
Bulletin of TICMI
Vol. 16, No. 1, 2012, 43–53

Properties of Layer Potentials of Thermoelastostatics
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0175, Georgia

We construct explicitly the fundamental matrix for the equations of statics of the
thermoelasticity theory and study the mapping properties of the corresponding single
and double layer potentials. We establish the jump relations for layer potentials and
investigate mapping properties of the boundary integral operators generated by the
layer potentials and their co-normal derivatives. We introduce a special class, Z(Ω−) of
vectors bounded at infinity in the case of an unbounded domain Ω − and show that the
layer potentials belong to this class. On the basis of these results we derive a general
integral representation formula for solutions of the equations of thermostatics in unbounded
domains. These results play a crucial role in the proof of the corresponding existence theorems.
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Let Ω+ ∈ R3 be a bounded domain and S = ∂Ω+. For simplicity, we assume that
S is a C2,α-smooth surface with 0 < α 6 1. We set Ω+ = Ω+∪S and Ω− = R3\Ω+.

The basic governing equations of the linear thermoelastostatics read as (for de-
tails see [1], [2], [5], [6]):

ckjpq∂j∂qup(x)− βkj∂jϑ(x) = 0, k = 1, 2, 3, x ∈ Ω±, (1)

λpq∂p∂qϑ(x) = 0, x ∈ Ω±, (2)

where ckjpq = cpqkj = cjkpq are elastic constants, λpq = λqp are heat conduction
coefficients, u = (u1, u2, u3)> is the displacement vector, ϑ is the temperature
distribution function, βpq = βqp are the material constant, describing the coupling
of mechanical and thermal fields, ∂j = ∂/∂xj , ∂ = ∇ = (∂1, ∂2, ∂3). Throughout the
paper summation over repeated indexes is meant from one to three if not otherwise
stated.

In order to rewrite the above equations in matrix form, let us introduce the
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notation

U =(u1, u2, u3, ϑ)> = (u, ϑ)>,

C(∂) =
[
Ckp(∂)

]
3×3

, Ckp(∂) = ckjpq∂j∂q,

Λ(∂) = λpq∂p∂q.

The system (1)-(2) can be then rewritten as

A(∂)U(x) = 0, x ∈ Ω±, (3)

where

A(∂) :=
[
Akj(∂)

]
4×4

=
[

C(∂) [−βkj∂j ]3×1

[0]1×3 Λ(∂)

]

4×4

,

Denote by Γ(x) =
[
Γkj(x)

]
4×4

the fundamental matrix of the operator A(∂x),

A(∂x)Γ(x− y) = I4 δ(x− y).

Here and in what follows Ik stands for the k × k unit matrix.
The fundamental matrix Γ(x) can be constructed explicitly and is written in the

form

Γ(x) = F −1
ξ→x

[
A−1(−iξ)

]
,

where F−1
ξ→x is the inverse Fourier transform1 and A−1(−iξ) is the matrix inverse

to A(−iξ),

A−1(−iξ) =
1

detA(−iξ)
A(c)(−iξ).

Here A(c)(−iξ) is the matrix of co-factors of the matrix A(−iξ),

A(−iξ) =
[[

Ckjpq(−iξj)(−iξq)
]
3×3

[− βkj(−iξj)
]
3×1[

0
]
1×3

λpq(−iξj)(−iξq)

]

4×4

,

Note that detA(−iξ) is a homogeneous polynomial of order 8 in variables ξ1, ξ2, ξ3,
and, moreover, detA(−iξ) 6= 0 for ξ ∈ R3 \ {0}. It is also evident that the entries
of the matrix A(c)(−iξ) are also homogeneous polynomials and at the origin and

1For absolutely integrable functions f and g the direct and inverse Fourier transforms are defined as follows
Fx→ξ[f(x)] =

∫
R3 f(x) ei x·ξ dx and F−1

ξ→x[g(ξ)] =
∫
R3 g(ξ) e−i x·ξ dξ respectively.
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at infinity they have the following asymptotic behaviour:

A
(c)
kj (−iξ) = O(|ξ|6), k, j = 1, 3,

A
(c)
j4 (−iξ) = O(|ξ|5), A

(c)
4j (−iξ) = 0, j = 1, 3,

A
(c)
44 (−iξ) = O(|ξ|6).

In addition, we see that the A
(c)
j4 (−iξ) for j = 1, 3, are odd polynomials in ξ.

Consequently, the entries

Kj(ξ) :=
A

(c)
j4 (−iξ)

det A(−iξ)
, j = 1, 3,

are odd functions in ξ: Kj(−ξ) = −Kj(ξ), j = 1, 3. Therefore for the functions
Kj(ξ) the cancelation Tricomi condition

∫

|ξ|=1

Kj(ξ)dS = 0, j = 1, 3. (4)

holds, whence it follows that the generalized inverse Fourier transforms of these
functions K̃j(x) ≡ F −1

ξ→x[Kj(ξ)], understood in the Cauchy principal value sense,
satisfy the same type cancelation Tricomi condition (see [4, Ch. 2, Proposition
2.16])

∫

|x|=1

K̃j(x)dS = 0, j = 1, 3. (5)

It is well known that the generalized Fourier transform (inverse Fourier transform)
of a homogeneous function of order −r < 0 is a homogenous function of order
−3 + r provided 0 < |r| < 3 (see [4, Ch. 2, Proposition 2.13]).

Therefore the entries of the fundamental matrix Γ(x) are homogeneous functions
in x and in a neighbourhood of the origin and infinity have the following asymptotic
behaviour

Γ(x) =
[[O(|x|−1)

]
3×3

[O(1)
]
3×1

[0]1×3 O(|x|−1
)

]

4×4

,

i.e., the entries Γkj(x) for k, j = 1, 3, or k = j = 4, are homogeneous function of
order −1, while the entries Γk4(x) for 1 6 k 6 3 are homogeneous functions of zero
order.

Moreover, form (4) and (5) it follows that

∫

|x|=1

Γk4(x)dS = 0, k = 1, 2, 3.
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Now, let us introduce the single and double layer potentials

V (h)(x) = VS(h)(x) :=
∫

S

Γ(x− y) h(y) dSy, x ∈ R3 \ S, (6)

W (h)(x) = WS(h)(x) :=
∫

S

[
Q

(
∂y, n(y)

)
Γ>(x− y)

]>
h(y) dSy, x ∈ R3 \ S, (7)

where Γ(x−y) =
[
Γkj(x−y)

]
4×4

is the fundamental matrix of the operator A(∂x),
and

Q(∂, n) :=
[[

T (∂, n)
]
3×3

[0]3×1

[0]1×3 λ(∂, n)

]

4×4

,

T (∂, n) :=
[
Tkp(∂, n)

]
3×3

= [ckjpqnj∂q]3×3, λ(∂, n) = λpqnq ∂p.

Note that for regular vector-functions U = (u, ϑ)> ∈ [C2(Ω+)]4 and U∗ =
(u∗, ϑ∗)> ∈ [C2(Ω+)]4 the following Green’s formulae hold

∫

Ω+

A(∂)U · U∗dx = −
∫

Ω+

E(U,U∗)dx +
∫

∂Ω+

{
B(∂, n)U

}+ · {U∗}+dS,

∫

Ω+

{
A(∂)U · U∗ − U ·A∗(∂)U∗

}
dx =

∫

∂Ω+

{
{B(∂, n)U}+ · {U∗}+

− {U}+ · {Q(∂, n)U∗}+
}

dS, (8)

where A∗(∂) is the operator adjoint to
[
A>(−∂)

]
,

A∗(∂) :=
[
A>(−∂)

]
=

[
C(∂) [0]3×1[

βkj∂j

]
1×3

Λ(∂)

]

4×4

,

B(∂, n) is the boundary differential operator

B(∂, n) =
[
T (∂, n) [−βkjnj ]3×1

[0]1×3 λ(∂, n)

]

4×4

,

and

E(U, U∗) = ckjpq ∂puq ∂ku
∗
j − βkj u4 ∂ju

∗
k + λpq ∂qu4 ∂pu

∗
4.

Here and in the sequel, the symbols { · }± denote the limits on ∂Ω± from Ω±
respectively and the central dot stands for the scalar product of two vectors.

From Green’s identity (8) by standard arguments one can derive the follow-
ing general integral representation of solutions to the homogeneous equation
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A(∂)U(x) = 0 in Ω+,

W
({U}+

)
(x)− V

({BU}+
)
(x) =

{
U(x) for x ∈ Ω+,
0 for x ∈ Ω−.

(9)

Next we introduce a special class of vector functions in an unbounded exterior
domain Ω− which plays a crucial role in the study of exterior boundary value
problems.

Definition 1: A vector function U = (u, ϑ)> is said to belong to the class
Z(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

u(x) = O(1), k = 1, 2, 3, ϑ(x) = O(|x|−1), |x| → ∞, (10)

lim
R→∞

1
4πR2

∫

Σ(0,R)

u(x) dΣ(0, R) = 0, (11)

where Σ(0, R) is a sphere, centered at the origin and radius R.

Further we analyze properties of the above introduced layer potentials.

Theorem 2 : The single and doubel layer potentials solve the homogeneous equa-
tion

A(∂)U(x) = 0 in R3 \ S (12)

and belong to the class Z(Ω−).

Proof: We start with the single layer potential and show that the vector-function
V (h)(x) solves equation (12) for x 6∈ S:

[
A(∂x)V (h)(x)

]
k

=Akj(∂x)
[
V (h)(x)

]
j

=Akj(∂x)
[ ∫

S

Γjp(x− y)hp(y)dSy

]

=
∫

S

Akj(∂x)Γjp(x− y)hp(y)dSy = 0, k = 1, 4,

since Akj(∂x)Γjp(x− y) =
[
A(∂x)Γ(x− y)

]
kp

= 0, k, p = 1, 4, x 6= y.
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Similarly for the double layer potential we have:

[
A(∂x)W (h)(x)

]
k

=Akj(∂x)[W (h)(x)]j

=Akj(∂x)
[ ∫

S

[
Q

(
∂y, n(y)

)
Γ>(x− y)

]>
h(y)dSy

]
j

=Akj(∂x)
∫

S

[
Q(∂y, n(y))Γ>(x− y)

]
pj

hp(y)dSy

=Akj(∂x)
∫

S

Qpm

(
∂y, n(y)

)
Γjm(x− y)hp(y)dSy

=
∫

S

Qpm

(
∂y, n(y)

)
Akj(∂x)Γjm(x− y)hp(y)dSy = 0,

k = 1, 4.

To prove the second part of the theorem, let us use the asymptotic property of
the fundamental matrix Γ(x− y). It can be shown that if y belongs to a compact
set, say S, and |x| is sufficiently large, then the following relation

[
Q(∂y, n(y))Γ>(x− y)

]> =
[[O(|x|−2)

]
3×3

[O(|x|−1)
]
3×1[

0
]
1×3

O(|x|−2)

]

4×4

,

holds. Therefore

[
W (h)(x)

]
k

=
{O(|x|−1), k = 1, 3,
O(|x|−2), k = 4, as |x| → ∞,

whence the inclusion W (h) ∈ Z(Ω−) follows immediately.
To prove the same type inclusion for the single layer potential we proceed as

follows. First, let us note that Γ(x − y) = Γ(x) + O(|x|−1
)

for y ∈ S and |x|
sufficiently large, and we have

Vk(x) =
4∑

p=1

∫

S

Γkp(x− y)hp(y)dSy =
4∑

p=1

∫

S

[
Γkp(x) +O(|x|−1)

]
hp(y)dSy

=
4∑

p=1

Γkp(x)
∫

S

hp(y)dSy +O(|x|−1)

=
3∑

p=1

Γkp(x)
∫

S

hp(y)dSy + Γk4(x)
∫

S

h4(y)dSy +O(|x|−1)

= Γk4(x)
∫

S

h4(y)dS +O(|x|−1), k = 1, 3,

V4(x) =O(|x|−1).
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Whence

lim
R→∞

1
4πR2

∫

Σ(0,R)

Vk(x) dΣ(0, R) =

= lim
R→∞

1
4πR2

∫

Σ(0,R)

{
Γk4(x)

∫

S

h4(y)dS +O(|R|−1)
}

dΣ(0, R)

= lim
R→∞

1
4πR2

{ ∫

Σ(0,R)

Γk4(x)dΣ(0, R)
∫

S

h4(y)dS +
∫

Σ(0,R)

O(|R|−1)dΣ(0, R)
}

= lim
R→∞

1
4πR2

∫

Σ(0,R)

O(|R|−1)dΣ(0, R)

= lim
R→∞

1
4π

∫

Σ(0,1)

O(|R|−1) dΣ(0, 1) = 0,

which completes the proof. 2

Next we show that the general integral representation formula of solutions to
the homogeneous equation A(∂)U(x) = 0 , a counterpart of (9), holds also for
an exterior domain Ω− in the class of vector-functions, satisfying the asymptotic
properties (10)-(11). To this purpose, let us write the integral representation for-
mula for the bounded domain Ω−R := Ω− ∩B(0, R), where R is a sufficiently large
positive number, such that Ω+ ⊂ B(0, R) := {x ∈ R3 : |x| < R},

U(x) = −WS({U}−S ) + VS({BU}−S ) + ΦR(x), x ∈ Ω−R, (13)

0 = −WS({U}−S ) + VS({BU}−S ) + ΦR(x), x ∈ Ω+ ∪ [
R3 \B(0, R)

]
; (14)

here VS and WS are the single and double layer potentials defined by formulas (6)
and (7) respectively, while

ΦR(x) := WΣR

({U}+
ΣR

)
(x)− VΣR

({BU}+
ΣR

)
(x) (15)

with VΣR
and WΣR

being again the single and double layer potentials with the
integration surface ΣR = ∂ B(0, R).

From equality (15) it follows that

A(∂)ΦR(x) = 0, x 6∈ ΣR. (16)

Moreover, from (13) and (14) we have

ΦR(x) =U(x) + WS

({U}−S
)− VS

({BU}−S
)
, x ∈ Ω−R,

ΦR(x) =WS

({U}−S
)− VS

({BU}−S
)
, x ∈ Ω+ ∪ [

R3 \B(0, R)
]
.
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Which implies that for sufficiently large numbers R1 < R2,

ΦR1(x) = ΦR2(x) for |x| < R1 < R2. (17)

Therefore, for arbitrary x ∈ R3 the following limit exists

Φ(x) := lim
R→∞

ΦR(x) =
{

U(x) + WS

({U}−S
)− VS

({BU}−S
)
, x ∈ Ω−,

WS

({U}−S
)− VS

({BU}−S
)
, x ∈ Ω+.

(18)

Consequently,

A(∂)Φ(x) = 0, x ∈ Ω+ ∪ Ω−.

On the other hand, from (17) we get

Φ(x) = lim
R→∞

ΦR(x) = ΦR1(x)

for arbitrary x ∈ R3 with R1 > |x| and Ω+ ⊂ B(0, R1). From (15) and (16) then
we conclude

A(∂)Φ(x) = 0, x ∈ R3. (19)

At the same time from (18) we have

Φ ∈ Z(R3), (20)

i.e., Φk, k = 1, 3, are bounded in R3, while Φ4(x) = O(|x|−1) and

lim
R→∞

1
4πR2

∫

ΣR

Φ(x)dΣR = 0, (21)

since U ∈ Z(Ω−) and WS , VS ∈ Z(Ω−) due to Theorem 2.
From relations (19)-(21) we deduce that

Φ(x) = 0, ∀x ∈ R3.

Indeed, from relations (19)-(20) by the Fourier transform we get

A(−iξ)Φ̂(ξ) = 0, ξ ∈ R3,

where Φ̂(ξ) is a generalized vector-function from the Schwartz space of tempered
distributions. Since the determinant detA(−iξ) is nonsingular for ξ ∈ R3 \ {0},
it follows that the support of Φ̂(ξ) is the origin ξ = 0. Consequently, the vector
function Φ̂ is a linear combination of the Dirac distribution and its derivatives,

Φ̂(ξ) =
∑

|α|6M

Cαδ(α)(ξ),
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where α = (α1, α2, α3) is a multi-index with |α| = α1 +α2 +α3, M is a nonnegative
integer, while δ(α) stands for the α-th order derivative of δ. Therefore the vector
function Φ(x) is a polynomial in x,

Φ(x) =
∑

|α|6M

Cαxα, x ∈ R3.

Further, since Φ ∈ Z(R3) and the condition (21) holds, we finally conclude

Φ(x) = 0, x ∈ R3.

Now, passing to the limit in (13) as R → ∞, we get the general integral rep-
resentation formula of solutions to the equation A(∂)U = 0 in Ω− of the space
Z(Ω−),

−W
({U}−)

+ V
({BU}−)

=
{

U(x) for x ∈ Ω−,
0 for x ∈ Ω+.

(22)

Here V and W are the single and double layer potentials defined by equalities (6)
and (7).

The mapping properties of the layer potentials are described by the following
assertions.

Theorem 3 : Let S ∈ Ck+1,α with k > 1 and 0 < β < α 6 1. Then the following
operators are continuous

V : Ck,β(S) → Ck+1,β(Ω±), W : Ck,β(S) → Ck,β(Ω±).

Proof: It is word for word of the proof of the corresponding theorems in [2], [3]. 2

Theorem 4 : Let S ∈ C2,α with 0 < β < α 6 1, h ∈ [C0,β(S)]4, and g ∈
[C1,β(S)]4. Then the following relations hold for all points x ∈ S:

{V (h)(x)}± = H(h)(x),

{B(∂x, n(x))V (h)(x)}± = [∓2−1I4 +K ]h(x), (23)

{W (h)(x)}± = [±2−1I4 +N ]h(x), (24)

{B(∂x, n(x))W (g)(x)}+ = {B(∂x, n(x))W (g)(x)}− =: Lg(x),

where H is a weakly singular integral operator, K and N are singular integral
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operators, while L is a singular integro-differential operator,

Hh(x) :=
∫

S

Γ(x− y)h(y)dSy,

Kh(x) :=
∫

S

[B(∂x, n(x))Γ(x− y)]h(y)dSy,

Nh(x) :=
∫

S

[Q(∂y, n(y))Γ>(x− y)]>h(y)dSy,

Lg(x) := lim
Ω±3z→x∈S

B(∂z, n(x)
∫

S

[Q(∂y, n(y))Γ>(x− y)]>g(y)dSy.

Proof: The mapping and jump relations are proved by standard arguments (see
[1], [2], [3]). We present here a very simple proof of the so called Liapunov-Tauber
theorem (6).

Let U := W (g) with g ∈ [C1,α(S)]4. Evidently U ∈ [C1,α(Ω±)]4 ∩ Z(Ω−) and it
satisfies the homogeneous equation (3). Therefore we can write a general integral
representation formulas (9) and (22) for the vector-function U in Ω±. By adding
these formulas termwise we get

U(x) = W ([U ]S)(x)− V ([BU ]S)(x), x ∈ Ω+ ∪ Ω−, (25)

where [Ψ]S denotes the jump of a function Ψ across the surface S, [Ψ]S := {Ψ}+−
{Ψ}−. Note that due to the relations (24) we have

[U ]S = [W (g)]S = {W (g)}+ − {W (g)}− = g.

Therefore from (25) it follows that

W (g)(x) = W (g)(x)− V ([BW (g)]S)(x), x ∈ Ω+ ∪ Ω−,

i.e., V ([BW (g)]S)(x) = 0 for x ∈ Ω+ ∪ Ω−. Let us set Φ := [BW (g)]S . Then
evidently V (Φ)(x) = 0 for all x ∈ Ω+ ∪ Ω− and in view of (23) we deduce

0 = {BV (Φ)}− − {BV (Φ)}+ = Φ = [BW (g)]S = {BW (g)}+ − {BW (g)}−, and
finally we get {BW (g)(x)}+ = {BW (g)(x)}− for x ∈ S which completes the prof.

2

Theorem 5 : Let S ∈ Ck+1,α with k > 1 and 0 < β < α 6 1. Then the operators

H : Ck,β(S) → Ck+1,β(S),

K : Ck,β(S) → Ck,β(S),

N : Ck,β(S) → Ck,β(S),

L : Ck+1,β(S) → Ck,β(S),

are continuous.
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Proof: It is word for word of the proof of the corresponding theorems in [2], [3]. 2

Remark 1 : More detailed analysis, based on the results in the references [2]
and [3], shows that H is a pseudodifferential operator of order −1, K and N are
pseudodifferential operator of order 0, while L is a pseudodifferential operator of
order 1. Moreover, the operators, considered in the Bessel potential spaces H

± 1
2

2 (S),

H : [H
− 1

2
2 (S)]4 → [H

1
2
2 (S)]4,

±2−1I4 +K : [H
− 1

2
2 (S)]4 → [H

− 1
2

2 (S)]4,

±2−1I4 +N : [H
1
2
2 (S)]4 → [H

1
2
2 (S)]4,

L : [H
1
2
2 (S)]4 → [H

− 1
2

2 (S)]4,

are Fredholm with zero index.
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