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The tail market risk measurement has become one of the most crucial assignments of finan-
cial institutions’ risk management units. At the same time various papers show that tail risk
measures are especially sensitive to model misidentification. In this paper we consider this
practical problem. We propose model risk robust approach for measuring tail risk based on
superposed risk measures. Superposed risk measures consider novel approach to measure mar-
ket and model risk in a consistent way. This paper has two major goals. First, we investigate
several practical superposed market risk measures under extreme value theory. Second, we
demonstrate our results via the case study of DAX 30 index.
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1. Introduction

The modern risk management requires monitoring tail events that are rare in fre-
quency, but they are associated with large losses. Stock crashes, unexpected news
in capital markets, political instability, oil shocks can lead to extreme unexpected
losses. Extreme value theory is a framework that enables statistical modeling of
tail events [9]. The extreme value theory was first introduced by [8] and [10]. In
this paper we focus on the parametric approach of extreme value theory based on
the generalized Pareto (GP) distribution. [14] understand under model the prob-
ability distribution. Following this approach, we consider a complete model set
that includes all probability distributions modelling extreme tail risk of financial
position. Our case study shows that the tail risk measures are highly sensitive on
model misspecification. Further, it is surprisingly robust and easy to construct the
market tail risk measures that capture model risk. Finally, we show that model risk
of tail market risk measures can be effectively managed. [8] and [10] show that un-
der some technical assumptions the normalized maximum process of any unknown
distributions follows the generalized Extreme Value distribution. Further, [1] and
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[19] state that the distribution of tail events follow the GP distribution. The later
theorem enables constructing a model set that includes all possible EVT models.

The model risk management literature has become richer. After the pioneering
work of [6] and [11], the scholars have started paying attention to model risk.
[11], [13], [22] and [3] agree that model risk has hidden nature and if a financial
institute ignores it, then it could face huge financial losses. We follow [14] approach
that considers probability distribution as a model.

2. Measuring market risk under model risk

Let (Ω,F ,m) be a probability space. Further, let (M,M) be a measurable space of
models. We associate a model with a probability distribution on (Ω,F). Consider
a random variable X : (Ω,F) → (R,B) that denotes financial position. B stands
for Borel σ−algebra in R. We denote X ⊆ L0 the linear space containing constants.
Further, L∞ ⊆ L0 is a linear space of bounded functions.

Traditional monetary risk measures often require assumption on the probabil-
ity distribution of financial position. These assumptions can significantly change
the final outcome of market risk. Thus, every risk measure that depends on the
probability distribution of financial position is model sensitive. To overcome this
shortcoming [14] propose market risk measures that incorporate model risk. We
summarize their methodology briefly. Let ρρρ denote the family of risk measures. We
assume that ρρρ is bounded. The first intuitive choice of market risk measure that
ensures ‘safety’ against model risk is the worst case market risk measure.

Definition 2.1: The worst case market risk measure ρWC is defined as

ρWC (X) = sup
m∈M

(ρm (X)) . (1)

The worst case market risk measure highly overstates the market risk. Hedging or
insuring against the worst case scenario is usually very expensive. Neither the risk
management practice, nor the regulatory requirements ask to be immune against
the worst case risk and therefore Definition 2.1 is impractical.

In order to provide more useful risk measures, [14] introduce general super-
posed market risk measures that consider superpositions of risk measures on X
and on L∞ (M,M). Where L∞(M,M) states for a linear space of bounded func-
tions on the measurable model space (M,M). Assume that ρρρ is M-measurable and
bounded. Let ζ : L∞ (M,M) → R be a monetary risk measure on L∞ (M,M).

Definition 2.2: The superposed risk measure ζ ◦ ρρρ is defined by

ζ ◦ ρρρ (X) = ζ (−ρρρ (X)) , X ∈ X . (2)

The superposed market risk measures are very flexible and they enable to investi-
gate different aspects of market risk and model risk. [14] prove that, if ρρρ is a family
of coherent (convex) risk measures and ζ is coherent (convex), then model super-
posed market risk measures are coherent (convex). The most intuitive example of
superposed market risk measure is model weighted market risk measure.

Definition 2.3: Let µ be a probability measure on the measurable model space
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(M,M). The model weighted market risk measure ρρρ ∗ µ is defined as

ρρρ ∗ µ (X) =
∫

M
ρm (X) dµ (m). (3)

The model weighted market risk measure is a ‘model robust’ risk measure. Other
interesting special cases of superposed market risk measures are listed below.

Definition 2.4:

(i) The superposed value at risk of ρρρ (X), with confidence level α ∈ [0, 1] is defined
as

V aRα,ρρρ,µ(X) = V aRα,µ (−ρρρ(X))

= inf {x ∈ R : µ ({m : ρm(X) > x}) ≤ 1− α}. (4)

(ii) The superposed expected shortfall of ρρρ(X), with the confidence level α ∈ [0, 1]
is defined as

ESα,ρρρ,µ(X) = ESα,µ (−ρρρ(X)) =
1

1− α

∫ 1

0
V aRγ,ρρρ,µ(X)dγ. (5)

3. Measuring tail risk

Extreme value theory focuses on modeling the tail of some unknown distribution
without examining central tendency. How bad could things go if the rare but plau-
sible market event occurs? This is a central question EVT tries to answer. As the
majority of financial risk measures concentrate on the tail events, EVT gives a
natural settings to calculate market risk. The peaks-over-threshold (POT) method
sets specific threshold u and considers all observations that exceed u as extreme
outcomes. The aim is to describe the distribution of these extreme outcomes and
based on this distribution calculate risk measures. Figure 1 demonstrates this ap-
proach.

Figure 1. The peaks-over-threshold method.

Let (Ω,F ,P be a probability space. x1, ..., xn let be n i.i.d. random variables.
Denote the cumulative distribution function of model P with F . Consider the
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maximum,

MAXn = max(x1, ..., xn). (6)

Next, suppose that there exist sequences of real numbers an, bn > 0, such that

P
{

MAXn − an

bn
≤ x

}
= Fn(bnx + an) → H(x), as n →∞, (7)

where H is some non-degenerate distribution function. If Equation (7) holds we say
that F is in the maximum domain of attraction of H, i.e., F ∈ MDA(H). Denote
z ∈ R ∪ ∞ right endpoint of distribution F . Then, the probability distribution
function of excesses over u is described as, see e.g., [15], [21]

P {X − u ≤ x|X > u} =
F (x + u)− F (u)

1− F (u)
, x ∈ [0, z − u). (8)

Theorem 3.1 : ([1] and [19]). Let F ∈ MDA(H), then the limiting distribution
for the distribution of the excesses as u →∞ is a generalized Pareto distribution.

Definition 3.2: The probability distribution function of the generalized Pareto
(GP) distribution with a shape parameter ξ and a scale parameter β is given by

GP (x|ξ, β) =

1−
(
1 + ξx

β

)− 1
ξ

, if ξ 6= 0

1− exp
{
−x

β

}
, if ξ = 0,

(9)

where, β > 0 and the support is x ≥ 0 when ξ ≥ 0 and x ∈ [0,−β/ξ] when
ξ < 0. When ξ > 0 generalized Pareto distribution becomes Pareto distribution;
if ξ = 0 we have an exponential distribution and if ξ < 0 GP gives type II Pareto
distribution.

4. Case Study

In this case study, we analyze the tail market risk utilizing the extreme value
theory. We study the tail risk of DAX 30 index and show model sensitivity of risk
measures defined in Section 3. Finally, we compute model risk measures via the
reference models. We collect daily historical data between Jan. 02, 1970 and Aug.
31, 2018, of DAX 30 index 1. This timeframe includes several interesting events
that affected financial prices including the collapse of the Bretton Woods system in
the 1970s, “Black Monday” – Oct. 19, 1987, the Asian crisis in 1997, the collapse
of LTCM after the Russian debt crisis in 1998, Sep. 11, 2001 terrorist attacks, the
global financial crises during 2007-2008, and the European debt crisis during 2011.

Figure 2 illustrates the historical price evolution and log-returns of DAX 30
index. The stock return volatility is time inhomogeneous. We observe clear volatility
clusters and have high excess kurtosis.

1Source Bloomberg
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Figure 2. Daily close prices and log-returns of DAX 30 (prices are quoted in Euro).

The statistical facts like volatility clustering show that many financial returns
time series are not i.i.d., see e.g., [5]. The extreme value theory is based on the i.i.d.
assumption. In order to deal with this limitation, we apply GARCH filter for DAX
30 index returns prior to the EVT, as proposed by [16]. We consider GARCH(1,1)
filter with Students t− distribution.

In order to capture the market risk for both long and short positions, we consider
the absolute values of standardized returns. We set the threshold at 90% of the
total observations. We consider the following model set that includes all Generalized
Pareto distributions,

M = {GPξ,β |ξ ∈ R, β ∈ R+}. (10)

Let Y be the vector of log-returns. Further, let (M,M) be a measurable space.
A model m ∈ M is a probability measure on (Ω,F). The model set M contains
parameterized models from one distribution class. Therefore, under the model m
we understand the parameter vector θ ∈ Θ. Let π(θ) denote the prior distribution
of the unknown parameter vector θ. Applying the Bayes theorem, the posterior
distribution µ on the model space is given by

µ (θ|Y = y) =
mθ(Y = y)π(θ)∫

Θ mθ(Y = y)π (θ) dθ
. (11)

Equation (11) connects the realized observed data and prior subjective believes
in the posterior distribution of the model. The Bayesian computation not only
gives the best possible point estimate of model parameters but also characterizes
the full model distribution.

Solving Equation (11) usually involves the numerical integration on the high-
dimensional space, which considers the significant numerical challenge. The popular
way to deal with this problem is Markov chain Monte Carlo (MCMC) simulation
methods that originate from [17] and [12]. Metropolis-Hastings algorithm can be
applied to sample from an arbitrarily complex distribution; the algorithm is very
efficient, as it does not require the evaluation of high-dimensional integrals. For
further details about the MCMC methods, we refer to [20], [4].

To get a posterior distribution of models, we employ R package
‘MCMC4Extremes’ [7]. The package employs the Metropolis-Hastings algorithm
to get posterior sample of GP distribution parameters. We run 10’000’000 Itera-
tions. We burn in the first 90% of iterations. We consider four financial positions
EUR 1,000 investment in DAX 30 index. Based on the MCMC simulation results
we calculate 10 days VaR and ES with 95% and 99% confidence levels. In order to
adjust the variance, we simulate GARCH(1,1) process with Student’s t− distribu-
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tion.
Figure 3 provides the boxplots of market risk measures. The distribution of ex-

pected shortfall has larger variance than the distribution of VaR. Further, risk
measures with a 99% confidence level are more prone to model risk than the risk
measures with 95% confidence level. Finally, the distribution of spectral risk mea-
sure with risk aversions parameter γ = 0.01 has higher variance than the distri-
bution of spectral risk measures with γ = 0.02. These results are consistent with
literature see e.g., [14], [18] and [2].

0.95, VaR0.99, ES0.95, ES0.99

5. Conclusion

Our methodology is based on the pioneering work of [14]. We consider different
superposed tail market risk measures. These risk measures can describe different
aspects of market risk and simultaneously captures the model risk. We demonstrate
our theoretical results via the case study, which highlights that the model risk is an
important factor for the tail market risk measures. Even in the case of univariate
modeling of equity index, the posterior tail risk measures have significant model
risk and employing point estimators of the tail risk could be highly misleading.
Expected shortfall and spectral risk measures are more affected by model risk
than value at risk. In addition, risk measures with 99% confidence levels are more
model sensitive than the risk measures with 95% confidence level. The spectral
risk measures with high subjective risk aversion are also more model risk prone
than the same spectral risk measure with the low risk aversion. These results are
consistent with the previous studies of [14] and [2].
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