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NONTRIVIAL SOLUTIONS OF SINGULAR SECOND ORDER
THERE-POINT BOUNDARY VALUE PROBLEM AT

RESONANCE

XIAORONG WU1 AND FENG WANG2∗

Abstract. The singular second order three-point boundary value problem at
resonance {

x′′(t) = f(t, x(t)), 0 < t < 1,
x′(0) = 0, x(η) = x(1),

are considered under some conditions concerning the first eigenvalues corre-
sponding to the relevant linear operators, where η ∈ (0, 1) is a constant, f
is allowed to be singular at both t = 0 and t = 1. The existence results of
nontrivial solutions are given by means of the topological degree theory.

1. Introduction

This paper is concerned with the existence of at least one nontrivial solution
for the nonlinear singular second order three-point boundary value problem at
resonance {

x′′(t) = f(t, x(t)), 0 < t < 1,
x′(0) = 0, x(η) = x(1),

(1.1)

where η ∈ (0, 1) is a constant, f is allowed to be singular at both t = 0 and t = 1.
The problem (1.1) happens to be at resonance in the sense that the associated
linear homogeneous boundary value problem{

x′′(t) = 0, 0 < t < 1,
x′(0) = 0, x(η) = x(1),

has x(t) = c, c ∈ R as a nontrivial solution.
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Multi-point boundary value problem of second order differential equations have
been studied intensively and the resonance cases have received more attention
[1]–[6]. Recently, Ma [2] developed the method of upper and lower solutions for
nonlinear three-point boundary value problem at resonance and established some
multiplicity results. Bai [3] generalized the existence results to the four-point
boundary value problem at resonance by using coincidence degree theory due
to Mawhin [7]. Very recently, the existence of positive or nonnegative solutions
for multi-point BVP has been studied by several authors, see for example [4]–[6]
and the references therein. However, few results are available for the existence of
nontrivial solutions for singular multi-point boundary value problem at resonance.
Motivated by [4], we establish the existence results of nontrivial solutions for the
singular boundary value problem (1.1) at resonance by means of the topological
degree theory under some conditions concerning the first eigenvalue corresponding
to the relevant linear operator. The eigenvalue criteria of this sort for nonlinear
two-point boundary value problem is established in [8]. For the concepts and
properties about the cone theory and the topological degree we refer to [9]–[11].

2. PRELIMINARIES

In this section, we shall give some preliminaries. In the Banach space C[0, 1]
in which the norm is defined by ‖x‖ = max

0≤t≤1
|x(t)|. We set

P = {x ∈ C[0, 1] | x(t) ≥ 0, t ∈ [0, 1]}.

P is a positive cone in C[0, 1]. Throughout this section, the partial ordering is
always given by P . We denote by Br = {x ∈ C[0, 1] | ‖x‖ < r}(r > 0) the open
ball of radius r.

Define g(t, x) = f(t, x)+β2x. For convenience, we make the following assump-
tions:

(H1) β ∈ (0, π
2
) is a constant.

(H2) f : (0, 1)× (−∞, +∞) → (−∞, +∞) is continuous and

h1(t)g1(x) ≤ g(t, x) ≤ h2(t)g2(x), (t, x) ∈ (0, 1)× (−∞, +∞),

where h1(t), h2(t) ∈ C((0, 1), [0, +∞)), g1(x), g2(x) ∈ C((−∞, +∞), (−∞, +∞)),
and h1(t) 6≡ 0, h2(t) 6≡ 0, t ∈ (0, 1).

(H3)

∫ 1

0

h2(t)dt < +∞.

It is known (see [4] ) that BVP (1.1) is equivalent to the problem{
x′′(t) + β2x(t) = g(t, x(t)), 0 < t < 1,
x′(0) = 0, x(η) = x(1),

As is well known, the singular nonlinear boundary value problem (1.1) can be
converted into the equivalent Hammerstein nonlinear integral equation

x(t) =

∫ 1

0

G(t, s)g(s, x(s))ds, t ∈ [0, 1],
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where G(t, s)(see [4]) is defined by

G(t, s) =

{
1
β

sin β(t− s), 0 ≤ s ≤ t ≤ 1,

0, 0 ≤ t ≤ s ≤ 1,

+ cos βt

β sin
β(η+1)

2

{
cos β(2s−η−1)

2
, 0 ≤ s ≤ η < 1,

sin β(1−s)

2 sin
β(1−η)

2

, 0 < η ≤ s ≤ 1.

Obviously, for any t, s ∈ [0, 1], we have G(t, s) ≥ 0 by (H1).
Let

(Ax)(t) =

∫ 1

0

G(t, s)g(s, x(s))ds, t ∈ [0, 1].

(T1x)(t) =

∫ 1

0

G(t, s)h1(s)x(s)ds, t ∈ [0, 1]. (2.1)

(T2x)(t) =

∫ 1

0

G(t, s)h2(s)x(s)ds, t ∈ [0, 1]. (2.2)

By the method similar to that in [8], we have

Lemma 2.1. Suppose that (H1)− (H3) are satisfied, then A : C[0, 1] → C[0, 1]
is a completely continuous operator, T1, T2 : C[0, 1] → C[0, 1] are completely
continuous linear operators and T1, T2 : P → P .

It is not difficult to verify that the nonzero fixed points of the operator A are
nontrivial solutions of singular boundary value problem (1.1).

Lemma 2.2. Suppose that the conditions (H1), (H2) are satisfied, then for the
operators T1, T2 defined by (2.1),(2.2), the spectral radius r(T1), r(T2) 6= 0 and
T1, T2 have the positive eigenfunctions corresponding to their first eigenvalue λ1 =

(r(T1))
−1, λ̃1 = (r(T2))

−1 respectively.

We also need the following lemmas in [9].

Lemma 2.3. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E, and A : P ∩ Ω → P a completely continuous operator. Assume that there
exists a u0 ∈ P, u0 6= θ such that

x− Ax 6= µu0,

for all x ∈ P ∩ ∂Ω and µ ≥ 0, then the fixed point index

i(A, P ∩ Ω, P ) = 0.

Lemma 2.4. Let P be a cone in a real Banach space E, Ω a bounded open subset
of E with θ ∈ Ω, and A : P ∩ Ω → P a completely continuous operator. If

Ax 6= µx,

for all x ∈ P ∩ ∂Ω and µ ≥ 1, then the fixed point index

i(A, P ∩ Ω, P ) = 1.
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3. Main results

Theorem 3.1. Suppose that the conditions (H1) − (H3) are satisfied. If there
exists a constant b ≥ 0 such that

f(t, x) ≥ −β2x− b, ∀ t ∈ [0, 1], x ∈ R, (3.1)

lim inf
x→0

g1(x)

|x|
> λ1, (3.2)

lim sup
x→+∞

g2(x)

x
< λ̃1, (3.3)

where λ1, λ̃1 are the first eigenvalue of T1 and T2 respectively. Then the singular
boundary value problem (1.1) has at least one nontrivial solution.

Proof. It follows from (3.2) that there exists r1 > 0 such that

g1(x) ≥ λ1|x|, ∀ |x| ≤ r1. (3.4)

For every x ∈ Br1 , we have from (3.4) that

(Ax)(t) ≥ λ1

∫ 1

0

G(t, s)h1(s)|x(s)|ds ≥ 0, t ∈ [0, 1],

and thus A(Br1) ⊂ P. For any x ∈ ∂Br1 ∩ P , it follows from (3.4) that

(Ax)(t) ≥ λ1

∫ 1

0

G(t, s)h1(s)x(s)ds = λ1(T1x)(t), t ∈ [0, 1],

We may suppose that A has no fixed point on ∂Br1 (otherwise, the proof
completes). Let x∗ be the positive eigenfunction of T corresponding to λ1, thus
x∗ = λ1Tx∗. As in [8] we can prove that x− Ax 6= τx∗, ∀ x ∈ ∂Br1 ∩ P, τ ≥ 0.
Since A(Br1) ⊂ P , we have from the permanence property of fixed point index
and Lemma 2.3 that

deg(I − A, Br1 , θ) = i(A, Br1 ∩ P, P ) = 0, (3.5)

where deg denotes the topological degree.

Letting x̃(t) = b

∫ 1

0

G(t, s)ds. Obviously, x̃ ∈ P . It is easy to see from (3.1)

that A : C[0, 1] → P − x̃. Define Ãx = A(x − x̃) + x̃, x ∈ C[0, 1], then Ã :
C[0, 1] → P .

It follows from (3.3) that there exist r2 > r1 + ‖x̃‖ and 0 < σ < 1 such that

g2(x) ≤ σλ̃1x, t ∈ [0, 1], x ≥ r2. (3.6)

Let T̃2x = σλ̃1T2x, x ∈ C[0, 1]. Then T̃2 : C[0, 1] → C[0, 1] is a bounded linear

operator and T̃2(P ) ⊂ P . Let

M = 2 max
{

sup
x∈Br2

∫ 1

0

G(s, s)h2(s)|g2(x(s))|ds, 2‖x̃‖
}

. (3.7)



SINGULAR SECOND ORDER THERE-POINT BOUNDARY VALUE PROBLEM 53

It is clear that M < +∞. Let

W =
{

x ∈ P |x = µÃx, 0 ≤ µ ≤ 1
}

.

In the following, we prove that W is bounded.
For any x ∈ W, set ỹ(x) = min{x(t)− x̃(t), r2} and denote

e(x) = {t ∈ [0, 1]|x(t)− x̃(t) > r2}.
When x(t) − x̃(t) < 0, ỹ(t) = x(t) − x̃(t) ≥ x(t) − r2 ≥ −r2, and so ‖ỹ‖ ≤ r2.
Thus for x ∈ W , we have from (3.6)

x(t) = µ(Ãx)(t) ≤
∫ 1

0

G(t, s)h2(s)g2(x(s)− x̃(s))ds + x̃(t)

=

∫
e(x)

G(t, s)h2(s)g2(x(s)− x̃(s))ds

+

∫
[0,1]\e(x)

G(t, s)h2(s)g2(x(s)− x̃(s))ds + x̃(t)

≤ σλ̃1

∫ 1

0

G(t, s)h2(s)x(s)ds +

∫ 1

0

G(t, s)h2(s)g2(ỹ(s))ds + 2x̃(t)

≤ σλ̃1

∫ 1

0

G(t, s)h2(s)x(s)ds + M = (T̃2x)(t) + M,

where M is defined as (3.7). Thus ((I − T̃2)x)(t) ≤ M, t ∈ [0, 1]. As in [8] we

can prove that the inverse operator (I − T̃2)
−1 exists and

(I − T̃2)
−1 = I + T̃2 + T̃2

2
+ · · ·+ T̃2

n
+ · · · .

It follows from T̃2(P ) ⊂ P that (I − T̃2)
−1(P ) ⊂ P . So we have x(t) ≤ (I −

T̃2)
−1M, t ∈ [0, 1] and W is bounded.

Select r3 > max{r2, sup W + ‖x̃‖} and thus Ã has no fixed point on ∂Br3 . In

fact, if there exists x2 ∈ ∂Br3 such that Ãx2 = x2, then x2 ∈ W and ‖x2‖ = r3 >
sup W , which is a contradiction. Then we have from the permanence property
and the homotopy invariance property of fixed point index that

deg(I − Ã, Br3 , θ) = i(Ã, Br3 ∩ P, P ) = i(θ,Br3 ∩ P, P ) = 1. (3.8)

Set the completely continuous homotopy H(λ, x) = A(x − λx̃) + λx̃, (λ, x) ∈
[0, 1]×Br3 . If there exists (λ0, x3) ∈ [0, 1]× ∂Br3 such that H(λ0, x3) = x3, then

A(x3−λ0x̃) = x3−λ0x̃ and Ã(x3−λ0x̃+x̃) = x3−λ0x̃+x̃. Thus x3−λ0x̃+x̃ ∈ W
and

‖x3 − λ0x̃ + x̃‖ ≥ ‖x3‖ − (1− λ0)‖x̃‖ ≥ r3 − ‖x̃‖ > sup W,

a contradiction! From the homotopy invariance of topological degree and (3.8)
we have

deg(I − A, Br3 , θ) = deg(I −H(0, ·), Br3 , θ)

= deg(I −H(1, ·), Br3 , θ) = deg(I − Ã, Br3 , θ) = 1.
(3.9)

By (3.5) and (3.9) we have that

deg(I − A, Br3\Br1 , θ) = deg(I − A, Br3 , θ)− deg(I − A, Br1 , θ) = 1,
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which implies that A has at least one fixed point on Br3\Br1 . This means that
the singular nonlinear boundary value problem (1.1) has at least one nontrivial
solution. �

Corollary 3.2. Suppose that the conditions (H1) − (H3) are satisfied. If there
exists a constant b∗ ≥ 0 such that

f(t, x) ≥ −β2x− b∗

M̃
, ∀ t ∈ [0, 1], x ≥ −b∗,

where M̃ = max
t∈[0,1]

∫ 1

0

G(t, s)ds and in addition, (3.2) and (3.3) hold, then the

singular boundary value problem (1.1) has at least one nontrivial solution.

Proof. Denote

g1(t, x) =

{
f(t, x) + β2x, t ∈ [0, 1], x ≥ −b∗,
f(t,−b∗) + β2x, t ∈ [0, 1], x < −b∗.

(3.10)

Define

(A1x)(t) =

∫ 1

0

G(t, s)g1(s, x(s))ds, t ∈ [0, 1].

By Theorem 3.1 we know that A1 has at least one nontrivial fixed point x̃. Then

x̃(t) =

∫ 1

0

G(t, s)g1(s, x̃(s))ds ≥ − b∗

M̃

∫ 1

0

G(t, s)ds ≥ −b∗.

From (3.10) we have that g1(t, x̃(t)) = g(t, x̃(t)), t ∈ [0, 1], then

x̃(t) =

∫ 1

0

G(t, s)g1(s, x̃(s))ds =

∫ 1

0

G(t, s)g(s, x̃(s))ds.

Thus x̃ is the nontrivial solution of singular boundary value problem (1.1). �

Remark 3.3. In Theorem 3.1 and Corollary 3.2, we do not assume that g(t, x) ≥ 0
for x ≥ 0. And it is difficult to obtain those theorems using the theory of fixed
point index on a cone. In order to obtain the existence of nontrivial solution, we
make use of topological degree theory which is not confined in a cone.
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