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IMPULSIVE STABILIZATION OF CELLULAR NEURAL
NETWORKS WITH TIME DELAY VIA LYAPUNOV

FUNCTIONALS

QING WANG1 AND XINZHI LIU2∗

Abstract. This paper investigates the problem of global exponential stability
for a class of impulsive cellular neural networks with time delay. By employing
Lyapunov functionals, some sufficient conditions for exponential stability are
established. Our results show that unstable cellular neural networks with time
delay may be stabilized by impulses, where the upper bound of the amplitudes
of the impulses is given. Numerical simulations on two examples are given to
illustrate our results.

1. Introduction

Cellular neural networks, introduced by Chua and Yang [8], have been exten-

sively investigated recently due to their important applications in such fields as

image processing, pattern recognition and quadratic optimization. Time delays

seem inevitable in the signal transmission among neurons and may affect the

performance of the neural system. As a consequence, delayed cellular neural

networks have attracted the attention of many scientists and there has been a

considerable number of research work on the cellular neural networks with time
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delay, see [2, 4, 9, 11] for example. Those delayed cellular neural networks mod-

els have found potential applications in various types of motion-related processes

such as processing of moving images, pattern classification, moving objects speed

detection, quadratic optimization, robotics and control, see [5, 6, 14, 15]. Besides

delay effect, many evolutionary processes in areas such as biology, electronics,

mechanics, economics and telecommunications undergo abrupt state changes at

certain moments of time due to impulsive inputs. Such systems are described by

impulsive differential equations, which have been successfully introduced to the

modelling of neural networks([1, 10, 19, 21]).

Many stability criteria for delayed cellular neural networks without impulses

have been obtained in [2, 9, 11, 20], [4]-[7], [13]-[17], where many methods such as

Lyapunov method, linear matrix inequality (LMI), M -matrix, Razumkhin tech-

nique and differential inequalities have been used. In the work mentioned above,

the global exponential stability of the equilibrium point is one of the most inves-

tigated problems of cellular neural networks. If an equilibrium of a cellular neural

network is globally exponentially stable, it means that the domain of attraction

of the equilibrium point is the whole space which in turn implies that this equi-

librium point is unique and all other solutions converge to it very quickly. This

is of importance from both theoretical and practical point of view. Such cellu-

lar neural networks are known to be well-suited for solving some optimization

problems. For example, a globally exponentially stable cellular neural network is

guaranteed to compute the global optimal solution independently of the initial

condition and hence is devoid of spurious suboptimal response.

On the other hand, there is much less work done for stability investigation of

impulsive cellular neural networks with time delay. Recently many interesting

results have been obtained for dealing with the effect of impulses on the stability

properties of the delayed Cellular neural networks. In earlier works, in order to

keep the good stability properties of the neural networks without impulses, the

amplitudes of impulses are assumed to be bounded by those of solutions right

before the impulse moments (see [1] for example), then in [19], the assumption

on the amplitudes of impulses are relaxed a bit to be bound by those of some

series with bounds not less than those of the solutions right before the impulse

moments, and in [21], the amplitudes of impulses can even be unbounded. Nev-

ertheless, there has been very few work devoted to the impulsive stabilization of

the cellular neural networks with time delay. The objective of this paper is to

develop some results in this regard. We shall use the method of Lyapunov func-

tionals to establish exponential stability criteria for a class of impulsive delayed

cellular neural networks utilizing the ideas developed in [12, 18, 19]. Our results
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show that impulses may be used to stabilize the cellular neural networks with

time delay if they are not stable. Two examples with computer simulations are

also given to illustrate our results.

2. Preliminaries

Let R denote the set of real numbers, R+ the set of nonnegative real numbers

and Rn the n-dimensional real space equipped with the norm ||x|| = (
∑n

i=1 |xi|p)
1
p

with x = (x1, x2, · · · , xn)T and p = 1 or 2. Let N∗ denote the set of posi-

tive integers, i.e., N∗ = {1, 2, · · · }. Denote ψ(t+) = lims→t+ ψ(s) and ψ(t−) =

lims→t− ψ(s). For a, b ∈ R with a < b and for S ⊂ Rn, we define

PC([a, b], S) =

{
ψ : [a, b] → S

∣∣∣∣ψ(t) = ψ(t+),∀t ∈ [a, b); ψ(t−) exists in S, ∀t

∈ (a, b], and ψ(t−) = ψ(t) for all but at most a finite number

of points t ∈ (a, b]

}
.

Given a constant τ > 0, we equip the linear space PC([−τ, 0],Rn) with the

norm ‖ · ‖τ defined by ‖ψ‖τ = sup−τ≤s≤0 ‖ψ(s)‖.

Consider the impulsive delayed cellular neural networks described by the fol-

lowing impulsive delay differential equations




dui(t)
dt

= −ciui(t) +
∑n

j=1 aijfj(uj(t)) +
∑n

j=1 bijfj(uj(t− τj))

+Ji, t ∈ [tk−1, tk),

∆ui(tk) = Iik(ui(t
−
k )), k ∈ N∗,

uit0 = ψi, i = 1, 2, · · · , n.

(2.1)

where ui(·) is the state representing the membrane potential of the ith unit; Ji is

a constant denoting the external bias or input from outside the network to the ith

unit; aij, bij are constants; where τi, bounded by τ , are constants denoting the

transmission delay; n corresponds to the number of units in a neural network;

fi : PC([−τ, 0],R) → R is the activation function satisfying

|fi(ui)| ≤ Ni, ∀ ui ∈ R, (2.2)

0 ≤ fi(ui)−fi(vi)
ui−vi

≤ Li, ∀ui 6= vi, ui, vi ∈ R, i = 1, 2, · · · , n. (2.3)

And φi ∈ PC([−τ, 0],R) is the initial function; Iik ∈ PC([−τ, 0],R) represents

the effects of impulsive control or perturbation; tk is impulsive moment and 0 ≤
t0 < t1 < t2 < · · · < tk < · · · , with tk →∞ as k →∞; ∆ui(t) = ui(t

+)− ui(t
−);

and uit, uit− ∈ PC([−τ, 0],R) are defined by uit(s) = ui(t+s), uit−(s) = ui(t
−+s)

for −τ ≤ s ≤ 0, respectively.



CELLULAR NEURAL NETWORKS WITH TIME DELAY 75

From [3], we know that the system (2.1) without impulses(or Iik(s) = s for any

s ∈ R) has at least one equilibrium point if conditions (2.2) and (2.3) hold. Denote

one of the equilibrium points by u∗ = [u∗1, u
∗
2, · · · , u∗n]T , we shall investigate the

global exponential stability of this equilibrium point u∗. The concept of global

exponential stability is defined as follows.

Definition 2.1. An equilibrium u∗ of system (2.1) is said to be globally exponen-

tially stable, if for any initial data ut0 = φ ∈ PC([−τ, 0],Rn), there exist some

M, α > 0 such that

‖u(t, t0, φ)− u∗‖ ≤ M‖φ− u∗‖τe
−α(t−t0), for all t ≥ t0, (2.4)

where t0 ∈ R+.

Define xi(·) = ui(·)− u∗i and then system (2.1) can be simplified as




dxi(t)
dt

= −cixi(t) +
∑n

j=1 aijfj(xj(t)) +
∑n

j=1 bijfj(xj(t− τj)),

t ≥ t0, t 6= tk,

∆xi(tk) = Iik(xi(t
−
k ) + u∗i ), k ∈ N∗

xit0 = φi − u∗i , i = 1, 2, · · · , n,

(2.5)

where fj(xj(·)) = fj(xj(·)+u∗j)−fj(u
∗
j). Assume Iik(u

∗
i ) = 0 so that system (2.5)

admits the trivial solution. So the stability problem of the equilibrium point u∗

of system (2.1) is equivalent to the stability problem of the trivial solution of

system (2.5).

3. Main results

In this section, we shall discuss the global exponential stability for the equilib-

rium point u∗ of system (2.1).

Theorem 3.1. Assume that there exist constants l, α, d > 0 such that τ ≤
tk − tk−1 ≤ l, |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R and i = 1, 2, · · · , n with

ln(d + λτ) ≤ −(α + c)l,

where c = max1≤i≤n{−ci +
∑n

j=1(|aji| + |bji|)Li} > 0, and λ = max1≤j≤n{
∑n

i=1

|bij|Lj}, then the equilibrium point u = u∗ of system (2.1) is globally exponentially

stable.

Proof. Choose Lyapunov functional

V (t, xt) =
n∑

i=1

(|xi(t)|+
n∑

j=1

|bij|Lj

∫ t

t−τj

|xj(s)|ds),
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then the Dini derivative of V along system (2.5) is

dV (t, xt)

dt
≤

n∑
i=1

[−ci|xi(t)|+
n∑

j=1

|aij|Lj|xj(t)|

+
n∑

j=1

|bij|Lj|xj(t− τj)|+
n∑

j=1

|bij|Lj(|xj(t)| − |xj(t− τj)|)]

=
n∑

i=1

[−ci +
n∑

j=1

(|aji|+ |bji|)Li]|xi(t)|

≤ cV (t, xt), t ∈ [tk−1, tk), k ∈ N∗,
where c = max1≤i≤n{−ci +

∑n
j=1(|aji|+ |bji|)Li} > 0, thus we have

V (t, xt) ≤ V (tk−1, xtk−1
)ec(t−tk−1), t ∈ [tk−1, tk), k ∈ N∗. (3.1)

Then, we obtain that, for t ∈ [t0, t1),

V (t, xt) ≤ V (t0, xt0)e
c(t−t0)

≤ [‖x(t0)‖+ max1≤j≤n{
∑n

i=1 |bij|Lj}τ‖φ− u∗‖τ ]e
c(t−t0)

≤ (1 + λτ)‖φ− u∗‖τe
c(t1−t0),

(3.2)

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, ‖x(t)‖ =
∑n

i=1 |xi|. Then

‖x(t)‖ ≤ V (t, xt) ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t0, t1), (3.3)

where M = (1 + λτ)e(c+α)l. So from (3.2), we have

‖x(t−1 )‖ ≤ (1 + λτ)‖φ− u∗‖τe
c(t1−t0),

‖xt−1
‖τ ≤ (1 + λτ)‖φ− u∗‖τe

c(t1−t0).
(3.4)

Therefore we obtain

V (t1, xt1) =
∑n

i=1(|xi(t1)|+
∑n

j=1 |bij|Lj

∫ t1
t1−τj

|xj(s)|ds)

≤ d‖x(t−1 )‖+
∑n

i=1

∑n
j=1 |bij|Lj|xjt−1

|ττj

≤ d‖x(t−1 )‖+ τλ‖xt−1
‖τ ≤ (d + λτ)‖xt−1

‖τ

≤ (d + λτ)(1 + λτ)‖φ− u∗‖τe
c(t1−t0)

≤ e−(c+α)lM‖φ− u∗‖τe
−αl,

(3.5)

thus we have, for t ∈ [t1, t2)

V (t, xt) ≤ V (t1, xt1)e
c(t−t1) ≤ V (t1, xt1)e

cl

≤ e−2αlM‖φ− u∗‖τ

≤ M‖φ− u∗‖τe
−α(t−t0),

and hence we get

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t1, t2).
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Next we shall show that

V (ti, xti) ≤ e−(i+1)αle−clM‖φ− u∗‖τ , i ∈ N∗. (3.6)

We know (3.6) holds for i = 1 in view of (3.5), if we assume that it holds for

i = k, i.e.

V (tk, xtk) ≤ e−(k+1)αle−clM‖φ− u∗‖τ , k ∈ N∗,
then we have, for t ∈ [tk, tk+1)

V (t, xt) ≤ V (tk, xtk)e
c(t−tk) ≤ V (tk, xtk)e

cl

≤ e−(k+1)αlM‖φ− u∗‖τ ,

and

‖x(t)‖ ≤ V (t, xt) ≤ e−(k+1)αlM‖φ− u∗‖τ ,

‖xt−k+1
‖τ ≤ V (t, xt) ≤ e−(k+1)αlM‖φ− u∗‖τ ,

therefore we obtain

V (tk+1, x(tk+1)) =
∑n

i=1[|xi(tk+1)|+
∑n

j=1 |bij|Lj|
∫ tk+1

tk+1−τj
|xj(s)|ds]

≤ d‖x(t−k+1)‖+ λτ‖xt−k+1
‖τ

≤ (d + λτ)e−(k+1)αlM‖φ− u∗‖τ

≤ e−(α+c)le−(k+1)αlM‖φ− u∗‖τ

≤ e−(k+2)αle−clM‖φ− u∗‖τ ,

which implies that (3.6) holds for i = k +1, and hence (3.6) holds for any i ∈ N∗.
So we have

‖x(t)‖ ≤ V (t, x(t)) ≤ V (ti, x(ti))e
c(t−ti)

≤ e−(i+1)αlM‖φ− u∗‖τ

≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [ti, ti+1), i ∈ N∗,

which, together with (3.3), yields the global exponential stability of u∗.

If we change the proof in Theorem 3.1 a bit, then we will have the following

result in which the lower bound of the length of the successive impulses is relaxed

but the restriction on the amplitude of impulses is stronger than in Theorem 3.1.

Theorem 3.2. Assume that there exist constants l, α, d > 0 such that tk−tk−1 ≤
l, |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d + λτeατ ) ≤ −(α + c)l,

where c = max1≤i≤n{−ci +
∑n

j=1(|aji| + |bji|)Li} > 0, and λ = max1≤j≤n{
∑n

i=1

|bij|Lj}, then the equilibrium point u = u∗ of system (2.1) is globally exponentially

stable.
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Proof. By choosing the same Lyapunov functional and using the same argument

as in Theorem 3.1, we get V ′(t, xt) ≤ cV (t, xt) for t ∈ [tk−1, tk) and k ∈ N∗ and

‖x(t)‖ ≤ M‖φ−u∗‖τe
−α(t−t0) for t ∈ [t0, t1). Next we shall show by mathematical

induction that

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [ti−1, ti), i ∈ N∗. (3.7)

We have that (3.7) holds for i = 1 by the same argument in Theorem 3.1, and

then we assume it holds for i = k, i.e.

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [tk−1, tk), (3.8)

we shall show that (3.7) holds for i = k + 1:

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [tk, tk+1).

From (3.8), we get

‖x(t−k )‖ ≤ M‖φ− u∗‖τe
−α(tk−t0),

and

‖xt−k
‖τ ≤ M‖φ− u∗‖τe

ατe−α(tk−t0),

and hence

V (tk, xtk) =
∑n

i=1[|xi(tk)|+
∑n

j=1 |bij|Lj

∫ tk
tk−τj

|xj(s)ds|]
≤ ∑n

i=1[d|xi(t
−
k )|+ ∑n

j=1 |bij|Lj

∫ t−k
t−k −τj

|xj(s)ds|]
≤ d‖x(t−k )‖+ λτ‖xt−k

‖τ

≤ M(d + λτeατ )‖φ− u∗‖τe
−α(tk−t0)

≤ e−(α+c)lM‖φ− u∗‖τe
−α(tk−t0),

then for t ∈ [tk, tk+1), we have

V (t, xt) ≤ V (tk, xtk)e
c(t−tk) ≤ V (tk, xtk)e

cl

≤ e−αlM‖φ− u∗‖τe
−α(tk−t0)

≤ M‖φ− u∗‖τe
−α(t−t0),

this gives

‖x(t)‖ ≤ V (t, xt) ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [tk, tk+1),

which implies (3.7) holds for all t ≥ t0 and completes the proof.

When c is non-positive, the method in Theorem 3.1 can not apply, by using

similar method in Theorem 3.2, we can obtain the result as follows.

Theorem 3.3. Assume that there exist constants α, d > 0 such that max1≤i≤n

{−ci +
∑n

j=1(|aji| + |bji|)Li} , c ≤ 0 and |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R
with

ln(d + λτeατ ) ≤ −α(tk − tk−1), k ∈ N∗,
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where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, then the equilibrium point u = u∗ of system

(2.1) is globally exponentially stable.

Proof. Choosing the same Lyapunov functional and using the same argument

as in Theorem 3.1, we get V ′(t, xt) ≤ cV (t, xt) for t ∈ [tk−1, tk). Since c ≥ 0, we

have V ′(t, xt) ≤ 0 for t ≥ t0. Then similarly to Theorem 3.1, we have

‖x(t)‖ ≤ V (t, xt) ≤ V (t0, xt0)

≤ (1 + λτ)‖φ− u∗‖τ

≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t0, t1),

where M = (1 + λτ)ecl. And hence we have

‖x(t−1 )‖ ≤ M‖φ− u∗‖τe
−α(t1−t0),

and

‖xt−1
‖τ ≤ M‖φ− u∗‖τe

ατe−α(t1−t0).

Then for t ∈ [t1, t2), we obtain

V (t, xt) ≤ V (t1, xt1) ≤ d‖x(t−1 )‖+ λτ‖xt−1
‖τ

≤ (d + λτeατ )M‖φ− u∗‖τe
−α(t1−t0)

≤ e−α(t2−t1)M‖φ− u∗‖τe
−α(t1−t0)

≤ M‖φ− u∗‖τe
−α(t−t0),

that gives

x(t) ≤ V (t, xt) ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t1, t2).

Similarly, we can prove that

x(t) ≤ V (t, xt) ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [tk−1, tk), k ∈ N∗,

which implies our result.

By using the same method in Theorem 3.1 and different Lyapunov functional,

we have the following result.

Theorem 3.4. Assume that there exist constants l, α, d > 0 such that τ ≤
tk − tk−1 ≤ l, |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d2 + λτ) ≤ −(c + 2α)l,

where c = max1≤i≤n{−2ci +
∑n

j=1(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)} > 0, and

λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, then the equilibrium point u = u∗ of system (2.1) is

globally exponentially stable.
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Proof. Choose Lyapunov functional

V (t, xt) =
n∑

i=1

[x2
i (t) +

n∑
j=1

|bij|Lj

∫ t

t−τj

x2
j(s)ds],

then the Dini derivative of V along system (2.5) is

dV (t,xt)
dt

=
n∑

i=1

[2xi(t){−cixi(t) +
n∑

j=1

aij(fj(xj(t) + u∗j)− fj(u
∗
j)) +

n∑
j=1

bij

× (fj(xj(t− τj) + u∗j)− fj(u
∗
j))}+

n∑
j=1

|bij|Lj(x
2
j(t)− x2

j(t− τj))]

≤
n∑

i=1

[−2cix
2
i (t) +

n∑
j=1

2|xi(t)||aij|Lj|xj(t)|+
n∑

j=1

2|xi(t)||bij|Lj

× |xj(t− τj)|+
n∑

j=1

|bij|Lj(|xj(t)|2 − |xj(t− τj)|2)]

≤ −2
n∑

i=1

cix
2
i (t) +

n∑
i=1

n∑
j=1

|aij|Lj(|xi(t)|2 + |xj(t)|2) +
n∑

i=1

n∑
j=1

|bij|Lj

× (|xi(t)|2 + |xj(t− τj)|2) +
n∑

i=1

n∑
j=1

|bij|Lj(|xj(t)|2 − |xj(t− τj)|2)

≤
n∑

i=1

[−2ci +
n∑

j=1

(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)]|xi(t)|2

≤ cV (t, xt), t ∈ [tk−1, tk), k ∈ N∗,
where c = max1≤i≤n{−2ci +

∑n
j=1(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)} > 0, thus

we have

V (t, xt) ≤ V (tk−1, xtk−1
)ec(t−tk−1), t ∈ [tk−1, tk), k ∈ N∗. (3.9)

Then, we obtain that, for t ∈ [t0, t1),

V (t, xt) ≤ V (t0, xt0)e
c(t−t0)

≤ [‖x(t0)‖2 + max1≤j≤n{
∑n

i=1 |bij|Lj}τ‖φ− u∗‖τ )
2]ec(t−t0)

≤ (1 + λτ)‖φ− u∗‖2
τe

c(t1−t0),

(3.10)

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, ‖x(t)‖ = (
∑n

i=1 |xi|2) 1
2 . Then

‖x(t)‖ ≤
√

V (t, xt) ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t0, t1), (3.11)

where M =
√

1 + λτe( c
2
+α)l. So from (3.10) and (3.11), we have

‖x(t−1 )‖2 ≤ (1 + λτ)‖φ− u∗‖2
τe

c(t1−t0),

‖xt−1
‖2

τ ≤ (1 + λτ)‖φ− u∗‖2
τe

c(t1−t0).
(3.12)



CELLULAR NEURAL NETWORKS WITH TIME DELAY 81

Therefore we obtain

V (t1, xt1) =
∑n

i=1(|xi(t1)|2 +
∑n

j=1 |bij|Lj

∫ t1
t1−τj

|xj(s)|2ds)

≤ d2‖x1(t
−
1 )‖2 +

∑n
i=1

∑n
j=1 |bij|Lj|xjt−1

|2ττj

≤ d2‖x1(t
−
1 )‖2 + τλ‖xt−1

‖2
τ ≤ (d2 + λτ)‖xt−1

‖2
τ

≤ (d2 + λτ)(1 + λτ)‖φ− u∗‖2
τe

c(t1−t0)

≤ e−(c+2α)lM2‖φ− u∗‖2
τe
−2αl,

thus we have, for t ∈ [t1, t2)

V (t, xt) ≤ V (t1, xt1)e
c(t−t1) ≤ V (t1, xt1)e

cl

≤ e−4αlM2‖φ− u∗‖2
τ

= M2‖φ− u∗‖2
τe
−2α(t−t0),

and hence we get

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ∈ [t1, t2).

Similarly to Theorem 3.1, we can derive

‖x(t)‖ ≤ M‖φ− u∗‖τe
−α(t−t0), t ≥ t0,

which completes the proof.

Remark 3.1. Compared to Theorem 3.1, the result in Theorem 3.4, if both the-

orems are applicable (i.e. c > 0), seems less restrictive for small value of α and

l, hence we expect a bigger bound on the impulse amplitude d from Theorem 3.4

in the stability analysis of the same problem; however, for big value of c, either

the difference is small or we can obtain a bigger bound on the impulse amplitude

d from Theorem 3.1, see Example 4.1.

Using the same Lyapunov functional as in Theorem 3.4 and similar method in

Theorem 3.2 and Theorem 3.4, we have the following result.

Theorem 3.5. Assume that there exist constants l, α, d > 0 such that tk−tk−1 ≤
l, |Ii(y + u∗i ) + y| ≤ d|y| for any y ∈ R with

ln(d2 + λτe2ατ ) ≤ −(c + 2α)l,

where c = max1≤i≤n{−2ci +
∑n

j=1(|aji|Li + |aij|Lj + |bji|Li + |bij|Lj)} > 0, λ =

max1≤j≤n{
∑n

i=1 |bij|Lj}, then the equilibrium point u = u∗ of system (2.1) is

globally exponentially stable.

Using the same Lyapunov functional as in Theorem 3.4 and similar method to

Theorem 3.3 and Theorem 3.4, we have the following result.
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Theorem 3.6. Assume that there exist constants α, d > 0 such that max1≤i≤n

{−2ci+
∑n

j=1(|aji|Li+|aij|Lj+|bji|Li+|bij|Lj)} , c ≤ 0 and |Ii(y+u∗i )+y| ≤ d|y|
for any y ∈ R with

ln(d2 + λτe2ατ ) ≤ −α(tk − tk−1), k ∈ N∗,

where λ = max1≤j≤n{
∑n

i=1 |bij|Lj}, then the equilibrium point u = u∗ of system

(2.1) is globally exponentially stable.

Remark 3.2. Notice that the cellular neural networks without impulses might be

stable when c ≤ 0 in Theorem 3.6 and Theorem 3.3, see Example 4.2.

4. Examples

In this section, we will discuss some examples to illustrate our results, simula-

tions are also given to make the results more intuitive.

Example 4.1. Consider the following cellular neural networks with time delay





du1(t)
dt

= −u1(t) + 1
2
f(u1(t)) + 1

2
f(u2(t))− 3

2
f(u1(t− 0.01))

−3
2
f(u2(t− 0.075)) + 2,

du2(t)
dt

= −0.5u2(t) + 1
2
f(u1(t)) + f(u2(t))− f(u1(t− 0.01))

−1
2
f(u2(t− 0.075)) + 2, t ≥ 0;

x0 = φ,

(4.1)

where f(s) = 1
2
(|s + 1| − |s− 1|) for any s ∈ R, φ ∈ PC([−0.01, 0],R2).

By direct computation, we know that u∗ = (0.5, 4.5) is the unique equilibrium

point of the cellular neural networks (4.1).

It is easy to check that the condition in Corollary 3 ([5]) does not hold since

c1 < |a11|+ |a12|+ |b11|+ |b12|;
c2 < |a21|+ |a22|+ |b21|+ |b22|,

and the condition in [2] is not satisfied since the matrix −(A+AT ) is not positive

definite, so the equilibrium point u∗ might not be exponentially stable. Actually,

the numerical simulation shows that u∗ is not even asymptotically stable, see Fig.1

for graphs of the solutions with different initial functions φ = (−0.1H(t), 4H(t))T ,

(2H(t), 6H(t))T , (6H(t),−5H(t))T , where H(t) is the Heaviside step function.
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Fig.1. System without impulses.

In Theorem 3.1, it can easily check that c = 3 > 0, λ = 5
2
, τ = 0.01; if we

choose α = 0.1, l = 0.5, then by Theorem 3.1, we can obtain the estimate for the

impulse amplitude which can stabilize this cellular neural network is

d ≤ e−(α+c)l − λτ ≤ 0.1872.

Thus we can choose the impulse control functions Ii(s) = −0.85s + 0.85u∗i for

any s ∈ R to stabilize cellular neural network (4.1), see Fig.2 for the numerical

simulations with the same initial functions as in Fig.1.

However, if we use Theorem 3.4 in stead, we obtain c = 5.5 > 0 and the estimate

for the impulse amplitude which can stabilize this cellular neural network is

d ≤
√

e−(2α+c)l − λτ ≤ 0.1669,

which allows a smaller bound for the impulse amplitude; while if we choose smaller

l, for example, l = 0.25 in both theorems, then from Theorem 3.4 we obtain

d ≤ 0.4588, which is a bigger bound for the amplitude of impulsive control than

the result d ≤ 0.4357 from Theorem 3.1. This verifies the prediction in Remark

3.1.
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Fig.2. System with impulsive control.

In the above example, we show that how Theorem 3.1 and Theorem 3.4 work in

stabilizing the unstable neural network (4.1). Next we shall try to use Theorem

3.3 to determine the stability of neural networks. In fact, when c ≤ 0, the neural

network without impulses might be stable, as the following example indicates.

Example 4.2. Consider the following cellular neural networks with time delay





du1(t)
dt

= −2u1(t) + 2
3
f(u1(t)) + 1

5
f(u2(t)) + 4

5
f(u1(t− 0.01))

+1
3
f(u2(t− 0.075)) + 3,

du2(t)
dt

= −2u2(t) + 1
3
f(u1(t)) + 4

5
f(u2(t)) + 1

5
f(u1(t− 0.01))

+2
3
f(u2(t− 0.075)) + 2.5, t ≥ 0;

x0 = φ,

(4.2)

where f(s) = 1
2
(|s + 1| − |s− 1|) for any s ∈ R, φ ∈ PC([−0.01, 0],R2).

By direct computation, we know that u∗ = (2.5, 2.25) is the unique equilibrium

point of the cellular neural networks (4.2). Moreover, ci = 2 =
∑n

j=1(|aji| +
|bji|)Li = 1

2

∑n
j=1(|aji|Li+|aij|Lj+|bji|Li+|bij|Lj), which yields c = 0 in Theorem

3.3 and Theorem 3.6, the simulations, with initial functions

φ = (−5H(t), 5H(t))T , (2H(t), 3H(t))T , (3H(t), 2H(t))T

(see Fig.3), show that the equilibrium point u∗ of this system might be globally

exponentially stable.
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Fig.3. Stable system when c = 0.

5. Conclusions

In this paper, some global exponential stability criteria have been established

for impulsive cellular neural networks with tim delay based on Lyapunov func-

tional method. Our results show that impulses may play an important role in the

stabilization of some cellular neural networks with time delay. The conditions

are easy to verify. The discussions above assume constant delays, cellular neural

networks with time-varying delays will be investigated in the near future.
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