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Abstract: In the present paper the nonlinear boundary value problem for
the system of the Marguerre-von Karman equations is considered. Using the
general theorem of Banach spaces, the existence of solutions has been proved.
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1. Introduction

The paper deals with the question of existence of solutions to the non-
linear boundary value problem of the Marguerre-von Karman equations. These
equations describe the strong bending of the shallow shells. The Marguerre-
von Karman equations are due to Marguerre [1] and von Karman & Tsien
[2]. As shown by Ciarlet & Paumier [3], the method of formal asymptotic
expansions, applied in the form of the displacement-stress approach, may be
also used for justification of the Marguerre-von Karman equations.

The general theorem of Banach spaces [4] for the proof of existence of
solutions has been used. This method has been used by Dubinski [4], [5] and
Skripnik [6] for the different non-linear equations .

Let (e;) denote the basis of the Euclidean space R*, and let w be a domain in
the plane spanned on the vectors e,. Assume that w is bounded and connected
and that its boundary v is smooth enough. We donote by Ox;z5x3 Cartesian
coordinates and let

Oa : 0

© Oz,

Let 0(x1,29) : @ — R be a function of class C? such that

a=1,2.

0,0 =0 along v, a=1,2.

x3 = hl(x1,23), (x1,22) € W, is the equation of the middle surface of the shell,
where h is a semi-thickness of the shell.
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The system of equations under consideration for homogeneous isotropic
shallow shells has the following form

BU(A + 1) 1o _ .

WA (=[x, ¢+0=p in w, "
+ [ - :

M<3A+2M>A2X+[C,C+29]_0 in w,

where h( (21, z2) is the deflection, h?x (1, z2) is the Airy stress function, h'p(xy, zs)
is function given in w, A\ > 0 and g > 0 are the Lame constants, A% :=
01111 + 201122 + Oo299 is the two-dimensional biharmonic operator and

(X, ¥] := 011 X020 + 022X 0111 — 2012X 0127

Dirichlet boundary conditions for equations (1) look like

(=x=0, 1(=0s( =0, O1x =0.x=0, on 7. (2)
Let us reformulate the problem (1), (2) as the following equivalent problem
B8A+ 1) A2 :
OVATR) A2 [y 0] = p*
Tl X5HC+HO=p" in w,
KO 1) (17)
+ H 2. % :

——A 20] =

C == X* == 0, 81C == 82§ = 0, 8lx* = 82)(* =0 on Y (2*)

where x* = kl’ pr= kﬁ’ k > 0 should be some real constant such that
7 7

. ( 8A+u) k(A+ u))
k(A +2u)" 3N+ 2u)

be maximal. It takes place when

8(3\ + 2u)
3(A+2p)

Let us represent the problem (1%), (2*) as the operational problem
A(u) := L(u) + B(u) + N(u) = f,

where u = ({(z1,x2), X* (21, 22)) is the vector function,

_ V2 +p)
V3 4 2u) (BN + 2)
B(u) = (=[x", 6], 2[¢, 0]),
N(U) = (_[X*7 C]ﬂ [C? C])a

f= (p*(xlv x2)7 O)

L(u) : (A%, A%x),
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2. The Existence Theorem

In order to show the existence of solutions of the problem (1), (2) we
remined the general theorem of the Banach spaces:

Theorem 1. Let X is the separable and reflexive Banach space and let
X* is the dual space of that. Assume that the generally non-linear operator
A(u) : X — X* satisfies the following conditions:

1. The condition of coerciveness. For any u € X

< Au),u >

— +o0, when |u|lx — +o0.
[l x

2. The condition of weakly compactness. If w, — u weakly in X, then for
any v € X
lim < A(up,),v >=< A(u),u >,

m—00

where u,, 1s the some subsequence of u,.
Then for any h € X* equation

Alu) =h
has at least one solution u in X.

Th 2. Let0(xq, e C*(w), 0(xy, z9)—2) < 2v2(\+p) 7
eorem et 0(x1, x2) (@) (wmg)x@( (71, 12)—2e) NZIYSRIE Ve

1
where & = 5 ( max 0(xy,x2) + min «9(331,.%2)) , p* € Wy2(w), then the

(z1,72)€EW (z1,m2)€ED
0 0
problem (1*),(2*) has at least one generalized solution ( € W %, x* € W 3.
0
Proof. Because of dimw = 2, § € C*(w), and W 3(w) C C(w) we have

evident, that L(u): X — X*. Thus, A(u) : X — X*.
0
For any u € W %(w) we have

2v2(\ + 1)

¢3(A+2u)(3A+2u)”u“X' 3)

< Lu,u >=

For all x*,( € I/?/ 2(w) and 0 € C?*(w) we have (dz := dzidxs)

[ oicis = [1copedn

[z = [, gods (1)

[ gde=o.

w
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By means of the formulas (4) we show

| < B(u)u>| = /[x*,cw—ae)dx -

w

= /(311X*322C + Do X 011C — 2012X"012€) (0 — &)dz| <
1 *\ 2 2 *\ 2 2
S max (‘9($17$2) — %)/{5[(811)( ) -+ (aQQC) + (822X ) -+ (aHC) ] +

(z1,22)€W
w

+(O12x*)? + (0120)* } do < max_(0(x1, x3) — )||ull%,

(x1,22)€W
Now, we have
< L(u),u >+ < B(u),u >> c|ul%, (5)
where
ci= 220\ + 24 — max (0(xy,z5) — o).

\/3(/\ + 2/ub) (3)\ + 2,u) (z1,2z2)EW@

In view of (5), L(u) + B(u) is coercive. As L(u) and B(u) are the linear
bounded operators, the condition of coercivennes is fulfilled for them.
Let us show that a non-linear operator N(u) is orthogonal, i.e., for any

0
uE€W 3(w)
< N(u),u >=0.

Let ((z1,72) € D(w), x"(21,22) € D(w), then

- / ", cJcde = / Oaax*(B10)? — 201X 01COC + D (B, (6)

w w

/[C, (IX"de = — /[8229(*(6102 — 201X 01002¢ + D11 X" (02€)?)d. (7)

0
By (6) and (7), for any finite function < N(u),u >= 0. As D(w) = W 3(w) and

0 0

W 3(w) C C(@) (dimw = 2), operator N(u) is orthogonal for all u € W 3(w).
Since the operator N(u) is orthogonal, the operator A(u) is coercive.
Now, we show that the operator N(u) is weakly compact.

0 0
Lemma 3. For any ((x1,22) € W 3(w) x* € W 3(w) we have

f[X*’ C]Udl’ = — f[822x*81C81v — 812)(*(81§820 — 82C811))
+811X*82§81’U]dl';
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/ ¢, Jode = — / [01COCOY + nCDaCOy — CDCDpuldr.  (9)

Lemma 4. If u,(z) — u(x) weakly in Ly(w), ¢n(x) — q(z) in La(w),
then for any bounded v(x) function

/unqnvcm — /uquaj.

w

By virtue of (8), (9) and the lemma 4 we get the weakly compactness of
N(u).

Now the proof of the theorem 2 immediately follows from the theorem 1.
|
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