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Expert knowledge representations often fail to determine compatibility levels on all objects,
and these levels are represented for a certain sampling of universe. The samplings for the fuzzy
terms of the linguistic variable, whose compatibility functions are aggregated according to a
certain problem, may also be different. In such a case, neither L.A. Zadeh’s analysis of fuzzy
sets and even the dual forms of developing today R.R. Yager’s q-rung orthopair fuzzy sets
cannot provide the necessary aggregations. This fact, as a given, can be considered as a source
of new types of information, in order to obtain different levels of compatibility according to
Zadeh, presented throughout the universe. This source of information can be represented as a
pair 〈A, fA〉, where there is some crisp subset of the universe A that determines the sampling
of objects from the universe, and a function fA determines the compatibility levels of the
elements of that sampling [9]. It is a notion of dual split fuzzy relations, constructed in this
article, that allows for the new type of semantic representation and aggregation of complex
expert information. This notion is again and again based on the notion of Zadeh fuzzy relation.
In particular, the operation of splitting a crisp relation into dual fuzzy relations is introduced.

Properties of algebraic operations on split dual fuzzy-sets are studied in [9]. Properties of
relations’ splitting into dual fuzzy relations are studied in this work. Fuzzy relation “no less
fuzzy” on the fuzzy sets is introduced. It is proved that extension of this relation into the
splitting dual fuzzy relations induced on the sets of all fuzzy relation algebraic structure is
reflexive, antisymmetric and transitive. The proofs are also presented that follow naturally
from definitions and previous results. An example of multi-attribute decision making (MADM)
is presented for illustration of the application of splitting operation.

Keywords: Fuzzy sets and relations, set splitting, relation splitting, duality of imperfect
information, q-rung orthopair fuzzy sets, Lattices.
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1. Introduction

In the study of complex events analysis and synthesis problems, the use of
L.A. Zadeh’s theory of fuzzy sets [22, 23] has the particular importance today,
when the problems of semantic representation of expert qualitative information
are quite acute due to the complicated nature of the objects under study. Existing
approaches to measuring the degrees of compatibility precision of studying objects
are no longer satisfactory to today’s researchers. This is why the two sides of impre-
cision – the levels of object compatibility and incompatibility – are becoming more
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and more independent in a new research [1, 2, 16–19, 21]. This independence is due
to the dual representation of evaluation. Duality is becoming an important element
in the presentation of incomplete information today, and study of the imprecisions
and uncertainties of modeling complex events deserves a great attention. The most
common direction of these issues today is to represent the dual nature of informa-
tion evaluation in some independent degrees of belonging and non-belonging. This
idea first came from Atanasov [2].

The intuitionistic fuzzy sets (IFS) theory by Atanasov [2] represents a new ex-
tension of Zadeh’s fuzzy sets (FS) theory [4]. Since to each element of IFS, as
Intuitionistic fuzzy number (IFN) (µ, ν) is assigned a membership degree (µ), a
non-membership degree (v) and a hesitancy degree (1 − µ, 1 − ν), IFS is much
capable to deal with vagueness than FS. IFS theory was extensively utilized in
various problems of different areas [2, 16]. Definitions of main arithmetic opera-
tions on IFN are given in [2]. The IFS theory is found to be intensively applicable
in decision-making direction of research. After consideration of the huge number
of existing materials, the authors of [21] presented a scientometric review on IFS
studies. At the same time the IFN (µ, ν) has a serious constraint – the sum of
membership and non-membership degrees must be or less than 1. Nevertheless, it
may happen that a DM provides such data for certain attribute that the aforemen-
tioned sum is greater than 1 (µ + ν > 1). To cope with such case, Yager [17, 18]
introduced the concept of the Pythagorean fuzzy set (PFS) as a generalization of
IFS, where a Pythagorean fuzzy number (PFN) (µ, ν) has a weaker constraint – the
sum of squared degrees of membership and non-membership satisfies the inequality
µ2+ν2 ≤ 1. But in many expert orthopair assessments, neither PFNs nor IFNs can
describe fully intellectual activity, because the assessment psychology of a decision
maker (DM) is too intricate for hard decision-making, and the attribute’s informa-
tion is still problematic to express with PFNs or IFNs. This problem was solved
by Yager again [19, 20]. He introduced the notion of a q-rung orthopair fuzzy set
(q−ROFS), where q ≥ 1, and the sum of the qth power of the degrees of member-
ship and non-membership cannot exceed 1. For a q-rung orthopair fuzzy number
(q−ROFN) we have (µq + νq ≤ 1). The fundamentals of arithmetic operations on
such numbers are presented in [1, 19]. Obviously, the q−ROFSs are generalization
of IFSs and PFSs. The IFSs and PFSs represent the particular cases of the q-ROFSs
for q = 1 and q = 2. Thus, q-ROFNs appear to be more suitable and capable for
expressing DM’s assessment information. Study of Aggregations of experts’ q-rung
orthopair fuzzy evaluations are actively developed in different works of authors of
this paper in multi-criteria decision-making problems [7–14, 17, 22]. A completely
different approach to dual representation of a fuzzy set is developed in [15]. In this
paper, the concept of lower a-level sets of fuzzy sets is introduced, which is regarded
as a dual concept of upper α-level sets of fuzzy sets. The authors introduce a new
concept of dual fuzzy sets. Dual decomposition theorem is established. The dual
arithmetic of fuzzy sets in R1 is studied and established some interesting results
based on the upper and lower α-level sets.

In practice, there are frequent cases when experts are unable to determine the
levels of compatibility on all objects. In fact, these levels are represented by a
certain sampling of the universe. Experts may make these samplings different.
Samplings for the fuzzy terms of linguistic variables may also be different. But
aggregations of such information are still needed, and the universe may not be
fully represented at all. In such a case, neither the Zadeh fuzzy set analysis nor the



Vol. 28, No. 2, 2024 99

dual forms presented here in the form of q-rung orthogonal fuzzy sets can provide
the required aggregations.

Actually, it means the following. For any expert from certain universe Ω =
{ω1, . . . , ωn}, a certain sampling of items A = {ωi1 , . . . , ωiA

} is available for eval-
uation. Suppose the compatibility levels generated by any expert are represented
as some function fA(ω) : A → [0, 1], where the values are known only on the ele-
ments of the set A ⊂ Ω. This data may be different for his/her other evaluations
or for those of other experts. The new type of information source differs from that
involved in determining the levels of compatibility according to Zadeh’s point of
view. In this case the source of information is presented by pairs 〈A, fA〉. We are
dealing with a source and data of a different nature. Namely the possibility of
semantic representation of such information by the notion of split fuzzy set con-
structed in [9] by the authors of this work is studied, which is again and again
based on Zadeh’s concept of a fuzzy set. In particular, the operation of splitting a
crisp subset into dual fuzzy sets is introduced [9]. It is this dual, split fuzzy sets
lattice that will create a unified environment for aggregating expert evaluations of
different samplings. In this work the operation of splitting a crisp relation into dual
fuzzy relations is introduced. Algebraic properties of relations’ splitting into dual
fuzzy relations are studied in this work.

The second section explains the operation of splitting a crisp set indicator into
dual fuzzy sets. The third section studies splitting a relation into the dual fuzzy
relations. Properties of the algebraic structure induced by the splitting are also
investigated. The fourth section describes the basic results obtained in this work
and the perspectives of future studies in this direction.

2. Preliminary concepts: Operation of splitting of an indicator

Let’s note from the beginning that the preliminary preparatory material is com-
pletely taken from the article [9] published by the authors of this study.

Consider the source of information discussed in the introduction for expert evalu-
ations. Suppose that, for any expert from some universe Ω = {ω1, . . . , ωn} a certain
sampling of elements is available for evaluation. Suppose the compatibility levels
generated by the expert are represented as a certain function fA(ω) : A → [0, 1],
where the values are known only to the elements of the set A ⊂ Ω. This data
may be different for his/her other evaluations as well for other experts. The new
type of information source differs from that involved in determining the levels of
compatibility according to Zadeh’s point of view [23]. In this case the source of
information is presented by pairs 〈A, fA〉. Let A ⊂ Ω and IA ∈ {0, 1}Ω be its
indicator. Represent it in the following form

IA(ω) = f(ω)IA(ω) + 1− f(ω)IA(ω), ω ∈ Ω, (1)

where f(ω) : Ω → [0, 1] is some continuation of the function fA(ω) : A → [0, 1] on
the universe Ω(f(ω) = fA(ω), ω ∈ A).

Definition 2.1: ([9]) Let us call representation (1) a splitting of indicator IAwith
respect to function f .
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Introduce the notation:

IÃ(ω) ≡ f(ω)IA(ω) and IÃD(ω) ≡ (1− f(ω))IA(ω). (2)

Indicators IÃ, IÃD ∈ [0, 1]Ω of two fuzzy subsets Ã, ÃD ⊂ Ω are called splitting of
an indicator IAof a subset A ⊂ Ω and

IA = IÃ + IÃD . (3)

Definition 2.2: ([9]) Indicators IÃ, IÃD ∈ [0, 1]Ω as well as fuzzy subsets Ã, ÃD ⊂
Ω are called dual, respectively.

According to L. Zadeh [23] IÃ is an indicator or membership function (compati-
bility function) of some fuzzy subset Ã. It is clear that splitting does not depend on
the continuation of the function fA(ω) : A → [0, 1]. More exactly, the pair 〈A, fA〉
induces a pair of splitting fuzzy sets (Ã, ÃD).

Example 2.3 ([9]) Let a set of digits Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be given. Let
also the sampling of universe as some subset A ⊂ Ω be given. For example, suppose
that A is a set of odd digits, A = {1, 3, 5, 7, 9}, and let expert’s evaluation only on
this sampling be given by the function fA(ω) : A → [0, 1], fA(ω) = 1

ω+1 , ω ∈ A.
Let f(ω) : Ω → [0, 1] be any continuation of the function fA(ω) on Ω. Then the
splitting of the IA of the subset A ⊂ Ω on the universe Ω into two dual fuzzy sets
(or their indicators (membership functions)) looks like this:

Ã =
{

0
0
,

1
(1/2)

,
2
0
,

3
(1/4)

,
4
0
,

5
(1/6)

,
6
0
,

7
(1/8)

,
8
0
,

9
(1/10)

}
, (4)

ÃD =
{

0
0
,

1
(1/2)

,
2
0
,

3
(3/4)

,
4
0
,

5
(5/6)

,
6
0
,

7
(7/8)

,
8
0
,

9
9/10

}
.

Practically, dual splitting fuzzy subsets 〈Ã, ÃD〉 are created as fuzzy subsets on the
universe Ω. Practical interpretation looks as follows: Sometimes for the description
of some uncertain term of some linguistic variable on the elements of an universe we
usually construct membership function. But for the extension of the information
containing in the membership function to only on some elements of concrete crisp
subset, we are splitting this set into dual split fuzzy subsets. So, the extended
information is contained in dual fuzzy sets. Duality of this extension means that
both fuzzy sets contain the same information, but codified in different ways. It is
to mention that, splitting dual fuzzy subsets Ã, ÃD on Ω are induced by the subset
A,A ⊂ Ω and some function fA(ω) : A → [0, 1].

As mentioned earlier, the possibility of using the split operation can arise in
many cases. Here is one case. Let us now consider an example on application of
splitting a set into dual fuzzy sets in multi-attribute decision making (MADM).

Consider a MADM model with 5 attributes S = {s1, s2, . . . , s5} and 3 alternatives
D = {d1, d2, d3}. Suppose that a decision-making matrix represents a matrix of
normed ratings in [0, 1], where some ratings are not given:

As can be seen from this matrix, for each alternative there are attributes for
which the rating evaluations are not presented. Such unusual cases can arise in
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D/S s1 s2 s3 s4 s5

d1 0.2 - 0.7 0.6 -
d2 - 0.4 - 0.3 0.8
d3 0.3 0.5 0.6 - -

practice for many reasons. One is when the number of attributes is quite large due
to the deep detailing of the task, and it is difficult for experts to make a rating
assessment on all attributes. Such cases often arise when building recommendation
models in collaborative filtering problems. These empty elements need to be filled
somehow. This problem can be successfully implemented with a machine learning
approach, if, of course, there is a large amount of prehistoric data. Otherwise, when
we do not have objective data and expert evaluations are of the sparse type, the
splitting operation presented here can be a way out! We see that the alternative d1 is
evaluated on a subset of attributes S1 ≡ {s1, s3, s4}, the alternative d2 is evaluated
on a subset of attributesS2 ≡ {s2, s4, s5}, and the alternative d3 is evaluated on a
subset of attributes S3 ≡ {s1, s2, s3}. Let us split these sets into dual fuzzy sets.
Then the decision matrix can be written as:

D/S s1 s2 s3 s4 s5

Ãd1 0.2 0.0 0.7 0.6 0.0

ÃD
d1

0.8 0.0 0.3 0.4 0.0

Ãd2 0.0 0.4 0.0 0.3 0.8

ÃD
d2

0.0 0.6 0.0 0.7 0.2

Ãd3 0.3 0.5 0.6 0.0 0.0

ÃD
d3

0.7 0.5 0.4 0.0 0.0

Therefore, the alternative di, i = 1, 2, 3, is represented by dual split fuzzy subsets〈
Adi

, AD
di

〉
on the whole universe of attributes S = {s1, s2, . . . , s5}. The creation

of an aggregation instrument and the ways of constructing ranking relations can
be developed in many directions, where the definitions and results presented in
the following paragraphs on the operations of dual split sets will be used. Here
is a simple solution. Combine the elements of split dual fuzzy sets into pairwise
intuitionistic fuzzy numbers by a simple concatenation:

Here, of course, attention is drawn to the symbolic intuitionistic fuzzy number
(0.0,0.0), whose attribution and non-attribution values are 0.0, which indicates
the information that the evaluation is not done. As a matter of fact, if we gave
a formula-quantitative value to ratings that are not evaluated by such represen-
tations, it is natural to replace it with zero intuitionistic fuzzy numerical rating
(0.0,1.0). Then the decision-making matrix takes the following form.

Suppose that the vector of attribute weights in this model is W =
{w1, w2, . . . , w5} = {0.1, 0.2, 0.4, 0.1, 0.2}. For ranking of alternatives let us use
the intuitionistic fuzzy weighted averaging (IFWA) operator:

di ∼ IFWA(a1, . . . , a5). (5)
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D/S s1 s2 s3 s4 s5

d1 (0.2,0.8) (0.0,1.0) (0.7,0.3) (0.6,0.4) (0.0,1.0)
d2 (0.0,1.0) (0.4,0.6) (0.0,1.0) (0.7,0.3) (0.8,0.2)
d3 (0.3,0.7) (0.5,0.5) (0.6,0.4) (0.0,1.0) (0.0,1.0)

For example, for d1 we will have

d1 ∼ 0.1⊗ (0.2, 0.8)⊕ 0.2⊗ (0.0, 1.0)⊕ 0.4⊗ (0.7, 0.3)

⊕ 0.1⊗ (0.6, 0.4)⊕ 0.2⊗ (0.0, 1.0), (6)

where ⊕ and ⊗ denote addition and multiplication operations on intuitionistic
fuzzy numbers, respectively.

Definition 2.4: ([9]) Splitting of a crisp set is equivalent to the splitting of the
corresponding indicator and is formally represented as follows

(IA = IÃ + IÃD) � (A = Ã⊕ ÃD), (7)

where ⊕ is a splitting operation of a set.

As it was mentioned, from Definition 2.1 for the splitting of a crisp set A, the
building materials are an indicator IA and some functionfA(ω) : A → [0, 1]. We
interpret the split set on Ã into and its dual split set ÃD as a fuzzy subset in
the sense of Zadeh [22]. With this interpretation, IÃ is considered as an indicator
(membership function) of a fuzzy split subset Ã.

Properties of splitting of sets indicators, or Cartesian product’s splitting, also
the Lattice of split elements of the Boolean lattice of indicators i are studied in [9].

3. Splitting of a relation into the dual fuzzy relations. Properties of the
algebraic structure induced by the splitting

The notion of dual fuzzy set is introduced into the lattice of fuzzy subsets. On the
basis of this notion the relationship “x is no less fuzzy than y” is considered. In
the following the properties of relation splitting will be presented.

Consider the lattice of fuzzy subsets P∼(Ω) [9]. A dual element (a dual subset)
in [9] is defined based on the procedure for representation of a crisp set as a pair
of dual fuzzy sets, which is called the splitting procedure of a crisp set

A = Ã⊕ ÃD, (8)

where A ⊆ Ω. Ã is a fuzzy subset, ÃD is a dual fuzzy subset. The relationship of
the dual subset with the fuzzy complement is as follows:

¬Ã = ÃD ∪A∗, (9)

where A∗ ≡ (∅ : Ã) is the pseudocompletion of the element Ã [3].
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The dual element indicates the following: if it can be argued that the elements are
endowed to some extent with the certain property [4, 5], then to some extent they
are not endowed with the same property. The “closer” [6] Ã and ÃD, the “more”
fuzzy is contained in the statement “the elements of A are endowed with property
P”. Similar ideas underlie the concept of fuzziness in works [4, 5], where instead
of Ã and ÃD there are compared Ãand ¬Ã. There is also a generalization of the
concept of “metric” collation of the degrees of fuzziness of two subsets to “non-
metric”, which is being reduced to a certain relation f between the corresponding
subsets. Below we will show that it is possible to introduce an equivalent relation
ϕ, which in our opinion better emphasizes the fact that fuzziness is an internal
property of a fuzzy subset and does not depend on pseudocompletion.

The basis of our approach, as well as in [6], is the concept of “between” in the
distributive lattice [3].

Definition 3.1: Let x̃ and ỹ ∈ P∼(Ω). x̃ is no less fuzzy than ỹ, (x̃ϕỹ), if x̃� y
and (x̃ � y)D = x̃D � y is between ỹ and ỹD in P∼(Ω), where � is the operation
of sequential splitting the intersection of two subsets [9].

(x̃ϕỹ) ⇔
{

(ỹ, x̃� y, ỹD)
(ỹ, x̃D � y, ỹD)

⇔ ỹ ∩ ỹD ⊆ x̃� y ⊆ ỹ ∪ ỹD. (10)

It is clear that (x̃ϕx) ∀ x̃ ∈ P∼(Ω).

Proposition 3.2: The relations f and ϕ are equivalent on P∼(Ω).

Proof : Let (x̃f ỹ). This means that{
(ỹ, x̃,¬ỹ)

(ỹ,¬x̃,¬ỹ)
⇔

{
(Iỹ ∧ I¬ỹ) ≤ Ix̃ ≤ (Iỹ ∨ I¬ỹ)
(Iỹ ∧ I¬ỹ) ≤ I¬x̃ ≤ (Iỹ ∨ I¬ỹ)

⇒
{

(Iỹ ∧ I¬ỹ)Iy ≤ Ix̃Iy ≤ (Iỹ ∨ I¬ỹ)Iy

(Iỹ ∧ I¬ỹ)Iy ≤ I¬x̃Iy ≤ (Iỹ ∨ I¬ỹ)Iy

⇒
{

(Iỹ ∧ IỹD) ≤ Ix̃Iy ≤ (Iỹ ∨ IỹD)
(Iỹ ∧ IỹD) ≤ Ix̃DIy ≤ (Iỹ ∨ IỹD)

⇔

{
(ỹ, x̃� y, ỹD)

(ỹ, x̃D � y, ỹD)
⇔ (x̃ϕỹ).

Let now, vice versa, (x̃ϕỹ), i.e.,{
(ỹ, x̃� y, ỹD)

(ỹ, x̃D � y, ỹD)
⇔

{
(Iỹ ∧ IỹD) ≤ Ix̃Iy ≤ (Iỹ ∨ IỹD)
(Iỹ ∧ IỹD) ≤ Ix̃DIy ≤ (Iỹ ∨ IỹD)

⇒

{
(Iỹ ∧ I¬ỹ) ≤ Ix̃Iy + Ix̃IyC ≤ (Iỹ ∨ IỹD) + (Iỹ ∨ IyC )
(Iỹ ∧ I¬ỹ) ≤ Ix̃DIy + IxC Iy + I¬x̃IỹC ≤ (Iỹ ∨ IỹD) + (Iỹ ∨ IyC ).

The transition that we made is correct for the following reasons. Firstly, we
strengthened the first right inequality, adding to it Ix̃IyC ≤ Iỹ ∨ IyC . Secondly, in
order for (x̃ϕỹ) to be fulfilled, it is necessary to have y ⊆ x, therefore IxC Iy = 0,
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and adding to the second right side inequality I¬x̃IyC ≤ Iỹ∨IyC , we also strengthen
it.

Thus,

{
(ỹ, x̃� y, ỹD)

(ỹ, x̃D � y, ỹD)

⇒
{

(Iỹ ∧ I¬ỹ) ≤ Ix̃ ≤ (Iỹ ∨ I¬ỹ)
(Iỹ ∧ I¬ỹ) ≤ I¬x̃ ≤ (Iỹ ∨ I¬ỹ)

⇒
{

(ỹ, x̃,¬ỹ)
(ỹ,¬x̃,¬ỹ)

⇔ (x̃f ỹ).

�

Lemma 3.3: If z ⊆ y, then from (ỹ, x̃� y, ỹD) it follows (ỹ � z, x̃� z, ỹD � z).

Proof :

(ỹ, x̃� y, ỹD) ⇔ (Iỹ ∧ IỹD) ≤ Ix̃Iy ≤ (Iỹ ∨ IỹD) ⇒ (Iỹ ∧ IỹD)Iz ≤ Ix̃IyIz

≤ (Iỹ ∨ IỹD)Iz ⇒ (Iỹ � Iz̃ ∧ IỹDIz) ≤ Ix̃ � Iz

≤ (Iỹ � Iz ∨ IỹDIz) ⇔ (Iỹ�z ∧ IỹD�z)

≤ (Iỹ�z ∨ IỹD�z) ⇔ (ỹ � z, x̃� z, ỹD � z).

�

Proposition 3.4: ϕ is transitive on P∼(Ω), i.e., (x̃ϕỹ) and (ỹϕz̃) ⇒ (x̃ϕz̃).

Before the proof, we will give some useful properties of the relationship (a, b, c)
that R. Yager gave in his work [5] and which we use in our reasoning:

P1 : (abc) ⇔ (cba),

P2 : (abc) and (acb) ⇔ b = c,

P3 : (abc) and (axb) ⇒ (axc),

P4 : (abc) and (bcd) and b 6= c ⇒ (abd),

P5 : (abc) and (acd) ⇒ (bcd),

P6 : (aba) ⇔ a = b,

P7 : (aab) ⇔ (baa) ⇔ (abb) ⇔ (bba),

P8 : (abc) ⇒ (aab),

P9 : if the lattice is distributive, then

(a) (qbc) and (qdc) and (bxd) ⇒ (qxc)

(b) (qbc) and (qdb) and (cxd) ⇒ (qbx).

(11)
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Proof :

(x̃ϕỹ) ⇔

{
(ỹ, x̃� y, ỹD)

(ỹ, x̃D � y, ỹD)

(ỹϕz) ⇔

{
(z̃, ỹ � z, z̃D)

(z̃, ỹD � z, z̃D)


⇒

{
(z̃, y � z, z̃D) and (z̃, (ỹ � z)D, z̃D) and (ỹ, x̃� y, ỹD)

}
⇒

{
(z̃, ỹ � z, z̃D) and (z̃, (ỹ � z)D, z̃D) and (ỹ � z, x̃� z, ỹD � z)

}
⇒ (z̃, x̃� z, x).

The last transition is made on the basis of the property of the “between” rela-
tionship P3 indicated in [5].

Similarly, it can be proved that

{
(x̃ϕỹ)
(ỹϕz̃)

⇒ (z, (x̃� z)D, z̃D).

Thus, {
(z̃, (x̃� z), z̃D)

(z̃, (x̃� z)D, z̃D)
⇔ (x̃ϕz̃).

�

Proposition 3.5: ϕ is reflexive on P∼(Ω) : (x̃ϕx̃).

Proof : We have {
(Ix̃ ∧ Ix̃D) ≤ Ix̃ ≤ (Ix̃ ∨ Ix̃D)
(Ix̃ ∧ Ix̃D) ≤ Ix̃D ≤ (Ix̃ ∨ Ix̃D)

⇒
{

(Ix̃ ∧ Ix̃D) ≤ Ix̃Ix ≤ (Ix̃ ∨ Ix̃D)
(Ix̃ ∧ Ix̃D) ≤ Ix̃DIx ≤ (Ix̃ ∨ Ix̃D)

⇒

{
(x̃, (x̃� x), x̃D)

(x̃, (x̃D � x), x̃D)
⇔ (x̃ϕx̃).

�

Proposition 3.6: If (x̃ϕỹ) and (ỹϕx̃), then either x̃ � y = ỹ � x and x̃D � y =
yD � x, or x̃� y = ỹD � x and x̃D � y = ỹD � x.

Proof :

(x̃ϕỹ) ⇔

{
(ỹ, (x̃� y), ỹD)

(ỹ, (x̃� y)D, ỹD)
and (ỹϕx̃) ⇔

{
(x̃, (ỹ � x), x̃D)

(x̃, (ỹ � x)D, x̃D)
.
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Suppose that x̃� y 6= ỹ � x, then, according to Lemma 3.3, P1 and P4, we have{
(ỹ, x̃� y, ỹD) = (ỹD, x̃� y, ỹ)

(x̃, ỹ � x, x̃D)
⇒

{
(ỹD � x, x̃� y, ỹ � x)
(x̃� y, ỹ � x, x̃D � y)

⇒ (ỹD � x, x̃� y, x̃D � y) = (x̃D � y, x̃� y, , ỹD � x).

Due to P2, we have{
(x̃D � y, x̃� y, ỹD � x)

(x̃, (ỹ � x)D, x̃D)
⇒

{
(x̃D � y, x̃� y, ỹD � x)

(x̃� y, ỹD � x, x̃D � y) = (x̃� y, ỹD � x, x̃� y)

⇒ x̃� y = ỹD � x.

Analogously, on the basis of P1, P2 and P4 and Lemma 3.3,{
(ỹ, (x̃� y)D, ỹD) = (ỹD, (x̃� y)D, ỹ)

(x̃, (ỹ � x)D, x̃D)
⇒

{
(ỹD � x, x̃D � y, ỹ � x)
(x̃� y, ỹD � x, x̃D � y)

⇒ (x̃� y, x̃D � y, ỹ � x)

Let now x̃� y = ỹ � x, then

(x̃� y, ỹD � x, x̃D � y) = (ỹ � x, ỹD � x, x̃D � y).

Due to P1, we can write{
(ỹ � x, ỹD � x, x̃D � y)
(ỹ � x, x̃D � y, ỹD � x)

⇒ x̃D � y = ỹD � x.

We see that ϕ on P∼(Ω) is not antisymmetric and, therefore, is not a partial
order relation. �

Proposition 3.7: The relation ϕ on P∼(Ω) is such that

(1) (x̃ϕx̃D) and (x̃Dϕx̃),
(2) (x̃ϕỹ) ⇔ (x̃Dϕỹ) ⇔ (x̃DϕỹD).

Proof : (1) Since the operation ( )D is an involution, then

(x̃ϕx̃D) ⇔

{
(x̃D, x̃� x, (x̃D)D)

(x̃D, x̃D � x, (x̃D)D)
⇒

{
(x̃D, x̃, x̃)

(x̃D, x̃D, x̃)
.

To show that (x̃D, x̃, x̃) takes place, note that (x̃D ∩ x̃) ∪ x̃ = x̃ and (x̃D ∪ x̃) ∩
x̃ = x̃. Due to P7(x̃D, x̃, x̃) ⇔ (x̃D, x̃D, x). Thus, we have (x̃ϕx̃D). To show that
(x̃Dϕx̃), we should have (x̃, x̃D � x, x̃D) = (x̃, x̃D, x̃D) and (x̃, (x̃D � x)D, x̃D) =
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(x̃, (x̃D)D, x̃D), which again follows from P7;

(x̃ϕỹ) =

{
(ỹ, x̃� y, ỹD)

(ỹ, x̃D � y, ỹD)
.

Since (x̃D)D = x̃, then (ỹ, x̃� y, ỹD) ⇒ (ỹ, (x̃D)D, ỹD). However,

{
(ỹ, x̃D � y, ỹD)

(ỹ, (x̃D)D � y, ỹD)
⇔ (x̃Dϕỹ).

To show that (x̃DϕỹD) takes place, we should have (ỹD, x̃D �
y, (ỹD)D)and(ỹD, (x̃D)D � y, (ỹD)D), which follow from (x̃ϕỹ):

(ỹ, x̃D � y, ỹD) ⇒ (ỹD, x̃D � y, ỹ) ⇒ (ỹD, x̃D � y, (ỹD)D)

and (ỹ, x̃D � y, ỹD) ⇒ (ỹD, x̃� y, ỹ) ⇒ (ỹD, (x̃D)D � y, (ỹD)D).

�

Proposition 3.8: If x̃, ỹ ∈ P∼(Ω) and (x̃ϕỹ), then (x̃ϕ(ỹD : ỹ)) and (x̃ϕ(ỹ :
ỹD)).

Proof : We have [1]

(ỹD : ỹ) = yC
>1/2 ∪ ỹD, (ỹ : ỹD) = yC

<1/2 ∪ ỹ.

Further,

(x̃ϕ(ỹD : ỹ)) =

{
((yC

>1/2 ∪ ỹD, x̃� yC
>1/2 ∪ ỹD, (yC

>1/2 ∪ ỹD)D)
((yC

>1/2 ∪ ỹD, x̃D � yC
>1/2 ∪ ỹD, (yC

>1/2 ∪ ỹD)D)

⇒

{
((yC

>1/2 ∪ ỹD), x̃, ỹ>1/2)
((yC

>1/2 ∪ ỹD), x̃,D ỹ>1/2)

⇒

{
ỹ>1/2 ∩ (ỹ>1/2 ∪ yD) ⊆ x̃ ⊆ ỹ>1/2 ∪ (yC

>1/2 ∪ ỹD)
ỹ>1/2 ∩ (ỹ>1/2 ∪ yD) ⊆ x̃D ⊆ ỹ>1/2 ∪ (yC

>1/2 ∪ ỹD)

⇒

{
ỹ>1/2 ∩ yD ⊆ x̃ ⊆ ỹ>1/2 ∪ yD ∪ yC

>1/2

ỹ>1/2 ∩ yD ⊆ x̃D ⊆ ỹ>1/2 ∪ yD ∪ yC
>1/2

⇒

{
ỹD

>1/2 ⊆ x̃ ⊆ ỹ>1/2 ∪ yC
>1/2

ỹD
>1/2 ⊆ x̃D ⊆ ỹ>1/2 ∪ yC

>1/2

This expression can be obtained from (x̃ϕỹ):
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{
ỹ ∩ yD ⊆ x̃� y ⊆ ỹ ∪ yD

ỹ ∩ yD ⊆ x̃D � y ⊆ ỹ ∪ yD

⇒

{
ỹ>1/2 ∩ ỹD ⊆ x̃� y ∪ x̃� yD ⊆ ỹ>1/2 ∪ ỹD ∪ yC

>1/2

ỹ>1/2 ∩ ỹD ⊆ x̃D � y ∪ x̃D � yD ⊆ ỹ>1/2 ∪ ỹD ∪ yC
>1/2

Since ỹ>1/2∩ ỹD ⊆ ỹ∩yD, ỹ∪ ỹD = ỹ>1/2∪ ỹD and yC ⊆ yD
>1/2 (and, furthermore,

x̃� yC and x̃D � yC are subsets of yC
>1/2). Thus, (x̃ϕ(ỹD : ỹ).

(x̃ϕ(ỹ : ỹD) =

{
((yC

≤1/2 ∪ ỹ), x̃� (y ∪ yC
≤1/2), (y

C
≤1/2 ∪ ỹ)D)

((yC
≤1/2 ∪ ỹ), x̃D � (y ∪ yC

≤1/2), (y
C
≤1/2 ∪ ỹ)D)

⇒

{
((yC

≤1/2 ∪ ỹ), x̃, ỹD
>1/2)

((yC
≤1/2 ∪ ỹ), x̃,D ỹD

>1/2)

⇒

{
ỹ≥1/2 ∩ (yC

≤1/2 ∪ ỹ) ⊆ x̃ ⊆ ỹD
≥1/2 ∪ (yC

≤1/2 ∪ ỹ)
ỹ≥1/2 ∩ (yC

≤1/2 ∪ ỹ) ⊆ x̃D ⊆ ỹD
≥1/2 ∪ (yC

≤1/2 ∪ ỹ)

⇒

{
ỹD
≥1/2 ∩ ỹ ⊆ x̃ ⊆ ỹ ∪ ỹD

≥1/2 ∪ yC
≤1/2

ỹD
≥1/2 ∩ ỹ ⊆ x̃D ⊆ ỹ ∪ ỹD

≥1/2 ∪ yC
≤1/2

⇒

{
ỹ≤1/2 ⊆ x̃ ⊆ ỹD

≥1/2 ∪ yC
≤1/2

ỹ≤1/2 ⊆ x̃D ⊆ ỹD
≥1/2 ∪ yC

≤1/2

Let us return to the expression for (x̃ϕỹ):

{
ỹ ∩ ỹD ⊆ x̃� y ⊆ ỹ ∪ ỹD

ỹ ∩ ỹD ⊆ x̃D � y ⊆ ỹ ∪ ỹD

⇒

{
ỹ ∩ ỹD

≥1/2 ⊆ x̃� y ∪ x̃� yC ⊆ ỹ ∪ ỹD
≥1/2 ∪ yC

≤1/2

ỹ ∩ ỹD
≥1/2 ⊆ x̃D � y ∪ x̃D � yC ⊆ ỹ ∪ ỹD

≥1/2 ∪ yC
≤1/2

.

Since ỹ ∪ ỹD
≥1/2 ⊆ ỹ ∩ ỹD, ỹ ∪ ỹD = ỹ ∪ ỹD

≥1/2, y
C ⊆ yC

≤1/2 (and therefore x̃� ỹC ⊆
yC
≤1/2, x̃

D � yC ⊆ yC
≤1/2). Thus, (x̃ϕỹ) ⇒ (x̃ϕ(ỹ : ỹD)).

On L∼, one can define a relation E such that (x̃Eỹ) if x̃ = ỹ or x̃D = ỹ, orx̃ = ỹD.
The relation E on the split degree of the universal set is the equivalence relation.
Each equivalence class consists of a fuzzy subset and a corresponding dual subset.
If x̃ = x̃D, then the equivalence class consists of one element. Let us verify that E
is actually an equivalence relation. Reflexivity and symmetry are evident from the
above. Assume that (x̃Eỹ) and (ỹEz̃), and suppose that from the first follows x̃ =
ỹD; if (ỹEz̃) means that x̃ = z̃, then x̃ = z̃D (while x̃D = z̃); if ỹD = z̃ (or ỹ = z̃D),
then x̃ = z̃. Other cases are verified similarly. Thus {{(x̃Eỹ ) and {(ỹEz̃ )} ⇒{
x̃ = z̃, or x̃ = zD, or x̃D = z̃

}
⇒ {(x̃Ez̃)}, which proves the transitivity of E. �
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A subset of P∼(Ω), consisting of some element and the corresponding dual el-
ement will be called a dual pair. According to Proposition 3.7, if one element of
the dual pair is fuzzier than the element of the other dual pair, then any element
of the first pair is fuzzier than any element of the second pair. Therefore, it makes
sense to introduce a definition of the fuzziness of the dual pair.

Definition 3.9: Let Mbe the set of dual pairs with components from P∼(Ω). Let
us define on M relation Φ such that if for u∼ and v∼ ∈ M(u∼Φv∼), then (x̃ϕỹ)
∀x̃ ∈ u∼ and ∀ỹ ∈ v∼. If (u∼Φv∼), then we say that the dual pair u∼ is fuzzier
than the pair v∼.

Proposition 3.10: The relation Φon the set M of dual pairs, which components
belong to P∼(Ω), is a partial order.

Proof : We should show that Φ is reflexive, antisymmetric and transitive.

(1) Reflexivity means that (u∼Φu∼). Consider the element x̃ ∈ u∼, since (x̃ϕx̃),
then (u∼Φu∼).

(2) Transitivity means that (u∼Φv∼) and (v∼Φw∼) ⇒ (u∼Φw∼). (u∼Φv∼)
indicates that (x̃ϕỹ) ∀x̃ ∈ u∼ and ∀ỹ ∈ v∼; (v∼Φw∼) indicates that (ỹϕz̃)
∀ỹ ∈ v∼ and ∀z̃ ∈ w∼. Due to Proposition 3.4 (x̃ϕỹ)and(ỹϕz̃) ⇒ (x̃ϕz̃),
therefore, (u∼Φw∼) .

(3) Anti-symmetry means that (u∼Φv∼) and (v∼Φu∼) ⇒ u∼ = v∼. We have

(u∼Φv∼) ⇒ if x̃ ∈ u∼ and ỹ ∈ v∼, then (x̃ϕỹ),

(v∼Φu∼) ⇒ if x̃ ∈ u∼ and ỹ ∈ v∼, then (ỹϕx̃).
(12)

According to the Proposition 3.2 we have (x̃f ỹ) and (ỹf x̃), which means that
x̃ = ỹ or x̃ = ỹD [3, 4]; therefore u∼ = v∼.

Thus, based on the previously introduced [9] concept of a dual fuzzy set for any
fuzzy set, in this work we determined the relation “no less fuzzy than” and studied
the properties of this important relations. �

4. Conclusion

The article deals with the operation of splitting a crisp relation in the dual fuzzy
relations. The representations of some algebraic operations on split indicators are
also given. The lattice of split elements of the Boolean lattice L− is studied, where
it is proved that the lattice of all split elements of this lattice ĩ is a Brewer lattice.
A number of facts are given on the properties of this lattice. Splitting operation
of a crisp relation and set are defined, which is equivalent to splitting operation of
its indicator. The main properties of this operation are given, with some proofs.
The concept of the generalized degree of the universe is defined, which is the
lattice of the elements obtained by splitting all the subsets of the universe. A
simple example of MADM is presented for illustration of the application of splitting
operation. Future studies, aimed at multi-criteria decision-making problems, will
use the results presented in this article. It is also planned to generalize the splitting
operation from the fuzzy sets and relations of Zadeh for the dual q-rung orthopair
fuzzy sets and relations.
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