GENERALIZATION SPATIAL PARAMETRIZATION IN THE I.N. VEKUA'S SHELL THEORY

Tvalchrelidze A.K.

A.Tsereteli's State University, Kutaisi

Let's consider an shell which points are described by radius-vectors:

$$
\begin{equation*}
\vec{r}\left(x^{1}, x^{2}, x^{3}\right)=\stackrel{(-)}{\vec{r}}\left(x^{1}, x^{2}\right)+x^{3}\left(\stackrel{(+)}{\vec{r}}\left(x^{1}, x^{2}\right)-\stackrel{(-)}{\vec{r}}\left(x^{1}, x^{2}\right)\right) \tag{1}
\end{equation*}
$$

Vector relations

$$
\begin{equation*}
\stackrel{(-)}{\vec{r}}=\stackrel{(-)}{\vec{r}}\left(x^{1}, x^{2}\right) \quad \text { and } \quad \stackrel{(+)}{\vec{r}}=\stackrel{(+)}{r}\left(x^{1}, x^{2}\right) \tag{2}
\end{equation*}
$$

define base surfaces $\stackrel{(-)}{s}$ and $\stackrel{(+)}{s}$ parametrization (1) of shell space. A vector

$$
\begin{equation*}
\vec{h}\left(x^{1}, x^{2}\right)=\stackrel{(+)}{\vec{r}}\left(x^{1}, x^{2}\right)-\stackrel{(-)}{\vec{r}}\left(x^{1}, x^{2}\right) \tag{3}
\end{equation*}
$$

puts in conformity of a point of base surfaces with identical Gauss coordinates $\left(x^{1}, x^{2}\right)$.
Entered (1) parametrization of shell space can be considered as generalization of the spatial coordinate systems normally connected to a base surface, entered by I.N.Vekua. Such systems turn out from the general case when the vector \vec{h} is perpendicular surfaces $\stackrel{(-)}{s}$ and $\stackrel{(+)}{s}$. Entered parametrization is especially convenient by consideration of multilayered environments when acceptance as basic obverse surfaces of layers allows continuously on Gauss coordinates to pass from a layer to a layer. From group transformations of spatial coordinates we shall allocate transformations of a kind

$$
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{1}, x^{2}\right), x^{3^{\prime}}=x^{3}
$$

which we shall name the generalized S - transformations. The sizes possessing tension properties concerning such transformations of coordinates, we shall name generalized S - tensors.

The three of vectors ($\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$) form covariant mobile base of shell space. The two of vectors $\left(\vec{r}_{1}, \vec{r}_{-}\right)$and $\left(\vec{r}_{+}, \vec{r}_{2}\right)$ form covariant mobile basis, corresponding base surfaces.

Metric tensor of shell spaces $g_{i j}=\vec{r}_{i} \cdot \vec{r}_{j}$ it is completely expressed through the value on one of base surfaces $g_{\overline{i j}}=\vec{r}_{i} \cdot \vec{r}_{j}$ or $g_{i j}=\vec{r}_{i} \cdot \vec{r}_{j}$ and metric carry tensor $g_{i j}=\vec{r}_{i} \cdot \vec{r}_{\vec{j}}$. Through components of these tensors factors of the second metric form of base shell surfaces, for example are expressed:

$$
b_{-\bar{\alpha}}=\sqrt{g^{\overline{3-}}}\left(g_{\bar{\alpha} \bar{\beta}, \beta}-g_{\dot{\beta}-\bar{\alpha}}+g_{\alpha \bar{\beta}}\right)+\frac{1}{2} \frac{g^{\overline{\gamma-\overline{3}}}}{\sqrt{g^{-\overline{3}}}}\left(g_{\bar{\alpha} \gamma, \beta}+g_{\bar{\beta} \gamma, \alpha}-g_{\bar{\alpha} \bar{\beta}, \gamma}\right)
$$

For a determinant of the metric form g we have:

$$
\sqrt{g}=\vec{r}_{1} \vec{r}_{2} \vec{r}_{3}=\sqrt{\bar{g}}\left(\left(1-x^{3}\right)^{2}+x^{3}\left(1-x^{3}\right)\left(g_{1}^{1}+g_{\frac{1}{2}}^{\overline{2}}\right)+\left(x^{3}\right)^{2}\left(g_{1}^{\overline{1}} g_{\frac{2}{2}}^{\overline{2}}-g_{\frac{1}{2}}^{\overline{1}} g_{1}^{\overline{2}}\right)\right)
$$

Here \bar{g} value of a determinant on a base surface $\stackrel{(-)}{s}: \sqrt{\bar{g}}=\vec{r}_{-1} \vec{r}_{2} \vec{r}_{\mathbf{3}}=\left.\sqrt{g}\right|_{x^{3}=0}$.

