case IV. Proof immediately follows from Corollary 1.2.3 and Lemma 1.2.9 for the case

k ≥ 2.
Case V is evident in view of Lemma 1.2.2 (see (1.2.6), (1.2.25), (1.2.15), (1.2.20)). ¤

Remark 1.2.10 In Theorem 1.2.1 the existence of k was assumed such that I0
k < +∞.

If I0
k = +∞ ∀k, and K(τ) := K1(τ) + τK2(τ) is analytic in a right (left) neighbourhood

of τ = 0 (l), then, obviously, w and w,2 are unbounded when x2 → 0 + (l−). We prove
this by contradiction. Indeed, e.g., consider (1.2.6):

w,2(x2) =

x2∫

x0

K(τ)D−1(τ)dτ + C3.

Let this derivative be bounded when x2 → 0+, and K(0) = 0; the last condition is necessary
for the boundednes of this derivative. Since the analytic function K(τ) ≡/ 0, there exists
k such that

K(j)(0) = 0, j = 0, 1, ..., k − 1, K(k)(0) 6= 0.
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Further,

w,2(x2) =

x2∫

x0

K(τ)

τ k
τ kD−1(τ)dτ + C3,

where

lim
τ→0+

K(τ)

τ k
=

K(k)(0)

k!
6= 0.

Then, taking into account the boundedness of w,2, similarly to the proof of Lemma 1.2.2
(see (1.2.30)) we can show

∣∣∣∣∣∣

ε∫

x2

τ kD−1(τ)dτ

∣∣∣∣∣∣
< +∞ for x2 ∈]0, ε],

which would be in contradiction with Ik = +∞ ∀k. Thus, w,2 is unbounded when x2 → 0+.

Remark 1.2.11 In the case of the cusped beam with only one cusped end x2 = 0 Theorem
1.2.1 formulated in the slightly different form is proved in [54] (see also [46]). In our
general case of two cusped ends it looks like

Theorem 1.2.12 Let f ∈ L(]0, l[), D ∈ C2(]0, l[) ∩ C([0, l]), and w ∈ C4(]0, l[) be a
solution of equation (1.2.1). Then:

1) If I0
1 (I l

1) < +∞, then w ∈ C([0, l[)(C(]0, l])).

[For I0
0 (I l

0) = +∞, we additionally assume that either D ∈ C2([0, l[) (C2(]0, l])) or the
value of the first or second order derivative of D tends to infinity as x2 → 0 + (l−) and
f is bounded in some neighbourhood ]0, ε]([l − ε, l[) of 0(l).]

2) If I0
1 (I l

1) = +∞ and I0
2 (I l

2) < +∞, then w ∈ C([0, l[) (C(]0, l])) iff

(M2w)(0) = 0 ((M2w)(l) = 0). (1.2.59)

[We additionally assume that either

D ∈ C3([0, l[) or the value of the first, second, or third order derivative

of D tends to infinity as x2 → 0 + (l−). Further, we suppose that

(see Remark 1.2.13 below) f is bounded with its first derivative (1.2.60)

in some right (left) neighbourhood of the point 0 (l).]

If (1.2.59) is violated, then w is unbounded as x2 → 0 + (l−).

3) If I0
k(I l

k) = +∞ and I0
k+1(I

l
k+1) < +∞ for a fixed k ∈ {2, 3, . . .}, then w ∈

C([0, l[) (C(]0, l])) iff
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(M2w)(0) = 0 ((M2w)(l) = 0) and (Q2w)(0) = 0 ((Q2w)(l) = 0). (1.2.61)

[We additionally assume that f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, . . . , k − 2,

and f (k−1) is continuous at the point 0(l).] (1.2.62)

If (1.2.61) is violated, then w is unbounded as x2 → 0 + (l−).

4) If I0
0 (I l

0) < +∞, then w,2 ∈ C([0, l[) (C(]0, l])).

5) If I0
0 (I l

0) = +∞ and I0
1 (I l

1) < +∞, then w,2 ∈ C([0, l[) (C(]0, l])) iff (1.2.59)
holds.

If (1.2.59) is violated, then w,2 is unbounded as x2 → 0 + (l−).

6) If I0
k (I l

k) = +∞ and I0
k+1(I

l
k+1) < +∞ for a fixed k ∈ {1, 2, . . .}, then w,2 ∈

C([0, l[) C(]0, l]) iff (1.2.61) holds.

[We additionally assume that f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, . . . , k − 2 (if k ≥ 2),
f (k−1)(x2) is continuous at the point 0 (l) (if k ≥ 1).]

If (1.2.61) is violated, then w,2 is unbounded as x2 → 0 + (l−).

7) (M2w)(x2) ∈ C([0, l]).

8) (Q2w)(x2) ∈ C([0, l]).

Remark 1.2.13 In Theorem 1.2.12, the restrictions on f are not substantial; we could
take even f ≡ 0 on [0, l]. On the other hand, the above restrictions can be weakened without
influence on the kernel of this statement which consists in the clarification of the question
of boundedness/unboundedness of w, w,2,M2w and Q2w as x2 → 0 + (l−) in dependence
on the behaviour (i.e., the nature of vanishing) of D(x2) at the point x2 = 0 (l).

Remark 1.2.14 The unboundedness of w,2 geometrically means that the axis of the beam
is tangent to the axis x3 which mechanically seems hard to realize, but acceptable in some
sense. The unboundedness of the deflection is not acceptable from the point of view of
mechanics but can be justified like the case of concentrated forces.

Remark 1.2.15 Substituting (1.2.5) in (1.2.7), we rewrite (1.2.7) in the following two
forms:

w(x2) = (C1x0 − C2)

x2∫

x0

(x2 − τ)D−1(τ)dτ −
x2∫

x0

(x2 − τ)

τ∫

x0

f(t)tdtD−1(τ)dτ

− C1

x2∫

x0

(x2 − τ)τD−1(τ)dτ +

x2∫

x0

(x2 − τ)

τ∫

x0

f(t)dtτD−1(τ)dτ

+ C3(x2 − x0) + C4, (1.2.63)
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w(x2) = [C1(x0 − l) + C1l − C2]

x2∫

x0

[(x2 − l) + (l − τ)] D−1(τ)dτ

−
x2∫

x0

(x2 − τ)

τ∫

x0

f(t)tdtD−1(τ)dτ − C1

x2∫

x0

[(x2 − l) + (l − τ)] τD−1(τ)dτ

+

x2∫

x0

(x2 − τ)

τ∫

x0

f(t)dtτD−1(τ)dτ + C3(x2 − x0) + C4. (1.2.64)

Introducing the notation

Ik(x2, x0) :=

x0∫

x2

tkD−1(t)dt, Ik(x2) := Ik(x2, l), Ik := Ik(0), (1.2.65)

x2 ∈]0, x0], x0 ∈]0, l[,

Ik(x0, x2) :=

x2∫

x0

(l − t)kD−1(t)dt, Ik(x2) := Ik(0, x2), Ik := Ik(l), (1.2.66)

x2 ∈ [x0, l[, x0 ∈]0, l[,

from (1.2.63) and (1.2.64) we get

w(x2) = −(C1x0 − C2) [x2I0(x2, x0)− I1(x2, x0)] + C1 [x2I1(x2, x0)− I2(x2, x0)]

+ C3(x2 − x0) + C4 −
x2∫

x0

(x2 − τ)

τ∫

x0

f(t)tdtD−1(τ)dτ (1.2.67)

+

x2∫

x0

(x2 − τ)

τ∫

x0

f(t)dtτD−1(τ)dτ

and

w(x2) = [C1(x0 − l)− C2]
[
(x2 − l)I0(x0, x2) + I1(x0, x2)

]

+ C1

[
(x2 − l)I1(x0, x2) + I2(x0, x2)

]
+ C3(x2 − x0) + C4 (1.2.68)

−
x2∫

x0

(x2 − τ)

τ∫

x0

f(t)tdtD−1(τ)dτ +

x2∫

x0

(x2 − τ)

τ∫

x0

f(t)dtτD−1(τ)dτ,

respectively.
Using obvious relations

x2Ik,2(x2, x0) = Ik+1,2(x2, x0), (l − x2)I
k,2 (x0, x2) = Ik+1,2 (x0, x2), k = 0, 1, . . . , .
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after differentiation of (1.2.67) and (1.2.68), we obtain

w,2 (x2) = −(C1x0 − C2)I0(x2, x0) + C1I1(x2, x0) + C3 (1.2.69)

−
x2∫

x0

τ∫

x0

f(t)tdtD−1(τ)dτ +

x2∫

x0

τ∫

x0

f(t)dtτD−1(τ)dτ,

(M2w)(x2) = −D(x2)w,22 (x2) = −(C1x0 − C2) + C1x2

+

x2∫

x0

f(t)tdt− x2

x2∫

x0

f(t)dt, (1.2.70)

(Q2w)(x2) = C1 −
x2∫

x0

f(t)dt, (1.2.71)

and

w,2 (x2) = [C1(x0 − l)− C2] I
0(x0, x2) + C1I

1(x0, x2) + C3

−
x2∫

x0

τ∫

x0

f(t)tdtD−1(τ)dτ +

x2∫

x0

τ∫

x0

f(t)dtτD−1(τ)dτ, (1.2.72)

(M2w)(x2) = −D(x2)w,22 (x2) = − [C1(x0 − l)− C2]− C1(l − x2)

+

x2∫

x0

f(t)tdt− x2

x2∫

x0

f(t)dt, (1.2.73)

(Q2w)(x2) = C1 −
x2∫

x0

f(t)dt, (1.2.74)

respectively.
On the other hand, evidently, (1.2.71) and (1.2.74) coincide with (1.2.4); (1.2.70) and

(1.2.73) coincide with (1.2.5); finally, from (1.2.6) we could obtain (1.2.69) and (1.2.72)
analogously to (1.2.67) and (1.2.68).

If f ≡ 0, then from (1.2.67), (1.2.69)-(1.2.71) and (1.2.68), (1.2.72)-(1.2.74) we have

w(x2) = −(C1x0 − C2) [x2I0(x2, x0)− I1(x2, x0)]

+ C1 [x2I1(x2, x0)− I2(x2, x0)] + C3(x2 − x0) + C4, (1.2.75)

w,2 (x2) = −(C1x0 − C2)I0(x2, x0) + C1I1(x2, x0) + C3, (1.2.76)

(M2w)(x2) = −D(x2)w,22 (x2) = −(C1x0 − C2) + C1x2, (1.2.77)

(Q2w)(x2) = C1, (1.2.78)
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and

w(x2) = [C1(x0 − l)− C2]
[
(x2 − l)I0(x0, x2) + I1(x0, x2)

]
(1.2.79)

+ C1

[
(x2 − l)I1(x0, x2) + I2(x0, x2)

]
+ C3(x2 − x0) + C4,

w,2 (x2) = [C1(x0 − l)− C2] I
0(x0, x2) + C1I

1(x0, x2) + C3, (1.2.80)

(M2w)(x2) = −D(x2)w,22 (x2) = − [C1(x0 − l)− C2]− C1(l − x2), (1.2.81)

(Q2w)(x2) = C1, (1.2.82)

respectively.
Taking into account

M2(0) = C2 − C1x0, M2(l) = C2 − C1(x0 − l),

we rewrite (1.2.75)-(1.2.77) and (1.2.79)-(1.2.81) as follows

w(x2) = x2 [M2(0)I0(x2, x0) + C1I1(x2, x0)]−M2(0)I1(x2, x0)

− C1I2(x2, x0) + C3(x2 − x0) + C4, (1.2.83)

w,2 (x2) = M2(0)I0(x2, x0) + C1I1(x2, x0) + C3, (1.2.84)

(M2w)(x2) = M2(0) + C1x2, (1.2.85)

and

w(x2) = (l − x2)
[
M2(l)I

0(x0, x2)− C1I
1(x0, x2)

]−M2(l)I
1(x0, x2)

+ C1I
2(x0, x2) + C3(x2 − x0) + C4, (1.2.86)

w,2 (x2) = −M2(l)I
0(x0, x2) + C1I

1(x0, x2) + C3, (1.2.87)

(M2w)(x2) = M2(l)− C1(l − x2), (1.2.88)

where

C1 = (Q2w)(x2) =: Q2 = const. (1.2.89)

Let us note, that

x0∫

x2

K(τ)τ kD−1(τ)dτ ∼ K(0)Ik(x2, x0) as x2 → 0+, K(0) 6= 0;




x0∫

x2

K(τ)(l − τ)kD−1(τ)dτ ∼ K(l)Ik(x0, x2) as x2 → l−, K(l) 6= 0



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when
Ik(x2, x0) → +∞ as x2 → 0+

(
Ik(x0, x2) → +∞ as x2 → l−)

,

since, e.g.,

lim
x2→0+

x0∫
x2

K(τ)τ kD−1(τ)dτ

K(0)Ik(x2, x0)
= lim

x2→0+

K(x2)x
k
2D

−1(x2)

K(0)xk
2D

−1(x2)
= 1.

At last we prove the following

Lemma 1.2.16 Let either D ∈ Ck+2([0, l[)
(
Ck+2(]0, l])

)
, k = {0, 1, . . . .}, or there exist

such j (1 ≤ j ≤ k + 2) that

D ∈ Cj−1([0, l[), Dj−1(0) = 0, and Dj(0) = ∞
(
D ∈ Cj−1(]0, l]), Dj−1(l) = 0, and Dj(l) = ∞)

.

If

Ik(0, x0) = +∞ and Ik+1(0, x0) < +∞ for a fixed k ∈ {0, 1, . . . .}, x0 ∈]0, l[

(
Ik(x0, l) = +∞ and Ik+1(x0, l) < +∞ for a fixed k ∈ {0, 1, . . . .}, x0 ∈]0, l[

)
,

then
x2Ik(x2, x0) ≤ Ik+1(x2, x0) < Ik+1(0, x0) < +∞ ∀x2 ∈]0, x0](

(l − x2)I
k(x0, x2) ≤ Ik+1(x0, x2) < Ik+1(x0, 0) < +∞ ∀x2 ∈ [x0, l[

)
,

and moreover,

lim
x2→0+

x2Ik(x2, x0)

=





0 if D(j)(0) = 0 ∀j ∈ {1, 2, . . . , k + 1} and D(k+2)(0) = ∞;
or if k = 0 and either D′(0) 6= 0 or D′(0) = ∞;
or if k ≥ 1 and D(j)(0) = 0 ∀j ∈ {1, 2, . . . , i}
for a fixed i ∈ {1, 2, . . . , k} and either
D(i+1)(0) 6= 0 or D(i+1)(0) = ∞




lim
x2→l−

(l − x2)I
k(x0, x2)

=





0 if D(j)(l) = 0 ∀j ∈ {1, 2, . . . , k + 1} and D(k+2)(l) = ∞;
or if k = 0 and either D′(l) 6= 0 or D′(l) = ∞;
or if k ≥ 1 and D(j)(l) = 0 ∀j ∈ {1, 2, . . . , i}
for a fixed i ∈ {1, 2, . . . , k} and either
D(i+1)(l) 6= 0 or D(i+1)(l) = ∞




.

The cases
D(j)(0) = 0 ∀j ∈ {1, 2, . . . , k + 2}
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and
D(j)(0) = 0 ∀j ∈ {1, 2, . . . , k + 1}, D(k+2)(0) 6= 0

(
D(j)(l) = 0 ∀j ∈ {1, 2, . . . , k + 2}

and
D(j)(l) = 0 ∀j ∈ {1, 2, . . . , k + 1}, D(k+2)(l) 6= 0

)

cannot hold.

Proof is evident from the following relations:

x2Ik(x2, x0) =

x0∫

x2

x2

t
tk+1D−1(t)dt ≤

x0∫

x2

tk+1D−1(t)dt = Ik+1(x2, x0) < Ik+1(0, x0) < +∞

∀x2 ∈]0, x0],

(l − x2)I
k(x0, x2) =

x2∫

x0

l − x2

l − t
(l − t)k+1D−1(t)dt ≤

x2∫

x0

(l − t)k+1D−1(t)dt = Ik+1(x0, x2)

< Ik+1(x0, l) < +∞ ∀x2 ∈ [x0, l[,

lim
x2→0+

x2Ik(x2, x0) = lim
x2→0+

Ik(x2, x0)

x−1
2

= lim
x2→0+

xk
2D

−1(x2)

x−2
2

= lim
x2→0+

xk+2
2

D(x2)
,

lim
x2→l−

(l − x2)I
k(x0, x2) = lim

x2→l−
Ik(x0, x2)

(l − x2)−1
= lim

x2→l−
(l − x2)

kD−1(x2)

(l − x2)−2
= lim

x2→l−
(l − x2)

k+2

D(x2)
.

Obviously,
D(j)(0) = 0 ∀j ∈ {1, 2, . . . , k + 2}

(
D(j)(l) = 0 ∀j ∈ {1, 2, . . . , k + 2})

cannot occur, otherwise the third (fourth) from above relations would be in contradiction
with the first (second) one.

Also the case

D(j)(0) = 0 ∀j ∈ {1, 2, . . . , k + 1}, D(k+2)(0) 6= 0

cannot occur since, otherwise,

lim
τ→0+

τ γτ k+1D−1(τ) = lim
τ→0+

τ γ+k+1

D(τ)
= lim

τ→0+

(γ + k + 1)τ γ+k

D′(τ)

= lim
τ→0+

(γ + k + 1)(γ + k)τ γ+k−1

D′′(τ)
= lim

τ→0+

(γ + k + 1)(γ + k)(γ + k − 1) · · · γτ γ−1

D(k+2)(τ)

=
(k + 2)!

D(k+2)(0)
> 0 for γ = 1,
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i.e., Ik+1(0, x0) = +∞ which contradicts the assumption Ik+1(0, x0) < +∞.
The case

D(j)(l) = 0 ∀j ∈ {1, 2, . . . , k + 1}, D(k+2)(l) 6= 0

can be considered analogously. ¤
For k = 0 and k = 1 Lemma 1.2.16 immediately follows from Lemma 1.2.5 and

Lemma 1.2.7, respectively, when f ≡ 0 and we take K(τ) ≡ 1, i.e., C1 = 0, C2 = −1, and
K(τ) = τ , i.e., C1 = −1, C2 = −x0 (K(τ) = l− τ , i.e., C1 = 1, C2 = l− x0), respectively.

1.3 Solution of boundary value problems

From Theorem 1.2.1 we conclude that:
On the cusped edge x2 = 0 (correspondingly, x2 = l) we can admit the following

classical BCs:

w = w0 (correspondingly, wl),
w,2 = w′

0 (correspondingly, w′
l)

(1.3.1)

iff I0
0 (correspondingly, I l

0) < +∞;

w,2 = w′
0 (w′

l), Q2 = Q0(Ql) iff I0
0 (I l

0) < +∞; (1.3.2)

w = w0 (wl), M2 = M0(Ml) 6= 0 iff I0
1 (I l

1) < +∞; (1.3.3)

M2 = M0(Ml), Q2 = Q0(Ql) if I0
0 (I l

0) ≤ +∞, (1.3.4)

and the following non-classical (in the sense of the bending theory) conditions (replacing
BCs):

w = w0 (wl), w,2 = O(1) when x2 → 0 + (x2 → l−) (1.3.5)

if
I0
0 (I l

0) = +∞, I0
1 (I l

1) < +∞;

w = O (1), w,2 = O(1) when x2 → 0 + (x2 → l−) (1.3.6)

if
I0
1 (I l

1) = +∞,

where w0, wl, w
′
0, w

′
l,M0,Ml, Q0, Ql are given constants, O is a Landau symbol (O(1) means

boundedness).

Theorem 1.3.1 Let the conditions of Theorem 1.2.1 be fulfilled. Then the following
BVPs are well-posed in the sense of Hadamard:

1. (1.2.1), (1.3.1)0 (1.3.1)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

2. (1.2.1), (1.3.2)0 (1.3.1)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

3. (1.2.1), (1.3.3)0 (1.3.1)l, w ∈ C4( ]0, l[ ) ∩ C1( ]0, l]) ∩ C([0, l]);

4. (1.2.1), (1.3.4)0 (1.3.1)l, w ∈ C4( ]0, l[ ) ∩ C1(]0, l]);
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5. (1.2.1), (1.3.1)0 (1.3.2)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

6. (1.2.1), (1.3.3)0 (1.3.2)l, w ∈ C4( ]0, l[ ) ∩ C1( ]0, l]) ∩ C([0, l]);

7. (1.2.1), (1.3.1)0 (1.3.3)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[ ) ∩ C([0, l]);

8. (1.2.1), (1.3.2)0 (1.3.3)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[) ∩ C([0, l]);

9. (1.2.1), (1.3.3)0 (1.3.3)l, w ∈ C4( ]0, l[ ) ∩ C([0, l]);

10. (1.2.1), (1.3.1)0 (1.3.4)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[ ).

Remark 1.3.2 Indices 0 and l at (1.3.1)-(1.3.5) mean the corresponding formulas for
the points 0 and l, respectively.

Remark 1.3.3 Actually, conditions (1.3.6) and the second of (1.3.5) are not BCs. They
are the conditions on w in a neighbourhood of the boundary point. That is why we say that
in these cases BCs disappear at the cusped end of the beam (see Remark 1.3.4 bellow).

Proof of Theorem 1.3.1. Using Theorem 1.2.1 or Theorem 1.2.12, Corollary 1.2.3,
and Lemmas 1.2.5, 1.2.7, 1.2.8, we solve all the BVPs 1-10 in the explicit form. The
uniqueness of solutions is guaranted by their construction from the general representation
(1.2.7) of the solution w of the Euler-Bernoulli equation (1.2.1) in the class C4

J(]0, l[) (see
Section 1.4 below). The continuous dependence of the solution w and of w,2 [in the case
of BVPs 3, 4, 6, 9 (7-10) with the weights

[Ik(x2, x0)]
−1 :=




x0∫

x2

tkD−1(t)dt



−1

, x2 ∈]0, x0], x0 ∈]0, l[


[

Ik(x0, x2)
]−1

:=




x2∫

x0

(l − t)kD−1(t)dt



−1

, x2 ∈ [x0, l[, x0 ∈]0, l[




by k = 1 and k = 0, respectively] on the boundary data easily follows from the explicit
representations of the solutions of BVPs. Let us recall

Ik := Ik(0), Ik(x2) := Ik(x2, l),

Ik := Ik(l), Ik(x2) := Ik(0, x2).

SOLUTION of BVP 1. Since I0
0 , I

l
0 < +∞, obviously, we can take x0 = l. Then, in

view of (1.2.6), (1.2.7), from (1.3.1)l we have

C4 = wl, C3 = w′
l.

For determination of constants C1, C2, from (1.3.1)0 we have the following algebraic
system

C1

l∫

0

τ(τ − l)D−1(τ)dτ + C2

l∫

0

τD−1(τ)dτ
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=

l∫

0

τD−1(τ)

τ∫

l

f(t)(τ − t)dtdτ − lw′
l + wl − w0,

−C1

l∫

0

(τ − l)D−1(τ)dτ − C2

l∫

0

D−1(τ)dτ

= −
l∫

0

D−1(τ)

τ∫

l

f(t)(τ − t)dtdτ + w′
l − w′

0,

which is solvable as its determinant satisfies

∆ :=




l∫

0

τD−1(τ)dτ




2

−
l∫

0

τ 2D−1(τ)dτ ·
l∫

0

D−1(τ)dτ < 0.

The last assertion follows from the Hölder inequality which is strong since τD− 1
2 (τ) and

D− 1
2 (τ) are positive on ]0, l[, and τ 2D−1(τ) and D−1(τ) differ from each other by a non-

constant factor τ 2.
SOLUTION of BVP 9. From (1.2.5), taking into account the second conditions from

(1.3.3)0, (1.3.3)l, we obtain

0∫

x0

tf(t)dt− C1x0 + C2 = M0,

−
l∫

x0

(l − t)f(t)dt + C1(l − x0) + C2 = Ml.

Solving this system, we get

C1 =

l∫

x0

f(t)dt + l−1




0∫

l

tf(t)dt + Ml −M0


 , (1.3.7)

C2 = M0 −
0∫

x0

tf(t)dt + x0

l∫

x0

f(t)dt+

+
x0

l




0∫

l

tf(t)dt + Ml −M0


 .

(1.3.8)
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Hence, in view of (1.2.5), (1.2.11), we have

K(x2) = −M2(x2) =

x2∫

x0

(x2 − t)f(t)dt +

0∫

x0

tf(t)dt−M0

−x2

l∫

x0

f(t)dt− x2

l




0∫

l

tf(t)dt + Ml −M0


 .

(1.3.9)

Further, from (1.2.7), by virtue of the first conditions from (1.3.3)0, (1.3.3)l and Lemma
1.2.5, we obtain

−
0∫

x0

τK(τ)D−1(τ)dτ − C3x0 + C4 = w0,

l∫

x0

(l − τ)K(τ)D−1(τ)dτ + C3(l − x0) + C4 = wl.

Solving this system, we get

C3 = −l−1


w0 − wl +

0∫

x0

τK(τ)D−1(τ)dτ

+

l∫

x0

(l − τ)K(τ)D−1(τ)dτ


 , (1.3.10)

C4 = −l−1
[
−x0wl − (l − x0)w0

+x0

l∫

x0

(l − τ)K(τ)D−1(τ)dτ − (l − x0)

0∫

x0

τK(τ)D−1(τ)dτ


 . (1.3.11)

Thus, the solution has the form (1.2.7) with K(τ), C3, C4 given by (1.3.9)-(1.3.11),
respectively.

If I0
0 = +∞ and I0

1 < +∞ (I l
0 = +∞ and I l

1 < +∞), then w,2 is bounded as x2 → 0+
(x2 → l−) iff M0 = 0 (Ml = 0) (see Theorem 1.2.1, the second part of Case II or Theorem
1.2.12, Case 5)).

Let us note that if either I l
1 < +∞, I0

1 = +∞ but I0
2 < +∞ and M2(0) = M0 = 0

or I0
1 < +∞, I l

1 = +∞ but I l
2 < +∞ and M2(l) = Ml = 0 or I0

1 = +∞, I l
1 = +∞ but

I0
2 < +∞, I l

2 < +∞ and M2(0) = M0 = 0, M2(l) = Ml = 0, then BVP 9 (call your



40 CHAPTER 1. CUSPED EULER-BERNOULLI BEAMS

attention to the change of the restrictions on I0
1 , I l

1) will be uniquely solvable. The proof
immediately follows from Lemmas 1.2.7 and 1.2.8. In these three cases the expressions
for Ci, i = 1, 2, 3, 4, coincide with (1.3.7), (1.3.8), (1.3.10), and (1.3.11).

Let us note that in the above three cases w,2 is unbounded as x2 → 0+ (x2 → l−)
unless (Q2w)(0) = 0 ((Q2w)(l) = 0). But nevertheless

(M2w · w,2 ) |x2=0 = 0 ((M2w · w,2 ) |x2=l = 0) .

Indeed, if Q2(0) 6= 0, then taking into account (1.2.6), (1.2.3), we have

lim
x2→0+

(M2w)(x2) · w,2 (x2) = lim
x2→0+

w,2

M−1
2

= lim
x2→0+

M2 ·D−1

M−2
2 ·Q2

= lim
x2→0+

M3
2

D ·Q2

= lim
x2→0+

3M2
2 ·Q2

D′ ·Q2 −D · f .

Hence,

lim
x2→0+

(M2w)(x2) · w,2 (x2) = 0 when D′(0) 6= 0 or D′(0) = ∞.

The same holds when either D′(0) 6= 0, D′′(0) 6= 0 or D′(0) = 0, D′′(0) = 0, D′′′(0) = ∞,
what follows from

lim
x2→0+

(M2w)(x2) · w,2 (x2) = lim
x2→0+

6M2 ·Q2 − 3M2
2 · f

D′′ ·Q2 − 2D′ · f −D · f ′

and

lim
x2→0+

(M2w)(x2) · w,2 (x2) = lim
x2→0+

6Q2
2 − 12M2 · f − 3M2

2 · f ′
D′′′ ·Q2 − 3D′′ · f − 3D′ · f ′ −D · f ′′ ,

respectively.

As it was already shown (see Lemma 1.2.7, when K(0) = 0) the case D′(0) = 0,
D′′(0) = 0, D′′′(0) = 0 (because of (Q2w)(0) 6= 0), and the case D′(0) = 0, D′′(0) = 0,
D′′′(0) 6= 0 (because of I0

2 < +∞) cannot occur.

The case x2 → l− can be considered analogously.

In these three cases BVP 9 is not well-posed since the arbitrarily small change of BCs
M2(0) = 0, M2(l) = 0 implies the unsolvability of the BVP under consideration.

This important note with the other cases, when the similar situation can arise, we
summarize as follows:

when M0 (Ml) = 0, BVPs 3 (7) and 6 (8) and when M0 = 0, Ml = 0, BVP 9 are uniquely
solvable if I0

2 (I l
2) < +∞ and I0

2 < +∞, I l
2 < +∞, respectively; but they are correct in

the sense of Hadamard only if I0
1 (I l

1) < +∞, and I0
1 < +∞, I l

1 < +∞, respectively.
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SOLUTION of BVP 10. Since I0
0 < +∞, without loss of generality, we assume x0 = 0.

From (1.3.1)0, (1.3.4)l we get

C4 = w0, C3 = w′
0, C2 = Ml − lQl −

l∫

0

tf(t)dt, C1 = Ql +

l∫

0

f(t)dt.

Thus,

w(x2) =

x2∫

0

(x2 − τ)


(l − τ)Ql −Ml +

l∫

τ

tf(t)dt

−τ

l∫

τ

f(t)dt


 D−1(τ)dτ + w′

0x2 + w0,

(1.3.12)

w,2 (x2) =

x2∫

0


(l − τ)Ql −Ml +

l∫

τ

tf(t)dt− τ

l∫

τ

f(t)dt


 D−1(τ)dτ + w′

0.

Representing (x2− τ) in (1.3.12) as (x2− l)+(l− τ), it is not difficult to see (see (1.2.66))
that

|w(x2)| ≤ (l − x2)
[
C̃1I

0(x2) + |Ql|I1(x2)
]

+C̃1I
1(x2) + |Ql|I2(x2) + |w′

0|x2 + |w0| for all x2 ∈ [0, l[,

where

C̃1 := |Ml|+
l∫

0

t|f(t)|dt + l

l∫

0

|f(t)|dt.

Therefore,

|w(x2)| ≤ 2C̃1I
1(x2) + |Ql| [(l − x2)I

1(x2) + I2(x2)]

+|w′
0|x2 + |w0| for all x2 ∈ [0, l[, if I l

1 < +∞,

(1.3.13)

and
| [I1(x2)]

−1
w(x2)| ≤ 2C̃1 + |Ql|

[
(l − x2) + C̃2

]

+C̃3(|w′
0|x2 + |w0|) for x2 ∈ [0, l[ if I l

1 = +∞,
(1.3.14)

since
(l − x2)I

0(x2) ≤ I1(x2)

(because of

I1(x2)− (l − x2)I
0(x2) =

x2∫

0

(x2 − t)D−1(t)dt ≥ 0);

I2(x2) ≤ C̃2I
1(x2), C̃2 = const > 0, ∀x2 ∈ [0, l[



42 CHAPTER 1. CUSPED EULER-BERNOULLI BEAMS

(because of

lim
x2→l−

I2(x2)

I1(x2)
= lim

x2→l−
(l − x2)

2D−1(x2)

(l − x2)D−1(x2)
= lim

x2→l−
(l − x2) = 0

if I l
1 = +∞);

[I1(x2)]
−1 ≤ C̃3 = const > 0 ∀x2 ∈ [0, l[.

The continuous dependence in the class of continuous on [0, l] functions of the solution
w(x2) and of [I1(x2)]

−1w(x2) for I l
1 < +∞ and I l

1 = +∞, respectively, on the boundary
data and on the right hand side f immediately follows from the estimates (1.3.13) and
(1.3.14), correspondingly. Let us note that for I l

1 = +∞, the solution w(x2) for a fixed
x2 ∈ [0, l[ continuously dependence on the boundary data and the right hand side f .
Similar conclusions can be made with respect to w,2, which follow from the following
evident estimates:

|w,2 (x2)| ≤ C̃1I
0(x2) + |Ql|I1(x2) + |w′

0| for x2 ∈ [0, l[ if I l
0 < +∞,

∣∣∣
[
I0(x2)

]−1
w,2 (x2)

∣∣∣ ≤ C̃1 + |Ql|C̃4 + C̃5|w′
0| for x2 ∈ [0, l[ if I l

0 = +∞,

since

I1(x2) ≤ C̃4I
0(x2) and

[
I0(x2)

]−1 ≤ C̃5 for all x2 ∈ [0, l[, C̃4, C̃5 = const > 0.

The other BVPs 2-8 can be solved in an analogous way. For the sake of simplicity, we
take f ≡ 0.

Using (1.2.75)-(1.2.89) along with the Lemma 1.2.16, we get the following solutions to
BVPs 1-8 when f ≡ 0.

A unique solution of BVP 1 has the form

w(x2) = [x2I1(x2)− I2(x2)]C1 − [x2I0(x2)− I1(x2)](C1l − C2) + w′
l(x2 − l) + wl,

w,2(x2) = C1I1(x2)− (C1l − C2)I0(x2) + w′
l,

(M2w)(x2) = C1(x2 − l) + C2, (Q2w)(x2) = C1,

where

C1 = ∆−1[−I1(w
′
0 − w′

l)− I0(w0 − wl + w′
ll],

C2 = ∆−1[(I1 − lI0)(w0 − wl + w′
ll) + (I2 − lI1)(w

′
0 − w′

l)].

A unique solution of BVP 2 has the form

w(x2) = [x2I1(x2)− I2(x2)]Q0 − (Q0l − C2)[x2I0(x2)− I1(x2)] + w′
l(x2 − l) + wl,

w,2(x2) = Q0I1(x2)− (Q0l − C2)I0(x2) + w′
l,

(M2w)(x2) = Q0(x2 − l) + C2, (Q2w)(x2) = Q0,
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where

C2 =
w′

0 − w′
l −Q0(I1 − lI0)

I0

.

A unique solution of BVP 3 has the form

w(x2) = x2[C1I1(x2) + M0I0(x2)]− C1I2(x2)−M0I1(x2) + w′
l(x2 − l) + wl,

w,2(x2) = C1I1(x2) + M0I0(x2) + w′
l,

(M2w)(x2) = C1x2 + M0, (Q2w)(x2) = C1,

where

C1 =
−M0I1 − w′

ll + wl − w0

I2

.

As we see from this solution of the BVP 3 the function w is bounded, but w,2 is bounded
as x2 → 0+ if and only if M0 = 0 for I0(0) = I0 = +∞. Therefore, the solution of
the BVP 3 under the additional restriction of boundedness of w,2 exists if and only if
the condition M0 = 0 when I0 = +∞ holds. Here, it was important that I1 < +∞ [see
(1.3.3)]. If, now, I1 = +∞ but I2 < +∞, then for M0 = 0, a unique solution of BVP 3
has the form

w(x2) = C1[x2I1(x2)− I2(x2)] + w′
l(x2 − l) + wl,

w,2(x2) = C1I1(x2) + w′
l,

(M2w)(x2) = C1x2, (Q2w)(x2) = C1,

where

C1 =
−w′

ll + wl − w0

I2

.

Obviously, I2 > 0, because of t2D−1(t) > 0 ∀t ∈]0, l]. Let us note that in the last
case w,2 is unbounded unless C1 = 0. But nevertheless, according to Lemma 1.2.16,
(M2w · w,2 )|x2=0 = 0.

If I1 = +∞ but I2 < +∞ and M0 6= 0, then the BVP 3 is ill-posed in the sense of
nonsolvability.

A unique solution of BVP 4 has the form

w(x2) = x2[Q0I1(x2) + M0I0(x2)]−Q0I2(x2)−M0I1(x2) + w′
l(x2 − l) + wl,

w,2(x2) = Q0I1(x2) + M0I0(x2) + w′
l,

(M2w)(x2) = x2Q0 + M0, (Q2w)(x2) = Q0.

As we see from this solution of BVP 4, both the functions w and w,2 are bounded as
x2 → 0+ if and only if M0 = 0 for I0(0) = I0 = +∞ and Q0 = 0 for I1(0) = I1 = +∞ (in
the general case, i.e., when f 6≡ 0, this assertion follows from Theorem 1.2.12). Therefore,
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the solution of the problem BVP 4 under the additional restriction of boundedness of the
solution and of its derivative exists if and only if the above conditions hold.

It is not difficult to see that

|w(x2)| ≤ |Q0|(x2I1 + I2) + 2|M0|I1 + |w′
l|l + |wl| for I1 < ∞

and
|I−1

1 (x2)w(x2)| ≤ |Q0|(x2 + C̃) + 2M0 + C∗(|w′
l|l + |wl|) for I1 = +∞,

since

x2I0(x2) ≤ I1(x2) ∀ x2 ∈]0, l],

I−1
1 (x2) < C∗ = const > 0 ∀ x2 ∈]0, l],

and

I2(x2) ≤ C̃I1(x2), C̃ = const > 0, ∀ x2 ∈]0, l],

because of

lim
x2→0+

I2(x2)

I1(x2)
= lim

x2→0+

I ′2(x2)

I ′1(x2)
= lim

x2→0+
x2 = 0 if I1 = +∞.

The continuous dependence of w(x2) and I−1
1 (x2)w(x2) for I1 < +∞ and I1 = +∞,

respectively, on the boundary data immediately follows from the above estimates for the
solution w(x2). Similar conclusion can be made with respect to w,2 (x2) and I−1

0 (x2)w(x2)
for I0 < +∞ and I1 = +∞, respectively.

A unique solution of BVP 5 has the form

w(x2) = (I0)
−1(w′

0 − w′
l −QlI1) [x2I0(x2)− I1(x2) + I1]

+x2QlI1(x2)−QlI2(x2) + w′
lx2 + w0 + QlI2,

w,2 (x2) = (I0)
−1(w′

0 − w′
l −QlI1)I0(x2) + QlI1(x2) + w′

l,

(M2w)(x2) = (I0)
−1(w′

0 − w′
l −QlI1) + Qlx2, (Q2w)(x2) = Ql.

A unique solution of BVP 6 has the form

w(x2) = x2 [M0I0(x2) + QlI1(x2)]−M0I1(x2)−QlI2(x2)

+x2w
′
l + M0I1 + QlI2 + w0,

w,2 (x2) = M0I0(x2) + QlI1(x2) + w′
l,

(M2w)(x2) = Qlx2 + M0, (Q2w)(x2) = Ql.

If I0
0 = +∞ and I0

1 < +∞, then w,2 is bounded as x2 → 0+ iff M0 = 0.
If M0 = 0, then there exists a unique solution of the same BVP even when I0

1 = +∞
and I0

2 < +∞, which has the following form

w(x2) = Ql [x2I1(x2)− I2(x2)] + w′
lx2 + QlI2 + w0,

w,2 (x2) = QlI1(x2) + w′
l,

(M2w)(x2) = Qlx2, (Q2w)(x2) = Ql.
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If Ql 6= 0, w,2 is unbounded as x2 → 0+ but nevertheless, according to Lemma 1.2.16,
(M2w · w,2 )|x2=0 = 0.

A unique solution of BVP 7 has the form

w(x2) = Ml

[
(l − x2)I

0(x2)− I1(x2)
]
+ C1

[
I2(x2)− (l − x2)I

1(x2)
]

+w′
0x2 + w0,

w,2 (x2) = −MlI
0(x2) + C1I

1(x2) + w′
0,

(M2w)(x2) = Ml + C1(l − x2), (Q2w)(x2) = C1,

where

C1 :=
wl − w0 − w′

0l + MlI
1

I2
.

If I l
0 = +∞ and I l

1 < +∞, then w,2 is bounded as x2 → l− iff Ml = 0.
If now I l

1 = +∞ and I l
2 < +∞, then for Ml = 0 a unique solution of BVP 7 has the

form

w(x2) = C1

[
I2(x2)− (l − x2)I

1(x2)
]
+ w′

0x2 + w0,

w,2 (x2) = C1I
1(x2) + w′

0,

(M2w)(x2) = −C1(l − x2), (Q2w)(x2) = C1,

where

C1 :=
wl − w0 − w′

0l

I2
.

Obviously, I2 > 0, because of (l− t)2D−1(t) > 0 ∀t ∈]0, l[. Let us note that in the last
case w,2 is unbounded unless C1 = 0. But nevertheless, according to Lemma 1.2.16,

(M2w · w,2 )|x2=l = 0.

A unique solution of BVP 8 has the form

w(x2) = Ml

[
(l − x2)I

0(x2)− I1(x2)
]
+ Q0

[
I2(x2)− (l − x2)I

1(x2)
]

+w′
0(x2 − l) + wl −MlI

1 −Q0I
2,

w,2 (x2) = −MlI
0(x2) + Q0I

1(x2) + w′
0,

(M2w)(x2) = Ml −Q0(l − x2), (Q2w)(x2) = Q0.

If I l
0 = +∞ and I l

1 < +∞, then w,2 is bounded as x2 → l− iff Ml = 0.
If now I l

1 = +∞ and I l
2 < +∞, then for Ml = 0 a unique solution of BVP 8 has the

form

w(x2) = Q0

[
I2(x2)− (l − x2)I

1(x2)− I2
]
+ w′

0(x2 − l) + wl,

w,2 (x2) = Q0I
1(x2) + w′

0,

(M2w)(x2) = −Q0(l − x2), (Q2w)(x2) = Q0.

If Q0 6= 0, then w,2 is unbounded as x2 → l− but nevertheless, according to Lemma
1.2.16, (M2w · w,2 )|x2=l− = 0. ¤
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Remark 1.3.4 According to (1.2.11)

K2(0) = −Q2(0), K(0) = −M2(0), K2(l) = −Q2(l), K(l) = −M2(l)

and conditions (1.2.15) and (1.2.20) can be rewritten in the form

M2(0) = 0 (M2(l) = 0)

and
M2(0) = 0, Q2(0) = 0 (M2(l) = 0, Q2(l) = 0),

respectively. Now, by virtue of Theorem 1.2.1 (see (1.2.15), (1.2.20), (1.2.16), (1.2.17)),
the following assertions become evident:

1) if I0
0 (I l

0) = +∞, I0
1 (I l

1) < +∞, then conditions

w,2 = O(1), x2 → 0 + (x2 → l−) (1.3.15)

can be replaced by BCs
M2(0) = 0 (M2(l) = 0) (1.3.16)

and vice versa, i.e., (1.3.15) and (1.3.16) are equivalent conditions.
2) if I0

1 (I l
1) = +∞, then conditions (1.3.6) can be replaced by BCs

M2(0) = 0, Q2(0) = 0 (M2(l) = 0, Q2(l) = 0)

and vice versa, i.e., the last conditions and (1.3.6) are equivalent conditions.

Remark 1.3.5 Let D(0) = 0, D(l) > 0. Homogeneous BVP 1 (see Theorem 1.3.1) cor-
responds to the three-dimensional problem when the lateral surfaces are loaded by surface
forces, the edge x2 = l is fixed and the edge x2 = 0 is glued to the absolutely rigid tangent
plane. In the case of homogeneous BVP 3 the above mentioned plane is rigid parallel
to the axis x3. BVP 4 corresponds to the three-dimensional problem when along the edge
x2 = 0 the concentrated along the above edge force and moment are applied which are
equal to Q0 and M0, respectively.

For forces and moments concentrated along the line (in particular, at a point of a
cusped edge) see [38], [51].

Remark 1.3.6 By setting of BVPs we have to take into account peculiarities of classical
bending that by the arbitrary load f, the shearing force Q2 (see (1.2.4)) can be given only
on one edge; from Q2(0) (or Q2(l)), M2(0), M2(l) (see (1.2.5)) only two can participate in
BCs on the both edges together (these peculiarities are not caused by cusps they arise even
in the case of bending of a beam of a constant cross-section). If we choose f correspond-
ingly (see (1.2.4), (1.2.5)), we can avoid these peculiarities but restriction on choice of f
would be artificial (in the mathematical sense but natural in the physical sense). Neverthe-
less, problems posed in this way can also make practical sense. Obviously, solutions to all
these problems can be constructed in explicit forms. Some of them are unique, some are
defined either up to a rigid translation along the axis x3 or an infinitesimal rigid rotation
at the axis x1 or a general rigid motion (combination of above mentioned). We omit the
exact formulation of these artificial BVPs. But for the sake of illustration, at the end of
this section we set and solve a typical one.
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Remark 1.3.7 From Theorem 1.3.1. and Remark 1.3.4 we arrive at the following con-
clusions. In the case of BVPs 3 and 6 the derivative of solution w,2 is bounded if either
I0
0 < +∞ or I0

0 = +∞ and M0 = 0. In the case of BVP 4: the solution w is bounded if
either I0

1 < +∞ or I0
1 = +∞ and ∃k ≥ 2 such that I0

k < +∞ and M0 = 0 (for k ≥ 2),
Q0 = 0 (for k ≥ 3); the derivative of solution w,2 is bounded if either I0

0 < +∞ or
I0
0 = +∞ and ∃k ≥ 1 such that I0

k < +∞ and M0 = 0 (for k ≥ 1), Q0 = 0 (for k ≥ 2).
In the case of BVPs 7 and 8 the derivative of solution w,2 is bounded if either I l

0 < +∞
or I l

0 = +∞ and Ml = 0. In the BVP 9 the derivative of solution w,2 is bounded if either
I0
0 < +∞, I l

0 < +∞ or I0
0 = +∞ with M0 = 0 and I l

0 = +∞ with Ml = 0. In the case of
BVP 10: the solution w is bounded if either I l

1 < +∞ or I l
1 = +∞ and ∃k ≥ 2 such that

I l
k < +∞ and Ml = 0 (for k ≥ 2), Ql = 0 (for k ≥ 3); the derivative of solution w,2 is

bounded if either I l
0 < +∞ or I l

0 = +∞ and ∃k ≥ 1 such that I l
k < +∞ and Ml = 0 (for

k ≥ 1), Ql = 0 (for k ≥ 2).

Remark 1.3.8 If I0
1 = +∞, BVP 4 with homogeneous boundary data M0 = 0, Q0 = 0 is

equivalent to BVP

(1.2.1), (1.3.6)0, (1.3.1)l, w ∈ C4(]0, l[) ∩ C1(]0, l]).

If I l
1 = +∞, BVP 10 with homogeneous boundary data Ml = 0, Ql = 0 is equivalent to

BVP

(1.2.1), (1.3.1)0, (1.3.6)l, w ∈ C4(]0, l[) ∩ C1([0, l[).

If I0
0 = +∞, I0

1 < +∞, BVP 4 with a homogeneous boundary datum M0 = 0, is equivalent
to BVP

(1.2.1), w,2 = O(1) as x2 → 0+, Q2(0) = Q0, (1.3.1)l,
w ∈ C4(]0, l[) ∩ C1(]0, l]).

If I l
0 = +∞, I l

1 < +∞, BVP 10 with a homogeneous boundary datum Ml = 0 is equivalent
to BVP

(1.2.1), (1.3.1)0, w,2 = O(1) as x2 → l−, Q2(l) = Ql,
w ∈ C4(]0, l[) ∩ C1([0, l[).

If I0
0 = +∞, I0

1 < +∞, BVP 3 with a homogeneous boundary datum M0 = 0, is equivalent
to BVP

(1.2.1), (1.3.5)0, (1.3.1)l, w ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]).

If I l
0 = +∞, I l

1 < +∞, BVP 7 with a homogeneous boundary datum Ml = 0 is equivalent
to BVP

(1.2.1), (1.3.1)0, (1.3.5)l, w ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]).

If I0
0 = +∞, I l

0 = +∞, I0
1 < +∞, I l

1 < +∞, BVP 9 with homogeneous boundary data
M0 = 0 and Ml = 0 is equivalent to BVP

(1.2.1), (1.3.5)0, (1.3.5)l, w ∈ C4(]0, l[) ∩ C([0, l]).
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Let us now consider an example mentioned in Remark 1.3.6. Let moments and shearing
forces be applied at the both ends of the beam, i.e.,

M2(0) = M0, (1.3.17)

Q2(0) = Q0, (1.3.18)

M2(l) = Ml, (1.3.19)

Q2(l) = Ql. (1.3.20)

In order to determine constants C1, C2 from (1.2.5), (1.3.17), (1.3.19) we get the following
system

0∫

x0

tf(t)dt− C1x0 + C2 = M0,

−
l∫

x0

(l − t)f(t)dt + C1(l − x0) + C2 = Ml,

whence,

C1 =
1

l


Ml −M0 + l

l∫

x0

f(t)dt−
l∫

0

tf(t)dt


 , (1.3.21)

C2 =
1

l


lM0 + x0(Ml −M0)− l

0∫

x0

tf(t)dt+

+ lx0

l∫

x0

f(t)dt− x0

l∫

0

tf(t)dt


 . (1.3.22)

In view of (1.2.5), (1.2.4), (1.3.21), (1.3.22) we have

M2(x2) = −
x2∫

x0

(x2 − t)f(t)dt + (x2 − x0)
1

l


Ml −M0 + l

l∫

x0

f(t)dt

−
l∫

0

tf(t)dt


 +

1

l


lM0 + x0(Ml −M0)− l

0∫

x0

tf(t)dt

+ lx0

l∫

x0

f(t)dt− x0

l∫

0

tf(t)dt



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= x2

l∫

x2

f(t)dt +

x2∫

0

tf(t)dt

+
x2

l


Ml −M0 −

l∫

0

tf(t)dt


 + M0,

Q2(x2) =

l∫

x2

f(t)dt +
1

l


Ml −M0 −

l∫

0

tf(t)dt


 . (1.3.23)

Now, we must find conditions on f(t) which guarantee satisfaction of BCs (1.3.18),
(1.3.20). To this end we substitute (1.3.23) in (1.3.18), (1.3.20):

l

l∫

0

f(t)dt−
l∫

0

tf(t)dt + Ml −M0 = lQ0, (1.3.24)

−
l∫

0

tf(t)dt + Ml −M0 = lQl. (1.3.25)

The difference of (1.3.24) and (1.3.25) gives

l∫

0

f(t)dt = Q0 −Ql. (1.3.26)

(1.3.26) with either (1.3.24) or (1.3.25) yields the conditions we were looking for. These
conditions are natural in the physical sense since they express the fact that the resultant
vector and resultant moment of the applied forces should be equal to zero.

Let us observe that C3, C4 in (1.2.6), (1.2.7) remain arbitrary. This means that we
found the solution up to a rigid translation along the axis x3 and an infinitesimal rigid
rotation at the axis x1, which are expressed by arbitrary C4 and C3, respectively.

In particular, let the both ends be free:

M2(0) = Q2(0) = M2(l) = Q2(l) = 0.

Then the conditions (1.3.26),(1.3.24) and their equivalent conditions (1.3.26),(1.3.25) be-
come

l∫

0

f(t)dt = 0,

l∫

0

tf(t)dt = 0.

This means that the lateral load and its moment are self-balanced.



50 CHAPTER 1. CUSPED EULER-BERNOULLI BEAMS

Remark 1.3.9 It is easy to see that the assertions of Sections 1.2 and 1.3 are also true if
at the ends of the beam either σ(x2) > 0 and Young’s modulus E(x2) = 0 or both vanish.
In particular, this means that the peculiarities of the cusped beams will be preserved if we
consider a beam of uniform cross-section with an appropriately chosen variable Young’s
modulus which vanishes at the ends. Moreover, if we consider a cusped beam, e.g., with
D = EI = const, then the effect of geometry of the cusped beam on setting of BCs will be
cancelled because of appropriately chosen nonhomogeneity of medium and all the BCs can
be set without any restrictions on the sharpening geometry. The same is true for cusped
plates as well, what readily follows from the expression of the flexural rigidity (1.1.3).

1.4 Vibration problem

Let I(0) ≥ 0, I(l) > 0 and C4
J(]0, l[) be a class of functions belonging to C4(]0, l[) with the

properties 1-8 stated in Theorem 1.2.12. Let further w, v ∈ C4
J(]0, l[) and either conditions

(1.2.59) or (1.2.61) be fulfilled in the corresponding cases. Then after multiplying both
sides of equation (1.1.4) by v and integrating twice by parts, we get:

l∫

0

(
Dw,22v,22 − ω2ρσwv

)
dx2 =

l∫

0

fvdx2 + (Q2w · v) |l0 − (M2w · v,2) |l0. (1.4.1)

It is clear that, by virtue of Theorem 1.2.12, when I0 = +∞ and I1 < +∞, under
condition (1.2.59) the last term at 0 will be missing in (1.4.1) with v = w, while when
I1 = +∞ and ∃k ∈ {2, 3, . . .} such that Ik < +∞, under conditions (1.2.61) the last and
penultimate one at 0 will be lacking as well. It should be noted here that as it follows from
a note to Solution of BVP 9, (1.4.1) remains true when I0

1 = +∞ (I l
1 = +∞), I0

2 = +∞
(I l

2 = +∞) even if (Q2w)(0) 6= 0 ((Q2w)(l) 6= 0), i.e., w,2 is unbounded as x2 → 0+
(x2 → l−), provided (M2w)(0) = 0 ((M2w)(l) = 0), since in this case

lim
x2→0+

(M2w)(x2) · w,2 (x2) = 0

(
lim

x2→l−
(M2w)(x2) · w,2 (x2) = 0

)
.

The relation (1.4.1) connects (in some sense) classical and weak solutions, and it is
crucial in view of the definition of the latter in the sense of expression of unstable BCs
(see Remark 1.4.5 below). Therefore, considering weak solutions of the vibration problem,
by setting of BCs we will not be able to avoid the restrictions (1.2.61) and (1.2.59) in
the corresponding cases. The more so, as BCs at cusped ends, on the other hand, should
be chosen in such a way that the terms at endpoints in (1.4.1) disappear, provided the
above-mentioned BCs are homogeneous [compare with the case of cusped plates, where
contour integrals should disappear (see proof of (2.2.11) below)].
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Problem 1.4.1 Let us consider the vibration equation (1.1.4) with the following inhomo-
geneous BCs:

• at the non-cusped end x2 = l of the beam conditions (1.3.1)l,

• at the other end x2 = 0 which is a cusped one if D(0) = 0 either conditions (1.3.1)0,
or (1.3.2)0, or (1.3.3)0 provided I2 < ∞, or (1.3.4)0 with

M0 = 0 if I0 = ∞ (1.4.2)

and
Q0 = 0 if I1 = ∞. (1.4.3)

Remark 1.4.2 Problem 1.4.1 is the common formulation of the following four BVPs:
(i) (1.1.4), (1.3.1)l, (1.3.1)0;
(ii) (1.1.4), (1.3.1)l, (1.3.2)0;
(iii) (1.1.4), (1.3.1)l, (1.3.3)0 provided I2 < +∞;
(iv) (1.1.4), (1.3.1)l, (1.3.4)0.
Such a formulation is convenient since it makes possible to investigate all the four

BVPs at the same time.

Definition 1.4.3 Let
W 2,2(]0, l[; ρ0, ρ2) (1.4.4)

be the set of all measurable functions w = w(x2) defined on ]0, l[ which have on ]0, l[
generalized derivatives ∂α

x2
w, α ∈ {0, 1, 2} (∂0

x2
w ≡ w) such that

w ∈ L2(]0, l[; ρ0), i.e.,

l∫

0

|w(x2)|2ρ0(x2)dx2 < +∞,

∂1
x2

w ∈ L1
loc(]0, l[), (1.4.5)

∂2
x2

w ∈ L2(]0, l[; ρ2), i.e.,

l∫

0

|∂2
x2

w(x2)|2ρ2(x2)dx2 < +∞.

Here ρ0, ρ1 are weight functions, i.e., functions measurable and positive a.e. in ]0, l[.

The condition
ρ−1

0 (x2), ρ−1
2 (x2) ∈ L1

loc(]0, l[)

guarantees [60] that W 2,2(]0, l[; ρ0, ρ2) is a Banach space and even a Hilbert space under
the norm

‖w‖2
W 2,2(]0,l[;ρ0,ρ2) :=

l∫

0

[w2ρ0 + (∂2
x2

w)2ρ2]dx2 (1.4.6)

and with the appropriate scalar product.
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We recall that in what follows, we will use the notation w,2 and w,22 for ∂1
x2

w and
∂2

x2
w, respectively.
First, we will consider the special case ρ0 ≡ 1, ρ2(x2) = D(x2) with D(x2) > 0 for

x2 ∈]0, l[, D(0) ≥ 0. In this case, we will denote the space W 2,2(]0, l[; ρ0, ρ1) as

W 2,2(]0, l[, D). (1.4.7)

Obviously, the last space is a Hilbert space if 1
D(x2)

∈ L1
loc(]0, l[) which holds, e.g., if

D ∈ C([0, l]).
Now we can constitute subspaces Vγ1,γ2of W 2,2(]0, l[, D), γ1, γ2 ∈ {0, 1}, as follows:
(i) In the case of the BVP (1.1.4), (1.3.1)l, (1.3.1)0 we define

V0,0 := {v ∈ W 2,2(]0, l[, D) : v(0) = 0, v,2(0) = 0 and (1.4.8)

v(l) = 0, v,2(l) = 0 in the sense of traces}.
(ii) In the case of the BVP (1.1.4), (1.3.1)l, (1.3.2)0 we define

V0,1 := {v ∈ W 2,2(]0, l[, D) : v,2(0) = 0 and (1.4.9)

v(l) = 0, v,2(l) = 0 in the sense of traces}.
(iii) In the case of the BVP (1.1.4), (1.3.1)l, (1.3.3)0 provided I2 < ∞ we define

V1,0 := {v ∈ W 2,2(]0, l[, D) : v(0) = 0 and v(l) = 0, v,2(l) = 0 (1.4.10)

in the sense of traces}.
(iv) In the case of the BVP (1.1.4), (1.3.1)l, (1.3.4)0 we define

V1,1 := {v ∈ W 2,2(]0, l[, D) : v(l) = 0, v,2(l) = 0 in the sense of traces}. (1.4.11)

Notice that these spaces are defined in terms of traces. If these traces exist, it is
not difficult to show that all spaces Vγ1,γ2 are complete (see, e.g., proof of completness

of W 2
2 (Ω, D̃) in proof of Theorems 2.4.6 and 2.4.7 below). Now, the traces at the point

x2 = l always exist since

W 2,2(]ε, l[, D) ⊂ W 2,2(]ε, l[) for 0 < ε < l (1.4.12)

(where the second space is the ”classical” Sobolev space), and, moreover, by virtue of
embending theorems, v ∈ C1([ε, l]).

In order to clarify the question of the existence of the traces at the point x2 = 0, we
make the function D(x2) subject to the following unilateral condition:

D(x2) ≥ Dκx
κ
2 ∀x2 ∈]0, l[, (1.4.13)

Dκ = const > 0, κ = const ≥ 0 1. In other words

0 < Dκ := inf
]0,l[

D(x2)

xκ2
. (1.4.14)

1By κ we denote the minimal among possible exponents δ ≥ 1 for which D(x2) ≥ const xδ
2 holds. For

κ < 1 it is not necessary to find the minimal possible exponent since in this case we have the same result
concerning traces for all κ < 1. Let us note that D(x2) = D0[ln(l̃/x2)]−1, l̃ > l, satisfies (1.4.13) for any
κ > 0. Condition (1.4.13) is obviously important in the neighbourhood of x2 = 0.
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It follows from (1.4.5) for ρ2(x2) = D(x2) and (1.4.13) that

l∫

0

xκ2 [w,22(x2)]
2dx2 < +∞, (1.4.15)

and, hence, under condition (1.4.13),

W 2,2(]0, l[, D) ⊂ W 2,2(]0, l[, xκ2 ). (1.4.16)

The last space is a special case of (1.4.4) with ρ0 ≡ 1, ρ2(x2) = xκ2 . The obvious inequality

x2(l − x2) ≤ lx2 for x2 ∈ [0, l]

together with (1.4.15) and (1.4.16) implies

W 2,2(]0, l[, D) ⊂ W 2,2(]0, l[, xκ2 ) ⊂ W 2,2(]0, l[, xκ2 (l − x2)
κ). (1.4.17)

The last space is a special case of (1.4.4) with ρ0 ≡ 1, ρ2(x2) = xκ2 (ρ − x2)
κ. But any

function
w ∈ W 2,2(]0, l[, xκ2 (l − x2)

κ)

has a trace at the point x2 = 0 if
κ ∈ [0, 3[ (1.4.18)

while its derivative w,2 has a trace at x2 = 0 if

κ ∈ [0, 1[. (1.4.19)

More precisely, after a suitable change of the values of w at a set of measure zero, these
functions became continuous on [0, l], i.e., w ∈ C([0, l]) for (1.4.18) and w,2 ∈ C([0, l]) for
(1.4.19) (see, e.g., [70]).

Let us note that if there exists such γ that

lim
x2→0+

xγ
2D(w,22 )2 = const > 0

and along with (1.4.13) inequality (1.4.25) (see below) takes place, then from

w ∈ W 2,2(]0, l[, D) ⊂ W 2,2(]0, l[, xκ2 )

there follows
(M2w)(0) = 0 for κ ≥ 1 (I0 = +∞).

Indeed, since
D(w,22 )2 ∈ L1(]0, l[),

we have
D(w,22 )2 = O(x−γ

2 ), x2 → 0+, γ < 1.
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Otherwise, i.e., if γ ≥ 1, the penultimate relation will be violated according to the con-
vergence criterion in the limit form for improper integrals.

Consequently,

D
1
2 w,22 = O(x

− γ
2

2 ), x2 → 0+, γ < 1,

and according to (1.4.25),

|M2w| = | −Dw,22 | = D
1
2 O(x

− γ
2

2 ) ≤ (Dκ)
1
2 x

κ
2
2 O(x

− γ
2

2 ) = O(x
κ−γ

2
2 ), x2 → 0+, γ < 1.

Whence,
(M2w)(0) = 0 when κ > γ < 1, i.e., κ ≥ 1 (I0 = +∞).

This is one more argument for the condition (1.4.2).

Remark 1.4.4 The obvious inequality

x4
2 ≤ l4−κxκ2 for x2 ∈ [0, l] and κ ≤ 4 (1.4.20)

implies
W 2,2(]0, l[, D) ⊂ W 2,2(]0, l[, xκ2 ) ⊂ W 2,2(]0, l[, x4

2) (1.4.21)

for κ ≤ 4.

Inequality (1.4.13) can be rewritten as

1

D(x2)
≤ D−1

κ x−κ2 , x2 ∈]0, l]. (1.4.22)

Whence, we immediately conclude that (1.4.18) and (1.4.19) imply

I2 < ∞ (1.4.23)

and
I0 < ∞2, (1.4.24)

respectively.
Thus, the traces v(0) and v,2(0) mentioned in (1.4.8)–(1.4.10) exist by (1.4.18) (i.e.,

by (1.4.23)) and by (1.4.19) (i.e., by (1.4.24)), respectively, provided (1.4.13) holds.
If instead of (1.4.13) the following inequality takes place

D(x2) ≤ Dκxκ2 for x2 ∈]0, l[, (1.4.25)

Dκ = const > 0, κ = const ≥ 0, then

W 2,2(]0, l[, xκ2 ) ⊂ W 2,2(]0, l[, D).

2If I0 = +∞, then from (1.4.22) it follows that κ cannot be less than 1 (otherwise, i.e., if κ < 1, we
have (1.4.24) and come to the contradiction). Thus, the conditions (1.4.19) and (1.4.24) are equivalent
in this sense. Clearly, we have analogous equivalence of the conditions (1.4.18) and (1.4.23).
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In this case

(Dκ)−1 1

xκ2
≤ 1

D(x2)
, x2 ∈]0, l[,

and (1.4.23) and (1.4.24) imply (1.4.18) and (1.4.19), respectively.
Finally, if both (1.4.13) and (1.4.25) are fulfilled, then (1.4.18) and (1.4.19) are equiv-

alent to (1.4.23) and (1.4.24), respectively, and

W 2,2(]0, l[), D) = W 2,2(]0, l[, xκ2 )

in the sense of equivalent norms.

Remark 1.4.5 According to the customary terminology, the BCs

w(0) = w0 if I2 < ∞ (1.4.26)

and

w,2(0) = w′
0 if I0 < ∞ (1.4.27)

with prescribed constants w0 and w′
0 are the stable (principal) BCs for the operator Jω

since they are fulfilled by functions from both sets C4
J(]0, l[) and W 2,2(]0, l[, D). Against

it, the BCs

(M2w)(0) = M0 and (Q2w)(0) = Q0 (1.4.28)

with prescribed constants M0, Q0 are the unstable (natural) conditions since they are
fulfilled by functions from C4

J(]0, l[) but not by functions from W 2,2(]0, l[, D) due to the
fact that traces at x2 = 0 of the second and third order derivatives of functions from the
latter class do not exist, in general.

In what follows, let u ∈ W 2,2(]0, l[, D) and f ∈ L2(]0, l[) be given. Taking into account
(1.4.1), we introduce the following definitions:

Definition 1.4.6 The function w ∈ W 2,2(]0, l[, D) will be called a weak solution of the
BVP (1.1.4), (1.3.1)l, (1.3.1)0 in the space W 2,2(]0, l[, D) if

w − u ∈ V0,0 (1.4.29)

and

Jω(w, v) :=

l∫

0

Bω(w, v)dx2 =

l∫

0

fvdx2, (1.4.30)

where

Bω(w, v) := Dw,22v,22 − ω2ρσwv, (1.4.31)

holds for every v ∈ V0,0.
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Definition 1.4.7 The function w ∈ W 2,2(]0, l[, D) will be called a weak solution of the
BVP (1.1.4), (1.3.1)l, (1.3.2)0 in the space W 2,2(]0, l[, D) if

w − u ∈ V0,1 (1.4.32)

and

Jω(w, v) =

l∫

0

fvdx2 + Q0v(0) (1.4.33)

holds for every v ∈ V0,1.

Definition 1.4.8 The function w ∈ W 2,2(]0, l[, D) will be called a weak solution of the
BVP (1.1.4), (1.3.1)l, (1.3.3)0 provided I2 < +∞ in the space W 2,2(]0, l[, D) if

w − u ∈ V1,0 (1.4.34)

and

Jω(w, v) =

l∫

0

fvdx2−
{

M0v,2(0) if I0 < +∞, (1.4.35)
0 if I0 = +∞ (1.4.36)

holds for every v ∈ V1,0.

Definition 1.4.9 The function w ∈ W 2,2(]0, l[, D) will be called a weak solution of the
BVP (1.1.4), (1.3.1)l, (1.3.4)0 in the space W 2,2(]0, l[, D) if

w − u ∈ V1,1 (1.4.37)

and

Jω(w, v) =

l∫

0

fvdx2+





Q0v(0)−M0v,2(0) if I0 < +∞, (1.4.38)
Q0v(0) if I0 = +∞ and I1 < +∞, (1.4.39)
0 if I1 = +∞ (1.4.40)

holds for every v ∈ V1,1.

Remark 1.4.10 The conditions (1.4.29), (1.4.32), (1.4.34), (1.4.37) express the fact
that the BCs (1.3.1)l, (1.3.1)0, the first BC of (1.3.2)0, the first BC of (1.3.3)0 provided
I2 < +∞ are fulfilled. The BCs (1.3.4)0, the second BC of (1.3.2)0, the second BC
of (1.3.3)0 provided I2 < +∞ can be found directly in the identities (1.4.33), (1.4.35),
(1.4.36), (1.4.38)–(1.4.40). These identities are derived from the identity (1.4.1). As we
see from (1.4.36), (1.4.39), and (1.4.40), these last mentioned BCs cannot be specified in
these identities if M0 6= 0 for I0 = +∞ and Q0 6= 0 for I1 = +∞ since for I0 = +∞ and
I1 = +∞, the traces of v,2 and v, respectively, at the point x2 = 0 do not exist, in general.
Hence, the restrictions (1.4.2) and (1.4.3) are natural in this sense, too (see also Remark
1.2.14).
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Remark 1.4.11 In view of (1.4.1) with ω = 0, the classical solutions of the static BVPs
1–4 from Theorem 1.3.1 constructed in Section 1.3 satisfy (1.4.30), (1.4.33), (1.4.35),
(1.4.36), (1.4.38)–(1.4.40) by ω = 0 in the corresponding cases. Obviously they satisfy
also (1.4.29), (1.4.32), (1.4.34), (1.4.37).

Besides the space (1.4.7) let us consider the space (1.4.4) with

ρ0(x2) = xκ−4
2 , ρ2(x) = xκ2 . (1.4.41)

We will denote this space by
W̃ 2,2(]0, l[, xκ2 ); (1.4.42)

it is equipped with the norm

‖w‖W̃ 2,2(]0,l[,xκ2 ) :=
( l∫

0

[xκ−4
2 w2(x2) + xκ2 w2

,22(x2)]dx2

)1/2

. (1.4.43)

The space (1.4.42) is a Hilbert space with the appropriate scalar product, since x4−κ
2 ,

x−κ2 ∈ L1
loc(]0, l[). We can easily see that

W̃ 2,2(]0, l[, xκ2 ) ⊂ W 2,2(]0, l[), xκ2 ) if κ < 4, (1.4.44)

W̃ 2,2(]0, l[, x4
2) = W 2,2(]0, l[, x4

2), (1.4.45)

W̃ 2,2(]0, l[, xκ2 ) ⊃ W 2,2(]0, l[, xκ2 ) if κ > 4. (1.4.46)

Let us consider the space

Vε(x
κ
2 ) := {v ∈ W̃ 2,2(]ε, l[, xκ2 ), v(l) = 0, v,2(l) = 0}. (1.4.47)

The traces v(l) and v,2(l) are well-defined since for ε ∈]0, l[

W̃ 2,2(]ε, l[, xκ2 ) ⊂ W 2,2(]ε, l[), (1.4.48)

and hence, v and v,2 are absolutely continuous on [ε, l]. Thus,

v,2 , v ∈ ACR(ε, l) (1.4.49)

(see [72], p.5, Definition 1.2) and in view of the first boundary condition in (1.4.47), if
κ > 1, the following Hardy inequality holds (see [72], p. 69)

l∫

ε

xκ−2
2 v2dx2 ≤ 4

(κ − 1)2

l∫

ε

xκ2 (v,2)
2dx2, κ > 1. (1.4.50)

Therefore, taking into account the second boundary condition in (1.4.47), we can write

l∫

ε

xκ−2
2 (v,2)

2dx2 ≤ 4

(κ − 1)2

l∫

ε

xκ2 (v,22)
2dx2, κ > 1. (1.4.51)
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Replacing in (1.4.50) κ by κ − 2, we obtain

l∫

ε

xκ−4
2 v2dx2 ≤ 4

(κ − 3)2

l∫

ε

xκ−2
2 (v,2)

2dx2, κ > 3. (1.4.52)

Combining (1.4.51) and (1.4.52), we have

l∫

ε

xκ−4
2 v2dx2 ≤ 16

(κ − 1)2(κ − 3)2

l∫

ε

xκ2 (v,22)
2dx2, κ > 3. (1.4.53)

Now, considering the limit procedure as ε → 0+, since the limits of the integrals in
(1.4.53) exist for v ∈ W̃ 2,2(]0, l[, xκ2 ), we immediately get the following

Lemma 1.4.12 If v ∈ V0(x
κ
2 ), then

l∫

0

xκ−4
2 v2(x2)dx2 ≤ 16

(κ − 1)2(κ − 3)2

l∫

0

xκ2 [v,22(x2)]
2dx2, κ > 3. (1.4.54)

Corollary 1.4.13 If v ∈ V0(x
4
2), from (1.4.54) we obtain

l∫

0

v2dx2 ≤ 16

9

l∫

0

x4
2(v,22)

2dx2. (1.4.55)

Remark 1.4.14 Obviously, all the spaces Vγ1,γ2 , γ1, γ2 ∈ {0, 1}, constructed by (1.4.8)–
(1.4.11) are contained in V0(x

4
2) if κ ≤ 4 (see (1.4.47), (1.4.45), and the relations (1.4.21)

of Remark 1.4.4).

First we consider the case
0 ≤ κ < 4,

i.e.,
I3 < +∞.

Theorem 1.4.15 If 0 ≤ κ < 4 (i.e., I3 < +∞) and

ω2 <
9Dκl

κ−4

16 max
[0,l]

ρσ
, (1.4.56)

then the BVPs

1. (1.1.4), (1.3.1)l, (1.3.1)0;

2. (1.1.4), (1.3.1)l, (1.3.2)0;

3. (1.1.4), (1.3.1)l, (1.3.3)0 provided I2 < +∞;

4. (1.1.4), (1.3.1)l, (1.3.4)0
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have unique solutions. These solutions are such that

‖w‖W 2,2(]0,l[,D) ≤ C[‖f‖L2(]0,l[) + ‖u‖W 2,2(]0,l[,D) + γ1|M0|+ γ2|Q0|],

where the constant C is independent of f, u,M0, Q0, and

γ1 = 0, γ2 = 0 for the first problem,

γ1 = 0, γ2 = 1 for the second problem,

γ1 = 1, γ2 = 0 for the third problem,

γ1 = 1, γ2 = 1 for the fourth problem.

Proof. It is easy to see that

|Jω(w, v)| ≤ (1 + T )‖w‖W 2,2(]0,l[,D)‖v‖W 2,2(]0,l[,D), (1.4.57)

where

T := ω2 max
[0,l]

ρ(x2)σ(x2), (1.4.58)

and the functional

Fωv :=

l∫

0

f(x2)v(x2)dx2 − Jω(u, v) + γ2v(0)Q0 − γ1v,2(0)M0, v ∈ Vγ1,γ2

(see (1.4.8)–(1.4.11) and (1.4.30), (1.4.33), (1.4.35), (1.4.36), (1.4.38)–(1.4.40)) is bounded
in Vγ1,γ2 :

|Fωv| ≤ [‖f‖L2(]0,l[) + (1 + T )‖u‖W 2,2(]0,l[,D) + C0(γ2|Q0|+ γ1|M0|)]‖v‖Vγ1,γ2
, (1.4.59)

where we have used the theorem of traces (the constant C0 is from this theorem) and

‖v‖Vγ1,γ2
:= ‖v‖W 2,2(]0,l[,D). (1.4.60)

Now, taking into account (1.4.7), (1.4.31), (1.4.58), Remark 1.4.14, Corollary 1.4.13,
(1.4.20), (1.4.13), and introducing the notation

T0 :=
16l4−κ

9Dκ
(1 + T ), (1.4.61)

we have

‖v‖2
Vγ1,γ2

:=

l∫

0

[v2 + D(v,22)
2]dx2 =

l∫

0

v2dx2 + Jω(v, v) + ω2

l∫

0

ρσv2dx2
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≤ (1 + T )

l∫

0

v2dx2 + Jω(v, v) ≤ 16

9
(1 + T )

l∫

0

x4
2(v,22)

2dx2 + Jω(v, v)

≤ 16l4−κ

9Dκ
(1 + T )

l∫

0

Dκx
κ
2 (v,22)

2dx2 + Jω(v, v)

≤ T0

l∫

0

D(v,22)
2dx2 + Jω(v, v)

= Jω(v, v) + T0

[
Jω(v, v) + ω2

l∫

0

ρσv2dx2

]

≤ Jω(v, v) + T0

[
Jω(v, v) + T

l∫

0

v2dx
]

≤ Jω(v, v) + T0

[
Jω(v, v) +

16l4−κT
9Dκ

l∫

0

D(v,22)
2dx2

]

= Jω(v, v) + T0

{
Jω(v, v) +

16l4−κT
9Dκ

[
Jω(v, v) + ω2

l∫

0

ρσv2dx2

]}

≤ Jω(v, v) + T0{Jω(v, v) +
16l4−κT

9Dκ

[
Jω(v, v) + T

l∫

0

v2dx2

]}

≤ Jω(v, v) + T0{Jω(v, v) +
16l4−κT

9Dκ

[
Jω(v, v) +

16l4−κT
9Dκ

l∫

0

D(v,22)
2dx2

]}

= Jω(v, v) + T0

{
Jω(v, v) +

16l4−κT
9Dκ

[
Jω(v, v) +

16l4−κT
9Dκ

(Jω(v, v)

+ ω2

l∫

0

ρσv2dx2

)]}

= Jω(v, v) + T0

{
Jω(v, v)

[
1 +

16l4−κT
9Dκ

+
(16l4−κT

9Dκ

)2]

+
(16l4−κ

9Dκ

)2

ω2

l∫

0

ρσv2dx2

}

(repeating the same (n− 2)−times more)
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≤ Jω(v, v) + T0

[
Jω(v, v)

1− (16l4−κT
9Dκ

)n+1

1− 16l4−κT
9Dκ

+
(16l4−κT

9Dκ

)n

ω2

l∫

0

ρσv2dx2

)
.

Now, tending n to infinity and taking into account that, in view of (1.4.56) and (1.4.58),

16l4−κT
9Dκ

< 1,

we obtain

‖v‖2
Vγ1,γ2

≤ Jω(v, v) +
T0

1− 16l4−κT
9Dκ

Jω(v, v),

i.e., in view of (1.4.61),

Jω(v, v) ≥ 9Dκ − 16l4−κT
9Dκ + 16l4−κ

‖v‖2
Vγ1,γ2

. (1.4.62)

Thus, by virtue of (1.4.57), (1.4.62), and (1.4.59), according to the Lax-Milgram theorem
(see (2.4.36) below) there exists a unique z ∈ Vγ1,γ2 such that

Jω(z, v) = Fωv :=

l∫

0

fvdx2 − Jω(u, v) + γ2v(0)Q0 − γ1v,2(0)M0 ∀ v ∈ Vγ1,γ2 ,

whence,

Jω(w, v) =

l∫

0

fvdx2 + γ2v(0)Q0 − γ1v,2(0)M0 ∀ v ∈ Vγ1,γ2 , (1.4.63)

where
w := u + z ∈ W 2,2(]0, l[), D). (1.4.64)

So,
w − u = z ∈ Vγ1,γ2 ,

and (1.4.63) means that (1.4.30), (1.4.33), (1.4.35), (1.4.36), (1.4.38)–(1.4.40) hold in the
corresponding cases.

Besides, according to the Lax-Milgram theorem (see (2.4.37) below)

‖z‖Vγ1,γ2
≤ 9Dκ + 16l4−κ

9Dκ − 16l4−κT
‖Fω‖V ∗γ1,γ2

(1.4.65)

where V ∗
γ1,γ2

is dual to Vγ1,γ2 . From (1.4.59) it follows that

‖Fω‖V ∗γ1,γ2
≤ ‖f‖L2(]0,l[) + (1 + T )‖u‖W 2,2(]0,l[,D) + C0(γ2|Q0|+ γ1|M0|). (1.4.66)
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By virtue of (1.4.64)–(1.4.66), we have

‖w‖W 2,2(]0,l[,D) ≤ ‖u‖W 2,2(]0,l[,D) + ‖z‖Vγ1,γ2
≤ ‖u‖W 2,2(]0,l[,D)

+
9Dκ + 16l4−κ

9Dκ − 16l4−κT
[‖f‖L2(]0,l[) + (1 + T )‖u‖W 2,2(]0,l[,D) + C0(γ2|Q0|+ γ1|M0|)]

≤ C[‖f‖L2(]0,l[) + ‖u‖W 2,2(]0,l[,D) + γ2|Q0|+ γ1|M0|],
where

C := max
{

1 +
9Dκ + 16l4−κ

9Dκ − 16l4−κT
(1 + T ),

9Dκ + 16l4−κ

9Dκ − 16l4−κT
C0

}
.

¤

Now, let us consider the case
κ ≥ 4,

i.e.,
Ik = +∞ and Ik+1 < +∞ for a fixed k ∈ {3, 4, . . .}.

Instead of the space W 2,2(]0, l[, D) (see (1.4.7)) with the norm (1.4.6) we look for a solution
in a wider space

W̃ 2,2(]0, l[, D) (1.4.67)

with the norm

‖w‖2
W̃ 2,2(]0,l[,D)

:=

l∫

0

[xκ−4
2 w2 + D(w,22)

2]dx2. (1.4.68)

More precisely,
W̃ 2,2(]0, l[, D) ⊃ W 2,2(]0, l[, D) for κ > 4 (1.4.69)

and
W̃ 2,2(]0, l[, D) = W 2,2(]0, l[, D) for κ = 4. (1.4.70)

In the case under consideration, as it follows from the previous arguments (see Problem
1.4.1 and compare (1.3.4)0 with (1.3.1)0–(1.3.3)0), only the BVP (1.1.4), (1.3.1)l, (1.3.4)0

is admissible.
Let

V := {v ∈ W̃ 2,2(]0, l[, D) : v(l) = 0, v,2(l) = 0}. (1.4.71)

In view of (1.4.13),

W̃ 2,2(]0, l[, xκ2 ) ⊃ W̃ 2,2(]0, l[, D) for κ ≥ 4.

Therefore, Lemma 1.4.12 is also valid for v ∈ V .

Definition 1.4.16 Let u ∈ W̃ 2,2(]0, l[, D) be given and x
4−κ

2
2 f ∈ L2(]0, l[). A function

w ∈ W̃ 2,2(]0, l[, D) will be called a weak solution of the BVP (1.1.4), (1.3.1)l, (1.3.4)0 in

the space W̃ 2,2(]0, l[, D) if
w − u ∈ V

with V defined by (1.4.71), and if (1.4.40) holds for every v ∈ V .
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Theorem 1.4.17 Let ρ(x2)σ(x2)x
4−κ
2 ∈ C([0, l]). If κ ≥ 4 (i.e., Ik = +∞ and Ik+1 <

+∞ for a fixed k ∈ {3, 4, . . .}) and

ω2 <
(κ − 1)2(κ − 3)2Dκ

16 max
[0,l]

ρ(x2)σ(x2)x
4−κ
2

, (1.4.72)

then the BVP (1.1.4), (1.3.1)l, (1.3.4)0 with M0 = 0, Q0 = 0 has a unique weak solution

in W̃ 2,2(]0, l[, D) such that

‖w‖W̃ 2,2(]0,l[,D) ≤ C[‖x
4−κ

2
2 f(x2)‖L2(]0,l[) + ‖u‖W̃ 2,2(]0,l[,D)],

where the constant C is independent of f and u.

Proof. Let

T∗ := ω2 max
[0,l]

ρσx4−κ
2 ,

Tκ :=
16(1 + T∗)

(κ − 1)2(κ − 3)2Dκ
.

Using Lemma 1.4.12 and relations

ω2

l∫

0

ρσ|wv|dx2 = ω2

l∫

0

(ρσx4−κ
2 )(x

κ−4
2

2 |w|)(x
κ−4

2
2 |v|)dx2

≤ T∗




l∫

0

xκ−4
2 w2dx2




1/2 


l∫

0

xκ−4
2 v2dx2




1/2

,

l∫

0

ρσv2dx2 =

l∫

0

(ρσx4−κ
2 )(xκ−4

2 v2)dx2,

similarly to the proof of Theorem 1.4.15 (compare also with the proof of Theorem 2.5.12
below), we get

|Jω(w, v)| ≤ (1 + T∗)‖w‖W̃ 2,2(]0,l[,D) · ‖v‖W̃ 2,2(]0,l[,D),

where Jω is defined by (1.4.30), (1.4.31),

|Fωv| ≤ [‖x4−κ
2 f‖L2(]0,l[) + (1 + T∗)‖u‖W̃ 2,2(]0,l[,D)]‖v‖V ,

where

Fωv :=

l∫

0

f(x2)v(x2)dx2 − Jω(u, v), v ∈ V,



64 CHAPTER 1. CUSPED EULER-BERNOULLI BEAMS

and

Jω(v, v) ≥ (κ − 1)2(κ − 3)2Dκ − 16T∗
(κ − 1)2(κ − 3)2Dκ + 16

‖v‖2
V ∀v ∈ V.

Thus, all the conditions of the Lax-Milgram theorem are fulfilled and it is not difficult to
finish the proof. ¤

Remark 1.4.18 The restriction

ρ(x2)σ(x2)x
4−κ
2 ∈ C([0, l])

is not heavy because of σ(0) = 0. For instance, if we consider a beam with a rectangular
cross-section, with the unit width and the thickness

2h = h0x
κ/3
2 , h0 = const > 0, (1.4.73)

then σ(x2) = h0x
κ
3
2 and for 4 ≤ κ ≤ 6

ρ(x2)σ(x2)x
4−κ
2 = ρ(x2)h0x

4− 2κ
3

2 ∈ C([0, l]).

Remark 1.4.19 In the case (1.4.73) D(x2) has the form

D(x2) = D∗xκ2 , D∗ = const > 0,

provided E = const, ν = const. If we additionally suppose that

ρ(x2) = ρ∗x
2κ
3
−4

2 , ρ∗ = const > 0,

then
ρ(x2)σ(x2)x

4−κ
2 = ρ∗h0 = const.

Hence, from (1.4.72) we have

ω2 <
(κ − 1)2(κ − 3)2D∗

16ρ∗h0

.

Whence, the greater is κ the greater is the lower bound of eigenvalues of the operator Jω.
If now κ tends to +∞, then the above bound tends to +∞ as well.

Remark 1.4.20 Let l = 1. In the case of the homogeneous BCs for the BVP (1.1.4),
(1.3.1)l, (1.3.1)0, from the results of [57] (see theorem 1.61, and Lemma 1.51) there follows
the following sufficient condition of the unique solvability on the vibration frequence

ω2 < min





3
τ0∫
0

(τ0 − τ)3D−1(τ)dτ

,
3

1∫
τ0

(τ − τ0)3D−1(τ)dτ





for a fixed τ0 ∈]0, l[. Here we do not precise the other restrictions.
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Now, we consider the general case, i.e., we refuse (1.4.13). So,

D(x2) ∈ C([0, l]), D(x2) > 0 ∀ x2 ∈]0, l], D(0) ≥ 0. (1.4.74)

Under these assumptions, obviously,

l∫

x2

D−1(τ)dτ < +∞ for every x2 ∈]0, l]. (1.4.75)

Let further

P (x2) := D−1(x2)




l∫

x2

D−1(τ)dτ



−2

, x2 ∈]0, l[, (1.4.76)

Q(x2) := D(x2)




l∫

x2

D−1(τ)dτ




2




l∫

x2

D(t)




l∫

t

D−1(τ)dτ




2

dt





−2

, (1.4.77)

x2 ∈]0, l[.

Evidently,
P (x2), Q(x2) ∈ C(]0, l[), (1.4.78)

and
P (x2) > 0, Q(x2) > 0 ∀ x2 ∈]0, l[. (1.4.79)

Definition 1.4.21 Let ∗
W 2,2(]0, l[, D) (1.4.80)

be a special case of (1.4.4) with

ρ0 = Q(x2), ρ2 = D(x2).

Since
Q−1(x2), D−1(x2) ∈ L1

loc(]0, l[),

the space (1.4.80) is a Hilbert space.

Now, we consider Problem 1.4.1, where w0, wl and w′
0, w

′
l are the traces of a certain

given function u ∈
∗

W 2,2(]0, l[, D) and of its derivative, respectively.
Let

∗
V :=

{
v ∈

∗
W 2,2(]0, l[, D) : v(l) = 0, v,2(l) = 0, (1.4.81)

and additionally

v(0) = 0, v,2(0) = 0 in the case of BCs (1.3.1)0,

v,2(0) = 0 in the case of BCs (1.3.2)0,

v(0) = 0 in the case of BCs (1.3.3)0 provided I2 < +∞
(in the sense of traces)} .
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Remark 1.4.22 In (1.4.81) the existence of traces in the indicated cases is assumed.

But if we additionally suppose that
x2∫
0

D−1(t)dt < +∞ for x2 ∈]0, l] (so, with (1.4.74) it

implies 0 <
l∫

0

D−1(t)dt < +∞) and consider the space

∗
W 2,2(]0, l − ε[, D) ⊃

∗
W 2,2(]0, l[, D), ε = const > 0,

then, in view of (1.4.77),

Q(x2) = D(x2) · D̃(x2) ∀ x2 ∈ [0, l − ε]

with the positive continuous D̃(x2) on [0, l− ε]. If, now, we assume (1.4.13), we will have

D(x2) ≥ Dκx
κ
2 and Q(x2) ≥ D̃ ·Dκx

κ
2 ∀ x2 ∈]0, l − ε[,

where
D̃ := min

[0,l−ε]
D̃(x2).

Hence,
D(x2) ≥ D∗xκ2 , Q(x2) ≥ D∗xκ2

with
D∗ := min{Dκ, D̃Dκ}.

Therefore,

u ∈
∗

W 2,2(]0, l − ε[, D)

implies
u ∈ 2W

2,2(]0, l − ε[, xκ2 ),

where

2W
2,2(]0, l − ε[, xκ2 ) :=



u : ‖u‖

2W 2,2(]0,l−ε[,xκ2 ) :=

l−ε∫

0

[xκ2 u2 + xκ2 (u,22)
2]dx2 < +∞



 .

So,
∗

W 2,2(]0, l − ε[, D) ⊂ 2W
2,2(]0, l − ε[, xκ2 ).

But on the one hand,

2W
2,2(]0, l − ε[, xκ2 ) ⊂ 2W

2,2(]0, l − ε[, xκ2 (l − x2)
κ),

because of
xκ2 (l − x2)

κ ≤ lκxκ2 ∀ x2 ∈ [0, l].

On the other hand (see [71], Theorem 1.1.4),

2W
2,2(]0, l − ε[, xκ2 (l − x2)

κ) = W 2,2(]0, l − ε[, xκ2 (l − x2)
κ) ∀ κ ∈ ]− 1, 4].

Thus, if (1.4.13) holds, then the traces of u at x2 = 0 in the mentioned in (1.4.81) cases
exist (see [71], Theorem 1.1.2 or [70]).
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Obviously, from

v ∈ ∗
V

there follows
v ∈ ∗

V ε,

where
∗
V ε := {v ∈

∗
W 2,2(]ε, l[, D) : v(l) = 0, v,2(l) = 0} (1.4.82)

with arbitrarily small ε > 0.
On [ε, l]:

1.

D(x2) ≥ min
[ε,l]

D(x2) =: Dε > 0 and
D(x2)

Dε
≥ 1, (1.4.83)

because of
(i) D(x2) ∈ C([ε, l]);
(ii) D(x2) > 0 ∀ x2 ∈ [ε, l].

2.

P (x2) = D−1(x2)




l∫

x2

D−1(τ)dτ



−2

≥ min
[ε,l]

P (x2) =: P ε > 0 and
P (x2)

pε
≥ 1, (1.4.84)

because of
i) P (x2) ∈ C([ε, l[);
ii) P (x2) > 0 ∀ x2 ∈ [ε, l[;

iii) lim
x2→l−

P (x2) = lim
x2→l−

D−1(x2)




l∫

x2

D−1(τ)dτ



−2

= +∞, since 0 < D−1(l) < +∞.

3.

Q(x2) := D(x2)




l∫

x2

D−1(τ)dτ




2




l∫

x2

D(t)




l∫

t

D−1(τ)dτ




2

dt





−2

≥

≥ min
[ε,l]

Q(x2) =: Qε > 0 and
Q(x2)

Qε
≥ 1, (1.4.85)

because of
i) Q(x2) ∈ C([ε, l[);
ii) Q(x2) > 0 ∀ x2 ∈ [ε, l[;
iii)

lim
x2→l−

Q(x2) = D(l) lim
x2→l−

[
l∫

x2

D−1(τ)dt

]2

{
l∫

x2

D(t)

[
l∫
t

D−1(τ)dτ

]2

dt

}2
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= D(l) lim
x2→l−

2
l∫

x2

D−1(τ)dτ · [−D−1(x2)]

2
l∫

x2

D(t)

[
l∫
t

D−1(τ)dτ

]2

dt



−D(x2)

[
l∫

x2

D−1(τ)dτ

]2




= +∞

since 0 < D−1(l) < +∞, 0 < D(l) < +∞.
Evidently,

u ∈
∗

W 2,2(]0, l[, D)

implies

u ∈
∗

W 2,2(]ε, l[, D). (1.4.86)

But from (1.4.83), (1.4.85) we have

|u|2 ≤ |u|2Q(x2)

Qε
, |u,22|2 ≤ |u,22|2D(x2)

Dε
∀ x2 ∈ [ε, l[.

Hence, in view of (1.4.86), we get

u ∈ W 2,2(]ε, l[).

All the more, for

v ∈
∗

W 2,2(]0, l[, D)

with
v(l) = 0, v,2(l) = 0,

we have
v ∈ W 2,2(]ε, l[) (1.4.87)

with
v(l) = 0, v,2(l) = 0

in the usual sense, since by virtue of (1.4.87) v and its derivative are absolutely continuous
on [ε, l] (more precisely, after maybe necessary change on the set of the measure 0). Thus,

v and v,2 ∈ ACR(ε, l)

(see [72], p. 5, Definition 1.2) and the following Hardy type inequalities hold (see [72],
p. 66, Theorem 6.4):

l∫

ε

Q(x2)v
2(x2)dx2 ≤ 4

l∫

ε

P (x2)[v,2(x2)]
2dx2, (1.4.88)

l∫

ε

P (x2)[v,2(x2)]
2dx2 ≤ 4

l∫

ε

D(x2)[v,22(x2)]
2dx2, (1.4.89)
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whence,
l∫

ε

Q(x2)v
2(x2)dx2 ≤ 16

l∫

ε

D(x2)[v,22(x2)]
2dx2. (1.4.90)

Considering limit procedure as ε → 0+, since all the limit integrals exist because of

v ∈
∗

W 2,2(]0, l[, D), we immediately get the following

Lemma 1.4.23 If v ∈
∗

W 2,2(]0, l[, D) and v(l) = 0, v,2(l) = 0, then

l∫

0

Q(x2)v
2(x2)dx2 ≤ 16

l∫

0

D(x2)[v,22(x2)]
2dx2.

Definition 1.4.24 Let Q− 1
2 (x2)f(x2) ∈ L2(]0, l[). A function w ∈

∗
W 2,2(]0, l[, D) will be

called a weak solution of the Problem 1.4.1 in the space
∗

W 2,2(]0, l[, D) if it satisfies the
following conditions

w − u ∈ ∗
V

and

Jω(w, v) :=

l∫

0

Bω(w, v)dx2 =

l∫

0

vfdx2 + γ2v(0)Q0 − γ1v,2 (0)M0 ∀ v ∈ ∗
V ,

where

Bω(w, v) := Dw,22v,22 − ω2ρ(x2)σ(x2)wv,

γ1 = 0, γ2 = 0 in the case of BCs (1.3.1)0,

γ1 = 0, γ2 = 1 in the case of BCs (1.3.2)0,

γ1 = 1, γ2 = 0 in the case of BCs(1.3.3)0 provided I2 < ∞,

γ1 = 1, γ2 = 1 in the case of BCs(1.3.4)0.

Theorem 1.4.25 Let Q−1(x2)ρ(x2)σ(x2) ∈ C([0, l]) and

ω2 <
1

16 max
[0,l]

(ρσQ−1)
. (1.4.91)

Then there exists a unique weak solution of Problem 1.4.1 (more precisely of the four

BVPs stated there) in
∗

W 2,2(]0, l[, D). This solution is such that

‖w‖ ∗
W 2,2(]0,l[,D)

≤ C[‖Q− 1
2 f‖L2(]0,l[) +

+ ‖u‖ ∗
W 2,2(]0,l[,D)

+ γ1|M0|+ γ2|Q0|],

where the constant C is independent of f, u,M0, Q0.
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Proof. It is easy to see that

|Jω(w, v)| =

∣∣∣∣∣∣

l∫

0

D
1
2 w,22D

1
2 v,22dx2 − ω2

l∫

0

ρ(x2)σ(x2)Q
−1(x2)Q

1
2 w ·Q 1

2 vdx2

∣∣∣∣∣∣

≤



l∫

0

D(w,22)
2dx2




1/2 


l∫

0

D(v,22)
2dx2




1/2

+

+
∗
T




l∫

0

Qw2dx2




1/2 


l∫

0

Qv2dx2




1/2

≤

≤ (1 +
∗
T )‖v‖ ∗

W 2,2(]0,l[,D)
‖v‖ ∗

W 2,2(]0,l[,D)
,

where ∗
T := ω2 max

[0,l]
(ρσQ−1). (1.4.92)

Hence, the functional

Fωv :=

l∫

0

v(x2)f(x2)dx2 − Jω(u, v) + γ2v(0)Q0 − γ1v,2(0)M0, v ∈ ∗
V

is bounded in
∗
V :

|Fωv| ≤ [‖Q−1f‖L2(Ω) + (1 +
∗
T )‖u‖ ∗

W 2,2(]0,l[,D)
+ C0(γ2|Q0|+ γ1|M0|)]‖v‖ ∗

V
,

where C0 is the constant from the trace theorem. In order to use the Lax-Milgram

theorem it remains to show the
∗
V -ellipticity of Jω(w, v). Indeed, using Lemma 1.4.23 and

introducing the notation

T0 := 16(1 +
∗
T ), (1.4.93)

we have

‖v‖2
∗
V

:=

l∫

0

Q(x2)v
2dx2 +

l∫

0

D(x2)(v,22)
2dx2

=

l∫

0

Q(x2)v
2dx2 + Jω(v, v) + ω2

l∫

0

ρσQ−1Qv2dx2

≤ (1 +
∗
T )

l∫

0

Q(x2)v
2dx2 + Jω(v, v)
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≤ 16(1 +
∗
T )

l∫

0

D(x2)(v,22)
2dx2 + Jω(v, v)

= T0


Jω(v, v) + ω2

l∫

0

ρσQ−1Qv2dx2


 + Jω(v, v)

≤ Jω(v, v) + T0


Jω(v, v) +

∗
T

l∫

0

Qv2dx2




≤ Jω(v, v) + T0


Jω(v, v) + 16

∗
T

l∫

0

D(v,22)
2dx2




= Jω(v, v) + T0


Jω(v, v) + 16

∗
TJω(v, v) + 16

∗
Tω2

l∫

0

ρσQ−1Qv2dx2




≤ Jω(v, v) + T0


Jω(v, v) + 16

∗
TJω(v, v) + (16

∗
T )2

l∫

0

D(v,22)
2dx2




= Jω(v, v) + T0

[
Jω(v, v) + 16

∗
TJω(v, v) + (16

∗
T )2Jω(v, v)

+ (16
∗
T )2

∗
T

l∫

0

Qv2dx2


 ≤ Jω(v, v)

+ T0



Jω(v, v)


1 + 16

∗
T + (16

∗
T )2 + (16

∗
T )3

l∫

0

D(v,22)
2dx2








(repeating the same (n− 2)−times more)

≤ Jω(v, v) + T0


Jω(v, v)

1− (16
∗
T )n+1

1− 16
∗
T

+ (16
∗
T )n+1

l∫

0

D(v,22 )2dx2


 .

Now, tending n to infinity and taking into account that

16
∗
T < 1,

because of (1.4.91), (1.4.92), we obtain

‖v‖2
∗
V
≤ Jω(v, v) +

T0

1− 16
∗
T

Jω(v, v).

Whence,

Jω(v, v) ≥ 1− 16
∗
T

1− 16
∗
T + T0

‖v‖2
∗
V

=
1− 16

∗
T

17
‖v‖2

∗
V
,
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since, in view of (1.4.93),

1− 16
∗
T + T0 = 17.

Now, we can use the Lax-Milgram theorem and complete the proof similarly to the proof
of Theorem 1.4.15. ¤



Chapter 2

Cusped Kirchhoff-Love Plates

2.1 Cusped orthotropic plate

Let Ox1x2x3 be the Cartesian coordinate system, and let Ω be a domain in the plane
Ox1x2 with a piecewise smooth boundary. The body bounded from above by the surface
x3 = h(x1, x2) ≥ 0, (x1, x2) ∈ Ω, from below by the surface x3 = −h(x1, x2), (x1, x2) ∈ Ω,
from the side by a cylindrical surface parallel to the x3-axis, will be called a symmetric
cusped plate. The points P ∈ ∂Ω, at which s.c. plate thickness 2h(x1, x2) = 0, will be
called plate cusps. If h ∈ C1(Ω), obviously,

0 ≤ L := lim
Q→P

∂2h(Q)

∂n
≤ +∞, Q ∈ Ω, P ∈ ∂Ω,

provided the finite or infinite limit L exists; if P is an angular point of the boundary
∂Ω, then under inward to ∂Ω normal n we mean bisectrix of an angle between unilateral
tangents to ∂Ω at P . Ω will be called the projection of the plate. ∂Ω will be called the
plate boundary. In appendix on Figures 11-19 the possible normal sections (profiles) of
an asymmetric, in general, plate at the point P in its neighbourhood are represented (see
also Figures 21-23 there).

Let us, now, consider an orthotropic cusped plate.
The equation of classical bending theory of orthotropic plates has the following form

(see [79])

Jw := (D1w, 11 ), 11 +(D2w, 22 ), 22 +(D3w, 22 ), 11

+ (D3w, 11 ), 22 +4(D4w, 12 ), 12

= f(x1, x2) in Ω ⊂ R2, (2.1.1)

where w is a deflection; f is a lateral load; Di ∈ C2(Ω), i = 1, 2, 3, 4, and

Di :=
2 Ei h

3

3
, i = 1, 2, 3, D4 :=

2 Gh3

3
;

Dα −D3 > 0, α = 1, 2 if h > 0 (2.1.2)

73
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(for all known orthotropic plates these last conditions are fulfilled (see [79])); Ei, i =
1, 2, 3, and G are elastic constants for the orthotropic case; indices after comma mean
differentiation with respect to corresponding variables.

In particular, if the plate is isotropic,

Eα =
E

1− ν2
, α = 1, 2, E3 =

νE

1− ν2
, G =

E

2(1 + ν)
,

where E is Young’s modulus and ν is Poisson’s ratio.

Let ∂Ω be the piecewise smooth boundary of the domain Ω with a part Γ1 lying on
the axis Ox1 and a part Γ2 lying in the upper half-plane x2 > 0 (∂Ω ≡ Γ1 ∪ Γ2).

Let further the thickness 2h > 0 in Ω ∪ Γ2, and 2h ≥ 0 on Γ1. Therefore,

Di(x1, x2) > 0 in Ω ∪ Γ2, Di(x1, x2) ≥ 0 on Γ1, i = 1, 2, 3, 4. (2.1.3)

In particular case let

D1ix
κ
2 ≤ Di(x1, x2) ≤ D2ix

κ
2 , i = 1, 2, 3, 4, in Ω, (2.1.4)

where

Dαi = const > 0, α = 1, 2, i = 1, 2, 3, 4, κ = const ≥ 0,

i.e.,

Di(x1, x2) = D̃i(x1, x2)x
κ
2 , D1i ≤ D̃i(x1, x2) ≤ D2i,

D1α > D23, α = 1, 2, (2.1.5)

(otherwise there would exist such points of Ω where (2.1.2) will be violated). In the case
under consideration, (2.1.1) is an elliptic equation, in general, with order degeneration on
Γ1.

We recall (see [79]) that

Mα = −(Dαw,αα +D3w,ββ ), α 6= β, α, β = 1, 2, (2.1.6)

M12 = −M21 = 2D4w,12 , (2.1.7)

Qα = Mα,α + M21,β, α 6= β, α, β = 1, 2, (2.1.8)

Q∗
α = Qα + M21,β, α 6= β, α, β = 1, 2, (2.1.9)

where Mα are bending moments, Mαβ, α 6= β, are twisting moments, Qα are shearing
forces and Q∗

α are generalized shearing forces (bar under repeated indices means that we
do not sum with respect to these indices).

At points of the plate boundary, where the thickness vanishes, all quantities will be
defined as limits from inside of Ω.
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2.2 Bending in the energetic space

Let Di ∈ C2(Ω ∪ Γ2), i = 1, 2, 3, 4. Let us consider the operator J (acting in L2(Ω)) on
DJ :

1. w ∈ C4(Ω ∪ Γ2);
Jw ∈ L2(Ω);

w





∈ C(Ω) when I1i|Γ1 < +∞ in case (2.1.3) (0 ≤ κ < 2 in case (2.1.4))

provided (M2w)|Γ1 6= 0 or when I2i|Γ1 < +∞ in case (2.1.3)

(0 ≤ κ < 3 in case (2.1.4)) provided (M2w)|Γ1 = 0

= O(1), x2 → 0+, when I1i|Γ1 = +∞ (κ ≥ 2) provided (M2w)|Γ1 6= 0

or when I2i|Γ1 = +∞ (κ ≥ 3) provided (M2w)|Γ1 = 0;
(2.2.1)

w,α




∈ C(Ω) when I0i|Γ1 < +∞ (0 ≤ κ < 1),

= O(1), x2 → 0+, when I0i|Γ1 = +∞ (1 ≤ κ < +∞), α = 1, 2;
(2.2.2)

Iki ≡ Iki(x1) :=

l(x1)∫

0

xk
2D

−1
i (x1, x2)dx2, i = 1, 2, 3, 4, k = 0, 1, ...,

(x1, 0) ∈ Γ1, (x1, l(x1)) ∈ Ω,

(D2 −D3)
1
2 w,22 ∈ L2(Ω) (2.2.3)

(this restriction can be avoided when we consider only solutions with a finite energy);
the bending moment, and the generalized shearing force

(M2w) := −(D2w, 22 +D3w, 11 ) ∈ C(Ω), (2.2.4)

(Q∗
2w) := −[(D2w, 22 +D3w, 11 ),2 +4(D4w, 12 ),1 ] ∈ C(Ω); (2.2.5)

2.

w|
Γ2

= 0,
∂w

∂n

∣∣∣∣
Γ2

= 0 (2.2.6)

where n is the inward normal;
3. On Γ1 one of the following pairs of BCs is fulfilled:

w = 0, w, 2 = 0 if I0i < +∞, i = 1, 2, 3, 4, (0 ≤ κ < 1); (2.2.7)

w,2 = 0, (Q∗
2w) = 0 if I0i < +∞, i = 1, 2, 3, 4, (0 ≤ κ < 1); (2.2.8)

w = 0, (M2w) = 0 if I2i < +∞, i = 1, 2, 3, 4, (0 ≤ κ < 3); (2.2.9)

(M2w) = 0, (Q∗
2w) = 0 if I0i ≤ +∞, i = 1, 2, 3, 4, (0 ≤ κ < +∞). (2.2.10)
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Obviously, DJ ⊂ L2(Ω) and is dense in L2(Ω) since DJ contains the set of finite
functions C∞

0 (Ω) which is dense in L2(Ω).

Remark 2.2.1 How it follows from the case of cylindrical bending (see Section 1 of [46],
[38], p. 96 and also Section 1.2 of the present book), the BCs (2.2.7)-(2.2.9) cannot be
posed (in the sense of solvability and uniqueness) for other values of κ except indicated
ones, or in the general case (2.1.3) if I0i|Γ1 = +∞, and I2i|Γ1 = +∞, correspondingly.

Statement 2.2.2 The operator J is linear, symmetric, and positive on the lineal DJ ,
and

(Jw, v) :=

∫

Ω

vJwdΩ =

∫

Ω

[D1v,11 w,11 +D2v,22 w,22 +D3(v,11 w,22

+v,22 w,11 ) + 4D4v,12 w,12 ]dΩ =:

∫

Ω

B(v, w)dΩ ∀v, w ∈ DJ . (2.2.11)

In particular, if v = w,

(Jw, w) :=

∫

Ω

[D1(w,11 )2 + D2(w,22 )2 + 2D3 w,11 w,22

+ 4D4(w,12 )2]dΩ =

∫

Ω

[D3(w,11 +w,22 )2 + (D1 −D3)(w,11 )2

+ 4D4(w,12 )2 + (D2 −D3)(w,22 )2]dΩ. (2.2.12)

Proof. It is obvious that J is a linear operator on the lineal DJ (the latter about
DJ easily follows from the linearity of operators J , M2, and Q∗

2 on C4(Ω ∪ Γ2)). Since
D

J
⊂ L2(Ω) and Jw ∈ L2(Ω), we can consider the following scalar product in L2(Ω)

(Jw, v) :=

∫

Ω

vJwdΩ = lim
δ→0

∫

Ωδ

vJwdΩδ ∀v, w ∈ DJ ,

where
Ωδ := {(x1, x2) ∈ Ω : x2 > δ = const > 0}.

After integration by parts twice and using formulas (d), (c) on page 87 (page 105 of
Russian edition) of [79] we have

(Jw, v) := lim
δ→0




∫

∂Ωδ

(
v(Qnw)− ∂v

∂n
(Mnw) +

∂v

∂s
(Mnsw)

)
ds +

∫

Ωδ

B(v, w)dΩδ


 ,

where ds is the arc element, (Qnw) is the shearing force, (Mnw) is the bending moment,
(Mnsw) is the twisting moment, which act on the plate cross-section with the normal n.
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But
∫

∂Ωδ

∂v

∂s
(Mnsw)ds =

∫

∂Ωδ

∂v(Mnsw)

∂s
ds−

∫

∂Ωδ

v
∂(Mnsw)

∂s
ds = −

∫

∂Ωδ

v
∂(Mnsw)

∂s
ds

as v, (Mnsw) ∈ C(Ωδ). Hence,

(Jw, v) := lim
δ→0

∫

∂Ωδ

(
v(Q∗

nw)− ∂v

∂n
(Mnw)

)
ds + lim

δ→0

∫

Ωδ

B(v, w)dΩδ, (2.2.13)

where

(Q∗
nw) := (Qnw)− ∂(Mnsw)

∂s
.

In view of (2.2.6),

∫

∂Ωδ

(
v(Q∗

nw)− ∂v

∂n
(Mnw)

)
ds =

∫

Γδ
1

(v(Q∗
2w)− v,2 (M2w)) ds,

where
Γδ

1 := {(x1, x2) ∈ Ω : x2 = δ = const > 0}.
By virtue of (2.2.1), (2.2.2), (2.2.4), (2.2.5), (2.2.7)-(2.2.10), ∀ε = const > 0 ∃δ(ε) =
const > 0 such that

|vQ∗
2 − v,2 M2| ≤ |v||Q∗

2|+ |v,2 ||M2| < ε, when 0 < x2 < δ,

i.e., taking into account (2.2.6),

∣∣∣∣∣∣

∫

∂Ωδ

(
v (Q∗

nw)− ∂v

∂n
(Mnw)

)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∫

Γδ
1

(v (Q∗
2w)− v,2 (M2w)) ds

∣∣∣∣∣∣∣
< ε|Γδ

1| < ε|∂Ωδ| ≤ ε|∂Ω|

(|∂Ω| is the length of the curve ∂Ω). So that

lim
δ→0

∫

∂Ωδ

(
v (Q∗

nw)− ∂v

∂n
(Mnw)

)
ds = lim

δ→0

∫

Γδ
1

(v (Q∗
2w)− v,2 (M2w)) ds = 0.

Therefore, because of existence of the integral on the left-hand side of (2.2.13), limit of
the second addend on the right hand side of (2.2.13), also exists, and (2.2.11) is valid.
(2.2.12) is obvious.

From (2.2.11) there follows

(Jw, v) = (Jv, w) = (w, Jv), ∀v, w ∈ DJ .
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Hence, the operator J is symmetric.
From (2.2.12), taking into account (2.1.2), we have

(Jw, w) ≥ 0.

But

(Jw, w) = 0, w ∈ DJ ,

iff

w,11 = 0, w,22 = 0, w,12 = 0 in Ω,

i.e.,

w = k1x1 + k2x2 + k3, ki = const, i = 1, 2, 3, in Ω.

The latter, by virtue of (2.2.6), should be zero on Γ2 and, because of its linearity, ki = 0,
i = 1, 2, 3. Therefore, w ≡ 0 on Ω. ¤

Introduce

D0 := inf
Ω

D2 −D3

x4
2

≥ 0.

Statement 2.2.3 The operator J is positive definite if only D0 > 0 (0 ≤ κ ≤ 4).

Proof. Let D0 = 0, and consider the particular case (2.1.4) with D̃i(x1, x2) ∈ C1(Ω).
Then

D0 = inf
Ω

(D̃2 − D̃3)x
κ−4
2 = 0 if only κ > 4.

Now, we show that J is not positive definite. Indeed, let the rectangle

Π0 := {(x1, x2) : a < x1 < b, 0 < x2 < δ}

be cut out from Ω. Let (see [64])

wδ(x1, x2) :=





(δ − x2)
5sin5π(x1 − a)

b− a
when (x1, x2) ∈ Π0;

0 when (x1, x2) ∈ Ω\Π0.

Obviously, wδ ∈ DJ , and because of κ > 4, (2.2.10) should be and, in fact, is fulfilled by
wδ. It is easy to see that

0 ≤ (Jwδ, wδ)

‖wδ‖2
L2(Ω)

≤ ∗
Cδκ−4,

∗
C = const > 0,

since

‖wδ‖2
L2(Ω) =

1

11

b− a

π

1

210

(
10

5

)
πδ11,
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and, in view of (2.1.4),

0 ≤ (Jwδ, wδ) ≤
∫

Π0

max
i∈{1,2,3,4,}

{D2i}xκ2 [(wδ,11)
2 + (wδ,22)

2+

+2wδ,11wδ,22 + 4(wδ,12)
2]dx1dx2 ≤

∗∗
C(δκ+11 + δκ+7 + δκ+9),

∗∗
C = const > 0.

Hence, J is not positive definite on DJ .
Now, let us return to the general case (2.1.3). Further D0 > 0 (0 ≤ κ ≤ 4), and prove

that J is positive definite.
From (2.2.12), taking into account (2.2.3), (2.1.2) and (2.1.3), we obtain

(Jw,w) ≥
∫

Ω

(D2 −D3)(w,22 )2dΩ

≥ D0

∫

Ω

x4
2(w,22 )2dΩ = D0

∫

Π

x4
2(w,22 )2dx1dx2,

where
Π := {(x1, x2) : a < x1 < b, 0 < x2 < 1}, (2.2.14)

and without loss of generality, it is supposed that the domain Ω lies inside of the rectangle
Π, and a definition of the function w is completed assuming w equal to zero outside of
Ω. Then w will be continuous in Π with its first derivatives, and its derivatives of second
order, in general, will have discontinuity of the first kind on the arc Γ2. Further

(Jw, w) ≥ D0

b∫

a

1∫

0

x4
2(w,22 )2dx1dx2 ≥ 9D0

16

b∫

a

1∫

0

w2dx1dx2

= γ

∫

Π

w2dx1dx2 = γ

∫

Ω

w2dw = γ‖w‖2
L2(Ω),

where

γ :=
9

16
D0.

In the previous reasonings we have used the following

Lemma 2.2.4 Let w(x1, .) be a real function of x2 for fixed x1 satisfying the following
conditions:

1) w and w,2 are absolutely continuous on [δ, 1] ∀δ ∈]0, 1[;
2) w, w,2 = O(1) when x2 → 0+;
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3) x2
2w,22 ∈ L2( ]0, 1[ );

4) w(x1, 1) = w,2 (x1, 1) = 0.
Then

1∫

0

x4
2(w,22 )2dx2 ≥ 9

16

1∫

0

w2dx2, (2.2.15)

1∫

0

x4
2(w,22 )2dx2 ≥ 9

4

1∫

0

x2
2(w,2 )2dx2. (2.2.16)

Proof is similar to the one used in [64] for the case δ = 0 but we have to consider all
integrals from δ to 1 and then let δ tend to zero (see also Corollary 1.4.13 and (1.4.52)
for κ = 4). ¤

Let HJ be the energetic space (see, e.g., [64]) corresponding to the operator J defined
on DJ and acting in L2(Ω).

Theorem 2.2.5 Let f ∈ L2(Ω). If D0 > 0 (0 ≤ κ ≤ 4), there exists a unique generalized
solution of (2.1.1) in the energetic space HJ . If D0 = 0 (κ > 4), and f(x1, x2) = 0 in
Ω\Ωδ then there exists a unique generalized solution with a finite energy.

Proof. First we prove that the solution with the finite energy exists for D0 ≥ 0 (κ ≥ 0)
if f = 0 in Ω\Ωδ (the last restriction of f can be weakened [16]). Let w ∈ DJ . Then

w|
Γ2

= 0,
∂w

∂n

∣∣
Γ2

= 0,

and there exist continuous on Γ2 from inside derivatives w,αβ. We put the domain Ω inside
of the rectangle (2.2.14) and complete a definition of the function w assuming it to be
equal to zero outside of Ω.

We have

|(w, f)|2 =

∣∣∣∣∣∣

∫

Ω

wfdx1dx2

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

∫

Ωδ

wfdx1dx2

∣∣∣∣∣∣

2

≤
∫

Ωδ

f 2dx1dx2

∫̇

Ωδ

w2dx1dx2 = C

∫

Πδ

w2dx1dx2 ∀w ∈ DJ , (2.2.17)

where

C :=

∫

Ω

f 2dx1dx2 ≥ 0,

Πδ := {(x1, x2) ∈ Π : x2 > δ = const > 0}.
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Obviously, when x2 > 0

x1∫

a

w,1 dx1 = w(x1, x2)− w(a, x2) = w(x1, x2) (2.2.18)

since w(a, x2) = 0 as (a, x2) ∈ Π\Ω. According to Cauchy - Bunyakovskii inequality, from
(2.2.18) we have

w2 ≤
x1∫

a

12dx1

x1∫

a

(w,1 )2dx1 ≤ (b− a)

b∫

a

(w,1 )2dx1.

Integrating both sides in limits a ≤ x1 ≤ b, δ ≤ x2 ≤ 1,
∫

Πδ

w2dx1dx2 ≤ (b− a)2

∫

Πδ

(w,1 )2dx1dx2

≤ (b− a)4

∫

Πδ

(w,11 )2dx1dx2 = (b− a)4

∫

Ωδ

(w,11 )2dx1dx2 (2.2.19)

(in the second inequality the first inequality is applied to w,1)

= (b− a)4

∫

Ωδ

(D1 −D3)(w,11 )2

D1 −D3

dx1dx2

≤ (b− a)4

Dδ

∫

Ωδ

(D1 −D3)(w,11 )2dx1dx2

≤ (b− a)4

Dδ

∫

Ωδ

[(D1 −D3)(w,11 )2

+ D3(w,11 +w,22 )2 + 4D4(w,12 )2 + (D2 −D3)(w,22 )2]dx1dx2

≤ (b− a)4

Dδ

(Jw, w) =
(b− a)4

Dδ

‖w‖2
HJ

,

Dδ := min
Ωδ

(D1 −D3).

From (2.2.17) and (2.2.19) there follows

|(w, f)|2 ≤ C(b− a)4

Dδ

‖w‖2
HJ

,

i.e., (w, f) can be considered as a linear bounded functional with respect to the energetic
norm. But then, according to the well-known theory [64], there exists a solution with a
finite energy.
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In case D0 > 0 (0 ≤ κ ≤ 4), moreover, according to the general theory [64], there
exists a generalized solution since J is positive definite (see Statement 2.2.3). ¤

Remark 2.2.6 In the particular case (2.1.4):

I0i(x1) =

l∫

0

D̃−1
i (x1, τ)τ−κdτ ≤ D−1

1i

τ 1−κ

1− κ
∣∣l
0 = D−1

1i

l1−κ

1− κ < +∞ if κ < 1,

and, when κ ≥ 1,

I0i(x1) ≥ D−1
2i lim

ε→0

l∫

ε

τ−κdτ = +∞.

Similarly,

I1i(x1)





< +∞ if κ < 2,

= +∞ if κ ≥ 2,
I2i(x1)





< +∞ if κ < 3,

= +∞ if κ ≥ 3.

2.3 On a modification of the Lax-Milgram theorem

This section deals with the following modification of the Lax-Milgram theorem:

Theorem 2.3.1 Let V be a real Hilbert space, and let J(u, v) be a bilinear form defined
on V × V . Let there exist a constant k > 0 such that

|J(u, v)| ≤ K‖u‖
V
‖v‖

V
∀u, v ∈ V, (2.3.1)

and let
J(v, v) = 0 ⇒ v = θ in V (2.3.2)

(θ is the zero element of V ). Then for any bounded linear functional F defined on V there
exists a unique functional Fz0 ∈ V ∗ (V ∗ is the space conjugate to V ) such that

Fv = Fz0v := lim
k→∞

J(zk, v) ∀v ∈ V, (2.3.3)

where
zk := C−1tk (2.3.4)

for any sequence tk ∈ C(V ) ⊂ V converging to t0 uniquely defined by F in view of Riesz
theorem. C−1 is the inverse operator of the bounded linear operator C:

t = Cz (2.3.5)

defined in the space V by the relation

J(z, v) = (v, t) ∀v ∈ V (2.3.6)

and fixed z ∈ V .
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Proof. In view of Riesz theorem, it is possible to express every bounded linear func-
tional F in V in the following form

Fv = (v, t0) ∀v ∈ V, (2.3.7)

where the element t0 ∈ V is uniquely determined by the functional F and ‖t0‖V = ‖F‖V ∗ .
If z ∈ V is fixed, then the bilinear form J(z, v) represents, obviously, a linear functional

in V . This functional is bounded since by (2.3.1)

|J(z, v)| ≤ k̃‖v‖
V
, k̃ = K‖z‖

V
= const > 0. (2.3.8)

Then according to the above Riesz theorem, there exists a unique t ∈ V such that (2.3.6)
holds, and also, by virtue of (2.3.6), (2.3.8),

‖t‖
V
≤ k̃ = K‖z‖

V
. (2.3.9)

By the relation (2.3.6) to every z ∈ V a unique t ∈ V is assigned. This defines by (2.3.5)
an operator C in V . C is, obviously, a linear one, and, in view of (2.3.9), also bounded.
The range L ≡ C(V ) of this operator C is a certain linear set in V . More precisly, L is a
metric space whose elements are the elements of that linear set L with the metric of the
space V .

We will prove that the mapping (2.3.5) from V onto L is one-to-one, i.e., L ∼ V .
To this end it is sufficient to prove that to the zero-element of L there corresponds the
zero-element of V . Thus, let θ = Cz, i.e., by virtue of (2.3.6),

J(z, v) = (v, θ) = 0 ∀v ∈ V. (2.3.10)

In particular, for v = z, (2.3.10) yields

J(z, z) = 0.

But then, according to (2.3.2), z = θ. Hence, ∃C−1:

z = C−1t. (2.3.11)

Let {tk} be a fundamental sequence in L, and, thus, also in V . Since V is complete,
∃t0 ∈ V such that

lim
k→∞

tk = t0, in V. (2.3.12)

Therefore, complete L is a subspace of V .
Now, we will prove that L ≡ V . The proof will be performed by contradiction. Let

L 6= V . Then there exists an element w 6= θ in V orthogonal to the subspace L, so that

(w, t) = 0 (2.3.13)

holds ∀t ∈ L. Since w ∈ V , in view of (2.3.6), a unique t∗ ∈ L ⊂ L exists such that

J(w, v) = (v, t∗) ∀v ∈ V.
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In particular, for v = w, we have

J(w, w) = (w, t∗) = 0

because of (2.3.13). Therefore, by virtue of (2.3.2), w = θ in V , which is in contradiction
with assumption w 6= θ. Hence, L ≡ V .

For any bounded linear functional F in V we have (2.3.7), where t0 ∈ V ≡ L is
uniquely determined by F . For the above t0 ∈ L there exists a sequence tk ∈ L which is
convergent to t0 in V . According to (2.3.11) ∀tk ∈ L ∃zk ∈ V such that

J(zk, v) = (v, tk) ∀v ∈ V. (2.3.14)

Functionals J(zk, v) and (v, tk) are bounded linear functionals from V ∗ for fixed k. Now,
tending k → +∞ in (2.3.14), since, in view of (2.3.12), there exists a limit (which is equal
to (v, t0) because of continuity of a scalar product) in the right-hand side, the limit of the
left-hand side will also exist, and

lim
k→∞

J(zk, v) = (v, t0) ∀v ∈ V. (2.3.15)

Then, by virtue of an immediate corollary of the Banach-Steinhaus theorem, linear form

Fz0 : v → lim
k→∞

J(zk, v) (2.3.16)

is a bounded linear functional on V, which does not depend on the choice of {zk}, i.e., of
{tk} since for any sequence tk → t0 in V , on the right hand side of (2.3.15) we have the
same limit (v, t0).Thus, from (2.3.7), (2.3.15) and (2.3.16) we get (2.3.3). ¤

Remark 2.3.2 If the sequence {zk}, zk ∈ V , corresponding to {tk}, (tk ∈ L is from
(2.3.12)) is fundamental in V, then because of completness of V ∃z0 ∈ V such that

lim
k→∞

zk = z0 in V.

Therefore, taking into account (2.3.1), we have

Fz0v := lim
k→∞

J(zk, v) = J(z0, v)

(this is justification of notation Fz0), and from (2.3.3) it follows that there exists a unique
z0 ∈ V such that

Fv = J(z0, v) ∀v ∈ V

which coincides with the assertion of the Lax-Milgram theorem (see Section 2.4 below).
Therefore, Fz0 ∈ V ∗ can be identified with z0 ∈ V . If the sequence {zk} is not fundamental
in V (let us note that the numerical sequence {J(zk, v)} is fundamental for fixed v ∈ V ),
then Fz0 ∈ V ∗ will be identified with the ideal element z0 which does not belong to V .

Let us denote by Vi the set of the ideal elements z, and by Ṽ := V ∪ Vi. Let us remind
that when {zk} is fundamental, the ideal element z0 ∈ V .
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Under the product λz0, λ ∈ R, z0 ∈ Ṽ , we understand the ζ0 identified with the
functional

Fζ0v := lim
k→∞

J(λzk, v) = lim
k→∞

λJ(zk, v) =: λFz0v.

Under the sum z′0 + z′′0 of z′0, z
′′
0 ∈ Ṽ we understand ζ0, identified with the functional

Fζ0v := lim
k→∞

J(z′0 + z′′0 , v) = lim
k→∞

J(z′k, v) + lim
k→∞

J(z′′k , v) =: Fz′0v + Fz′′0 v,

where

z′k := C−1t′k, z′′k := C−1t′′k,

lim
k→∞

t′k = t′0, lim
k→∞

t′′k = t′′0 in V,

t′0 and t′′0 are uniquely defined, in view of Riesz theorem, by bounded linear functionals

F ′ := (v, t′0) and F ′′ := (v, t′′0), corespondingly. Obviously Ṽ is a linear vector space.

Now, introducing in Ṽ the norm as

‖z0‖Ṽ := ‖Fz0‖V ∗ , (2.3.17)

Ṽ will be Banach, and moreover Hilbert space since such is V ∗. Indeed,

‖z′0 + z′′0‖2
Ṽ

+ ‖z′0 − z′′0‖2
Ṽ

:= ‖Fz′0 + Fz′′0 ‖2
V ∗ + ‖Fz′0 − Fz′′0 ‖2

V ∗

= 2(‖Fz′0‖2
V ∗ + ‖Fz′′0 ‖2

V ∗)

=: 2(‖z′0‖2
Ṽ

+ ‖z′′0‖2
Ṽ
).

Therefore, the scalar product can be defined as

(z′0, z
′′
0 )Ṽ := 4−1(‖z′0 + z′′0‖2

Ṽ
− ‖z′0 − z′′0‖2

Ṽ
).

The completness of Ṽ is obvious from (2.3.17).

Remark 2.3.3 If C−1is a bounded operator then from (2.3.11), (2.3.12) it follows that
{zk} is a fundamental sequence.

Remark 2.3.4 If J is coercive, i.e.,

|J(v, v)| ≥ c‖v‖2
V , c = const > 0, ∀v ∈ V,

then C−1 is a bounded operator.

Remark 2.3.5 If (2.3.2) is fulfilled, then either J(v, v) ≥ 0 ∀v ∈ V or J(v, v) ≤ 0 ∀v ∈
V.
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Proof (belongs to S.S. Kharibegashvili). Let us take arbitrary fixed v0 ∈ V, v0 6= θ,
from J(v0, v0) 6= 0 we have either

J(v0, v0) > 0 (2.3.18)

or
J(v0, v0) < 0 (2.3.19)

Let us, now, show that if (2.3.18) is fulfilled, then ∀v ∈ V, v 6= θ we get J(v, v) > 0,
while if (2.3.19) is fulfilled, then J(v, v) < 0.

Let first v ∈ V, v 6= θ be not linearly dependent on v0 then for ∀t ∈] −∞, +∞[, we
have

0 6= J(v0 + tv, v0 + tv) = J(v0, v0) + [J(v0, v) + J(v, v0)]t + J(v, v)t2, (2.3.20)

since v0 + tv 6= θ ∀t ∈] −∞, +∞[. Therefore, according to the well-known property of
the quadratic trinomial

J(v0, v0) · J(v, v) >
1

4
[J(v0, v0) + J(v, v)]2 ≥ 0. (2.3.21)

But if (2.3.18) is fulfilled, then in view of (2.3.21), obviously J(v, v) > 0, for arbitrary
v ∈ V \{θ} which is lineary independent of v0; if (2.3.19) is fulfilled, then from (2.3.21),
we get, similarly, J(v, v) < 0 for arbitrary v ∈ V \{θ} which is lineary independent of v0.

Let, now, v ∈ V, v 6= θ, and be lineary dependent on v0, i.e., ∃t0 ∈] −∞, +∞[, such
that v0 + t0v = θ. Obviously, such t0 is unique, i.e., the equation v0 + tv = θ with respect
to t has a unique solution t = t0. On the other hand, from

J(v0 + tv, v0 + tv) = 0 ⇔ v0 + tv = θ

it follows that the trinomial (2.3.20) has a unique zero t = t0. This is equivalent with the
assertion that the discriminant of the trinomial (2.3.20) is equal to zero:

J(v0, v0)J(v, v) =
1

4
[J(v0, v0) + J(v, v)]2 > 0 (2.3.22)

(the last inequality is strong since in the left-hand side of the equality J(v0, v0) 6=
0, J(v, v) 6= 0). Finaly, from (2.3.22) follows J(v, v) > 0 and J(v, v) < 0 when corre-
spondingly (2.3.18) and (2.3.19) are fulfilled. Thus, the remark is proved. ¤

2.4 Bending in the weighted Sobolev space

Let us consider for the equation (2.1.1) the following inhomogenuoes BCs:
on Γ2

w = g12,
∂w

∂n
= g22, (2.4.1)

and on Γ1 either

w = g11, w, 2 = g21 if I0i < +∞ (0 < κ < 1), (2.4.2)
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or

w, 2 = g21, Q∗
2 = h2 if I0i < +∞ (0 < κ < 1), (2.4.3)

or

w = g11,

(M2w) = h1




≡/ 0 when I0i < +∞ (0 ≤ κ < 1),

≡ 0 when I0i = +∞ (1 ≤ κ < 2)
(2.4.4)

if I2i < +∞ (0 ≤ κ < 3),

or

(M2w) = h1




≡/ 0 when I0i < +∞ (0 ≤ κ < 1),

≡ 0 when I0i = +∞ (1 ≤ κ < +∞),

(Q∗
2w) = h2




≡/ 0 when I1i < +∞ (0 ≤ κ < 2),

≡ 0 when I1i = +∞ (2 ≤ κ < +∞)

(2.4.5)

if I0i ≤ +∞ (0 ≤ κ < +∞).

Let

gαβ, hα ∈ L2(Γ1), α, β = 1, 2, (2.4.6)

and g11, g21, g12, g22 be traces of a certain given function u ∈ W 2
2 (Ω, D̃) (see below (2.4.7),

(2.4.10)).

Remark 2.4.1 Conditions hα = 0, α = 1, 2, in (2.4.4), (2.4.5) are necessary conditions
(see Section 1.2) of boundedness of deflection w and w,2 correspondingly when I1i|Γ1 = +∞
(2 ≤ κ < +∞), and I0i|Γ1 = +∞ (1 ≤ κ < +∞). The demand of boundedness of
w and w,2 is natural in the mechanical point of view since we do not consider the case
of concentrated shearing forces and moments, when w and w,2 should be, in general,
unbounded (see also Remark 1.2.14).

Remark 2.4.2 In the particular case (2.1.4), let

g12 ∈ W
3
2
2 (Γ2), g22 ∈ W

1
2

2 (Γ2), g11 ∈ W
3−κ

2
2 (Γ1),

g21 ∈ W
1−κ

2
2 (Γ1), h1, h2 ∈ L2(Γ1),

and g11, g21, g12, g22 be traces of a certain given function u ∈ W 2
2 (Ω, D̃) (see below

(2.4.15), and Remark 2.4.8) and its derivative of the first order (if ∂Ω is of the class
C3, they exist, on Γ2 always, and on Γ1 when 0 < κ < 3 and 0 < κ < 1 respectively (see
[70]).
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Let us note that if there exist such γα, α = 1, 2, that

lim
x2→0+

xγ1

2 D3(w,11 )2 = C1(x1) > 0,

lim
x2→0+

xγ2

2 D(w,22 )2 = C2(x1) > 0,

Cα(x1) < const ∀(x1, 0) ∈ Γ1, α = 1, 2.

Then from

w ∈ W 2
2 (Ω, D) or W 2

2 (Ω, D̃)

there follows

(M2w)(x1, 0) = 0 for κ ≥ 1 (I0i = +∞, i = 2, 3).

Indeed, since

D2(w,22 )2, D3(w,11 )2 ∈ L1(Ω),

we have

D2(w,22 )2 = O(x−γ2

2 ), D3(w,11 )2 = O(x−γ1

2 ), x2 → 0+, γα < 1, α = 1, 2.

Consequently,

D
1
2
2 w,22 = O(x

− γ2
2

2 ), D
1
2
3 w,11 = O(x

− γ1
2

2 ), x2 → 0+, γα < 1, , α = 1, 2,

and, according to (2.1.4), (2.1.6),

|(M2w)| = | −D2w,22−D3w,11 | ≤
(
D

1
2
2 + D

1
2
3

)
O(x

− γ
2

2 ) = O(x
κ−γ

2
2 ), x2 → 0+,

γ := max{γ1, γ2} < 1.

Whence,

(M2w)(x1, 0) = 0 when (x1, 0) ∈ Γ1, κ > γ < 1,

i.e., κ ≥ 1 (I0i = +∞, i = 2, 3).

This is one more argument for the condition (2.4.5).
Let further (compare with Definition 2.5.2 below)

W 2
2 (Ω, D) (2.4.7)

be the set of all measurable functions u = u(x1, x2) defined on Ω which have on Ω

generalized derivatives D
(α1,α2)
x1,x2 u for α1 + α2 ≤ 2, α1, α2 ∈ {0, 1, 2} such that

∫

Ω

|D(α1,α2)
x1,x2

u|2ρα1,α2(x1, x2)dΩ < +∞ (2.4.8)
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for ρ0,0 : = 1, ρ2,0 := D1(x1, x2), ρ1,1 := D4(x1, x2), ρ0,2 := D2(x1, x2). Di, i = 1, 2, 3, 4, are
bounded measurable on Ω functions satisfying (2.1.2), (2.1.3). Therefore, since Dα ≥ D3,
α = 1, 2, in Ω̄,

∫

Ω

D3(u,αα )2dΩ ≤
∫

Ω

Dα(u,αα )2dΩ < +∞, α = 1, 2, (2.4.9)

∫
Ω

D3(u,11 +u,22 )2dΩ ≤ ∫
Ω

D1(u,11 )2dΩ + 2
∫
Ω

D
1
2
1 u,11 ·D

1
2
2 u,22 dΩ

+
∫
Ω

D2(u,22 )2dΩ ≤
{[∫

Ω

D1(u,11 )2dΩ

] 1
2

+

[∫
Ω

D2(u,22 )2dΩ

] 1
2

}2

< +∞.

Let
D := {ρ0,0 , ρ2,0 , ρ1,1 , ρ0,2},

and
D̃ := D ∪ {ρ0,1 := x2

2}.
Then, in view of (2.4.7), (2.4.8), the sense of the notation W 2

2 (Ω, D̃) is clear. Obviously,

W 2
2 (Ω, D̃) ⊂ W 2

2 (Ω, D). (2.4.10)

From (2.1.3), it is clear that if Di ∈ C(Ω), then

ρ−1
α1,α2

∈ Lloc
1 (Ω).

Hence, according to [60] W 2
2 (Ω, D) and W 2

2 (Ω, D̃), by virtue of (2.4.8), (2.4.9), will be
Banach spaces under the norms

||u||2W 2
2 (Ω,D) : =

∫

Ω

[u2 + D3(u, 11 +u, 22 )2

+(D1 −D3)(u, 11 )2 + 4D4(u,12 )2 + (D2 −D3)(u,22 )2]dΩ, (2.4.11)

||u||2
W 2

2 (Ω,D̃)
: = ||u||2W 2

2 (Ω,D) +

∫

Ω

x2
2(u,2 )2dΩ, (2.4.12)

respectively, and moreover, Hilbert spaces under the scalar products

(u, v)W 2
2 (Ω,D) :=

∫

Ω

[uv + D3(u, 11 +u, 22 )(v, 11 +v, 22 ) + (D1 −D3)u, 11 v, 11

+ 4D4u,12 v, 12 +(D2 −D3)u,22 v, 22 ]dΩ,

(u, v)W 2
2 (Ω,D̃) := (u, v)W 2

2 (Ω,D) +

∫

Ω

x2
2u,2 v,2 dΩ,
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respectively. Let further f ∈ L2(Ω), and

V :=
0

W 2
2 (Ω, D̃) = C∞

0 (Ω) in the norm of W 2
2 (Ω, D̃). (2.4.13)

Since ρα1,α2
∈ Lloc

1 (Ω) we have C∞
0 (Ω) ⊂ W 2

2 (Ω, D̃), and (2.4.13) has the meaning. In
particular case (2.1.4), we can take as V also

V := {v ∈ W 2
2 (Ω, D̃) : v|

Γ2
= 0,

∂v

∂n

∣∣∣
Γ2

= 0, and either

v|
Γ1

= 0, v, 2 |
Γ1

= 0 by BCs (2.4.2) or v, 2 |
Γ1

= 0 by BCs (2.4.3) (2.4.14)

or v|Γ1 = 0 by BCs (2.4.4) in the sense of traces}.
In case (2.1.4) we could introduce weights and norm as follows:

ρ0,0 : = 1, ρ2,0 ≡ ρ1,1 ≡ ρ0,2 := xκ2 ,

||u||2W 2
2(Ω,xκ2 ) : =

∫

Ω

{u2 + xκ2 [(u, 11 +u, 22 )2 + (u, 11 )2 + (u, 12 )2 + (u, 22 )2]}dΩ. (2.4.15)

It is obvious, in view of (2.1.4), that the latter norm and (2.4.11) are equivalent in
W 2

2 (Ω, D). But we prefer (2.4.11) since the above resonings are valid for the more general
case (2.1.3).

Definition 2.4.3 A function w ∈ W 2
2 (Ω, D̃) will be called a weak solution of the BVP

(2.1.1), (2.1.3), (2.4.1)-(2.4.5) in the space W 2
2 (Ω, D̃) if it satisfies the following condi-

tions:
w − u ∈ V, (2.4.16)

and ∀v ∈ V

J(w, v) :=

∫

Ω

B(w, v)dΩ =

∫

Ω

vfdΩ, (2.4.17)

where (defined in (2.2.11))

B(v, w) := D3(w, 11 +w, 22 )(v, 11 +v, 22 ) +

+ (D1 −D3)w, 11 v, 11 +4D4w,12 v, 12 +(D2 −D3)w,22 v, 22 , (2.4.18)

or corespondingly, for the particular case (2.1.4),

J(w, v) :=

∫

Ω

B(w, v)dΩ =

∫

Ω

vfdΩ + γ2

∫

Γ1

h2vdx1 − γ1

∫

Γ1

h1v, 2 dx1, (2.4.19)

where γ1 = γ2 = 0 by BCs (2.4.2); γ1 = 0, γ2 = 1 by BCs (2.4.3); γ1 = 1, γ2 = 0
by BCs (2.4.4); and by BCs (2.4.5) γ1 = 1 when 0 ≤ κ < 1, and γ1 = 0 when
1 ≤ κ < +∞; γ2 = 1 when 0 ≤ κ < 2, and γ2 = 0 when 2 ≤ κ < +∞.
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Remark 2.4.4 The BCs (2.4.1), (2.4.2), the first ones of (2.4.3), (2.4.4) and (2.4.5),
the second ones of (2.4.3), (2.4.4) are specified in (2.4.16) and (2.4.17) ((2.4.19)), cor-
respondingly.

Remark 2.4.5 Obviously, if the solution of the above problem exists in the classical sense
then (2.4.16), (2.4.17) ((2.4.19)) will be fulfilled.

Theorem 2.4.6 In case (2.1.3), if D0 > 0, under other above conditions there exists the

a unique weak solution in W 2
2(Ω, D̃) of the BVP (2.1.1), (2.1.3), (2.4.1)-(2.4.5). This

solution is such that

||w||
W2

2(Ω,D)
≤ C̃

[
||f ||

L2(Ω)
+ ||u||

W2
2(Ω,D)

]
, (2.4.20)

where constant C̃ is independent of f and u.

Theorem 2.4.7 In case (2.1.4), if 0 < κ ≤ 4, under other above conditions there exists

a unique weak solution in W 2
2(Ω, D̃) of the BVP (2.1.1), (2.1.4), (2.4.1)-(2.4.5). This

solution is such that

||w||
W2

2(Ω,D)
≤ C̃

[
||f ||

L2(Ω)
+ ||u||

W2
2(Ω,D)

+ γ1||h1||L2(Γ1)
+ γ2||h2||L2(Γ1)

]
, (2.4.21)

where constant C̃ is independent of f, u, h1, and h2.

Proof of the Theorems 2.4.6 and 2.4.7. First of all, let us prove that V is a subspace
of W 2

2 (Ω, D̃). In case (2.1.3) it is obvious. In case (2.1.4) to this end we have to show its
completeness. Because of linearity of the trace operators and operators in (2.4.1)-(2.4.4),

obviously, V is a lineal. Since u ∈ W 2
2 (Ω, D̃) has the traces [70]

u|
Γ1

∈ W
3−κ

2
2 (Γ1) for 0 ≤ κ < 3,

u|
Γ2

∈ W
3
2
2 (Γ2) for 0 ≤ κ < +∞,

u, 2 |Γ1
∈ W

1−κ
2

2 (Γ1) for 0 ≤ κ < 1,

∂u

∂n
|
Γ2

∈ W
1/2
2 (Γ2) for 0 ≤ κ < +∞,

then ∃C1 =const> 0 such that

||u||
W

3−κ
2

2 (Γ1)
≤ C1||u||

W2
2(Ω,D)

for 0 ≤ κ < 3, (2.4.22)

||u||
W

3
2
2 (Γ2)

≤ C1||u||
W2

2(Ω,D)
for 0 ≤ κ < +∞, (2.4.23)

||u,2 ||
W

1−κ
2

2 (Γ1)
≤ C1||u||

W2
2(Ω,D)

for 0 ≤ κ < 1, (2.4.24)

∣∣∣
∣∣∣∂u

∂n

∣∣∣
∣∣∣
W

1
2
2 ((Γ2)

≤ C1||u||
W2

2(Ω,D)
for 0 ≤ κ < +∞. (2.4.25)
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Let vm ∈ V be a fundamental sequence. It will be also a fundamental sequence in
W 2

2(Ω, D̃). But the latter is a complete set, i.e., ∃v ∈ W 2
2(Ω, D̃) such that

||vm − v||W 2
2(Ω,D)

−→ 0
m →+∞.

Then, by virtue of (2.4.22)-(2.4.25), respectively,

||vm − v||
W

3−κ
2

2 (Γ1)
≤ C1||vm − v||

W2
2(Ω,D)

for 0 ≤ κ < 3,

||vm − v||
W

3
2
2 (Γ2)

≤ C1||vm − v||
W2

2(Ω,D)
for 0 ≤ κ < +∞,

||vm,2 − v,2 ||
W

1−κ
2

2 (Γ1)
≤ C1||vm − v||

W2
2(Ω,D)

for 0 ≤ κ < 1,

∣∣∣
∣∣∣∂vm

∂n
− ∂v

∂n

∣∣∣
∣∣∣
W

1
2
2 (Γ2)

≤ C1||vm − v||
W2

2(Ω,D)
for 0 ≤ κ < +∞.

Therefore,

||vm − v||
W

3−κ
2

2 (Γ1)
−→ 0

m →+∞
for 0 ≤ κ < 3, (2.4.26)

||vm − v||
W

3
2
2 (Γ2)

−→ 0
m →+∞

for 0 ≤ κ < +∞, (2.4.27)

||vm,2 − v,2 ||
W

1−κ
2

2 (Γ1)
−→ 0

m →+∞
for 0 ≤ κ < 1, (2.4.28)

∣∣∣
∣∣∣∂vm

∂n
− ∂v

∂n

∣∣∣
∣∣∣
W

1
2
2 (Γ2)

−→ 0
m →+∞

for 0 ≤ κ < +∞. (2.4.29)

But since

vm|Γ1
= 0 for 0 ≤ κ < 3, (2.4.30)

vm|Γ2
= 0 for 0 ≤ κ < +∞, (2.4.31)

vm, 2|Γ1
= 0 for 0 ≤ κ < 1, (2.4.32)

∂vm

∂n

∣∣∣
Γ2

= 0 for 0 ≤ κ < +∞, (2.4.33)

from (2.4.30) follows

||vm||
W

3−κ
2

2 (Γ1)
= 0.

Then, taking into account (2.4.26),

0 ≤ ||v||
W

3−κ
2

2 (Γ1)
= | ||vm||

W
3−κ

2
2 (Γ1)

− ||v||
W

3−κ
2

2 (Γ1)
| ≤ ||vm − v||

W
3−κ

2
2 (Γ1)

−→ 0
m →+∞

i.e., almost everywhere (a.e.)

v|
Γ1

= 0 for 0 ≤ κ < 3.



2.4. BENDING IN THE WEIGHTED SOBOLEV SPACE 93

Similarly, in view of (2.4.27)-(2.4.29), (2.4.31)-(2.4.33), we have a.e.

v|
Γ2

= 0 for 0 ≤ κ < +∞,

v, 2|Γ1
= 0 for 0 ≤ κ < 1,

∂v

∂n

∣∣∣
Γ2

= 0 for 0 ≤ κ < +∞.

Thus V is complete, i.e., it is a Hilbert space and a subspace of W 2
2(Ω, D̃).

Further, the proof of Theorems 2.4.6 and 2.4.7 will be realized by means of

The Lax-Milgram theorem. Let V be a real Hilbert space and let J(w, v) be a
bilinear form defined on V ×V . Let this form be continuous, i.e., let there exist a constant
K > 0 such that

|J(w, v)| ≤ K‖w‖
V
‖v‖

V
(2.4.34)

holds ∀w, v ∈ V and V -elliptic, i.e., let there exist a constant α > 0 such that

J(w, w) ≥ α‖w‖2
V

(2.4.35)

holds ∀w ∈ V. Further let F be a bounded linear functional from V ∗ dual of V. Then there
exists one and only one element z ∈ V such that

J(z, v) =< F, v >≡ Fv ∀v ∈ V (2.4.36)

and
‖z‖

V
≤ α−1‖F‖

V ∗ . (2.4.37)

Obviously, for the bilinear form (2.4.17), in view of (2.4.18),

|J(w, v)| ≤
∫

Ω

(D1 −D3)
1
2 |w, 11 | · (D1 −D3)

1
2 |v, 11 |dΩ

+

∫

Ω

(D2 −D3)
1
2 |w, 22 | · (D2 −D3)

1
2 |v, 22 |dΩ

+

∫

Ω

D
1
2
3 |w, 11 +w, 22 | ·D

1
2
3 |v, 22 +v, 11 |dΩ

+4

∫

Ω

D
1
2
4 |w, 12 | ·D

1
2
4 |v, 12 |dΩ

≤



∫

Ω

(D1 −D3)(w, 11 )2dΩ




1
2



∫

Ω

(D1 −D3)(v, 11 )2dΩ




1
2

+




∫

Ω

(D2 −D3)(w, 22 )2dΩ




1
2

·



∫

Ω

(D2 −D3)(v, 22 )2dΩ




1
2
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+




∫

Ω

D3(w, 11 +w, 22 )2dΩ




1
2

·



∫

Ω

D3(v, 11 +v, 22 )2dΩ




1
2

+4




∫

Ω

D4(w, 12 )2dΩ




1
2

·



∫

Ω

D4(w, 12 )2dΩ




1
2

≤ 7||w||W 2
2(Ω,D)||v||W 2

2(Ω,D) (2.4.38)

and, in particular (see Remark 2.4.8 below),

|J(w, v)| ≤ 7||w||V ||v||V ∀w, v ∈ V. (2.4.39)

Hence, (2.4.34) is fulfilled.
Taking into account that (D2 −D3)(v, 22 )2 ∈ L1(Ω), because of

x4
2 ≤

D2 −D3

D0

, (2.4.40)

obviously,
x4

2(v, 22 )2 ∈ L1(Ω).

Without loss of generality, we can suppose that Ω lies in Π (see (2.2.14)), and let v ∈ V
and v ≡ 0 in R2

+\Ω. Then for fixed x1

v(x1, ·) ∈W 2
2(]0, 1[, x4

2), ||v||2W 2
2 ( ]0,1[,x4

2)
:=

1∫

0

[v2 + x4
2(v,22 )2]dx2,

v(x1, 1) = 0, v,2 (x1, 1) = 0,

and if we suppose that (D2 − D3)
1
2 (v,2 )2 ∈ L1(Ω), i.e., x2

2(v,2 )2 ∈ L1(Ω) since x2
2 ≤

(D2 −D3)
1
2

D
1
2
0

because of (2.4.40), it is easy to show (see below Lemma 2.4.9) that the

inequalities (2.2.15), (2.2.16) are valid for such functions v ∈ W 2
2 (Ω, D̃), Ω ⊂ Π.

Remark 2.4.8 In viev of (2.2.16), (2.4.40), when D0 > 0 the norms (2.4.12), and

(2.4.11) are equivalent in W 2
2 (Ω, D̃), Ω ⊂ Π. Consequently, (2.4.38) holds also for

W 2
2 (Ω, D̃).

Lemma 2.4.9 If v ∈ W 2
2(]0, 1[, x4

2), x2
2(v,2 )2 ∈ L1( ]0, 1[ ) and

v(x1, 1) = 0, v,2 (x1, 1) = 0,

then (2.2.15), (2.2.16) are valid, i.e.,

1∫

0

x4
2 (v, 22 )2dx2 ≥ 9

16

1∫

0

v2dx2,
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1∫

0

x4
2 (v, 22 )2dx2 ≥ 9

4

1∫

0

x2
2(v,2 )2dx2.

Proof. In the case under consideration v(x1, ·) ∈ W 2
2(]c, 1[) for ∀[c, 1] ⊂]0, 1]. There-

fore, v(x1,·) and v,2 (x1,·) are absolutely continuous on [ε, 1] for arbitrarily small ε =const>
0. Now, we have to repeat proof of Lemma 2.2.4 considering all integrals in limits
ε ≤ x2 ≤ 1, and then tend ε to 0+, taking into account that from square summabil-
ity of v(x1,·) and x2v,2 (x1,·) there follow

lim
x2→0+

x2v
2(x1, x2) = 0 and lim

x2→0+
x3

2[v,2 (x1, x2)]
2 = 0,

respectively. Otherwise if we assume lim
x2→0+

x2v
2(x1, x2) = c0(x1) > 0, lim

x2→0+
x3

2[v,2 (x1, x2)]
2 =

c1(x1) > 0 then in some right neighbourhood of point (x1, 0)

v2(x1, x2) >
c0(x1)

2x2

, x2
2[v,2 (x1, x2)]

2 >
c1(x1)

2x2

.

But this is a contradiction since on the left-hand sides we have integrable functions while
on the right-hand sides we have nonintegrable functions. ¤

Let us note that, on the other hand (see Section 1.4),

W 2
2(]0, 1[, x4

2) ≡ W 2,2(]0, 1[, x4
2) ≡ W̃ 2,2(]0, 1[, x4

2)

and Lemma 2.4.9 immediately follows from (1.4.52) by κ = 4, l = 1 if we tend ε → 0+
and from Corollary 1.4.13 by l = 1.

In view of (2.2.15), as 0 < D0 ≤ D2−D3

x4
2

(see (2.4.40)), for v ∈ W 2
2 (Ω, D̃), we have

∫

Ω

v2(x1, x2)dΩ =

∫

Π

v2(x1, x2)dx1, dx2 =

b∫

a

dx1

1∫

0

v2dx2 ≤

≤ 16

9

b∫

a

dx1

1∫

0

x4
2 (v, 22 )2dx2 ≤ 16

9D0

b∫

a

dx1

1∫

0

D0x
κ
2 (v, 22 )2dx2 ≤

≤ 16

9D0

∫

Ω

(D2 −D3)(v,22 )2dΩ.

Similarly, by virtue of (2.2.16),

∫

Ω

x2
2(v,2)

2dΩ ≤ 4

9D0

∫

Ω

(D2 −D3)(v, 22 )2dΩ.



96 CHAPTER 2. CUSPED KIRCHHOFF-LOVE PLATES

Hence, according to (2.4.14), (2.4.12), (2.4.11), (2.2.12),

||v||2V :=

∫

Ω

[v2 + x2
2(v,2)

2 + D3(v, 11 +v, 22 )2 + (D1 −D3)(v,11 )2+

+4D4(v, 12 )2 + (D2 −D3)(v,22 )2]dΩ ≤ (2.4.41)

≤ 20

9D0

∫

Ω

(D2 −D3)(v,22 )2dΩ + J(v, v) ≤ ∗
C J(v, v),

where
∗
C := 1 +

20

9D0

.

(2.4.41) means V -ellipticity of the bilinear form J. Thus, (2.4.35) is also fulfilled.
Now, let us consider the following functional

Fv := (v, f)− J(u, v) + γ2

∫

Γ1

vh2dx1 − γ1

∫

Γ1

v, 2 h1dx1, v ∈ V (2.4.42)

(For case (2.1.3) we have to take γ1 = γ2 = 0).
Further,

|(v, f)| ≤ ||v||
L2(Ω)

||f ||
L2(Ω)

≤ ||v||
V
||f ||

L2(Ω)
, (2.4.43)

and, since in case (2.1.4) traces belonging to W
3−κ

2
2 (Γ1), 0 ≤ κ < 3; W

1−κ
2

2 (Γ1), 0 ≤ κ < 1;
are also traces belonging to L2(Γ1),

∣∣∣
∫

Γ1

v h2dx1

∣∣∣ ≤ ||v||
L2(Γ1)

||h2||L2(Γ1)
≤ C||v||

V
||h2||L2(Γ1)

, (2.4.44)

C = const > 0, 0 ≤ κ < 3,
∣∣∣
∫

Γ1

v,2 h1dx1

∣∣∣ ≤ ||v,2 ||L2(Γ1)
||h1||L2(Γ1)

≤ C||v||
V
||h1||L2(Γ1)

, (2.4.45)

0 ≤ κ < 1.

After substitution of (2.4.43), (2.4.38), (2.4.44), (2.4.45) in (2.4.42), we obtain

|Fv| ≤ [||f ||L2(Ω) + 7||u||W 2
2(Ω,D) + C( γ2||h2||L2(Γ1)

+γ1||h1||L2(Γ1)
)]||v||

V
. (2.4.46)

Let us note that by demonstration of boundedness of the functional F defined by (2.4.42),
we did not use that D0 > 0 (0 ≤ κ ≤ 4), i.e., the assertion is true for D0 ≥ 0 (0 ≤ κ <
+∞). Therefore, the linear functional (2.4.42) is bounded in V. So, in view of (2.4.39),
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(2.4.41), (2.4.46), according to the Lax-Milgram theorem there exists a unique z ∈ V such
that, by virtue of (2.4.36), we have

J(z, v) = Fv := (v, f)− J(u, v) + γ2

∫

Γ1

vh2dx1 − γ1

∫

Γ1

v, 2 h1dx1 ∀v ∈ V,

i.e.,

J(w, v) = (v, f) + γ2

∫

Γ1

vh2dx1 − γ1

∫

Γ1

v, 2 h1dx1 ∀v ∈ V, (2.4.47)

where
w : = u + z ∈ W 2

2(Ω, D̃). (2.4.48)

So,
w − u = z ∈ V,

and (2.4.16) is fulfilled. (2.4.47) coincides with (2.4.19) (in case (2.1.3) with (2.4.17)).

Thus, the existence of a unique weak solution w ∈ W 2
2(Ω, D̃) of the BVP (2.1.1), (2.1.4)

[or (2.1.3)], (2.4.1)-(2.4.5) has been proved.
From (2.4.46) it follows that

||F ||
V ∗ ≤ ||f ||

L2(Ω)
+ 7||u||W 2

2(Ω,D) + C(γ2||h2||L2(Γ1)
+ γ1||h1||L2(Γ1)

). (2.4.49)

By virtue of (2.4.48), (2.4.37), (2.4.49),

||w||W 2
2(Ω,D) ≤ ||u||W 2

2(Ω,D) + ||z||
V
≤ ||u||W 2

2(Ω,D)

+α−1[||f ||
L2(Ω)

+ 7||u||W 2
2(Ω,D) + C(γ2||h2||L2(Γ1)

+ γ1||h1||L2(Γ1)
)]

≤ C̃[||f ||
L2(Ω)

+ ||u||W 2
2(Ω,D) + γ1||h1||L2(Γ1)

+ γ2||h2||L2(Γ1)
],

where
C̃ : = max{7α−1 + 1, α−1C},

i.e., (2.4.20), and (2.4.21) are valid in cases (2.1.3) and (2.1.4), respectively. ¤

Remark 2.4.10 Instead of V defined by (2.4.14), we could consider the space

0

W 2
2 (Ω, D̃).

Then taking into account that (2.2.15) is, obviously, valid for v ∈ C∞
0 ( ]0.1[ ), the condition

(2.4.41) will be fulfilled for v ∈ C∞
0 (Ω) and, hence, for v ∈

0

W 2
2 (Ω, D). The condition

(2.4.39) will be also realized on
0

W 2
2 (Ω, D̃) which is a subspace of W 2

2 (Ω, D̃). (2.4.46)

(where γ1 = γ2 = 0) will be also true for v ∈
0

W 2
2 (Ω, D̃). Therefore, Theorem 2.4.7 will be

valid if in the Definition 2.4.3 the space V is replaced by the space
0

W 2
2 (Ω, D̃) ⊂ V, and

(2.4.19) is replaced by (2.4.17).
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Let, now, D0 = 0 (κ > 4).
In this case only the BVP (2.1.1), (2.1.3), (2.4.1), (2.4.5), can be correctly posed. Let

V ≡
0

W 2
2 (Ω, D) := C∞

0 (Ω)

with the norm of W 2
2(Ω, D).

Definition 2.4.11 Let u ∈ W 2
2 (Ω, D) be given, and

Fv := (v, f)− J(u, v), v ∈ V, (2.4.50)

where J is defined by (2.4.17). z0 + u, where z0 ∈ Ṽ is identified with Fz0 ∈ V ∗ (see a
modification of the Lax-Milgram theorem in Section 2.3), will be called the ideal solution
of the BVP (2.1.1), (2.1.3), (2.4.1), (2.4.5) if it satisfies the following condition:

Fz0v := lim
k→∞

J(zk, v) =

∫

Ω

fvdΩ− J(u, v) ∀v ∈ V ≡
0

W 2
2 (Ω, D). (2.4.51)

Theorem 2.4.12 There exists a unique ideal solution of the BVP (2.1.1), (2.1.3), (2.4.1),
(2.4.5).

Proof. Obviously,

|Fv| ≤ ||v||
L2(Ω)

||f ||
L2(Ω)

+ 7||u||
W2

2(Ω,D)
· ||v||

V

≤ ||f ||
L2(Ω)

||v||
V

+ 7||u||
W2

2(Ω,D)
· ||v||

V
,

since (2.4.38) is all the more fulfilled for v ∈ V ≡
0

W 2
2 (Ω, D) ⊂ W 2

2 (Ω, D). Hence, F
defined by (2.4.50) is a bounded linear functional on V. In view of (2.4.39), which is all

the more valid for V ≡
0

W 2
2 (Ω, D), (2.3.1) holds.

From v ∈ V and
J(v, v) = 0

follows
v = k1x1 + k2x2 + k3, ki = const, i = 1, 2, 3, a.e. in Ω,

since from (2.4.17), (2.4.18) we have

J(v, v) =

∫

Ω

[
D1(v,11 )2 + D2(v,22 )2 + 2D3v,11 ·v,22 +4D4(v,12 )2

]
dΩ

=

∫

Ω

[
D3(v,11 +v,22 )2 + (D1 −D3)(v,11 )2

+(D2 −D3)(v,22 )2 + 4D4(v,12 )2
]
dΩ = 0,
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and, hence, a.e. in Ω

v,11 = 0, v,22 = 0 v,12 = 0.

On the other hand, it is obvious that

u ∈ W 2
2(Ω, D) ⇒ u ∈ W 2

2(Ωδ, D) ≡ W 2
2(Ωδ).

Hence, u and
∂u

∂n
have traces on Γ2 ∩ Ω̄δ ∀δ > 0, and since v ∈ V ≡

0

W 2
2 (Ω, D), similarly,

in the sense of traces,

v
∣∣∣
Γ2∩Ω̄δ

=
∂v

∂n

∣∣∣
Γ2∩Ω̄δ

= 0.

Therefore, v = 0 a.e. in Ω, i.e., v ≡ θ in V . Hence, (2.3.2) is fulfilled. ¤
Thus, we can apply the modified Lax-Milgram theorem, which asserts the existence

of a unique ideal element z0 such that (2.4.51) is fulfilled. ¤

Remark 2.4.13 If, in particular, z0 ∈ V then z0 + u ∈ W 2
2(Ω, D), and on Γ2 the traces

of z0 + u,
∂z0 + u

∂n
and u,

∂u

∂n
coincide.

2.5 Vibration problem

The vibration equation of isotropic Kirchhoff-Love plates has the following form (see, e.g.,
[79]):

Jωw := (Dw,11),11 + (Dw,22),22 + ν(Dw,22),11 (2.5.1)

+ ν(Dw,11),22 + 2(1− ν)(Dw,12),12

− ω22h(x1, x2)ρ(x1, x2)w = f(x1, x2) in Ω ⊂ R2,

where w = w(x1, x2) is the deflection, ω = const is the vibration frequence, f is the
intensity of the lateral load, Ω is a bounded plane domain with Lipschitz boundary ∂Ω =
Γ1 ∪ Γ2 with Γ1 lying on the x1 axis and Γ2 lying in the upper half plane {x2 > 0} (see
Appendix, Fig. 20), D ∈ C2(Ω) ∩ C(Ω) is the flexural rigidity of the plate,

D :=
2Eh3

3(1− ν2)
, (2.5.2)

2h(x1, x2) is the thickness of the plate, E(x1, x2) is the Young’s modulus, ν is the Poisson’s
ratio, 0 < ν < 1, ρ(x1, x2) ∈ C(Ω) is the density and indices after comma mean again
differentiation with respect to the corresponding variables.

Throughout this section we assume once and for all that

D(x1, x2) > 0 on Ω ∪ Γ2, D(x1, 0) ≥ 0 for (x1, 0) ∈ Γ1. (2.5.3)
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If

2h(x1, x2)|Γ1 = 0 (2.5.4)

(i.e., 2h(x1, 0) = 0 for (x1, 0) ∈ Γ1), as it was already said, the plate is called a cusped one
(see Appendix, Fig. 21–23, and Fig. 11–19 with all the possible profiles of the plates in
the neighbourhood of the cusped edge). In this case

D(x1, x2)|Γ1 = 0. (2.5.5)

But (2.5.5) may also appear if 2h|Γ1 > 0 but E|Γ1 = 0 (or if both quantities vanish). In
all these cases, the plate will be called a cusped one, although it can be even of constant
thickness but with properties of cusped plate caused by vanishing of the inhomogeneous
Young’s modulus E on Γ1.

We recall that for the bending moments Mαw, α = 1, 2, the twisting moments M12w,
M21w, the shearing forces Qαw, α = 1, 2, and the generalized shearing forces Q∗

αw, α =
1, 2, we have the following expressions:

Mαw = −D(w,αα + νw,ββ), α, β = 1, 2; α 6= β, (2.5.6)

M12w = −M21w = 2(1− ν)Dw,12, (2.5.7)

Qαw = (Mαw),α + (M21w),β, α = 1, 2; α 6= β, (2.5.8)

Q∗
αw = Qαw + (M21w),β, α = 1, 2; α 6= β. (2.5.9)

At points of the boundary ∂Ω where D vanishes, all the above quantities will be defined
as limits from the inside of Ω.

Problem 2.5.1 Let us consider for equation (2.5.1) the following inhomogeneous BCs:
– on Γ2

w = g1,
∂w

∂n
= g2, (2.5.10)

– on Γ1

either w = w0(x1), w,2 = w1
0(x1) iff I02 < +∞, (2.5.11)

or w,2 = w1
0(x1), Q∗

2 = Q0
2(x1) iff I02 < +∞, (2.5.12)

or w = w0(x1), M2 = M0
2 (x1)

{ 6≡ 0 when I02 < +∞,
≡ 0 when I02 = +∞,

iff I22 < +∞, (2.5.13)

or

M2 = M0
2 (x1)

{ 6≡ 0 when I02 < +∞,
≡ 0 when I02 = +∞,

Q∗
2 = Q0

2(x1)

{ 6≡ 0 when I12 < +∞,
≡ 0 when I12 = +∞,

(2.5.14)
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where g1, g2 and w0, w
1
0, Q

0
2,M

0
2 are prescribed functions on Γ2 and Γ1, respectively,

Ik2 ≡ Ik2(x1) :=

l(x1)∫

0

τ kD−1(x1, τ)dτ, k ∈ {0, 1, . . .}, (x1, 0) ∈ Γ2, (2.5.15)

where (x1, l(x1)) ∈ Ω for (x1, 0) ∈ Γ1.

Let us now introduce some function spaces.

Definition 2.5.2 Let

W 2,2(Ω, p) and W̃ 2,2(Ω, p) (2.5.16)

be the sets of all measurable functions w(x1, x2) defined on Ω which have on Ω locally

summable generalized derivatives ∂
(α1,α2)
x1,x2 w for α1 + α2 ≤ 2, α1, α2 ∈ {0, 1, 2}, such that

∫

Ω

ρα1,α2(x1, x2)|∂(α1,α2)
x1,x2

w|2dΩ < +∞, ∂(0,0)
x1,x2

w = w, (2.5.17)

for

ρ0,0 := 1, ρ2,0 = ρ1,1 = ρ0,2 := p(x1, x2)

and

ρ0,0 := xκ−4
2 , ρ2,0 = ρ1,1 = ρ0,2 := p(x1, x2),

respectively, with a bounded measurable on Ω function p(x1, x2).

Let us further consider the following sets for different cases of the function p(x1, x2):

W 2,2(Ω, D) and W̃ 2,2(Ω, D) (2.5.18)

with p(x1, x2) = D(x1, x2) satisfying (2.5.3), and

V 2,2(Ω, xκ2 ) := W 2,2(Ω, xκ2 ) (p(x1, x2) = xκ2 ), (2.5.19)

Ṽ 2,2(Ω, xκ2 ) := W̃ 2,2(Ω, xκ2 ) (p(x1, x2) = xκ2 ), (2.5.20)

and

V 2,2(Ω, dκ) := W 2,2(Ω, dκ) (p(x1, x2) = d(x1, x2)), (2.5.21)

where

d(x1, x2) := dist{(x1, x2) ∈ Ω, ∂Ω}.
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Further, let us introduce the following norms;

‖w‖2
W 2,2(Ω,D) :=

∫

Ω

[w2 + νD(w,11 + w,22)
2 + (1− ν)D(w,11)

2

+ 2(1− ν)D(w,12)
2 + (1− ν)D(w,22)

2]dΩ, (2.5.22)

‖w‖2
W̃ 2,2(Ω, D) :=

∫

Ω

[xκ−4
2 w2 + νD(w,11 + w,22)

2 + (1− ν)D(w,11)
2

+ 2(1− ν)D(w,12)
2 + (1− ν)D(w,22)

2]dΩ, (2.5.23)

‖w‖2
Ṽ 2,2(Ω,xκ2 )

:=

∫

Ω

{xκ−4
2 w2 + xκ2 [(w,21)

2 + (w,12)
2 + (w,22)

2]}dΩ, (2.5.24)

‖w‖2
V 2,2(Ω,xκ2 ) :=

∫

Ω

{w2 + xκ2 [(w,11)
2 + (w,12)

2 + (w,22)
2]}dΩ (2.5.25)

‖w‖2
V 2,2(Ω,dκ) :=

∫

Ω

{w2 + dκ[(w,11)
2 + (w,12)

2 + (w,22)
2]}dΩ. (2.5.26)

From (2.5.3) it is clear that in our cases if D ∈ C(Ω), then

ρ−1
α1,α2

∈ Lloc
1 (Ω).

Therefore, according to [60], the spaces (2.5.18)–(2.5.21) with the norms (2.5.22)–(2.5.26),
respectively, will be Banach spaces, and moreover, Hilbert spaces under the appropriate
scalar products.

Lemma 2.5.3

V 2,2(Ω, xκ2 ) ⊂ V 2,2(Ω, dκ(x1, x2)) ∀ κ ≥ 0. (2.5.27)

Proof follows from the obvious inequality

d(x1, x2) ≤ x2 for (x1, x2) ∈ Ω (2.5.28)

(if d(x1, x2) is a regularized distance, then in the inequality (2.5.28) arises a constant
factor). ¤

Further, without loss of generality, we suppose that the domain Ω lies inside of the
rectangle:

Π := {(x1, x2) ∈ R2 : a < x1 < b, 0 < x2 < l}, (2.5.29)

with a constant l > max
(x1,x2)∈Ω

{x2}.
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Lemma 2.5.4

V 2,2(Ω, xκ2 ) ⊂ V 2,2(Ω, x4
2) for 0 ≤ κ < 4. (2.5.30)

V 2,2(Ω, x4
2) = Ṽ 2,2(Ω, x4

2). (2.5.31)

Proof of (2.5.30) follows from l4−κxκ2 ≥ x4
2 for 0 ≤ x2 < l, (2.5.31) is evident. ¤

Let
Ωδ := {(x1, x2) ∈ Ω : x2 > δ, δ = const > 0}.

Evidently,

Ṽ 2,2(Ω, xκ2 ) ⊂ Ṽ 2,2(Ωδ, x
κ
2 ) ⊂ W 2,2(Ωδ), (2.5.32)

where W 2,2(Ωδ) ≡ W 2
2 (Ωδ) is the usual (i.e., non-weighted) Sobolev space. Hence, there

exist the traces

w|Γ2 ∈ W
3
2
,2(Γ2),

∂w

∂n

∣∣∣
Γ2

∈ W
1
2
,2(Γ2) ∀ v ∈ Ṽ 2,2(Ω, xκ2 ).

Lemma 2.5.5 If v ∈ Ṽ 2,2(Ω, xκ2 ) and

v|Γ2 = 0,
∂v

∂n

∣∣∣
Γ2

= 0, (2.5.33)

then
∫

Ω

xκ−4
2 v2dΩ ≤ 16

(κ − 1)2(κ − 3)2

∫

Ω

xκ2 (v,22)
2dΩ, κ > 3. (2.5.34)

Proof. Let us complete the definition of the function v in Π \ Ω, assuming v equal to
zero there. Then evidently,

v ∈ Ṽ 2,2(Ω, xκ2 )

implies ∫

Π

[xκ−4
2 v2 + xκ2 (v,22)

2]dx1dx2 < +∞,

i.e.,
v(x1, ·) ∈ W̃ 2,2(]0, l[, xκ2 )

(see (1.4.42)) and
v(x1, l) = 0, v,2(x1, l) = 0

for almost every x1 ∈]a, b[. We can, now, apply Lemma 1.4.12, i.e.,

l∫

0

xκ−4
2 v2(x1, x2)dx2 ≤ 16

(κ − 1)2(κ − 3)2

l∫

0

xκ2 [v,22(x1, x2)]
2dx2, κ > 3, (2.5.35)
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for almost every x1 ∈]a, b[. Integrating by x1 both the sides of (2.5.35) over ]a, b[, we get

∫

Ω

xκ−4
2 v2dΩ =

∫

Π

xκ−4
2 v2dx1dx2 ≤ 16

(κ − 1)2(κ − 3)2

∫

Π

xκ2 (v,22)
2dx1dx2 =

=
16

(κ − 1)2(κ − 3)2

∫

Ω

xκ2 (v,22)dΩ for κ > 3.

¤

Corollary 2.5.6 If v ∈ Ṽ 2,2(Ω, x4
2) = V 2,2(Ω, x4

2) and (2.5.33) is fulfilled, then

∫

Ω

v2dΩ ≤ 16

9

∫

Ω

x4
2(v,22)

2dΩ.

Let

D(x1, x2) ≥ Dκx
κ
4 ∀ (x1, x2) ∈ Ω, i.e., 0 < Dκ := inf

Ω

D(x1, x2)

xκ2
. (2.5.36)

If κ ≥ 1, then by κ we denote the minimal among all the exponents δ ≥ κ ≥ 1 for
which (2.5.36) holds. It means that if we have the inequality (2.5.36) for κ ≥ 1, we have
to check whether there exists or no the less exponent for which (2.5.36) is valid. If yes,
then we have to continue this procedure untill we arrive at the minimal one.

If (2.5.36) holds for κ < 1, then we need no additional revision since for all the κ < 1
we have the same result concerning the traces.

The condition (2.5.36) is essential in a right neighbourhood of Γ1. Then it can be
easily extended for the whole domain Ω.

Let us note, that when ω = 0, Problem 2.5.1 was considered in Section 2.4 (see also
[46]) under the different from the condition (2.5.36) condition

0 ≤ D0 := inf
Ω

D(x1, x2)

x4
2

,

which does not make it possible to discuss the traces of solutions when the thickness is
of the non-power type. Besides, in Section 2.4 the spaces, when D0 = 0 (i.e., in the
particular case of the power type thickness, when κ ≥ 4), are not transparent (in the
sense of the so called ideal elements) even in the case of the power type thickness.

Lemma 2.5.7 If (2.5.36) takes place, then

W 2,2(Ω, D) ⊂ V 2,2(Ω, xκ2 ) ⊂ V 2,2(Ω, dκ(x1, x2)) ∀ κ ≥ 0, (2.5.37)

and

W 2,2(Ω, D) ⊂ W̃ 2,2(Ω, D) ⊂ Ṽ 2,2(Ω, xκ2 ) for κ ≥ 4. (2.5.38)
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Proof of (2.5.37) follows from (2.5.36), (2.5.27). Formula (2.5.38) follows from (2.5.36),
since ∫

Ω

w2dΩ < +∞

implies ∫

Ω

xκ−4
2 w2dΩ < +∞

for κ ≥ 4. ¤

Lemma 2.5.8 If w ∈ W 2,2(Ω, D) and (2.5.36) is valid, then there exist traces

w|Γ1 ∈ B
3−κ

2
2 (Γ1) ⊂ L2(Γ1) if 0 ≤ κ < 3 (i.e., I22|Γ1 < +∞), (2.5.39)

w,2|Γ1 ∈ B
1−κ

2
2 (Γ1) ⊂ L2(Γ1) if 0 ≤ κ < 1 (i.e., I02|Γ1 < +∞), (2.5.40)

where B
3−κ

2
2 (Γ1) and B

1−κ
2

2 (Γ1) are Besov spaces.

Proof. Since (2.5.36) is valid, according to Lemma 2.5.7 (see (2.5.37)), w ∈ W 2,2(Ω, D)
implies

w ∈ V 2,2(Ω, dκ(x1, x2)).

But functions from this space (see [71], Theorem 1.1.2) have properties (2.5.39) and
(2.5.40) if ∂Ω ∈ C1+ε and ∂Ω ∈ C2+ε (which means that the boundary is locally described
by functions whose first and second derivatives, satisfy the Hölder condition with a Hölder
exponent ε ∈]0, 1[, respectively). Since in our case Γ1 is a part of a straight line, these
local conditions are fulfilled all the more. ¤

Now, we constitute the spaces V and Ṽ from the spaces W 2,2(Ω, D) and W̃ 2,2(Ω, D),
correspondingly, as follows:

V :=
{

v ∈ W 2,2(Ω, D) : v|Γ2 = 0,
∂v

∂n

∣∣∣
Γ2

= 0, (2.5.41)

and additionally

either v|Γ1 = 0, v,2|Γ1 = 0 (if we consider BCs (2.5.11))

or v,2|Γ1 = 0 (if we consider BCs (2.5.12))

or v|Γ1 = 0 (if we consider BCs (2.5.13))

in the sense of traces
}

and

Ṽ :=
{

v ∈ W̃ 2,2(Ω, D) : v|Γ2 = 0,
∂v

∂n

∣∣∣
Γ2

= 0 in the sense of traces
}

. (2.5.42)

Using the trace theorem, it is not difficult to prove the completeness of V and Ṽ .



106 CHAPTER 2. CUSPED KIRCHHOFF-LOVE PLATES

In view of Lemma 2.5.8, we can suppose that the functions g1, g2, w0, w
1
0 from Prob-

lem 2.5.1 are traces of a prescribed function

u ∈ W 2,2(Ω, D). (2.5.43)

Let further Q0
2,M

0
2 ∈ L2(Γ1).

Definition 2.5.9 Let f ∈ L2(Ω) and κ < 4 (i.e., I32|Γ1 < +∞). A function w ∈
W 2,2(Ω, D) will be called a weak solution of Problem 2.5.1, when I32|Γ1 < +∞, in the
space W 2,2(Ω, D) if it satisfies the following conditions:

w − u ∈ V (2.5.44)

and

Jω(w, v) :=

∫

Ω

Bω(w, v)dΩ =

∫

Ω

fvdΩ + γ2

∫

Γ1

Q0
2vdx1

− γ1

∫

Γ1

M0
2 v,2dx1 ∀ v ∈ V, (2.5.45)

where

γ1 = 0, γ2 = 0 for the BCs (2.5.11),

γ1 = 0, γ2 = 1 for the BCs (2.5.12),

γ1 = 1, γ2 = 0 for the BCs (2.5.13),

γ1 = 1, γ2 = 1 for the BCs (2.5.14),

and

Bω(w, v) := νD(w,11 + w,22)(v,11 + v,22) + (1− ν)Dw,11v,11

+ 2(1− ν)Dw,12v,12 + (1− ν)Dw,22v,22 (2.5.46)

− ω22hρwv.

Definition 2.5.10 Let g1 and g2 be traces of a prescribed u ∈ W̃ 2,2(Ω, D), x
4−κ

2
2 f ∈

L2(Ω), and κ ≥ 4 (i.e., Ik2|Γ1 = +∞ for a fixed k ≥ 3). A function w ∈ W̃ 2,2(Ω, D)
will be called a weak solution of the problem (2.5.1), (2.5.10), (2.5.14) (i.e., of the last

BVP of Problem 2.5.1 when Ik2|Γ1 = +∞ for a fixed k ≥ 3) in the space W̃ 2,2(Ω, D) if it
satisfies the following conditions:

w − u ∈ Ṽ (2.5.47)

and

Jω(w, v) :=

∫

Ω

Bω(w, v)dΩ =

∫

Ω

fvdΩ ∀ v ∈ Ṽ (2.5.48)

where Bω(w, v) is defined by (2.5.46).
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Theorem 2.5.11 Let

ω2 <
9(1− ν)Dκl

κ−4

16 max
Ω

2hρ
. (2.5.49)

There exists a unique weak solution of Problem 2.5.1, when I32|Γ1 < +∞ (more precisely,
of each of all the four BVPs stated in Problem 2.5.1). This solution is such that

‖w‖W 2,2(Ω,D) ≤ C[‖f‖L2(Ω) + ‖u‖W 2,2(Ω,D) + γ1‖M0
2‖L2(Γ1) + γ2‖Q0

2‖L2(Γ1)], (2.5.50)

where the constant C is independent of f, u,M0
2 , and Q0

2.

Theorem 2.5.12 Let 2hρx4−κ
2 ∈ C(Ω) and

ω2 <
(κ − 1)2(κ − 3)2(1− ν)Dκ

16 max
Ω

2hρx4−κ
2

. (2.5.51)

There exists a unique weak solution of Problem 2.5.1, when Ik2|Γ1 = +∞ for a fixed k ≥ 3.
This solution is such that

‖w‖W̃ 2,2(Ω,D) ≤ C[‖x
4−κ

2
2 f‖L2(Ω) + ‖u‖W̃ 2,2(Ω,D)], (2.5.52)

where the constant C is independent of f and u.

Proof of Theorem 2.5.11 is similar to that of Theorem 1.4.15 and is based on the
Lax-Milgram theorem. It is easy to show the following three inequalities (see (2.5.56),
(2.5.59), (2.5.61) below which imply the proof).

In view of (2.5.45), (2.5.46), (2.5.22), we have

|Jω(w, v)| ≤
∫

Ω

(νD)
1
2 |w,11 + w,22| · (νD)

1
2 |v,11 + v,22|dΩ

+

∫

Ω

[(1− ν)D]
1
2 |w,11| · [(1− ν)D]

1
2 |v,11|dΩ

+

∫

Ω

[2(1− ν)D]
1
2 |w,12| · [2(1− ν)D]

1
2 |v,12|dΩ

+

∫

Ω

[(1− ν)D]
1
2 |w,22| · [(1− ν)D]

1
2 |v,22|dΩ + T

∫

Ω

|w||v|dΩ

≤



∫

Ω

νD(w,11 + w,22)
2dΩ




1
2



∫

Ω

νD(v,11 + v,22)
2dΩ




1
2
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+




∫

Ω

(1− ν)D(w,11)
2dΩ




1
2



∫

Ω

(1− ν)D(v,11)
2dΩ




1
2

+




∫

Ω

2(1− ν)D(w,12)
2dΩ




1
2



∫

Ω

2(1− ν)D(w,12)
2dΩ




1
2

+




∫

Ω

(1− ν)D(w,22)
2dΩ




1
2



∫

Ω

(1− ν)D(v,22)
2dΩ




1
2

+ T




∫

Ω

w2dΩ




1
2



∫

Ω

v2dΩ




1
2

≤ (4 + T )‖w‖W 2,2(Ω,D)‖v‖W 2,2(Ω,D), (2.5.53)

where

T := 2ω2 max
Ω

[h(x1, x2)ρ(x1, x2)]. (2.5.54)

In particular,

|Jω(w, v)| ≤ (4 + T )‖w‖W 2,2(Ω,D)‖v‖V ∀ w ∈ W 2,2(Ω, D) and ∀ v ∈ V (2.5.55)

and

|Jω(w, v)| ≤ (4 + T )‖w‖V ‖v‖V ∀ w, v ∈ V. (2.5.56)

Taking into account (2.5.55), and

∣∣∣
∫

Γ1

vQ0
2dx1

∣∣∣ ≤ ‖v‖L2(Γ1)‖Q0
2‖L2(Γ1) ≤ C0‖v‖V ‖Q0

2‖L2(Γ1), (2.5.57)

∣∣∣
∫

Γ1

v,2M
0
2 dx1

∣∣∣ ≤ ‖v,2‖L2(Γ1)‖M0
2‖L2(Γ1) (2.5.58)

≤ C0‖v‖V ‖M0
2‖L2(Γ1)

with the positive constant C0 from the trace theorem, it is not difficult to see, that the
functional

Fωv :=

∫

Ω

fvdΩ− Jω(u, v) + γ2

∫

Γ1

Q0
2vdx1 − γ1

∫

Γ1

M0
2 v,2dx1, v ∈ V,

is bounded in V :

|Fωv| ≤ {‖f‖L2(Ω) + (4 + T )‖u‖W 2,2(Ω,D) + C0[‖Q0
2‖L2(Γ1) + ‖M0

2‖L2(Γ1)]}‖v‖V .(2.5.59)
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Let

T0 :=
16l4−κ(1 + T )

9(1− ν)Dκ
, T1 :=

16l4−κT
9(1− ν)Dκ

. (2.5.60)

Analogously to (1.4.62), in view of Corollary 2.5.6, we get

‖v‖2
V =

∫

Ω

{v2 + D[ν(v,11 + v,22)
2 + (1− ν)(v,11)

2 + 2(1− ν)(v,12)
2

+ (1− ν)(v,22)
2]}dΩ =

∫

Ω

v2dΩ + Jω(v, v) + 2ω2

∫

Ω

hρv2dΩ

≤ Jω(v, v) + (1 + T )

∫

Ω

v2dΩ ≤ Jω(v, v) + T0

∫

Ω

(1− ν)Dκx
κ
2 (v,22)dΩ

≤ Jω(v, v) + T0

∫

Ω

(1− ν)D(v,22)
2dΩ

≤ Jω(v, v) + T0

∫

Ω

D[(1− ν)(v,22)
2 + ν(v,11 + v,22)

2 + (1− ν)(v,11)
2

+ 2(1− ν)(v,12)
2]dΩ = Jω(v, v) + T0

[
Jω(v, v) + 2ω2

∫

Ω

hρv2dΩ
]

≤ Jω(v, v) + T0

[
Jω(v, v) + T

∫

Ω

v2dΩ
]

≤ Jω(v, v) + T0

[
Jω(v, v) + T1

∫

Ω

(1− ν)D(v,22)
2dΩ

]

≤ Jω(v, v) + T0

{
Jω(v, v) + T1

[
Jω(v, v) + T1

∫

Ω

(1− ν)D(v,22)
2dΩ

]}

≤ Jω(v, v) + T0

{
Jω(v, v) + T1Jω(v, v) + (T1)

2
[
Jω(v, v)

+ T1

∫

Ω

(1− ν)D(v,22)
2dΩ

]}
= Jω(v, v)

+ T0

{
Jω(v, v)[1 + T1 + (T1)

2] + (T1)
3

∫

Ω

(1− ν)D(v,22)
2dΩ

}

(repeating the same (n− 2)−times more)

≤ Jω(v, v) + T0

[
Jω(v, v)

1− (T1)
n+1

1− T1

+ (T1)
n+1

∫

Ω

(1− ν)D(v,22)
2dΩ

]
.

Now, tending n to infinity and taking into account that, by virtue of (2.5.60), (2.5.54),
and (2.5.49),

T1 < 1,
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we obtain

‖v‖2
V ≤ Jω(v, v) +

T0

1− T1

Jω(v, v) =
1− T1 + T0

1− T1

Jω(v, v),

whence, in view of (2.5.60),

Jω(v, v) ≥ 9(1− ν)Dκ − 16l4−κT
9(1− ν)Dκ + 16l4−κ

‖v‖2
V . (2.5.61)

¤

Proof of Theorem 2.5.12 is similar to that of Theorem 1.4.17 and Theorem 2.5.11.
Obviously,

|Jω(w, v)| ≤
∫

Ω

(νD)
1
2 |w,11 + w,22| · (νD)

1
2 |v,11 + v,22|dΩ

+

∫

Ω

[(1− ν)D]
1
2 |w,11| · [(1− ν)D]

1
2 |v,11|dΩ

+

∫

Ω

[2(1− ν)D]
1
2 |w,12| · [2(1− ν)D]

1
2 |v,12|dΩ

+

∫

Ω

[(1− ν)D]
1
2 |w,22| · [(1− ν)D]

1
2 |v,22|dΩ

+ 2ω2

∫

Ω

hρx4−κ
2 x

κ−4
2

2 |w|x
κ−4

2
2 |v|dΩ

≤



∫

Ω

νD(w,11 + w,22)
2dΩ




1
2



∫

Ω

νD(v,11 + v,22)
2dΩ




1
2

+




∫

Ω

(1− ν)D(w,11)
2dΩ




1
2



∫

Ω

(1− ν)D(v,11)
2dΩ




1
2

+




∫

Ω

2(1− ν)D(w,12)
2dΩ




1
2



∫

Ω

2(1− ν)D(w,12)
2dΩ




1
2

+




∫

Ω

(1− ν)D(w,22)
2dΩ




1
2



∫

Ω

(1− ν)D(v,22)
2dΩ




1
2

+ T∗




∫

Ω

xκ−4
2 w2dΩ




1
2



∫

Ω

xκ−4
2 v2dΩ




1
2

≤ (4 + T∗)‖w‖W̃ 2,2(Ω,D)‖v‖W̃ 2,2(Ω,D),
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where

T∗ := 2ω2 max
Ω̄

[hρx4−κ
2 ]. (2.5.62)

Further, for

Fωv :=

∫

Ω

fvdΩ− Jω(w, v), v ∈ Ṽ ,

we have

|Fωv| ≤ {‖x
4−κ

2
2 f‖L2(Ω)‖x

κ−4
2

2 v‖L2(Ω) + (4 + T∗)‖w‖W̃ 2,2(Ω,D)‖v‖W̃ 2,2(Ω,D)}
≤ {‖x

4−κ
2

2 f‖L2(Ω) + (4 + T∗)‖w‖W̃ 2,2(Ω,D)}‖v‖Ṽ ,

since ‖x
κ−4

2
2 v‖L2(Ω) ≤ ‖v‖Ṽ and ‖v‖W̃ 2,2(Ω,D) = ‖v‖Ṽ .

Let

T ∗
0 :=

16(1 + T∗)
(κ − 1)2(κ − 3)2Dκ(1− ν)

, T ∗
1 :=

16T∗
(κ − 1)2(κ − 3)2Dκ(1− ν)

. (2.5.63)

Evidently, taking into account the second imbedding of (2.5.38), Lemma 2.5.5, (2.5.36),
and (2.5.46),

‖v‖2
Ṽ

:=

∫

Ω

{xκ−4
2 v2 + D[ν(v,11 + v,22)

2 + (1− ν)(v,11)
2

+ 2(1− ν)(v,12)
2 + (1− ν)(v,22)

2]}dΩ

=

∫

Ω

xκ−4
2 v2dΩ + Jω(v, v) + 2ω2

∫

Ω

hρx4−κ
2 xκ−4

2 v2dΩ

≤ Jω(v, v) + (1 + T∗)
∫

Ω

xκ−4
2 v2dΩ

≤ Jω(v, v) + T ∗
0

∫

Ω

(1− ν)Dκx
κ
2 (v,22)

2dΩ

≤ Jw(v, v) + T ∗
0

∫

Ω

(1− ν)D(v,22)
2dΩ

≤ Jω(v, v) + T ∗
0

∫

Ω

D[ν(v,11 + v,22)
2 + (1− ν)(v,11)

2

+ 2(1− ν)(v,12)
2 + (1− ν)(v,22)

2]dΩ

= Jω(v, v) + T ∗
0 [Jw(v, v) + 2ω2

∫

Ω

hρx4−κ
2 xκ−4

2 v2dΩ]
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≤ Jω(v, v) + T ∗
0 [Jω(v, v) + T∗

∫

Ω

xκ−4
2 v2dΩ]

≤ Jω(v, v) + T ∗
0 [Jω(v, v) + T ∗

1

∫

Ω

(1− ν)D(v,22)
2dΩ

≤ Jω(v, v) + T ∗
0 {Jω(v, v) + T ∗

1 [Jω(v, v) + T ∗
1

∫

Ω

(1− ν)D(v,22)
2dΩ]}

≤ Jω(v, v) + T ∗
0 {Jω(v, v) + T ∗

1 Jω(v, v) + (T ∗
1 )2

× [Jω(v, v) + T ∗
1

∫

Ω

(1− ν)D(v,22)
2dΩ]}

= Jω(v, v) + T ∗
0 {Jω(v, v)[1 + T ∗

1 + (T ∗
1 )2] + (T ∗

1 )3

∫

Ω

(1− ν)D(v,22)
2dΩ}

(repeating the same (n− 2)−times more)

= Jω(v, v) + T ∗
0 [Jω(v, v)

1− (T ∗
1 )n+1

1− T ∗
1

+ (T ∗
1 )n+1

∫

Ω

(1− ν)D(v,22)
2dΩ].

Now, tending n to infinity and taking into account that, by virtue of (2.5.63), (2.5.62),
(2.5.51), obviously,

T ∗
1 < 1,

we obtain

‖v‖2
Ṽ
≤ Jω(v, v) +

T ∗
0

1− T ∗
1

Jω(v, v) =
1− T ∗

1 + T ∗
0

1− T ∗
1

Jω(v, v).

But, in view of (2.5.63),

1− T ∗
1 + T ∗

0

1− T ∗
1

=
(κ − 1)2(κ − 3)2Dκ(1− ν)− 16T∗ + 16(1 + T∗)

(κ − 1)2(κ − 3)2Dκ(1− ν)− 16T∗

=
(κ − 1)2(κ − 3)2(1− ν)Dκ + 16

(κ − 1)2(κ − 3)2(1− ν)Dκ − 16T∗
.

Thus,

Jω(v, v) ≥ (κ − 1)2(κ − 3)2(1− ν)Dκ − 16T∗
(κ − 1)2(κ − 3)2(1− ν)Dκ + 16

‖v‖2
Ṽ

∀v ∈ Ṽ .

¤

Now, let us consider general case of the thickness.

Definition 2.5.13 Let

∗
W 2,2(Ω, D) (2.5.64)
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be the set of all measurable functions w defined on Ω which have on Ω locally summable
generalized derivatives up to the order 2 such that (2.5.17) is valid for

ρ0,0 := Q(x1, x2), ρ2,0 = ρ1,1 = ρ0,2 := D(x1, x2),

where

Q(x1, x2) := D(x1, x2)




l∫

x2

D−1(x1, τ)dτ




2




l∫

x2

D(x1, t)




l∫

t

D−1(x1, τ)dτ




2

dt





−2

(2.5.65)

with D ∈ C(Ω) and

l(x1)∫

x2

D−1(x1, τ)dτ < +∞ for (x1, 0) ∈ Γ1. (2.5.66)

We recall that (x1, l(x1)) ∈ Ω for (x1, 0) ∈ Γ1.

Let us introduce the following norm:

‖w‖2
∗

W 2,2(Ω,D)
:=

∫

Ω

{Qw2 + D[ν(w,11 + w,22)
2 + (1− ν)(w,11)

2 +

+2(1− ν)(w,12)
2 + (1− ν)(w,22)

2]}dΩ. (2.5.67)

Since
Q−1, D−1 ∈ Lloc

1 (Ω),

the space (2.5.64) with the norm (2.5.67) is a Banach space, and moreover, Hilbert space
with the scalar product

(w, v) ∗
W 2,2(Ω,D)

:=

∫

Ω

{Qwv + D[ν(w,11 + w,22)(v,11 + v,22) + (1− ν)w,11v,11

+2(1− ν)w,12v,12 + (1− ν)w,22v,22]}dΩ. (2.5.68)

Lemma 2.5.14 If

v ∈
∗

W 2,2(Ω, D) (2.5.69)

and

v|Γ2 = 0,
∂v

∂n

∣∣∣
Γ2

= 0, (2.5.70)

in the sense of traces, then
∫

Ω

Q(x1, x2)v
2(x1, x2)dΩ ≤ 16

∫

Ω

D(x1, x2)[v,22(x1, x2)]
2dΩ. (2.5.71)
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Proof. Without loss of generality, we suppose that the domain Ω lies inside of the
rectangle Π from (2.5.29) and complete the definition of the function v in Π\Ω, assuming
v equal to zero there.

Evidently, (2.5.69) implies

∫

Π

[Qv2 + D(v,22)
2]dΩ < +∞,

i.e., for almost every fixed x1, we have

v(x1, ·) ∈
∗

W 2,2(]0, l[, D)

(see (1.4.80)) and
v(x1, l) = 0, v,2(x1, l) = 0.

We recall that l > max
(x1,x2)∈Ω̄

{x2}. Now, we can apply Lemma 1.4.23, i.e.,

l∫

0

Q(x1, x2)v
2(x1, x2)dx2 ≤ 16

l∫

0

D(x1, x2)[v,22(x1, x2)]
2dΩ (2.5.72)

for almost every x1 ∈]a, b[. Integrating both the sides of (2.5.72) over ]a, b[, we get (2.5.71).
¤

Let

∗
V :=

{
v ∈

∗
W 2,2(Ω, D) : v|Γ2 = 0,

∂v

∂u

∣∣∣
Γ2

= 0,

and additionally

either v|Γ1 = 0, v,2|Γ1 = 0 (if we consider BCs (2.5.11)

or v,2|Γ1 = 0 (if we consider BCs (2.5.12))

or v|Γ1 = 0 (if we consider BCs (2.5.13))

in the sense of traces}. (2.5.73)

Definition 2.5.15 Let Q− 1
2 f ∈ L2(Ω) and g1, g2, w0, w

1
0 be traces of a prescribed function

u ∈
∗

W 2,2(Ω, D) and its first derivatives. Let further M0
2 , Q0

2 ∈ L2(Γ1) be also prescribed.

A function w ∈
∗

W 2,2(Ω, D) will be called a weak solution of Problem 2.5.1 in the space
∗

W 2,2(Ω, D) if it satisfies the following conditions:

w − u ∈ ∗
V

and (2.5.45) is valid for all v ∈ ∗
V .
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Theorem 2.5.16 Let 2hρQ−1 ∈ C(Ω) and

ω2 <
1− ν

16 max
Ω

2hρQ−1
.

Then there exists a unique weak solution w of Problem 2.5.1, which satisfies

‖w‖ ∗
W 2,2(Ω,D)

≤ C[‖Q− 1
2 f‖L2(Ω) + ‖u‖ ∗

W 2,2(Ω,D)

+γ1‖M0
2‖L2(Γ1) + γ2‖Q0

2‖L2(Γ1)]

with a constant C independent of f, u, M0
2 and Q0

2.

Proof is similar to the proof of Theorem 1.4.25 and Theorem 2.5.12 (taking into account
Lemma 2.5.14). ¤

Remark 2.5.17 Evidently, the analogous to Section 2.5 investigation can be carried out
for the cusped orthotropic plate considered in Sections 2.1, 2.2, 2.4.



Appendix

Figures 1− 6 display examples of beams with one cusped end.
F igures 7− 10 display beams with both cusped ends.
F igures 11− 19 display longitudinal sections of cusped beams and profiles

of cusped plates. The arrows denote tangents to the
beam longitudinal sections and plate profiles boundaries at
the cusped end (edge).

F igures 20 displays the projection of the plate into the x1x2−plane.
F igures 21− 23 display examples of cusped plates.
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