L_p -CONNECTION FOR HOLOMORPHIC PRINCIPAL BUNDLE ON RIEMANN SURFACES AND ITS APPLICATION

Giorgadze G.

Tbilisi state university

Consider holomorphic principal bundles on the compact Riemann surface with L_p -connection associated from the G_c -value elliptic system $\partial_{\overline{z}} \Phi(z) = A(z)\Phi(z)$, where A(z) is meromorphic G_c -value 1-form on the Riemann surface X and $\Phi: X \to G_c$ unknown function. Here G_c is complexification of the compact Lie group G. In this assumption we prove

Proposition 1. The cohomology group $H^i(CP^1, O(P))$ and $H^i(CP^1, A(P))$ are isomorphic for i = 0,1, where O(P) and A(P) respectively are sheaves of holomorphic and generalized analytic sections of principal bundle $P \rightarrow CP^1$ on the Riemann sphere.

Proposition 2. There exists a one-to-one correspondence between the spaces of gauge equivalent G_c -value elliptic system and the space of holomorphic structures on the bundle $P \rightarrow X$.

Proposition 3. The G_C -value elliptic system $\partial_{\bar{z}} \Phi(z) = A(z)\Phi(z)$ defines a monodromy representation of the fundamental group $\rho: \pi_1(X - S, z_0) \to G_C$ and monodromy are given by Chen's iterated integrals $\rho(\gamma_j) = 1 + \int_{\gamma_j} \Omega \Omega + \int_{\gamma_j} \Omega \Omega \Omega + \dots + \dots$, where S is set of singular points of the 1-form

 $\Omega = \partial_{\bar{z}} \Phi(z) \Phi(z)^{-1}$ and γ_j are generators of $\pi_1(X - S, z_0)$.

Above results we use for the construction the quantum gates for monodromic quantum computation. In particular, is true the following

Proposition 4. For the collection of the unitary operators U_1 , U_2 ,... U_q which realize the quantum algorithm, there exist a location at the points $s_1, s_2, ..., s_q$ on the compact Riemann surface X, and The G_C -value elliptic system $\partial_{\bar{z}} \Phi(z) = A(z)\Phi(z)$ with monodromies $M_1, M_2, ..., M_q$ such that $U_j = F(M_p, ..., M_q)$.