ISAAC Conference, 23-27 April, 2007, Tbilisi, Georgia
Dedicated to the Centenary of I. Vekua

THE DIRICHLET PROBLEM FOR SECOND ORDER ELLIPTIC EQUATIONS IN A HALF-PLANE

Tovmasyan n.

Let $\mathbf{R}_{+}^{2}=\{(x, y, t) \mid t>0\}$ be an upper half-plane with the boundary \mathbf{R}^{2}. We consider in \mathbf{R}_{+}^{2} the second degree equation:

$$
\begin{equation*}
u_{x x}+u_{y y}+u_{t t}-2 a u_{x}-2 b u_{y}-2 c u_{t}+k u=0, \quad(x, y, t) \in \mathbf{R}_{+}^{2}, \tag{1}
\end{equation*}
$$

where a, b, c, k are the real constants. The solution $u(x, y, t)$ of equation (1) is two times continuously differentiable in \mathbf{R}_{+}^{2}, and continuous up to the boundary function. This function on the boundary \mathbf{R}^{2} satisfies the Dirichlet condition

$$
\begin{equation*}
u(x, y, t)=f(x, y), \quad(x, y) \in \mathbf{R}^{2} . \tag{2}
\end{equation*}
$$

The function f is a given continuous on \mathbf{R}^{2} function.
We obtain in the paper the following results
Theorem 1. If the function f is bounded on \mathbf{R}^{2}, then the problem (1), (2) is uniquely solvable in a class of bounded in \mathbf{R}_{+}^{2} functions if and only if $k \leq 0$.

Theorem 2. Let f be the function of polynomial growth on \mathbf{R}^{2}. In this case, the problem (1), (2) is uniquely solvable in a class of functions of polynomial growth on \mathbf{R}_{+}^{2} if and only if $k<0$ or $k=0$ and $c>0$.

