THE FOURTH ORDER OF ACCURACY
DECOMPOSITION SCHEME FOR ABSTRACT
HYPERBOLIC EQUATION

Let us consider the Cauchy problem for abstract hyperbolic equation in
the Hilbert space H:
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where A is a self-adjoined, positively defined (generally unbounded) operator
with the definition domain D (A), which is everywhere dense in H.

Let A= A; + Ay, where Ay, Ay are self-adjoined, positively defined oper-
ators.

Let us divide the interval [0, 7] into n (> 1) equal parts and define division
points by tg, t, = kr,n = 1,....n, 7 = T/n. As it is known solution of the
problem (1)-(2) satisfies the following recurrent relations:
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Using this formula, let us construct the following decomposition scheme:
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where
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where \ = % + %, o= % + iivg_(;_’\)g, @ is a conjugate of a.

We declare function u; as an approximation of w (t) in ¢ = ¢; node.

It is proved that the decomposition scheme (3)-(4) is stable and the error
of the solution obtained by this scheme is (7%).



