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Static and dynamical boundary-contact problems for two rectangularly (with respect to their
longitudinal axes) linked elastic bars with variable rectangular cross-sections are considered
within the framework of the (0, 0) approximation of hierarchical models. They may have a
contact interface either really (in this case the bars may have different elastic constants) or
mentally (in the case when two bars represent an entire (undivided) body).

1. Introduction

In [1] (see also [2]) I. Vekua constructed hierarchical models for elastic prismatic
shells based on the Fourier-Legendre expansions (series) with respect to the thick-
ness variable of the stress tensor Xij , strain tensor eij , and displacement vector
components ui within the framework of the linear theory of elasticity. Generalizing
this idea and using the double Fourier-Legendre expansions (series) of the above
mentioned physical and geometrical quantities, in [3] G. Jaiani constructed hier-
archical models for elastic prismatic bars with variable rectangular cross-sections.
One can find the survey of further developments of these topics in [4].
In the present paper static and dynamical boundary-contact problems for two

rectangularly (with respect to their longitudinal axes) linked elastic bars with vari-
able rectangular cross-sections within the framework of the (0, 0) approximation
of hierarchical models (see [3]). They can be linked either really (in this case the
bars may have different elastic constants) or mentally (in the case when two bars
represent an entire (undivided) body). The paper is organized as follows. In the
introduction the elastic structure under consideration is described. Section 2 is
devoted to construction of governing equations. In Section 3 a boundary-contact
problem is formulated and solved in the explicit form. In Section 4 rectangularly
linked prismatic bars loaded by self-weight are treated.
Let Ox1x2x3 be the anticlockwise Cartesian rectangular frame. Let B1 and B3
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be conditionally horizontal and verticall elastic bars with the ”longitudinal axes”1)

lying on the coordinate axes x1 and x3, and lengths x01 and x03, respectively (see
Fig. 1):

Bl :=
{
(x1, x2, x3) ∈ R3 : 0 ≤ xl ≤ x0l ,

(−)

hlm (xl) ≤ xm ≤
(+)

hlm (xl)
}
,

l = 1, 3; m ̸= l, m = 1, 2, 3.

Let face surfaces of the bars Bl, l = 1, 3, be

±xm = ±
(±)

hlm (xl) ≥ 0, 0 ≤ xl ≤ x0l , with[(−)

hlm (xl)
]2

+
[(+)

hlm (xl)
]2

̸= 0, 0 < xl < x0l , (1)

l = 1, 3; m ̸= l, m = 1, 2, 3,

which are piece-wise smooth.
By

2hlm(xl) :=
(+)

hlm(xl)−
(−)

hlm(xl), l = 1, 3, m ̸= l, m = 1, 2, 3, xl ∈ [0, x0l ],

we denote the length of the side (which is parallel to the coordinate axis xm) of
the rectangular cross-section of the bar Bl, l = 1, 3. According to (1) the lengths
of the above mentioned sides and, hence the areas of cross-sections of the bars Bl,
l = 1, 3, may vanish only at the ends of the bars. In the last case bars are called
cusped bars (for cusped bars see [4] and the references given there).
Let the maximal abscissa and maximal x3−coordinate (see Figures 2 and 3) of

1)which really coincide with the longitudinal axes of symmetry of the bars if

(−)

hl
m (xl) = −

(+)

hl
m (xl), l = 1, 3, m ̸= l, m = 1, 2, 3.

Figure 1.Cartesian rectangular anticlockwise frame; longitudinal axes and lengths of perpendicularly linked
bars
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Figure 2. A cross-section x2 = c with face
curves, axes of bars, a mental (or real) in-
terface curve

Figure 3. A cross-section x2 = c, when
(−)

h1
3 (x1) ≡ 0, 0 < x1 < x0

1

common points of the face surfaces

x3 =
(+)

h13 (x1), x2 ∈
](−)

h12 (x1),
(+)

h12 (x1)
[
, x1 ∈ [0, x01],

and

x1 =
(+)

h31 (x3), x2 ∈
](−)

h32 (x3),
(+)

h32 (x3)
[
, x3 ∈ [0, x03],

be 0 ≤ x′1 << x01 and 0 ≤ x′3 << x03, respectively
1), let the linked ends of longitu-

dinal axes of the bars be the origin of the coordinate system, and let the equation
of a section of the interface (real or mental) between the bars by the plane

x2 = c = const,

be x3 = f(x1), f
′(x1) > 02) (see, e.g., Figures 2 and 3);

h := max
{(−)

h32 (x′3),
(−)

h12 (x′1)
}
≤ c ≤ H := min

{(+)

h32 (x′3),
(+)

h12 (x′1)
}

If
(±)

h32 (x′3) =
(±)

h12 (x′1), the face surfaces
(±)

h32 and
(±)

h12 will be continuously con-
nected. In Figures 4 and 5 cross-sections x2 = c of bars linked along segments of
the axis x2 are shown.

1)The set of common points of the above face surfaces we will consider as the interface between bars B1 and
B3.
2)We also consider the cases when adjoint parts of a face surface of one bar and a base of another one serve
as an an interface between the bars (see, e.g., Fig 6).

x3

x1

//
31( )x ,x

( )-
3

1
x =h x( )

1 3

(+)
3

1
x =h x( )

1 3

(+)

3 1

1

3
x =h x( )

x
3

0

O x1
0

( )-

3 1

1

3
x =h x( )

x3

x1

//
31( )x ,x

( )-
3

1
x =h x( )

1 3

(+)

1 3

3

1
x =h x( )

(+)
1

3
x =h x( )

3 1

x
3

0

0(0,0)
x1



Vol. 18, No. 2, 2014 85

Figure 4. A cross-section x2 = c, when
(+)

h1
3 (x1) ≡ 0,

(+)

h3
1 (x3) ≡ 0

Figure 5. A cross-section x2 = c, when the
bars are linked with blunt cusped ends

2. Governing equations of the (0, 0) approximation

In the (0,0) approximation of hierarchical models constructed on the basis of the
three-dimensional (3D) linear theory of elasticity in the class of twice continuously
differentiable functions the governing equations of the horizontal bar B1 with the
longitudinal axis lying on the coordinate axis x1 have the following form (see [3])

(
h12(x1)h

1
3(x1)v

1
j,1(x1, t)

)
,1+

0,0

Y 1
j (x1, t) =

( 1
Λj

)−1
ρh12(x1)h

1
3(x1)

∂2v1j (x1, t)

∂t2
, (2)

x1 ∈]0, x01[, j = 1, 2, 3,

where

v1j (x1, t) :=
u1j00(x1, t)

h12(x1)h
1
3(x1)

,

0,0

Y 1
1 (x1, t) :=

0,0

X1
1 (x1, t)

λ+ 2µ
,

0,0

Y 1
j (x1, t) :=

0,0

X1
j (x1, t)

µ
, j = 2, 3, (3)

0,0

X1
j (x1) =

(+)

h1
2∫

(−)

h1
2


√

1 +
((+)

h13 ,1

)2
X1

(+)
ν3 j

(x1, x2,
(+)

h13 )

+

√
1 +

((−)

h13 ,1

)2
X1

(−)
ν3 j

(x1, x2,
(−)

h13 )

 dx2

+

(+)

h1
3∫

(−)

h1
3


√

1 +
((+)

h12 ,1

)2
X1

(+)
ν2 j

(x1,
(+)

h12 , x3)

( )-
1

3
x =h x( )

3 1

( )-
3

1
x =h x( )

1 3

(+)
3

1
x =h x( )

1 3

(+)

3 1

1

3
x =h x( )

x3

x1

( )-
3

1
x =h x( )

1 3

( )-
1

3
x =h x( )

3 1

3

0x

0

O

x1
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+

√
1 +

((−)

h12 ,1

)2
X1

(−)
ν2 j

(x1,
(−)

h12 , x3)

 dx3 +X1
j00(x1), j = 1, 2, 3,

X1
(+)
ν
l
j
, X1

(−)
ν
l
j
, l = 2, 3, are the components of continuously differentiable tractions

acting on the face surfaces of the bar B1, X
1
j00 are the components of the double

(0, 0) moment of the continuous body force X1
j per unit volume of B1,

1
Λj :=

{
λ+ 2µ, j = 1,
µ, j = 2, 3,

(4)

The double (0, 0) moments of displacements ulj , stresses X l
ij , and strains elij ,

l = 1, 3, are defined as follows

(
ulj00, X

l
ij00, e

l
ij00, X

l
j00

)
(xl, t) :=

(+)

hl
m(xl)∫

(−)

hl
m(xl)

dxm

(+)

hl
n(xl)∫

(−)

hl
n (xl)

(
ulj , X

l
ij , e

l
ij , X

l
j

)
(x1, x2, x3, t)dxn,

l = 1, 3; m ̸= l, m ̸= n, n ̸= l; m,n, i, j = 1, 2, 3.

Subscripts preceded by a comma mean differentiation with respect to the corre-
sponding variables.
In the class of twice continuously differentiable functions the governing equations

of the vertical bar B3 with the longitudinal axis lying on the coordinate axis x3
have the following form

(
h32(x3)h

3
1(x3)v

3
j,3(x3, t)

)
,3+

0,0

Y 3
j (x3, t)

=
( 3
Λj

)−1
ρh31(x3)h

3
2(x3)

∂2v3j (x3, t)

∂t2
, x3 ∈]0, x03[, j = 1, 2, 3, (5)

where

3
Λj :=

{
λ+ 2µ, j = 3,
µ, j = 1, 2.

(6)

0,0

Y 3
α (x3, t) :=

0,0

X3
α(x3, t)

µ
, α = 1, 2;

0,0

Y 3
3 (x1, t) :=

0,0

X3
3 (x3, t)

λ+ 2µ
, (7)

0,0

X3
j (x3) =

(+)

h3
2∫

(−)

h3
2


√

1 +
((+)

h31 ,3

)2
X3

(+)
ν1 j

(
(+)

h31 , x2, x3)
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+

√
1 +

((−)

h31 ,3

)2
X3

(−)
ν1 j

(
(−)

h31 , x2, x3)

 dx2

+

(+)

h3
1∫

(−)

h1


√

1 +
((+)

h32 ,3

)2
X3

(+)
ν2 j

(x1,
(+)

h32 , x3)

+

√
1 +

((−)

h32 ,3

)2
X3

(−)
ν2 j

(x1,
(−)

h32 , x3)

 dx1 +X3
j00,

X3
(+)
ν
l
j
, X3

(−)
ν
l
j
, l = 1, 2, are the components of continuously differentiable tractions

acting on to the face surfaces of the bar B3, X
3
j00 are the components of the double

(0, 0) moment of the continuous body force X3
j per unit volume of B3.

The approximate values of displacements ulj , l = 1, 3, j = 1, 2, 3, in the (0, 0)
approximation are defined as

u1j (x1, x2, x3, t)
∼=

u1j00(x1, t)

4h12(x1)h
1
3(x1)

=:
1

4
v1j (x1, t), j = 1, 2, 3. (8)

and

u3j (x1, x2, x3, t)
∼=

u3j00(x3, t)

4h31(x3)h
3
2(x3)

=:
1

4
v3j (x3, t), j = 1, 2, 3. (9)

For the horizontal bar B1 and the vertical bar B3 we have the following formulas
for the double moments:
– of the strains

e11100(x1, t) = h12(x1)h
1
3(x1)v

1
1,1(x1, t); e12200(x1, t) ≡ 0; e13300(x1, t) ≡ 0;

e13200(x1, t) = e12300(x1, t) ≡ 0;

2e13100(x1, t) = 2e11300(x1, t) = h12(x1)h
1
3(x1)v

1
3,1(x1, t); (10)

2e12100(x1, t) = 2e11200(x1, t) = h12(x1)h
1
3(x1)v

1
2,1(x1, t),

and

e33300(x3, t) = h32(x3)h
3
1(x3)v

3
3,3(x3, t); e32200(x3, t) ≡ 0; e31100(x3, t) ≡ 0;

e31200(x3, t) = e32100(x3, t) ≡ 0;

2e31300(x3, t) = 2e33100(x3, t) = h32(x3)h
3
1(x3)v

3
1,3(x3, t); (11)

2e32300(x3, t) = 2e33200(x3, t) = h32(x3)h
3
1(x3)v

3
2,3(x3, t),

correspondingly;
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– of the stresses

X1
1100(x1, t) = (λ+ 2µ)h12(x1)h

1
3(x1)v

1
1,1(x1, t);

X1
2200(x1, t) = λh12(x1)h

1
3(x1)v

1
1,1(x1, t);

X1
3300(x1, t) = λh12(x1)h

1
3(x1)v

1
1,1(x1, t);

X1
3200(x1, t) = X1

2300(x1, t) = 2µe12300(x1, t) ≡ 0; (12)

X1
2100(x1, t) = X1

1200(x1, t) = 2µe11200(x1, t) = µh12(x1)h
1
3(x1)v

1
2,1(x1, t);

X1
3100(x1, t) = X1

1300(x1, t) = 2µe11300(x1, t) = µh12(x1)h
1
3(x1)v

1
3,1(x1, t),

and

X3
3300(x3, t) = (λ+ 2µ)h32(x3)h

3
1(x3)v

3
3,3(x3, t);

X3
2200(x3, t) = λh32(x3)h

3
1(x3)v

3
3,3(x3, t);

X3
1100(x3, t) = λh32(x3)h

3
1(x3)v

3
3,3(x3, t);

X3
1200(x3, t) = X3

2100(x3, t) ≡ 0; (13)

X3
2300(x3, t) = X3

3200(x3, t) = µh32(x3)h
3
1(x3)v

3
2,3(x3, t);

X3
3100(x3, t) = X3

1300(x3, t) = µh32(x3)h
3
1(x3)v

3
1,3(x3, t),

correspondingly.
The formulas (9), (11), (13), (7), (6), and (5) for the vertical bar B3 with quanti-

ties signed by ”3” immediately follow from the formulas with quantities signed by
”1” for the horizontal bar B1, if we introduce a new coordinate system Ox̃1x̃2x̃3
by taking

x̃1 := x3, x̃2 := x1, x̃3 := x2; (14)

for the vertical bar B3, write all the formulas in the Ox̃1x̃2x̃3 system which will
coincide with (8), (10), (12), (3), (4), (2) with ”∼” indices and, using (14), returning
to the system Ox1x2x3.
E.g., by virtue of (12), (8), and similar to (8) approximate formulas for 3D stresses

4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
1̃1̃
(x̃1, x̃2, x̃3, t) ∼= X3

1̃1̃00
(x̃1, t) = (λ+ 2µ)h3

2̃
(x̃1)h

3
3̃
(x̃1)v

3
1̃,1̃

(x̃1, t),

whence,

4h31(x3)h
3
2(x3)X

3
33(x3, x1, x2, t)

∼= X3
3300(x3, t) = (λ+ 2µ)h31(x3)h

3
2(x3)v

3
3,3(x3, t);

4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
2̃2̃
(x̃1, x̃2, x̃3, t) ∼= X3

2̃2̃00
(x̃1, t) = λh3

2̃
(x̃1)h

3
3̃
(x̃1)v

3
1̃,1̃

(x̃1, t),

whence,

4h31(x3)h
3
2(x3)X

3
11(x3, x1, x2, t)

∼= X3
1100(x3, t) = λh31(x3)h

3
2(x3)v

3
3,3(x3, t);
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4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
3̃3̃
(x̃1, x̃2, x̃3, t) ∼= X3

3̃3̃00
(x̃1, t) = λh3

2̃
(x̃1)h

3
3̃
(x̃1)v

3
1̃,1̃

(x̃1, t),

whence,

4h31(x3)h
3
2(x3)X

3
22(x3, x1, x2, t)

∼= X3
2200(x3, t) = λh31(x3)h

3
2(x3)v

3
3,3(x3, t);

4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
2̃3̃
(x̃1, x̃2, x̃3, t) ∼= X3

2̃3̃00
(x̃1, t) ≡ X3

3̃2̃00
(x̃1, t) = 0,

whence,

4h31(x3)h
3
2(x3)X

3
12(x3, x1, x2, t)

∼= X3
1200(x3, t) ≡ X3

2100(x3, t) = 0;

4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
1̃2̃
(x̃1, x̃2, x̃3, t) ∼= X3

1̃2̃00
(x̃1, t) ≡ X3

2̃1̃00
(x̃1, t)

µh3
2̃
(x̃1)h

3
3̃
(x̃1)v

3
2̃,1̃

(x̃1, t),

whence,

4h31(x3)h
3
2(x3)X

3
31(x3, x1, x2, t)

∼= X3
3100(x3, t) ≡ X3

1300(x3, t)

= µh31(x3)h
3
2(x3)v

3
1,3(x3, t);

4h3
2̃
(x̃1)h

3
3̃
(x̃1)X

3
3̃1̃
(x̃1, x̃2, x̃3, t) ∼= X3

3̃1̃00
(x̃1, t) ≡ X3

1̃3̃00
(x̃1, t)

= µh3
2̃
(x̃1)h

3
3̃
(x̃1)v

3
3̃,1̃

(x̃1, t),

whence,

4h31(x3)h
3
2(x3)X

3
23(x3, x1, x2, t)

∼= X3
2300(x3, t) ≡ X3

3200(x3, t)

µh31(x3)h
3
2(x3)v

3
2,3(x3, t).

Thus, from (12) we have obtained (13). Analogously, we get (9), (11), (7), (6),
(5) from (8), (10), (3), (4), (2), correspondingly.
Evidently,

(ui, eij , Xij)(x1, x2, x3, t)

∼=


1

4h12(x1)h
1
3(x1)

(u1i00, e
1
ij00, X

1
ij00)(x1, t), (x1, x2, x3) ∈ B1,

1

4h31(x3)h
3
2(x3)

(u3i00, e
3
ij00, X

3
ij00)(x3, t), (x1, x2, x3) ∈ B3,

uj(x1, x2, x3, t) ∼=
1

4


v1j (x1, t), (x1, x2, x3) ∈ B1,

v3j (x3, t), (x1, x2, x3) ∈ B3,

i, j = 1, 2, 3.
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On the interface x3 = f(x1) in 3D setting natural contact conditions would be
continuity of the stress and displacement vectors on the interface. Since the above-
mentioned quantities in B1 and B3 depend only on x1 and x3, correspondingly, in
the (0, 0) approximation conditions on the interface take the following form:

X1
νj00(x1, t) = X3

νj00(f(x1), t), v1j (x1, t) = v3j (f(x1), t), (15)

0 ≤ x1 ≤ x11, j = 1, 2, 3,

where ν is the normal to the interface directed into B1 for clearness. However,
since the lengths of the bars are much more than the dimensions of the interface,
we replace the contact conditions (15) by the following conditions

X1
1j00(x1, t)|x1=0 = X3

1j00(x3, t)|x3=0, i.e., X
1
1j(0, t) = X3

1j(0, t), j = 1, 2, 3, (16)

and

v1j (x1, t)|x1=0 = v3j (x3, t)|x3=0, i.e., v
1
j (0, t) = v3j (0, t), j = 1, 2, 3. (17)

Here we have taken into account f(0) = 0 and replaced the normal at the point
O := (0, 0, 0) by the unit basis vector e1 corresponding to the axis 0x1 (i.e., we
assume the plane curve x3 = f(x1) orthogonal to the axis 0x1 at the origin O).
In order to set an initial boundary-contact problem for the rectangularly joint two

bars we have to add to the contact conditions (16), (17) the boundary conditions

v1j (x
0
1, t) = v1j (t), v3j (x

0
3, t) = v3j (t), t > 0, j = 1, 2, 3,

and the initial conditions

v1j (x1, 0) = v10j (x1), x1 ∈]0, x01[, j = 1, 2, 3,

v3j (x3, 0) = v30j (x3), x3 ∈]0, x03[, j = 1, 2, 3,

with prescribed functions v11j (t), v31j (t), v10j (x1), v
30
j (x3), j = 1, 2, 3.

From (16), by virtue of (12), (13), we obtain

X1
1100(x1, t)|x1=0 = (λ+ 2µ)

[
h12(x1)h

1
3(x1)v

1
1,1(x1, t)

]
|x1=0

= X3
1100(x3, t)|x3=0 = λ

[
h31(x3)h

3
2(x3)v

3
3,3(x3, t)

]
|x3=0;

X1
1200(x1, t)|x1=0 = µ

[
h12(x1)h

1
3(x1)v

1
2,1(x1, t)

]
|x1=0 = X3

1200(x3, t)|x3=0 = 0;

X1
1300(x1, t)|x1=0 = µ

[
h12(x1)h

1
3(x1)v

1
3,1(x1, t)

]
|x1=0

= X3
1300(x3, t)|x3=0 = µ

[
h31(x3)h

3
2(x3)v

3
1,3(x3, t)

]
|x3=0.

If we consider the general case when the normal to the plane curve x3 = f(x1)
at the point O does not coincide with e1, then from the interface conditions (15)
there follows,
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for j = 1 :

X1
ν100(x1, t)|x1=0 =

[
X1

i100(x1, t)νi(0, 0, 0)
]∣∣∣

x1=0

=
{
h12(x1)h

1
3(x1)

[
(λ+ 2µ)v11,1(x1, t)ν1(0, 0, 0)

+µv12,1(x1, t)ν2(0, 0, 0) + µv13,1(x1, t)ν3(0, 0, 0)
]} ∣∣∣

x1=0

= X3
ν100(x3, t)

∣∣∣
x3=0

=
[
X3

i100(x3, t)νi(0, 0, 0)
]∣∣∣

x3=0

=
{
h31(x3)h

3
2(x3)

[
λv33,3(x3, t)ν1(0, 0, 0) + 0 · ν2(0, 0, 0)

+µv31,3(x3, t)ν3(0, 0, 0)
]} ∣∣∣

x3=0
;

in particular, if ν ≡ e1 := (1, 0, 0), as it was already derived:

(λ+ 2µ)
[
h12(x1)h

1
3(x1)v

1
1,1(x1, t)

]
|x1=0 = λ

[
h31(x3)h

3
2(x1)v

3
3,3(x3, t)

]∣∣∣
x3=0

]
; (18)

for j = 2 :

X1
ν200(x1, t)|x1=0 =

[
X1

i200(x1, t)νi(0, 0, 0)
]∣∣∣

x1=0

=
{
h12(x1)h

1
3(x1)

[
µv12,1(x1, t)ν1(0, 0, 0)

+λv11,1(x1, t)ν2(0, 0, 0) + 0 · ν3(0, 0, 0)
]} ∣∣∣

x1=0

= X3
ν200(x3, t)|x3=0 =

[
X3

i200(x3, t)νi(0, 0, 0)
]∣∣∣

x3=0

=
{
h31(x3)h

3
2(x3)

[
0 · ν1(0, 0, 0) + λv33,3(x3, t)ν2(0, 0, 0)

+µv32,3(x3, t)ν3(0, 0, 0)
]} ∣∣∣

x3=0
,

in particular, if ν ≡ e1, as it was already derived:

µ
[
h2(x1)h3(x1)v2,1(x1, t)

]
|x1=0 = 0; (19)

for j = 3:

X1
ν300(x1, t)|x1=0 =

[
X1

i300(x1, t)νi(0, 0, 0)
]∣∣∣

x1=0

=
{
h12(x1)h

1
3(x1)

[
µv13,1(x1, t)ν1(0, 0, 0)

+0 · ν2(0, 0, 0) + λv11,1(x1, t)ν3(0, 0, 0)
]} ∣∣∣

x1=0
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= X3
ν300(x3, t)|x3=0 =

[
X3

i300(x3, t)νi(0, 0, 0)
]∣∣∣

x3=0

=
{
h31(x3)h

3
2(x3)

[
µv31,3(x3, t)ν1(0, 0, 0) + µv32,3(x3, t)ν2(0, 0, 0)

+(λ+ 2µ)v33,3(x3, t)ν3(0, 0, 0)
]} ∣∣∣

x3=0
;

in particular, if ν ≡ e1, as it was already derived:

µ
[
h12(x1)h

1
3(x1)v

1
3,1(x1, t)

]
|x1=0 = µ

[
h31(x3)h

3
2(x3)v

3
1,3(x3, t)

]
|x3=0. (20)

3. Boundary-contact problem

Let us consider the static case, then equations (2) and (5) will get the following
forms

(
h12(x1)h

1
3(x1)v

1
j,1(x1)

)
,1+

0,0

Y 1
j (x1) = 0, x1 ∈]0, x01[, j = 1, 2, 3, (21)

and

(
h31(x3)h

3
2(x3)v

3
j,3(x3)

)
,3+

0,0

Y 3
j (x3) = 0, x3 ∈]0, x03[, j = 1, 2, 3, (22)

respectively. It is easily seen that the general solutions to equations (21), (22) have
the forms

v1j (x1) = −
x1∫

x0
1

dτ

h12(τ)h
1
3(τ)

τ∫
x0
1

0,0

Y 1
j (η)dη + c1j

x1∫
x0
1

dτ

h12(τ)h
1
3(τ)

+ c2j , (23)

x1 ∈]0, x01[, j = 1, 2, 3,

and

v3j (x3) = −
x3∫

x0
3

dτ

h31(τ)h
3
2(τ)

τ∫
x0
3

0,0

Y 3
j (η)dη + d1j

x3∫
x0
3

dτ

h31(τ)h
3
2(τ)

+ d2j , (24)

x3 ∈]0, x03[, j = 1, 2, 3,

correspondingly.
Let

x1∫
x0
1

dτ

h12(τ)h
1
3(τ)

∈ C([0, x01]),

x3∫
x0
3

dτ

h31(τ)h
3
2(τ)

∈ C([0, x03]),
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which allows cusped contacts as well (for cusped bodies see [4]) and let

h12h
1
3v

1
j,1(x1, t) h31h

3
2v

3
j,3(x3, t)

be continuous from the right hand side at points x1 = 0 and x3 = 0, respectively.
Let us consider the boundary conditions

v1j (x
0
1) = v1j , v3j (x

0
3) = v3j , v1j , v

3
j = const, j = 1, 2, 3, (25)

along with the contact conditions

X1
1j00(0) = X3

1j00(0), (26)

v1j (x1)|x1=0 = v3j (x3)|x3=0, j = 1, 2, 3. (27)

It is very easy to solve boundary-contact problem (2), (5), (25)-(27) in the explicit
form. We do it for readers convenience.
Indeed from (25), taking into account (23), (24), we immediately obtain

c2j = v1j , d2j = v3j , j = 1, 2, 3. (28)

From the contact conditions (26) on the interface, i.e., from the conditions (18)-
(21), which in the static case are independent of t, according to (23), (24), we have
for j = 1 : (

−
∫ 0

x0
1

0,0

Y 1
1 (η)dη + c11

)
(λ+ 2µ) =

(
−
∫ 0

x0
3

0,0

Y 3
3 (η)dη + d13

)
λ,

i.e.,

(λ+ 2µ)c11 − λd13 = A1, (29)

where

A1 := (λ+ 2µ)

∫ 0

x0
1

0,0

Y 1
1 (η)dη − λ

∫ 0

x0
3

0,0

Y 3
3 (η)dη;

for j = 2 :

−
∫ 0

x0
1

0,0

Y 1
2 (η)dη + c12 = 0,

i.e.,

c12 =

∫ 0

x0
1

0,0

Y 1
2 (η)dη =: E; (30)
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for j = 3 :

−
∫ 0

x0
1

0,0

Y 1
3 (η)dη + c13 = −

∫ 0

x0
3

0,0

Y 3
1 (η)dη + d11,

i.e.,

c13 − d11 = A2, (31)

where

A2 :=

∫ 0

x0
1

0,0

Y 1
3 (η)dη −

∫ 0

x0
3

0,0

Y 3
1 (η)dη.

From the contact conditions (27) on the interface, using (23), (24), we have:

Cc1j −Dd1j = Aj , j = 1, 2, 3, (32)

where

C :=

0∫
x0
1

dτ

h12(τ)h
1
3(τ)

, D :=

0∫
x0
3

dτ

h31(τ)h
3
2(τ)

,

Aj :=

0∫
x0
1

dτ

h12(τ)h
1
3(τ)

τ∫
x0
1

0,0

Y 1
j (η)dη −

0∫
x0
3

dτ

h31(τ)h
3
2(τ)

τ∫
x0
3

0,0

Y 3
j (η)dη + v3j − v1j ,

j = 1, 2, 3.

As we see from (28), (30) we have found 7 unknown constants c2j , d
2
j , c

1
2, j =

1, 2, 3, from 12 to be found. Substituting (30) into (32) for j = 2 we find the 8th
unknown constant

d12 =
EC −A2

D
.

Evidently,

D ̸= 0.

For four remained unknown constants c11, c
1
3, d

1
1, d

1
3 we have the following four

equations: (29), (31), and two from (32) for j = 1, 3:

c11C − d11D = A1, (33)

c13C − d13D = A3. (34)
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Calculating c11 and c13 from (29) and (31), we obtain

c11 =
A1

λ+ 2µ
+

λ

λ+ 2µ
d13, (35)

c13 = A2 + d11, (36)

respectively. Substituting (36) and (35) into (34) and (33), respectively, we get the
following system

d11C − d13D = A3 − CA2,

−d11D + d13
λC

λ+ 2µ
= A1 −

A1C

λ+ 2µ
.

Solving this system with respect to d11 and d13, we get

d11 = ∆−1
[
(A3 − CA2)

λC

λ+ 2µ
+
(
A1 −

A1C

λ+ 2µ

)
D
]
, (37)

d13 = ∆−1
[
C
(
A1 −

A1C

λ+ 2µ

)
+D(A3 − CA2)

]
, (38)

where

∆ =
λ

λ+ 2µ
(C)2 − (D)2 =

σ

1− σ
(C)2 − (D)2,

σ is the Poisson ratio.
If C = D, then

∆ = (C)2
(

λ

λ+ 2µ
− 1

)
= (C)2

−2µ

λ+ 2µ
̸= 0.

In the general case

∆ ̸= 0

if

D ̸=
√

σ

1− σ
C,

i.e., if ∫ 0

x0
3

dτ

h31(τ)h
3
2(τ)

̸=
√

σ

1− σ

∫ 0

x0
1

dτ

h12(τ)h
1
3(τ)

.
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Substituting (38) and (37) into (35) and (36), respectively, we determine c11 and c13
and the problem under consideration is solved in the explicit form (23), (24).
Using (23), (24), from (12), (13) we easily obtain expressions for the double

moments of stresses (in other words, for the integrated on cross-sections stresses):

X1
1100(x1) = (λ+ 2µ)

[
c11 −

x1∫
x0
1

0,0

Y 1
1 (η)dη

]
,

X3
1100(x3) = X3

2200(x3) = λ
[
d13 −

x3∫
x0
3

0,0

Y 3
3 (η)dη

]
;

X1
2200(x1) = X1

3300(x1) = λ
[
c11 −

x1∫
x0
1

0,0

Y 1
1 (η)dη

]
,

X3
3300(x3) = (λ+ 2µ)

[
d13 −

x3∫
x0
3

0,0

Y 3
3 (η)dη

]
;

X1
1200(x1) = X1

2100(x1) = µ
[
c12 −

x1∫
x0
1

0,0

Y 1
2 (η)dη

]
= µ

x1∫
0

0,0

Y 1
2 (η)dη,

X3
1200(x3) = X3

2100(x3) = 0;

X1
1300(x1) = X1

3100(x1) = µ
[
c13 −

x1∫
x0
1

0,0

Y 1
3 (η)dη

]
,

X3
1300(x3) = X3

3100(x3) = µ
[
d11 −

x3∫
x0
3

0,0

Y 3
1 (η)dη

]
,

X1
2300(x1) = X1

3200(x1) = 0,

X3
2300(x3) = X3

3200(x3) = µ
[
d12 −

x3∫
x0
3

0,0

Y 3
2 (η)dη

]
.

Remark 1 : When (x′1)
2+(x′3)

2 ̸= 0, in the expressions (23), (24) of the solution
the integrands, containing (3) and (7) are not known on the entire interval of
integration. In order to avoid this unconvenience we need some more restrictions,
e.g., the following:
(i) if x′1 ̸= 0, x′3 ̸= 0, taking into account smallness of the sides of the cross-

sections, and, excluding fluctuations of forces on the interface, we continue con-
tinuously and compatible for both the bars the values of the tractions on the face
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O x
1

0

x
3

0

x1

x3

Figure 6. Prismatic bars of constant rectangular cross-sections;
(+)

h1
3 (x1) ≡ 0, x1 ∈ [0, x0

1], x
′
1 ̸= 0, x′

3 = 0

surfaces

x3 =
(+)

h13 (x1),
(−)

h12 (x1) ≤ x2 ≤
(+)

h12 (x1), x1 ∈ [x′1, x
0
1], (39)

and

x1 =
(+)

h31 (x3),
(−)

h32 (x3) ≤ x2 ≤
(+)

h32 (x3), x3 ∈ [x′3, x
0
3], (40)

i.e.,

X1
(+)
ν3 j

(x1, x2,
(+)

h13 (x1)), j = 1, 2, 3, for
(−)

h12 (x1) ≤ x2 ≤
(+)

h12 (x1), x1 ∈ [x′1, x
0
1], (41)

and

X3
(+)
ν1 j

(
(+)

h31 (x3), x2, x3), j = 1, 2, 3, for
(−)

h32 (x3) ≤ x2 ≤
(+)

h32 (x3), x3 ∈ [x′3, x
0
3], (42)

respectively, on the surfaces

x3 = f(x1),
(−)

h12 (x1) ≤ x2 ≤
(+)

h12 (x1), x1 ∈ [0, x′1[,

and

x1 = f−1(x3),
(−)

h32 (x3) ≤ x2 ≤
(+)

h32 (x3), x3 ∈ [0, x′3[,

correspondingly, here f−1 is the inverse function of f ;
(ii) if x′1 ̸= 0, x′3 = 0 (see Fig. 6), then we continuously continue the traction

(41) from the face surface (39) on the plane surface

x3 = 0,
(−)

h12 (x1) ≤ x2 ≤
(+)

h12 (x1), x1 ∈ [0, x′1[;
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(iii) if x′1 = 0, x′3 ̸= 0, then we continuously continue the traction (42) from the
face surface (40) on the plane surface

x1 = 0,
(−)

h32 (x3) ≤ x2 ≤
(+)

h32 (x3), x3 ∈ [0, x′3[.

4. Rectangularly linked prismatic bars loaded by self-weight

In this section we consider as an example the vertical prismatic bar, suspended
from a fixed support and loaded by self-weight, linked (glued) with the non-fixed
end with the horizontal bar with the fixed other end and loaded by self-weight
X3

3 ≡ X1
3 = −γ = const.

Thus, we have the following loadings

0,0

Y l
α ≡ 0, l = 1, 3, α = 1, 2, (43)

0,0

Y 1
3 (x1) = −4γh12(x1)h

1
3(x1),

0,0

Y 3
3 (x3) = −4γh31(x3)h

3
2(x3), γ = const;

boundary conditions

v1j (x
0
1) = 0, v3j (x

0
3) = 0, j = 1, 2, 3; (44)

contact conditions

X1
1j(0) = X3

1j(0), v1j (0) = v3j (0), j = 1, 2, 3. (45)

Taking into account (43)-(45) from (28), (30), and the expressions for Aj , j =
1, 2, 3; d12; A

α, α = 1, 2; C, D, we get

c2j = 0, d2j = 0, j = 1, 2, 3; c12 = E = 0; Aα = 0, α = 1, 2; d12 = 0;

A3 = −4γ

0∫
x0
1

dτ

h12(τ)h
1
3(τ)

τ∫
x0
1

h12(η)h
1
3(η)dη + 4γ

0∫
x0
3

dτ

h31(τ)h
3
2(τ)

τ∫
x0
3

h31(η)h
3
2(η)dη;

A1 = 4λγ

0∫
x0
3

h31(η)h
3
2(η)dη; A2 = −4γ

0∫
x0
1

h12(η)h
1
3(η)dη;

C =

0∫
x0
1

dτ

h12(τ)h
1
3(τ)

, D =

0∫
x0
3

dτ

h31(τ)h
3
2(τ)

.
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Therefore, by virtue of (23), (24), for weighted double moments of the displacements
we obtain

v11(x1) = c11

x1∫
x0
1

dτ

h12(τ)h
1
3(τ)

, v12(x1) = 0;

v31(x3) = d11

x3∫
x0
3

dτ

h31(τ)h
3
2(τ)

, v32(x3) = 0; (46)

v13(x1) = 4γ

x1∫
x0
1

dτ

h12(τ)h
1
3(τ)

τ∫
x0
1

h12(η)h
1
3(η)dη + c13

x1∫
x0
1

dτ

h12(τ)h
1
3(τ)

;

v33(x3) = 4γ

x3∫
x0
3

dτ

h31(τ)h
3
2(τ)

τ∫
x0
3

h31(η)h
3
2(η)dη + d13

x3∫
x0
3

dτ

h31(τ)h
3
2(τ)

,

where

d11 = ∆−1
[
(A3 − CA2)λ−A1D

] C

λ+ 2µ
,

d13 = ∆−1
[
− A1(C)2

λ+ 2µ
+D(A3 − CA2)],

c11 = ∆−1
[
(A3 − CA2)λ−A1D

] D

λ+ 2µ
, (47)

c13 = A2 +∆−1
[
(A3 − CA2)λ−A1D

] C

λ+ 2µ
.

By virtue of (12), (13), (46), the double moments of the stresses have the following
forms

X1
1100(x1) = (λ+ 2µ)c11, X3

1100(x3) = X3
2200(x3) = λ

[
d13 + 4γ

x3∫
x0
3

h31(τ)h
3
2(τ)dτ

]
,

X1
2200(x1) = X1

3300(x1) = λc11,

X3
3300(x3) = (λ+ 2µ)

[
d13 + 4γ

x3∫
x0
3

h31(τ)h
3
2(τ)dτ

]
;

X1
1200(x1) = X1

2100(x1) = 0, X3
1200(x3) = X3

2100(x3) = 0,

X1
1300(x1) = X1

3100(x1) = µ
[
c13 + 4γ

x1∫
x0
1

h12(τ)h
1
3(τ)dτ

]
,
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X3
1300(x3) = X3

3100(x3) = µd11,

X1
2300(x1) = X1

3200(x1) = 0,

X3
2300(x3) = X3

3200(x3) = 0.

Example. Let now (se Fig. 6)

2h3α(x3) = 2h3α = const, α = 1, 2;

2h13(x1) = −
(−)

h13 = const, 2h12(x1) = 2h12 = const,

then

A1 = −4λγh31h
3
2x

0
3, A2 = 4γh12h

1
3x

0
1,

C = − x01
h12h

1
3

, D = − x03
h31h

3
2

, A3 = −2γ(x01)
2 + 2γ(x03)

2 = 2γ
[
(x03)

2 − (x01)
2
]
,(48)

∆ =
σ

1− σ

(x01)
2

(h12h
1
3)

2
− (x03)

2

(h13h
3
3)

2
,

and

v11(x1) =
c11

h12h
1
3

(x1 − x01), v12(x1) = 0, v13(x1) = 2γ(x1 − x01)
2 +

c13
h12h

1
3

(x1 − x01);

v31(x3) =
d11

h31h
3
2

(x3 − x03), v32(x3) = 0, v33(x3) = 2γ(x3 − x03)
2 +

d13
h31h

3
2

(x3 − x03);

X1
1100(x1) = (λ+ 2µ)c11, X1

2200(x1) = X1
3300(x1) = λc11,

X3
1100(x3) = X3

2200(x3) = λ
[
d13 + 4γh31h

3
2(x3 − x03)

]
,

X3
3300(x3) = (λ+ 2µ)

[
d13 + 4γh31h

3
2(x3 − x03)

]
,

X1
1200(x1) = X1

2100(x1) = 0,

X1
1300(x1) = X1

3100(x1) = µ
[
c13 + 4γh12h

1
3(x1 − x01)

]
,

X3
1200(x3) = X3

2100(x3) = 0,

X3
1300(x1) = X3

3100(x3) = µd11,

X1
2300(x1) = X1

3200(x1) = 0,

X3
2300(x3) = X3

3200(x3) = 0,

with (47) combined with (48).
As we see, the vertical components of the weighted double moments of displace-

ments are quadratic functions, while the horizontal components are linear functions
of x1 for B1 and of x3 for B3; for B1 the double moments: (i) of the normal stresses
are constants, (ii) of the tangent stresses are zero except X1

1300(x1) = X1
3100(x1)
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which are linear functions, while for B3 the double moments: (i) of the normal
stresses are linear functions of x3, (ii) of the tangent stresses are equal to zero
except X3

3200(x3) = X3
2300(x3) which are constants. This result was to be expected.

5. Conclusions and Outlook

(1) A model of two rectangularly linked elastic bars within the framework of
the (0,0) approximation of hierarchical models of prismatic bars on the
basis of the linear theory of elasticity is constructed.

(2) Static and dynamical contact problems are set and the boundary-contact
problem, when at the non-contact ends of the bars displacements are pre-
scribed, while on the face surfaces of the bars tractions are known, is solved
in the explicit form.

(3) As a concrete example the boundary-contact problem, when the vertical
prismatic bar suspended from a fixed support and loaded by self-weight
linked (glued) with the non-fixed end with the horizontal bar with the
fixed other end and loaded by self-weight, is considered.

(4) Analogously we can construct and investigate similar models within the
framework of (1,0) and (1,1) approximations of hierarchical models of pris-
matic bars on the basis of the linear theory of elasticity and classical and
refined models of elastic bars.

(5) In order to investigate dynamical problems along with classical methods an
approach developed in [5] can be applied.
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