WHEN IS A QUASI-P-PROJECTIVE MODULE DISCRETE?

Y. TALEBI ${ }^{1 *}$ AND I. KHALILI GORJI ${ }^{2}$

Abstract

It is well-known that every quasi-projective module has D_{2}-condition. In this note it is shown that for a quasi-p-projective module M which is selfgenerator, duo, then M is discrete.

1. Introduction and preliminaries

Throughout, R is an associative ring with identity and right R-modules are unitary. Let M be a right R-module. A module N is called M-generated if there is an epimorphism $M^{(I)} \longrightarrow N$ for some index set I. In particular, N is called M-cyclic if it is isomorphism to M / L for submodule $L \subseteq M$. Following [3] a module M is called self-generate if it generates all its submodules. For standard notation and terminologies, we refer to [4], [3].

Let M be a right R-module. A right R-module N is called M - p-projective if every homomorphism from N to an M-cyclic submodule of M can be lifted to an R-homomorphism from N to M. A right R-module M is called quasi-p-projective , if it is M-p-projective. A submodule A of M is said to be a small submodule of M (denoted by $A \ll M)$ if for any $B \subseteq M, A+B=M$ implies $B=M$. A module M is called hollow if every its submodule is small.

In [2], S.Chotchaisthit showed that a quasi-p-injective module M is continouse, if M is duo and semiprefect. Here we study, when a quasi-p-projective module is discrete.

Consider the following conditions for a module M which have studied in [3] :
D_{1} : For every submodules N of M there exist submodules K, L of M such that $M=K \oplus L$ and $K \leq N$ and $N \cap L \ll L$.

[^0]D_{2} : If N is a submodule of M such that M / N is isomorphism to a direct summand of M, then N is a direct summand of M.
D_{3} : For every direct summands K, L of M with $M=K+L, K \cap L$ is a direct summand of M.

If the module M satisfies D_{1} and D_{2} then it is called a discrete module.
It is clear that if M is hollow, then it has D_{1} and D_{2} conditions, since hollow module is indecomposition.

2. Main Results

Recall that a submodule N of M is called a fully invariant submodule if $s(N) \subseteq N$, for any endomorphism s of M. A right R-module is called a duo module if every submudole is fully invariant. A ring R is right duo if every right ideal is two sided. The proof of the following Lemma is routine.
Lemma 2.1. Let M be a duo right R-module and A its direct summand. Then:
(1) A is itself a duo module;
(2) If M is a self-generator, then A is also a self- generator.

Proof. (1) Let $f \in \operatorname{End}(A), \pi: M \rightarrow A, i: A \rightarrow M$ be the projection and inclusion maps. Then $g=i f \pi \in \operatorname{End}(M)$. It follows that for any submodule X of $A, f(X)=g(X) \subset X$, proving our Lemma.
(2) Let $M=A \oplus B$. Then $f(M)=f(A)+f(B)$ for any $f \in \operatorname{End}(M)$. Let X be a submodule of A. Since M is a self-generator, we can write $X=\sum_{f \in I} f(M)=$ $\sum_{f \in I}(f(A)+f(B))$, for some subset I of $\operatorname{End}(M)$. Since $f(B) \subset B$, it follows that $f(B)=0$ for all $f \in I$. Hence $X=\sum_{f \in I} f(A)$. Moreover, f can be considered as an endomorphism of A, since $f(A) \subset A$. This shows that A is a self-generator.
Lemma 2.2. Let M be a quasi-p-projective. If $S=\operatorname{End}\left(M_{R}\right)$ is local, then for any non-traivial fully invariant M-cyclic submodules A and B of $M, A+B \neq M$.
Proof. let $0 \neq s(M)=A$ and $0 \neq t(M)=B, s, t \in S$ and $A+B=M$. Difine the map $f: M=(s+t)(M) \rightarrow M /(A \cap B)$ such that $f(s+t)(m)=s(m)+(A \cap B)$. For any $m, m^{\prime} \in M,(s+t)(m)=(s+t)\left(m^{\prime}\right)$ implies $s\left(m-m^{\prime}\right)=t\left(m^{\prime}-m\right) \in A \cap B$. So $s(m)+(A \cap B)=s\left(m^{\prime}\right)+(A \cap B)$. Clearly f is an R-homomorphism. By quasi-pprojective, there exist $g \in S$ such that $\pi \circ g=f$ and $\pi: M \rightarrow M /(A \cap B)$ is natural epimorphism. It follows $\pi \circ g(s+t))(m)=\pi(s(m))$. Then $((1-g) \circ s-g \circ t)(M) \subseteq$ $(A \cap B)$. Since S is local, g or $1-g$ is invertible. If $1-g$ be invertible we have $\left(s-(1-g)^{-1} \circ g \circ t\right)(M) \subseteq(A \cap B) . A \subseteq\left(s-(1-g)^{-1} \circ g \circ t\right)(M) \subseteq(1-g)^{-1}(A \cap B) \subseteq$ $(A \cap B)$. Then $A \subseteq(A \cap B)$, that is contradiction. If g be invertible we have $B \subseteq\left(g^{-1} \circ(1-g) \circ s-t\right) \subseteq g^{-1}(A \cap B) \subseteq(A \cap B)$. Then $B \subseteq(A \cap B)$, that is contradiction.
Corollary 2.3. If M is qasi-p-projective duo module which is a self-generator with local endomorphism ring, then M is hollow, hence it is discrete.
Proof. It is clear by Lemma 2.2
Lemma 2.4. Let $M=\oplus_{i \in I} B_{i}$ be duo module. Then for any submodule A of M we have $A=\oplus_{i \in I}\left(A \cap B_{i}\right)$.

Proof. See [1].
Corollary 2.5. Let M be a duo module. If A and B are direct summands of M, then so $A \cap B$.

Proof. Let $M=A \oplus A_{1}=B \oplus B_{1}$, then by lemma $2.4 B=B \cap\left(A \oplus A_{1}=\right.$ $(A \cap B) \oplus\left(B \cap A_{1}\right)$. hence $M=(A \cap B) \oplus\left(B \cap A_{1}\right) \oplus B_{1}$. So $A \cap B$ is a direct summand of M.

Theorem 2.6. Let $M=\oplus_{i \in I} M_{i}$ be qusi-p-projective module where each M_{i} is hollow. If M is duo module, $\operatorname{Rad}(M) \ll M$ then M is discrete.

Proof. By Lemma 2.4 every submodule A of M can be written in the form $A=$ $\oplus_{j \in J}\left(A \cap M_{j}\right)$ where $J \subseteq I$ and $A \cap M_{j} \neq 0$. Since $A \cap M_{j}$ is small in M_{j} we see that A is small in M. Thus we have proved.

Theorem 2.7. Suppose that M is semisimple quasi-p-projective duo module and $\operatorname{Rad}(M) \ll M$. If M is self-generator, then M is discrete.

Proof. We have $M=\oplus_{i \in I} M_{i}$ such that M_{i} is simple, then $\operatorname{End}\left(M_{i}\right)$ is local. By Lemma 2.1 each M_{i} is duo and self-generator. Since any direct summand of a quasi-p-projective is again quasi-p-projective, it follows from Corollary 2.3 that each M_{i} is discrete. From Theorem 2.6 that M is discrete, proving our Theorem.

Acknowledgements. This research partially is supported by the "research center in Algebraic Hyperstructure and Fuzzy Mathematics University of Mazandaran, Babolsar, Iran".

References

1. G. F. Birkenmeier, B. J. Muller and S. T. Rizvi, Modules in which Every Fully Invariant submodule is Essential in a Fully Invariant Direct Summand, Comm. Algebra, 30 (2002) 1833-1852. 2
2. S. Chotchaisthit, When is a Quasi-p-injective Module Continuous?, Southest Asian Bulletin of Mathematics 26 (2002) 391-394. 1
3. S. M. Mohamed, and B. J. Muller, Continuous and Discrete Modules, London Math, Soc, Lecture Notes Series 147, Cambridge, University Press, (1990). 1
4. R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia,(1991). 1
${ }^{1}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran.
E-mail address: talebi@umz.ac.ir

[^0]: Date: Received: 27 September 2008.

 * Corresponding author.

 2000 Mathematics Subject Classification. Primary 16D40; Secondary 16D60, 16D90.
 Key words and phrases. Supplemented Module, H-Supplemented Module, Lifting Module.

