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Let's consider an shell which points are described by  radius-vectors: 
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Vector relations  
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define base surfaces 
)(−

s  and 
)(+

s  parametrization (1) of shell space.   A vector  
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puts in conformity of a point of base surfaces with identical Gauss coordinates ),( 21 xx . 
     Entered (1) parametrization of shell space can be considered as generalization of the 
spatial coordinate systems normally connected to a base surface, entered by I.N.Vekua. 

Such systems turn out from the general case when the vector h
r

 is perpendicular surfaces  
)(−

s and 
)(+

s . Entered parametrization is especially convenient by consideration of 
multilayered environments when acceptance as basic obverse surfaces of layers allows 
continuously on  Gauss coordinates  to pass from a layer to a layer. From group 
transformations of spatial coordinates we shall allocate transformations of a kind 
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which we shall name the generalized S - transformations. The sizes possessing tension 
properties concerning such transformations of coordinates, we shall name generalized S  
- tensors. 

The three of vectors ),,( 321 rrr
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 form covariant  mobile base of shell space. The two 
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 form  covariant mobile basis, corresponding base surfaces. 

Metric tensor of shell spaces  jiij rrg
rr ⋅=  it is completely expressed through the value 
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Through components of these tensors factors of the second metric form of base shell 
surfaces, for example are expressed: 
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For a determinant of the metric form g  we have: 
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Here g  value of a determinant on a base surface 
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s : 
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