The Journal of Nonlinear Sciences and its Applications http://www.tjnsa.com

KANNAN FIXED POINT THEOREM ON GENERALIZED METRIC SPACES

AKBAR AZAM* AND MUHAMMAD ARSHAD

Communicated by Professor Ismat Beg

ABSTRACT. We obtain sufficient conditions for existence of unique fixed point of Kannan type mappings defined on a generalized metric space.

1. INTRODUCTION AND PRELIMINARIES

The fixed point theorem most frequently cited in literature is Banach contraction mapping principle (see [2]), which asserts that if X is a complete metric space and $T: X \to X$ is a contractive mapping i.e., there exists $\lambda \in [0, 1)$ such that for all $x, y \in X$,

$$d(Tx, Ty) \le \lambda d(x, y). \tag{1}$$

Then T has a unique fixed point. The contractive definition (1) implies that T is uniformly continuous. It is natural to ask if there is a contractive definition which do not force T to be continuous. It was answered in affirmative by Kannan [3], who established a fixed point theorem for mappings satisfying:

$$d(Tx, Ty) \le \lambda \left[d(x, Tx) + d(y, Ty) \right]$$
(2)

for all $x, y \in X$, where $\lambda \in [0, 1)$.

Kannan's paper [3] was followed by a spate of papers containing a variety of contractive definitions in metric spaces. Rhoades [4] considered 250 type of contractive definitions and analyzed the relationship among them.

Recently Branciari [1] introduced a class of generalized metric spaces by replacing triangular inequality by similar ones which involve four or more points instead

* Corresponding author.

Date: Received: 13 July 2008; Revised: 24 July 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47H10; Secondary 54H25.

Key words and phrases. Fixed point; contractive type mapping ; generalized metric space.

of three and improved Banach contraction mapping principle. In the present paper we continue this investigation for the mappings introduced by Kannan [3].

Definition 1.1. Let X be a nonempty set. Suppose that the mapping $d: X \times X \to \mathbb{R}$, satisfies:

- (1) $d(x,y) \ge 0$, for all $x, y \in X$ and d(x,y) = 0 if and only if x = y;
- (2) d(x,y) = d(y,x) for all $x, y \in X$;
- (3) $d(x,y) \leq d(x,w) + d(w,z) + d(z,y)$ for all $x,y \in X$ and for all distinct points $w, z \in X \{x, y\}$ [rectangular property].

Then d is called a generalized metric and (X, d) is a generalized metric space. Let x_n be a sequence in X and $x \in X$. If for every $\epsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that $d(x_n, x) < \epsilon$, for all $n > n_0$ then $\{x_n\}$ is said to be convergent, $\{x_n\}$ converges to x and x is the limit of $\{x_n\}$. We denote this by $\lim_n x_n = x$, or $x_n \longrightarrow x$, as $n \rightarrow \infty$. If for every $\epsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that $d(x_n, x_{n+m}) < \epsilon$ for all $n > n_0$, then $\{x_n\}$ is called a *Cauchy sequence* in X. If every Cauchy sequence is convergent in X, then X is called a *complete generalized metric space*.

Let us remark [1] that

- (i) $d(a_n, y) \to d(a, y)$ and $d(x, a_n) \to d(x, a)$ whenever a_n is a sequence in X with $a_n \to a \in X$
- (ii) X becomes a Hausdorff topological space with neighborhood basis given by:

$$B = \{ B(x, r) : x \in X, r \in (0, \infty) \},\$$

where,

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

Example 1.2. [1] Let $X = \mathbb{R}$ and $0 \neq \alpha \in \mathbb{R}$. Define $d: X \times X \to \mathbb{R}$ as follow:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 3\alpha & \text{if } x \text{ and } y \text{ are in } \{1,2\}, x \neq y. \\ \alpha & \text{if } x \text{ and } y \text{ can not both at a time in } \{1,2\}, x \neq y. \end{cases}$$

Then it is easy to see that (X, d) is a generalized metric space but (X, d) is not a standard metric space because it lacks the triangular property:

$$3\alpha = d(1,2) > d(1,3) + d(3,2) = \alpha + \alpha.$$

2. Main Result

Theorem 2.1. Let (X, d) be a complete generalized metric space, and the mapping $T: X \to X$ satisfies (2). Then T has a unique fixed point.

Proof. Let x_0 be an arbitrary point in X. Let $x_1 = T(x_0)$, If $x_1 = x_0$ then $x_0 = T(x_0)$ this means x_0 is a fixed point of T and there is nothing to prove. Assume that $x_1 \neq x_0$, let $x_2 = T(x_1)$. In this way we can define a sequence of points in X as follows:

$$x_{n+1} = Tx_n = T^{n+1}x_0, x_n \neq x_{n+1} \ n = 0, 1, 2, \dots$$

Using the inequality (2), we have

$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \\ \leq \lambda [d(x_{n-1}, Tx_{n-1}) + d(x_n, Tx_n)] \\ \leq \lambda [d(x_{n-1}, x_n) + d(x_n, x_{n+1})] \\ \leq \frac{\lambda}{1 - \lambda} d(x_{n-1}, x_n).$$

We can also suppose that x_0 is not a periodic point, in fact if $x_n = x_0$, then,

$$d(x_0, Tx_0) = d(x_n, Tx_n) = d(T^n x_0, T^{n+1} x_0) \le \frac{\lambda}{1-\lambda} d(T^{n-1} x_0, T^n x_0)$$
$$\le \left[\frac{\lambda}{1-\lambda}\right]^2 d(T^{n-2} x_0, T^{n-1} x_0) \le \dots \le \left[\frac{\lambda}{1-\lambda}\right]^n d(x_0, Tx_0).$$

Put $h = \left[\frac{\lambda}{1-\lambda}\right]$, then h < 1 and

$$[1 - h^n] \ d(x_0, Tx_0) \le 0.$$

It follows that x_0 is a fixed point of *T*. Thus in the sequel of proof we can suppose $T^n x_0 \neq x_0$ for n = 1, 2, 3, ... Now inequality (2) implies that

$$d(T^{n}x_{0}, T^{n+m}x_{0}) \leq \lambda \left[d(T^{n-1}x_{0}, T^{n}x_{0}) + d(T^{n+m-1}x_{0}, T^{n+m}x_{0}) \right].$$

$$\lambda \left[h^{n-1}d(x_{0}, Tx_{0}) + h^{n+m-1}d(x_{0}, Tx_{0}) \right].$$

Therefore, $d(x_n, x_{n+m}) \to 0$ as $n \to \infty$. It implies that $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there exists a $u \in X$ such that $x_n \to u$. By rectangular property we have

$$\begin{aligned} d(Tu,u) &\leq d(Tu,T^{n}x_{0}) + d(T^{n}x_{0},T^{n+1}x_{0}) + d(T^{n+1}x_{0},u) \\ &\leq \lambda \left[d(u,Tu) + d(T^{n-1}x_{0},T^{n}x_{0}) \right] + h^{n}d(x_{0},Tx_{0}) + d(T^{n+1}x_{0},u) \\ &\leq hd(T^{n-1}x_{0},T^{n}x_{0}) + \frac{h^{n}}{1-\lambda}d(x_{0},Tx_{0}) + \frac{1}{1-\lambda}d(T^{n+1}x_{0},u) \\ &\leq h^{n}d(x_{0},Tx_{0}) + \frac{h^{n}}{1-\lambda}d(x_{0},Tx_{0}) + \frac{1}{1-\lambda}d(T^{n+1}x_{0},u). \end{aligned}$$

Letting $n \to \infty$ and using the fact that, $d(a_n, y) \to d(a, y)$ and $d(x, a_n) \to d(x, a)$ whenever a_n is a sequence in X with $a_n \to a \in X$, we have u = Tu. Now we show that T has a unique fixed point. For this, assume that there exists another point v in X such that v = Tv. Now,

$$\begin{aligned} d(v,u) &= d(Tv,Tu) \\ &\leq \lambda \ d(v,Tv) + d(u,Tu) \\ &\leq \lambda \ d(v,v) + d(u,u) = 0. \end{aligned}$$

Hence, u = v.

Example 2.2. Let $X = \{1, 2, 3, 4\}$. Define $d : X \times X \to \mathbb{R}$ as follows:

$$\begin{array}{rcl} d(1,2) &=& d(2,1)=3\\ d(2,3) &=& d(3,2)=d(1,3)=d(3,1)=1\\ d(1,4) &=& d(4,1)=d(2,4)=d(4,2)=d(3,4)=d(4,3)=4. \end{array}$$

Then (X, d) is a complete generalized metric space but (X, d) is not a metric space because it lacks the triangular property:

$$3 = d(1,2) > d(1,3) + d(3,2) = 1 + 1 = 2$$

Now define a mapping $T: X \to X$ as follows:

$$Tx = \begin{cases} 3 & if \ x \neq 4, \\ 1 & if \ x = 4. \end{cases}$$

Note that

$$d(T(1), T(2)) = d(T(1), T(3)) = d(T(2), T(3)) = 0$$

and in all other cases

$$d(Tx, Ty) = 1, \ [d(x, Tx) + d(y, Ty)] \ge 4.$$

Hence, for $\lambda = \frac{1}{3}$, all conditions of Theorem 3 are satisfied to obtain a unique fixed point 3 of T.

References

- A. Branciari , A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 1-2(2000), 31-37. 1, 1, 1.2
- [2] K. Goebel and W.A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge 1990 1
- [3] R. Kannan, Some results on fixed points, Bull. Calcutta. Math.Soc., 60(1968),71-76. 1, 1
- B.E. Rhoads, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 26(1977), 257-290.

DEPARTMENT OF MATHEMATICS, F.G. POSTGRADUATE COLLEGE, ISLAMABAD, PAKISTAN

DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC AND APPLIED SCIENCES, INTERNA-TIONAL ISLAMIC UNIVERSITY, ISLAMABAD, PAKISTAN

¹