
J. Nonlinear Sci. Appl. 1 (2008), no. 4, 206–212

The Journal of Nonlinear Sciences and Applications

http://www.tjnsa.com

EXISTENCE AND UNIQUENESS OF FRACTIONAL
DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY

CONDITIONS

TAIGE WANG1 AND FENG XIE2∗

Abstract. In this article, the recently developed monotonous iterative method
is used to investigate fractional differential equations involving Riemann-Liouville
differential operators with integral boundary conditions. The existence and
uniqueness of solutions are obtained.

1. Introduction

We consider the following fractional differential problem with integral boundary
condition

Dqx(t) = f(t, x), t ∈ J = [0, T ], T ≥ 0,

x(0) = λ
∫ T

0
x(s)ds + d, d ∈ R.

(1.1)

where 0 < q < 1, λ is 1 or -1 and f ∈ C[J × R,R]. Dq denotes the fractional
derivative of order q in the sense of Riemann-Liouville. Problem (1.1) with q = 1
was investigated by Jankowski [5]. Very recently, the basic theory of problem (1.1)
with λ = 0 has been obtained by Lakshmikantham and Vatsala in a series of work
[6, 7, 8]. The monotonous iterative method for fractional differential equations
and the theory of fractional differential equalities have also been developed.

The significance of fractional differential equations has been displayed in the
research of applied mathematics these years, especially in the study on disordered
semiconductors and viscoelastic materials; see [1, 2, 13, 14], for instance. Because
most of nonlinear fractional differential equations do not exact analytic solutions,
various analytic approximation and numerical methods have been proposed and
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developed recently. For example, the He’s homotopy perturbation method[9, 10,
12, 15] and variational iteration method[3, 4, 11] have been successfully applied
to solve a variety of nonlinear fractional differential equations.

In the present article, we shall discuss the existence and uniqueness of problem
(1.1) by employing the monotonous iterative method recently developed by Lak-
shmikantham and Vatsala. Note that problem (1.1) is equivalent to the following
integral equation:

x(t) = λ

∫ T

0

x(s)ds + d +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds, 0 ≤ t ≤ T,

where Γ(q) is the Gamma Function of q.
The layout of this paper is as follows. In Section 2, we employ the monotonous

iterative method to testify the existence and uniqueness of solution to problem
(1.1) in the case of λ = 1. The similar way to establish the corresponding theory
of solution to problem (1.1) when λ = −1 is given in Section 3.

2. Case λ=1

Before the detailed establishment, let us introduce some definitions and as-
sumptions.

Definition 2.1. Assume that there exist v0(t) and w0(t) which are locally Hölder
continuous and satisfy:

Dqv0(t) ≤ f(t, v0(t)), v0(0) ≤
∫ T

0

v0(s)ds,

Dqw0(t) ≥ f(t, w0(t)), w0(0) ≥
∫ T

0

w0(s)ds.

Then we call v0(t) and w0(t) lower and upper solutions of problem (1.1), respec-
tively.

We make the following assumptions:

(H1) f ∈ C(J × R,R);
(H2) v0(t), w0(t) ∈ C1(J,R) are lower and upper solutions of problem (1.1);
(H3) There exists 0 ≤ M ≤ 1

T qΓ(1−q)
such that f(t, x) − f(t, y) ≥ −M(x − y)

for x ≥ y.

Lemma 2.2. If H1 and H2 hold, and there exists L ∈ (0, 1
T qΓ(1−q)

) such that

f(t, x)− f(t, y) ≤ L(x− y) for y ≤ x. Then, v(0) ≤ w(0) implies v(t) ≤ w(t).

Actually, the proof in the case of integral boundary condition is the same as
that in the initial value condition because the integral condition has the same
definition like the initial one used in the proofs. And the proof of the latter can
be found in [8], so we omit it here.
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Lemma 2.3. If (H1), (H2) and (H3) hold, and the mapping A : Av0 = v1, Aw0 =
w1 is defined as:

Dqv1 = f(t, v0)−M(v1(t)− v0(t)), v1(0) =

∫ T

0

v0(s)ds + d,

Dqw1 = f(t, w0)−M(w1(t)− w0(t)), w1(0) =

∫ T

0

w0(s)ds + d. (2.1)

Then the mapping A has the properties:

(a) Av0 ≥ v1, Aw0 ≤ w1;
(b) on [v0, w0] = [x ∈ C(J,R) : v0 ≤ w0], A is a monotonous operator.

Proof. (a). Note that the right side of equations in (2.1) meets Lipshitz condition,
which warrants the uniqueness of the solution v1, w1.

Setting p = v1 − v0, we have

Dqp(t) = f(t, v0(t))−M [v1(t)− v0(t)]− f(t, v0(t))

≥−M [v1(t)− v0(t)]

= −Mp(t),

p(0) = v1(0)− v0(0) ≥ 0.

Note that the initial value problem Dqx(t) = 0, x(0) = x0 has a unique solution
x(t) ≡ 0 on J . It follows from Lemma 2.2 that p(t) ≥ 0, which implies v1(t) ≥
v0(t). Similarly, we can get w1(t) ≤ w0(t).

(b). For σ1, σ2 ∈ [v0, w0], σ2 ≥ σ1, setting p = Aσ2 − Aσ1 = x2 − x1, we have

Dqp = f(t, σ2(t))−M(x2 − σ2)− f(t, σ1(t)) + M(x1 − σ1)

≥ −M(σ2 − σ1) + M(σ2 − σ1)−M(x2 − x1)

= −M(x2 − x1)

= −Mp(t),

p(0) = x2(0)− s1(0)

=

∫ T

0

[σ2(s)− σ1(s)]ds

≥ 0.

It follows from Lemma 2.2 that Aσ2 ≥ Aσ1, which implies that A is a monotonous
operator. The proof of Lemma 2.3 is completed. ¤
Theorem 2.4. Assume that H1, H2 and H3 hold, and the mapping A : Avn =
vn+1, Awn = wn+1 are defined as:

Dqvn+1 = f(t, vn)−M(vn+1(t)− vn(t)), vn+1(0) =

∫ T

0

vn(s)ds + d,

Dqwn+1 = f(t, wn)−M(wn+1(t)− wn(t)), wn+1(0) =

∫ T

0

wn(s)ds + d.

Then there exist monotone sequences {vn}, {wn} such that vn → v(t), wn → w(t)
as n →∞, where (v, w) are the extremal solutions of (1.1) on 0 ≤ t ≤ T .
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Proof. The definition of the mapping A gives Avn−1 = vn, Awn−1 = wn. From (a)
and (b) in Lemma 2.3, it is not difficult to get:

v0 ≤ v1 ≤ . . . ≤ vn−1 ≤ vn ≤ wn ≤ wn−1 ≤ . . . ≤ w2 ≤ w1 ≤ w0, t ∈ J.

Apparently, there exist v, w such that lim
n→∞

vn(t) = v(t), lim
n→∞

wn(t) = w(t). And

v, w are solutions of problem (1.1). Next we will prove that v, w are the minimal
and maximal solutions of problem (1.1), respectively.

Let x(t) ∈ [v0, w0] is a solution of (1.1) different from v(t) and w(t), so there
exist k ∈ N such that vk(t) ≤ x(t) ≤ wk(t). Setting p(t) = x− vk+1, we have

Dqp(t) = f(t, x(t))− f(t, vk(t)) + M [vk+1(t)− vk(t)]

≥ −M [x(t)− vk(t)] + M [vk+1(t)− vk(t)]

= M [vk+1(t)− x(t)]

= Mp(t),

p(0) = x(0)− vk+1(0)

=

∫ T

0

[x(s)− vk(s)]ds

≥ 0.

By Lemma 2.2, we get that p(t) = x(t) − vk+1(t) ≥ 0, which implies x(t) ≥ v(t)
by letting k →∞. For the same sake, we can also get x(t) ≤ w(t). Now we can
see that v, w are the minimal solution and the maximal solution to (1.1). ¤
Theorem 2.5. Assume that H1, H2 and H3 hold, and there exists L ∈ (0, 1

T qΓ(1−q)
)

such that f(t, x)− f(t, y) ≤ L(x− y) for y ≤ x. Suppose further that lim
n→∞

‖wn −
vn‖ = 0 where the norm is defined as ‖f‖ =

∫ T

0
|f(s)|ds. Then the solution of

problem (1.1) is unique.

Proof. Setting p = w − v, we have

Dqp(t) = f(t, w(t))− f(t, v(t))

≤ M [w(t)− v(t)]

= Mp(t),

p(0) = w(0)− v(0)

= lim
n→∞

[wn(0)− vn(0)]

= lim
n→∞

‖wn−1 − vn−1‖
= 0.

Again with Lemma 2.2, we could get p(t) ≤ 0. As a result, it follows v(t) ≥ w(t).
But considering v(t) ≥ w(t), we have v(t) ≡ w(t). ¤

3. Case λ = −1

Definition 3.1. Assume that there exist v0(t) and w0(t) which are locally Hölder
continuous and satisfy:
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Dqv0(t) ≤ f(t, v0(t)), v0(0) ≤ −
∫ T

0

w0(s)ds,

Dqw0(t) ≥ f(t, w0(t)), w0(0) ≥ −
∫ T

0

v0(s)ds.

Then we call v0(t) and w0(t) the weakly coupled lower and upper solutions of
problem (1.1), respectively.

We make assumptions:

(H4) There exist weakly coupled upper and lower solutions w0 and v0 of problem
(1.1);

(H5) There exists M ∈ [0, 1
T qΓ(1−q)

] such that M(x − y) ≥ f(t, x) − f(t, y) ≥
−M(x− y) for x ≥ y;

(H6) The sequences {vn} and {wn} given by the mapping A are weakly coupled,

and lim
n→∞

‖wn − vn‖ = 0 where the norm is defined as ‖f‖ =
∫ T

0
|f(s)|ds.

Lemma 3.2. Assume that (H4) and (H5) hold, and the mapping A : Av0 =
v1, Aw0 = w1 is defined as:

Dqv1 = f(t, v0)−M(v1(t)− v0(t)), v1(0) = −
∫ T

0

w0(s)ds + d,

Dqw1 = f(t, w0)−M(w1(t)− w0(t)), w1(0) = −
∫ T

0

v0(s)ds + d. (3.1)

Then the conclusions (a) and (b) in Lemma 2.3 hold.

Proof. (a). Note that the right side of equations in (3.1) satisfy Lipshitz condition,
which assures the uniqueness of solution to (1.1).

Setting p = v1 − v0, we have

Dqp(t) = f(t, v0(t))−M [v1(t)− v0(t)]− f(t, v0(t))

≥ −M [v1(t)− v0(t)]

= −Mp(t),

p(0) = v1(0)− v0(0)

= −
∫ T

0

w0(s)ds +

∫ T

0

w0(s)ds

= 0.

It follows from that p(t) ≥ 0 which implies v1(t) ≥ v0(s). For the same sake,
w1(t) ≤ w0(t).
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(b). For σ1, σ2 ∈ [v0, w0], σ2 ≥ σ1, let σ?
1, σ

?
2 are also coupled solutions, and

σ?
1 ≥ σ?

2. Setting p = Aσ2 − Aσ1 = x2 − x1, we have

Dqp = f(t, σ2(t))−M(x2 − σ2)− f(t, σ1(t)) + M(x1 − σ1)

≥ −M(σ2 − σ1) + M(σ2 − σ1)−M(x2 − x1) = −M(x2 − x1)

= −Mp(t),

p(0) = x2(0)− x1(0)

=

∫ T

0

[−σ?
2(s) + σ?

1(s)]ds

≥ 0.

It follows from Lemma 2.2 that x2(t) ≥ x1(t) and A is a monotonous operator.
¤

Theorem 3.3. Assume that H4, H5 and H6 hold, and the mapping A : Avn =
vn+1, Awn = wn+1 are defined as:

Dqvn+1 = f(t, vn)−M(vn+1(t)− vn(t)), vn+1(0) = −
∫ T

0

wn(s)ds + d,

Dqwn+1 = f(t, wn)−M(wn+1(t)− wn(t)), wn+1(0) = −
∫ T

0

vn(s)ds + d.

Then there exist monotone sequences {vn}, {wn} which converges to the same
function φ(t) which is the unique solution of problem (1.1) with λ = −1.

Proof. The definition of A gives Avn−1 = vn, Awn−1 = wn. From (a) and (b)
in Lemma 3.2 there is no difficulty to get: for t ∈ J, v0 ≤ v1 ≤ . . . ≤ vn−1 ≤
vn ≤ wn ≤ wn−1 ≤ . . . ≤ w2 ≤ w1 ≤ w0. Apparently, there exist v, w such that
lim

n→∞
vn(t) = v(t), lim

n→∞
wn(t) = w(t). And v, w are solutions to (1.1).

Setting p = w − v, we have

Dqp = f(t, w(t))− f(t, v(t))

≤ M [w(t)− v(t)]

= p(t),

p(0) = w(0)− v(0)

= lim
n→∞

[wn(0)− vn(0)]

= lim
n→∞

‖wn−1 − vn−1‖
= 0.

With Lemma 2.3 again, we get p(t) ≤ 0, which means v(t) ≥ w(t). Considering
v(t) ≤ w(t), we have v(t) = w(t) := φ(t). We have got the uniqueness of solution
to (1.1) with λ = −1. The proof of Theorem 3.3 is complete. ¤
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