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Abstract: In the present paper the nonlinear boundary value problem for
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general theorem of Banach spaces, the existence of solutions has been proved.
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1. Introduction

The paper deals with the question of existence of solutions to the non-
linear boundary value problem of the Marguerre-von Karman equations. These
equations describe the strong bending of the shallow shells. The Marguerre-
von Karman equations are due to Marguerre [1] and von Karman & Tsien
[2]. As shown by Ciarlet & Paumier [3], the method of formal asymptotic
expansions, applied in the form of the displacement-stress approach, may be
also used for justification of the Marguerre-von Karman equations.

The general theorem of Banach spaces [4] for the proof of existence of
solutions has been used. This method has been used by Dubinski [4], [5] and
Skripnik [6] for the different non-linear equations .

Let (ei) denote the basis of the Euclidean space R3, and let ω be a domain in
the plane spanned on the vectors eα. Assume that ω is bounded and connected
and that its boundary γ is smooth enough. We donote by Ox1x2x3 Cartesian
coordinates and let

∂α :=
∂

∂xα

, α = 1, 2.

Let θ(x1, x2) : ω → R be a function of class C2 such that

∂αθ = 0 along γ, α = 1, 2.

x3 = hθ(x1, x2), (x1, x2) ∈ ω, is the equation of the middle surface of the shell,
where h is a semi-thickness of the shell.
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The system of equations under consideration for homogeneous isotropic
shallow shells has the following form

8µ(λ + µ)

3(λ + 2µ)
∆2ζ − [χ, ζ + θ] = p in ω,

λ + µ

µ(3λ + 2µ)
∆2χ + [ζ, ζ + 2θ] = 0 in ω,

(1)

where hζ(x1, x2) is the deflection, h2χ(x1, x2) is the Airy stress function, h4p(x1, x2)
is function given in ω, λ > 0 and µ > 0 are the Lame constants, ∆2 :=
∂1111 + 2∂1122 + ∂2222 is the two-dimensional biharmonic operator and

[χ, ψ] := ∂11χ∂22ψ + ∂22χ∂11ψ − 2∂12χ∂12ψ.

Dirichlet boundary conditions for equations (1) look like

ζ = χ = 0, ∂1ζ = ∂2ζ = 0, ∂1χ = ∂2χ = 0, on γ. (2)

Let us reformulate the problem (1), (2) as the following equivalent problem

8(λ + µ)

3k(λ + 2µ)
∆2ζ − [χ∗, ζ + θ] = p∗ in ω,

k(λ + µ)

3λ + 2µ
∆2χ∗ + [ζ, ζ + 2θ] = 0 in ω,

(1∗)

ζ = χ∗ = 0, ∂1ζ = ∂2ζ = 0, ∂1χ
∗ = ∂2χ

∗ = 0 on γ (2∗)

where χ∗ =
χ

kµ
, p∗ =

p

kµ
, k > 0 should be some real constant such that

min

(
8(λ + µ)

3k(λ + 2µ)
,
k(λ + µ)

3λ + 2µ)

)

be maximal. It takes place when

k =

√
8(3λ + 2µ)

3(λ + 2µ)
.

Let us represent the problem (1∗), (2∗) as the operational problem

A(u) := L(u) + B(u) + N(u) = f,

where u = (ζ(x1, x2), χ
∗(x1, x2)) is the vector function,

L(u) :=
2
√

2(λ + µ)√
3(λ + 2µ)(3λ + 2µ)

(∆2ζ, ∆2χ∗),

B(u) := (−[χ∗, θ], 2[ζ, θ]),

N(u) := (−[χ∗, ζ], [ζ, ζ]),

f := (p∗(x1, x2), 0).
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2. The Existence Theorem

In order to show the existence of solutions of the problem (1), (2) we
remined the general theorem of the Banach spaces:

Theorem 1. Let X is the separable and reflexive Banach space and let
X∗ is the dual space of that. Assume that the generally non-linear operator
A(u) : X → X∗ satisfies the following conditions:

1. The condition of coerciveness. For any u ∈ X

< A(u), u >

‖u‖X

→ +∞, when ‖u‖X → +∞.

2. The condition of weakly compactness. If un ⇀ u weakly in X, then for
any v ∈ X

lim
m→∞

< A(um), v >=< A(u), u >,

where um is the some subsequence of un.
Then for any h ∈ X∗ equation

A(u) = h

has at least one solution u in X.
Theorem 2. Let θ(x1, x2) ∈ C2(ω), max

(x1,x2)∈ω
(θ(x1, x2)−æ) < 2

√
2(λ+µ)√

3(λ+2µ)(3λ+2µ)
,

where æ =
1

2

(
max

(x1,x2)∈ω
θ(x1, x2) + min

(x1,x2)∈ω
θ(x1, x2)

)
, p∗ ∈ W−2

2 (ω), then the

problem (1∗), (2∗) has at least one generalized solution ζ ∈ 0

W 2
2, χ∗ ∈ 0

W 2
2.

Proof. Because of dimω = 2, θ ∈ C2(ω), and
0

W 2
2(ω) ⊂ C(ω) we have

B(u) ∈ L2(ω) ⊂ W−2
2 (ω) = X∗ and N(u) ∈ L1(ω) ⊂ W−2

2 (ω) = X∗. It is
evident, that L(u) : X → X∗. Thus, A(u) : X → X∗.

For any u ∈ 0

W 2
2(ω) we have

< Lu, u >=
2
√

2(λ + µ)√
3(λ + 2µ)(3λ + 2µ)

‖u‖X . (3)

For all χ∗, ζ ∈ 0

W 2
2(ω) and θ ∈ C2(ω) we have (dx := dx1dx2)

∫

ω

[χ∗, θ]ζdx =

∫

ω

[ζ, θ]χ∗dx,

∫

ω

[χ∗, θ]ζdx =

∫

ω

[χ∗, ζ]θdx, (4)

∫

ω

[χ∗, ζ]dx = 0.
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By means of the formulas (4) we show

| < B(u), u > | =
∣∣∣∣∣∣

∫

ω

[χ∗, ζ](θ − æ)dx

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

∫

ω

(∂11χ
∗∂22ζ + ∂22χ

∗∂11ζ − 2∂12χ
∗∂12ζ)(θ − æ)dx

∣∣∣∣∣∣
≤

≤ max
(x1,x2)∈ω

(θ(x1, x2)− æ)

∫

ω

{
1

2
[(∂11χ

∗)2 + (∂22ζ)2 + (∂22χ
∗)2 + (∂11ζ)2] +

+(∂12χ
∗)2 + (∂12ζ)2

}
dx ≤ max

(x1,x2)∈ω
(θ(x1, x2)− æ)‖u‖2

X ,

Now, we have
< L(u), u > + < B(u), u >≥ c‖u‖2

X , (5)

where

c :=
2
√

2(λ + 2µ)√
3(λ + 2µ)(3λ + 2µ)

− max
(x1,x2)∈ω

(θ(x1, x2)− æ).

In view of (5), L(u) + B(u) is coercive. As L(u) and B(u) are the linear
bounded operators, the condition of coercivennes is fulfilled for them.

Let us show that a non-linear operator N(u) is orthogonal, i.e., for any

u ∈ 0

W 2
2(ω)

< N(u), u >= 0.

Let ζ(x1, x2) ∈ D(ω), χ∗(x1, x2) ∈ D(ω), then

−
∫

ω

[χ∗, ζ]ζdx =

∫

ω

[∂22χ
∗(∂1ζ)2 − 2∂12χ

∗∂1ζ∂2ζ + ∂11χ
∗(∂2ζ)2]dx, (6)

∫

ω

[ζ, ζ]χ∗dx = −
∫

ω

[∂22χ
∗(∂1ζ)2 − 2∂12χ

∗∂1ζ∂2ζ + ∂11χ
∗(∂2ζ)2]dx. (7)

By (6) and (7), for any finite function < N(u), u >= 0. As D(ω) =
0

W 2
2(ω) and

0

W 2
2(ω) ⊂ C(ω) (dimω = 2), operator N(u) is orthogonal for all u ∈ 0

W 2
2(ω).

Since the operator N(u) is orthogonal, the operator A(u) is coercive.
Now, we show that the operator N(u) is weakly compact.

Lemma 3. For any ζ(x1, x2) ∈
0

W 2
2(ω) χ∗ ∈ 0

W 2
2(ω) we have

∫
ω

[χ∗, ζ]vdx = − ∫
ω

[∂22χ
∗∂1ζ∂1v − ∂12χ

∗(∂1ζ∂2v − ∂2ζ∂1v)

+∂11χ
∗∂2ζ∂1v]dx;

(8)
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∫

ω

[ζ, ζ]vdx = −
∫

ω

[∂1ζ∂12ζ∂1v + ∂2ζ∂12ζ∂1v − ∂1ζ∂2ζ∂12v]dx. (9)

Lemma 4. If un(x) ⇀ u(x) weakly in L2(ω), qn(x) → q(x) in L2(ω),
then for any bounded v(x) function

∫

ω

unqnvdx →
∫

ω

uqvdx.

By virtue of (8), (9) and the lemma 4 we get the weakly compactness of
N(u).

Now the proof of the theorem 2 immediately follows from the theorem 1.
¥
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